

Measuring the Semantic Similarity of Comments in Bug Reports

Bogdan Dit, Denys Poshyvanyk, Andrian Marcus

Department of Computer Science
Wayne State University
Detroit Michigan 48202

313 577 5408
<bdit, denys, amarcus>@wayne.edu

Abstract

Bug-tracking systems, such as Bugzilla, contain a
large amount of information about software defects,
most of it stored in textual, rather than structured form.
This information is used not only for locating and fixing
the bugs, but also for detecting bug duplicates, triaging
incoming bugs, automatically assigning bugs to
developers, etc. Given the importance of the textual
information in the bug reports, it is desirable that this
text is highly coherent, such that the readers can easily
understand it.

The paper describes an approach to measuring the
textual coherence of the user comments in bug reports.
The coherence of bug reports from Eclipse was
measured and the results are discussed in the paper.

1. Introduction
A large part of software development and

maintenance is spent on locating and fixing bugs. It is
common to use in large projects defect reporting and
tracking systems, such as Bugzilla1. Such systems
collect a lot of information about identified defects,
most of it in natural text, such as bug descriptions, user
comments, etc.

The information provided in these bug reports
influences the time it takes to fix the bugs [2, 16] and it
can be used to support tasks, such as, impact analysis
[3, 4], detection of duplicate bug reports [13, 14], or
assigning bug reports to developers [1, 5, 7]. It has
been shown that bug reports greatly differ in their
quality of information [10, 11, 15]. The proposed
quality models ignore the user comments posted in the
bug reports. We argue that good bug reports should
contain not only good textual descriptions of the
problem and properly selected attributes, but also
coherent and relevant comments.

1 http://www.bugzilla.org

In this paper we propose a novel approach to
measure the textual coherence of user comments in bug
reports. We consider that the textual coherence of user
comments affects the comprehensibility of bug reports
hence it is important to measure it. Our measuring
technique relies on the utilization of Information
Retrieval (IR) techniques, which allows for automatic
coherence measurement of user comments in large bug
repositories. We measured the coherence of bug
reports from Eclipse2 and our preliminary results
suggest that the proposed measure correlates with
assessments provided by software developers.

2. Background and Motivation
Bug-tracking repositories provide means of

communication among geographically distributed
developers and teams. The developers can describe and
issue new bug reports, comment on existing bug
reports, suggest fixes to the bugs, subscribe to e-mail
discussions for specific bug reports, etc.

An individual record in a bug-tracking database is
referred to as an issue or bug report. A typical bug
report consists of several components such as title (or
short summary); attributes or pre-defined fields such as
bug report id number, creation date, reporter, product,
component, operating system, version, priority,
severity, e-mail addresses of developers on the mailing
list for the bug, etc.; long description and comments,
which are posted by developers.

Bugzilla’s published usage rules specify the
following about writing comments: “If you are
changing the fields on a bug, only comment if either
you have something pertinent to say, or Bugzilla
requires it. Otherwise, you may spam people
unnecessarily with bug mail.” 3

Each project usually defines its own guidelines on
how to post comments in the bug reports. For example,

2 http://www.ecplise.org
3 http://www.bugzilla.org/docs/2.18/html/hintsandtips.html

Mozilla developers, are encouraged to write such
comments: “If you make a lot of useful comments to
someone's bugs they may come to trust your judgment
and ask you to go ahead and make the changes
yourself, …”4.

A common side effect across projects is that these
comments become a source of discussion among
developers. Developers often tend to comment on each
other’s comments, rather than on the changes, and the
discussion often degenerates and loses coherence.

3. Measuring the Coherence of Bug Reports

Our approach to measuring the textual coherence of
bug reports is based on the premise that the comments
in bug reports should relate to the problem described in
the bug report and should form a coherent discourse.
We identify breaks in the discourse in order to find
comment threads that are interleaved and hence hinder
on readability and understandability.

In this work we analyze the text extracted from the
titles, the descriptions and the comments in bug reports.
Bug descriptions sometimes include stack traces,
source code or patches, but we also treat them in this
case as unstructured text (i.e., sets of words).

Many open-source bug tracking repositories, such as
Bugzilla provide an interface to query and extract bug
report descriptions. We developed a tool that crawls
through the web interface of Bugzilla for a given
project and extracts all bug reports in XML format.

3.1. Measuring coherence with Latent Semantic
Analysis

In order to analyze the text from the bug reports we
use Latent Semantic Analysis (LSA). LSA [6, 8] is a
corpus-based statistical IR-based method for inducing
and representing aspects of meanings of words and
passages in natural language, which are reflective in
their usage in large bodies of textual information.

