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Abstract Research studies in software maintenance are notoriously hard to reproduce
due to lack of datasets, tools, implementation details (e.g., parameter values, environ-
mental settings) and other factors. The progress in the field is hindered by the
challenge of comparing new techniques against existing ones, as researchers have to
devote a large portion of their resources to the tedious and error-prone process of
reproducing previously introduced approaches. In this paper, we address the problem
of experiment reproducibility in software maintenance and provide a long-term solu-
tion towards ensuring that future experiments will be reproducible and extensible. We
conducted a preliminary mapping study of a number of representative maintenance
techniques and approaches and implemented them as a set of experiments and a
library of components that we make publicly available with TraceLab, called the
Component Library. The goal of these experiments and components is to create a
body of actionable knowledge that would (i) facilitate future research and (ii) allow
the research community to contribute to it as well. In addition, to illustrate the process
of using and adapting these techniques, we present an example of creating new
techniques based on existing ones, in order to produce improved results.
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1 Introduction

Research in software maintenance (SM) is primarily driven by empirical studies. Thus,
advancing this field requires researchers not only to come up with new, more efficient
and effective approaches that address SM problems, but most importantly, to compare
their new approaches against existing ones in order to demonstrate that they are com-
plementary or superior and under which scenarios. However, comparing an approach
against existing ones is time consuming and error-prone for several reasons. For instance,
existing approaches may be hard to reproduce because the datasets used in their evalu-
ation, the tools and implementation, or the implementation details (e.g., specific param-
eter values, environmental factors) are not available (Dit et al. 2013d; Robles 2010;
Mytkowicz et al. 2010; D’Ambros et al. 2012; Barr et al. 2010; González-Barahona and
Robles 2012; Borg et al. 2013).

These problems are illustrated through a survey on feature location (FL) techniques
by Dit et al. (Dit et al. 2013d), which revealed that only 5 % of the papers surveyed
(i.e., three out of 60 papers) evaluated their approach using the same dataset used to
evaluate other techniques, and that only 38 % of the papers surveyed (i.e., 23 out of
60 papers) compared their proposed feature location technique against any previously
introduced feature location techniques. In addition, these findings are consistent with
the ones from the study by Robles (2010), which determined that among the 154
research papers analyzed, only two made their datasets and implementation available,
and the vast majority of the papers describe evaluations that cannot be reproduced,
due to lack of data, details, and tools. Furthermore, a study by González-Barahona
and Robles (2012) identified the factors affecting the reproducibility of results in
empirical software engineering research and proposed a methodology for determining
the reproducibility of a study. Similarly, Borg et al. (2013) conducted a mapping
study investigating the relationship between evaluation criteria and results for trace-
ability link recovery approaches based on information retrieval (IR). Their findings
revealed that most studies were evaluated against datasets with fewer than 500
artifacts and, as a result, they identified the need for performing case studies on
industrial-size datasets. They encouraged researchers to publicly provide the datasets
and tools used in their evaluations and also provided a set of guidelines to raise the
quality of publications in the field of software engineering research. In another study,
Mytkowicz et al. (2010) investigated the influence of the omitted-variable bias (i.e., a
bias in the results of an experiment caused by omitting important causal factors from
the design) in compiler optimization evaluation. Their study showed that factors such
as the environment size and the link order, which are often not reported and are not
explained properly in the research papers, are very common, unpredictable, and can
influence the results significantly. Moreover, D’Ambros et al. (2012) argued that many
approaches in bug prediction have not been evaluated properly (i.e., they were either
evaluated in isolation, or they were compared against a limited set of other ap-
proaches), and highlighted the difficultness of comparing results.

This issue of the reproducibility of experiments and approaches has been discussed and
investigated in different areas of software maintenance research (Dit et al. 2013d; Robles 2010;
Mytkowicz et al. 2010; D’Ambros et al. 2012; Barr et al. 2010; González-Barahona and
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Robles 2012; Borg et al. 2013; Shull et al. 2008), and some initial steps have been taken
towards solving this problem. For example, efforts for establishing datasets or benchmarks
that can be used uniformly in evaluations have resulted in online benchmark repositories
such as PROMISE (Menzies et al. 2012; Sayyad and Menzies 2005), Eclipse Bug Data
(Zimmermann et al. 2007), SEMERU feature location dataset (Dit et al. 2013d), Bug
Prediction Dataset (D’Ambros et al. 2012), SIR (Do et al. 2005), and others. In addition,
different infrastructures for running experiments in SM and other fields were introduced,
such as TraceLab (Cleland-Huang et al. 2011, 2012; Keenan et al. 2012), Rapid-I (2013),
Mathworks (2013), Kepler (2013), and others. However, among these, a good candidate
framework for facilitating and advancing research in software engineering and mainte-
nance is TraceLab (see Section 3.2 for an in-depth comparison and discussion of
TraceLab’s features with other tools). More specifically, unlike the other frameworks,
TraceLab is a plug-and-play framework that was specifically designed for facilitating
creating, evaluating, comparing, and sharing experiments in software engineering and
maintenance (see Section 3.1 for a detailed description of its features). These character-
istics ensure that TraceLab makes experiments reproducible.