Foltz et al. [9] showed that LSA can be applied as an
automated method for measuring textual coherence of
natural language texts. The primary method for using
LSA to measure textual coherence is to compare some
unit of text to an adjacent element of text in order to
determine the degree to which the two are semantically
related. These elements of text may be sentences,
paragraphs, individual words, or even whole chapters in
books.

In our case, these elements of text are unique
comments in the bug reports. This analysis can then be
performed for all pairs of adjacent comments in order to
describe the overall coherence of the discussion.

4 http://www.mozilla.org/bugs/

To measure the textual coherence, LSA is used to
compute semantic similarities between successive
comments in the bug report. High similarity between
two consecutive comments means that the two
comments are related, whereas low similarity indicates
a break in the topic or discourse. A well written essay
or paper may indicate textual coherence even at these
break points, thus topic changes are not always
identified by a lack of coherence. For instance, a writer
may deliberately make a series of disjointed points,
which may not represent a split in the discourse
structure. The idea is that if the semantic similarity
between neighboring sentences is maintained at a high
level, the reader can follow the logic and comprehend
the information in the text more easily. As the
semantic similarity measure, as defined by LSA, is not
transitive, it is possible to have non-adjoining sentences
having low similarity measure, yet maintaining high
coherence of a text. The overall coherence of a text is
measured as the average of all semantic similarity
measures between all the consecutive sentences
(comments).

The measuring methodology for the proposed
textual coherence metric is:
• Bug reports are extracted from the repository and
each comment forms a document in the corpus.
• Simple tokenization techniques (e.g., identifier
splitting, operator and punctuation removal) are applied
on the corpus and common stop words are removed.
• LSA is used to index the corpus and create a
corresponding semantic space. In this semantic space,
each document from the corpus is represented by real-
valued vector.
• Semantic similarities are computed between each
contiguous pair of documents (comments) in the
corpus.

We consider a bug-tracking system for a specific
project with a set of bug reports B = {b1, b2…bn}.

Each bug report is defined as b ∈ B, b = (dshort, dlong,
{c1, …, ck}), where dshort is the short description of the
bug (i.e., title), dlong is the long description and {c1, …,
ck} is a set of comments associated with the bug report.

Definition 1. For every bug report bi ∈ B containing
at least two comments, we define the semantic
similarity between two adjoining comments, ci and ci+1,
SSC(ci, ci+1) as the cosine between the vectors
corresponding to ci and ci+1 in the semantic space
constructed by LSA, SSC(ci, ci+1) ∈ [-1, 1]:

SSC(ci, ci+1) = 1

2 1 2| | | |

T
i i

i i

vc vc
vc vc

+

+×
,

where vci and vci+1 are the vectors corresponding to ci
and ci+1, respectively; T denotes the transpose
operation, and |vci|2 is the length of the vector.

For each bug reports, bi ∈ B we compute k-1 distinct
semantic similarities between adjoining comments
(e.g., c1 and c2, c2 and c3, …, ck-1 and ck).

Given this representation of bug reports, we define a
measure that approximates the textual coherence of
comments in a bug report by measuring the degree to
which the comments in bug reports relate to each other.

Definition 2. The average semantic similarity of the
comments in a bug report bi ∈ B is:

ASSC(bi) =
1

11

1 (,)
1

k
i ii

SSC c c
k

−
+=

×
− ∑ ,

where (ci, ci+1) are adjacent comments in the bug report,
and k is the total number of comments in the bug report.

In our view, ASSC(bi) defines the degree to which
comments in a bug report relate to each other.

Definition 3. The textual coherence of a bug report
bi ∈ B is defined as following:

TCBR(bi) =
() () 0

0
i iASSC b if ASSC b

else

>⎧
⎨
⎩

Based on the above definitions, TCBR(b) ∈ [0, 1] ∀
b ∈ B. If comments in a bug report bi ∈ B are textually
coherent, then the value of TCBR(bi) should be closer to
one, meaning that adjacent comments in a bug report
relate textually to each other (i.e., the SSC for each
adjacent pair of comments is close to one, meaning that
they used similar words). In this case, all the comments
in a bug report discuss the same problem without major
changes in the topic or breaks in discourse structure. If
the comments inside the bug report have low semantic
similarity values between them (i.e., the SSC for
majority of pairs of comments will be close to or less
than zero), then the comments most likely address
different issues (e.g., separate discussion threads) and
TCBR(bi) will be close to zero.

4. The Coherence of Bug Reports in Eclipse
In order to evaluate our novel measure for capturing

textual coherence of comments in bug reports, an
experienced developer (subject) rated how well the
automatically computed values of TCBR match actual
coherence of comments in bug reports. The subject,
who participated in this evaluation, is a graduate
student majoring in Computer Science with five years
of programming experience in Eclipse and one year
experience working with Bugzilla.

In this section we present the details on how bug
reports are mined, selected and indexed for evaluation.

4.1. Object of the study
We extracted a number of bug reports for Eclipse

2.0 software project, which is hosted on Bugzilla.
Originally, we extracted 3,401 bug reports, which have

been officially resolved (or fixed). Preliminary lexical
analysis of these bug reports generated the following
statistical facts. The average number of comments per
bug report is 4.9; standard deviation is 4.5 (with
distribution of comments in bug reports shown in
Figure 1). The average number of words in the
comments is 22.5. The total number of unique words in
comments is 15,748 (not including unique words in
descriptions). For the study we decided to keep bug
reports which contain at least four comments. After
filtering out the bug reports containing less than four
comments, we kept 1,763 bug reports.

Figure 1. The number of comments in all 3,401 bug
reports in Eclipse 2.0. In the study we used 1,763

bugs which contained at least 4 comments.

To build the corpus, we extracted all the comments
from the 1,763 bug reports and the long and short
descriptions. Each bug report description and each
comment from the bug report was represented as a
separate document in the corpus. We applied
tokenization in all the documents in corpus, as
described above and removed common stop words.
Where identifiers were split, the original form was also
kept. For example, “BugReport” was split into “bug”
and “report” and “BugReport” was kept in the corpus.
The Porter stemmer [12] was also used to stem the
words in the corpus. The resulting corpus consisted of
15,087 documents (descriptions + comments) with
7,244 uniquely indexed words (with 9,526 unique
words before stemming). We used a dimensionality
reduction factor of 300 for LSA indexing.

4.2. Evaluation setup
In order to gain more insights into the TCBR

measure, and how it reflects textual coherence of
comments in bug reports, the subject was given a set of
ten bug reports for which we computed the TCBR
measures. For these ten bug reports, we randomly
selected five bug reports from the 10% of bug reports
with highest values of TCBR and five bug reports from

the 10% of bug reports with lowest values of TCBR.
These ten bug reports were shuffled and presented to
the developer without the actual values of TCBR
measure. The subject was asked to read each of the bug
report with its comments and classify them based on
the following scale: (1) Very high coherence of
comments – the comments address the problem
coherently with a single discussion thread with no
breaks in discourse; (2) High coherence of comments –
the comments address the problem coherently with
minor breaks in discourse (some other minor issues
might be discussed) with a single discussion thread; (3)
Fair coherence of comments – the comments refer to
more than one problem, however no more than two
discussion threads are identified; (4) Poor coherence of
comments – the comments refer to more than two
separate problems and, therefore, can be structured in
more than two discussion threads.

4.3. Discussion of the results
The results of assessing the sampled bug reports are

presented in Table 1.
The subject identified that bug #135125 has poor

coherence. He pinpointed three separate discussion
threads: the first one, which consists of comment #1
and provides clarification to the initial description; the
second thread, which consists of comments #2 and #4
(comment #4 is a reply to comment #2); and the third
thread consists of comment #3, which specifies
additional information about duplicate bugs.

For bug #135846 (rated fair), the subject identified
two discussion threads: the first one deals with the
solution to the problem described in the bug report
(comments #1, #3, #4, #6) and the second one deals

5 https://bugs.eclipse.org/bugs/show_bug.cgi?id=13512
6 https://bugs.eclipse.org/bugs/show_bug.cgi?id=13584

with related bugs (comment #2) and duplicates
(comment #5).

The subject rated the bug #146467 as having a poor
coherence. Comments #1, #2, and #6 propose three
different solutions for the problem, which could be
categorized in three different discussion threads.
Comments #3 and #4 follow up on comment #2,
creating the thread between comments #2, #3, and #4,
whereas comments #5 and #7 are responses to comment
#1, thus creating the thread between comments #1, #5,
and #7. On the other hand, comment #7 also addresses
the issue raised in comment #6, which indicates that
some comments are responses to multiple discussion
threads. Grouping these comments into three different
discussion threads would improve comprehensibility of
this bug report.

The subject identified two threads in bug report
#143268 and thus rated it as having a fair coherence
between comments. The first one relates to the solution
(comments #1, #2, and #3) and the second thread
references to a duplicate bug (comment #4).

Similarly, the subject identified two threads for bug
#261279 (rated fair): the first one relates to the solution
(comments #2, #4, #5, and #6) and the second one deals
with duplicates of this bug (comments #1 and #3).

The subject evaluated the bug #2599010 to have very
high textual coherence and hence a single, coherent
thread linked to the provided description, with no gaps
or breaks in the discourse structure of comments.

The subject marked the bugs #1568711 and #1365612
each having a single, highly coherent discussion thread,

7 https://bugs.eclipse.org/bugs/show_bug.cgi?id=14646
8 https://bugs.eclipse.org/bugs/show_bug.cgi?id=14326
9 https://bugs.eclipse.org/bugs/show_bug.cgi?id=26127
10 https://bugs.eclipse.org/bugs/show_bug.cgi?id=25990
11 https://bugs.eclipse.org/bugs/show_bug.cgi?id=15687
12 https://bugs.eclipse.org/bugs/show_bug.cgi?id=13656

Table 1. Examples of ten bug reports with low and high textual coherence of comments, with the developer’s
assessment. The developer’s assessments include suggestions on which comments could be grouped into

multiple discussion threads (numbers in parenthesis indicate the comment number).

Bug ID No. of
comments

Average
similarity

Minimum
similarity

Maximum
similarity

Developer’s
assessment

 Low
13512 4 0 0 0 Poor : 3 threads: (1) (2, 4) (3)
13584 6 0 0 0.0024 Fair: 2 threads: (1, 3, 4, 6) (2, 5)
14646 7 0.0332 0.0034 0.1205 Poor: 3 threads: (1, 5, 7) (2, 3, 4) (6)
14326 4 0 0 0.0003 Fair: 2 threads: (1, 2, 3) (4)
26127 6 0.0004 0 0.002 Fair: 2 threads: (1, 3) (2, 4, 5, 6)

 High
25990 5 0.339 0.0456 0.7057 Very High: 1 thread: (1, 2, 3, 4, 5)
15687 5 0.3454 0.1302 0.5347 Very High: 1 thread: (1, 2, 3, 4, 5)
13656 6 0.3573 0.1852 0.6242 Very High: 1 thread: (1, 2, 3, 4, 5, 6)
8969 5 0.3821 0.2085 0.6042 High: 1 thread: (1, 2, 3, 4, 5)
12952 5 0.4012 0.0234 0.7337 High: 1 thread: (1, 2, 3, 4, 5)

which is related to the bug description. Both of these
bug reports received the highest mark – very high.

The subject rated the bug #896913 as having a high
coherence. All the comments offer discussion about
the problem, but there are some minor breaks in the
flow of discourse. For example, comment #2 relates to
comment #1, while comment #3 relates to comment #1
and #2 at the same time (instead of being a response to
comment #2). This can be explained by the fact that
the author of the comment #3 addressed a mistake made
in the comment #1 and also addressed the comment #2
at the same time (in his comment #3). Similarly, the
comment #4 relates more to comment #1 rather than to
comment #3 or even comment #2.

The subject found a minor inconsistency in the
coherence of comments for bug #1295214 (rated as
high). He found a clear thread consisting of comments
#1, #2, #3, and #5 and established that comment #4,
although related to the solution discussed in the
previous comments, contains some “raw” information
that is not blended in this particular discourse structure.

4.4. Limitations
Interpretation and generalization of the results has to

be done with caution. We had only one subject
evaluating a set of provided bug reports and comments,
thus no statistical significance of the results can be
established. The study used bug reports from only one
software system. The size of the sample, provided for
the investigation is relatively small and, thus it can
serve for illustration purposes only. Also, some of the
comments in the bug reports contained structural
information, such as stack traces and source code (e.g.,
bug #25990), which could have impacted the values of
the TCBR measure. We did not apply any
transformations for misspelled words appearing in
comments (e.g., bug#10468: “deceide”, bug# 21469:
“recieve”, bug# 7557: “acutally”) and therefore those
cases could have impacted similarity values for some
pairs of comments as well.

5. Conclusions and Future Work

The paper presents a novel approach to
automatically measure the textual coherence of bug
reports based on the analysis of the text found in the
descriptions and the comments of bug reports. Our
study on a subset of Eclipse bugs reports indicates that
the measure is a good indicator of textual coherence of
comments in bug reports, which is also confirmed by
the developer.

13 https://bugs.eclipse.org/bugs/show_bug.cgi?id=8969
14 https://bugs.eclipse.org/bugs/show_bug.cgi?id=12952

We are planning on extracting structural
information, such as stack traces and source code, from
comments automatically and using that for augmenting
the textual coherence measure. We are also planning
on conducting several case studies using bug reports
from different software systems and different bug-
tracking systems. Our implementation of the measure
is specific to the bug report format supported in
Bugzilla, thus the measure may have to be adjusted to
other formats if necessary. Moreover, we will secure
several subjects for conducting evaluation to warrant
statistically significant results. In addition to sampling
bug reports with high and low similarity values, we will
also select bug reports with other values of the metric.
We will investigate an impact of automatically
applying spell-checking of words in comments based
on editing distance measure.

Our novel measure lays the foundation for several
possible applications. One of the first applications
relates to automatic assessment of bug report quality
based on the textual information in descriptions and
comments. While in this work, we defined the measure
which captures semantic similarities among comments
only, in the future we will define measures taking into
account similarities among bug descriptions and
comments. We will also work on approaches which
can use our measure for automatic categorization of
comments into discussion threads.

6. Acknowledgements
This research was supported in part by a grant from

the US National Science Foundation (CCF-0438970).
Any opinions, findings, conclusions, or
recommendations expressed in this material are those of
the authors and do not reflect the views of the NSF.

7. References
[1] Anvik, J., Hiew, L., and Murphy, G. C., "Who should fix

this bug?" in Proc. of 28th International Conference on
Software Engineering (ICSE'06), 2006, pp. 361-370.

[2] Bettenburg, N., Just, S., Schröter, A., Weiß, C., Premraj,
R., and Zimmermann, T., "Quality of Bug Reports in
Eclipse", in Proc. of 2007 OOPSLA Workshop on
Eclipse Technology EXchange, 2007, pp. 21-25.

[3] Canfora, G. and Cerulo, L., "Impact Analysis by Mining
Software and Change Request Repositories", in Proc. of
11th IEEE International Symposium on Software
Metrics (METRICS'05), September 19-22 2005, pp. 20-
29.

[4] Canfora, G. and Cerulo, L., "Fine Grained Indexing of
Software Repositories to Support Impact Analysis", in
Proc. of International Workshop on Mining Software
Repositories (MSR'06), 2006, pp. 105 - 111.

[5] Cubranic, D. and Murphy, G. C., "Automatic Bug Triage
Using Text Categorization", in Proc. of 6th International

Conference on Software Engineering & Knowledge
Engineering (SEKE'04), 2004, pp. 92–97.

[6] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R., "Indexing by Latent Semantic
Analysis", Journal of the American Society for
Information Science, vol. 41, 1990, pp. 391-407.

[7] Di Lucca, G. A., Di Penta, M., and Gradara, S., "An
Approach to Classify Software Maintenance Requests",
in Proc. of IEEE International Conference on Software
Maintenance (ICSM'02), Montréal, Québec, Canada,
2002, pp. 93-102.

[8] Dumais, S. T., "Improving the retrieval of information
from external sources", Behavior Research Methods,
Instruments, and Computers, vol. 23, no. 2, 1991, pp.
229 - 236.

[9] Foltz, P. W., Kintsch, W., and Landauer, T. K., "The
Measurement of Textual Coherence with Latent
Semantic Analysis", Discourse Processes, vol. 25, no. 2,
1998, pp. 285-307.

[10] Hooimeijer, P. and Weimer, W., "Modeling Bug Report
Quality", in Proc. of 22nd IEEE/ACM International
Conference on Automated Software Engineering
(ASE'07), November 5-9 2007, pp. 34-43.

[11] Ko, A. J., Myers, B. A., and Chau, D. H., "A Linguistic
Analysis of How People Describe Software Problems in

Bug Reports", in Proc. of IEEE Conference on Visual
Language and Human-Centric Computing (VL/HCC),
2006, pp. 127-134.

[12] Porter, M., "An Algorithm for Suffix Stripping",
Program, vol. 14, no. 3, July 1980, pp. 130-137.

[13] Runeson, P., Alexandersson, M., and Nyholm, O.,
"Detection of Duplicate Defect Reports Using Natural
Language Processing", in Proc. of 29th IEEE/ACM
International Conference on Software Engineering
(ICSE'07), Minneapolis, MN, 2007, pp. 499-510.

[14] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J., "An
Approach to Detecting Duplicate Bug Reports using
Natural Language and Execution Information", in Proc.
of 30th International Conference on Software
Engineering (ICSE’08), Leipzig, Germany, 10 - 18 May
2008 2008.

[15] Weimer, M., Gurevych, I., and Muhlhauser, M.,
"Automatically Assessing the Post Quality in Online
Discussions on Software", in Proc. of Proceedings of the
45th Annual Meeting of the Association for
Computational Linguistics, June 2007, pp. 125-128.

[16] Weiß, C., Premraj, R., Zimmermann, T., and Zeller, A.,
"How Long Will It Take to Fix This Bug?" in Proc. of
4th Working Conference on Mining Software
Repositories (MSR'07), 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