The goal of this paper is to ensure that a large portion of existing and future experiments in
software maintenance research that are designed and implemented with TraceLab will be
reproducible. To accomplish this, we analyzed the approaches presented in 27 SM research
papers, identified their common building blocks, and we implemented them as components in
a well-organized, structured, documented and comprehensive Component Library for
TraceLab. In addition, we used the Component Library to assemble and replicate a subset of
the existing SM techniques, and exemplified how these components and experiments could be
used as starting points for creating new and reproducible experiments.

In summary, the contributions of our paper are as follows:

& a mapping study of techniques and approaches in SM (Section 4) to identify the set of
techniques to reproduce as TraceLab experiments;

& a TraceLab Component Library (CL), which contains a comprehensive and representative
set of TraceLab components designed to help instantiate the set of SM experiments, and a
Component Development Kit (CDK), which serves as a base for extending this initial
component base in order to facilitate the creation of new techniques and experiments;

& an example of reproducing a feature location technique using the proposed CL, and two
examples of reproducing traceability link recovery techniques using the proposed CL;
moreover, we illustrate two examples of using an existing technique as a starting point to
design and evaluate new ideas;

& an online appendix that makes publicly available all the resources presented in this paper:
https://www.cs.wm.edu/semeru/TraceLab_CDK/ and https://github.com/CoEST

The paper is organized as follows. Section 2 presents a motivating example that shows
variability in results for applying a simple SM technique and the challenges of reproducing
those results without complete details. Section 3 introduces background details about
TraceLab and presents a comparison with other tools. Section 4 presents the mapping study
performed, which we used to implement the Component Library and Development Kit
(Section 5). Section 6 shows an example of reproducing two existing traceability link
recovery techniques and an existing FL technique and presents alternatives on improving
the FL technique. Finally, Section 7 discusses alternative uses of TraceLab and the CL.
Section 8 presents some potential limitations, and Section 9 concludes the paper and
introduces some ideas for future work.
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2 Motivating Example

When new approaches are introduced, in general, authors rightfully focus more on
describing the important details of the new techniques, and due to various reasons
(e.g., space limitations) they may present only in passing the details of applying well-
known and popular techniques (e.g., VSM), as they rely on the conventional wisdom and
knowledge (or references to other papers for more details) about applying these tech-
niques (Dit et al. 2013d; Robles 2010).

However, for a researcher who tries to reproduce the results exactly, it might be difficult to
infer all the assumptions the original authors took for granted and did not explicitly state in the
paper. Therefore, the reproducer’s interpretation of applying the approach could have a
significant impact on the results.

To illustrate this point with a concrete example, we applied the popular IR technique Vector
Space Model (VSM) (Salton et al. 1975) on the EasyClinic system from TEFSE 20091

challenge to recover traceability links between use cases and class diagrams. We configured
the VSM technique using four treatments consisting of all the possible combinations of two
corpus preprocessing techniques and two VSM weighting schemes. The preprocessing tech-
niques were raw preprocessing (i.e., only the special characters were removed) and basic
preprocessing (i.e., special characters were removed, identifiers were split and stemmed). The
weighting schemes used were no weighting and term frequency-inverse document frequency
(tf-idf) weighting (Salton et al. 1975).

Figure 1 shows the precision and recall curves for recovering traceability links
between use cases and classes on the EasyClinic dataset, using a VSM-based traceability
technique and different preprocessing techniques (i.e., raw preprocessing in gray color
and basic preprocessing in black color) and weighting schemes (i.e., no weighting in
dash line and tf-idf weighting in solid line). The results in Fig. 1 show a high variety in
the precision and recall values, based on the type of preprocessing and weighting
schemes used. Assuming these details are not clearly specified in the paper, any of these
configurations or variations of these configurations can be chosen while reproducing an
experiment, potentially yielding completely unexpected and drastically different results.
It is worth emphasizing that in our example we picked a small subset of the large number
of weighting schemes and preprocessing techniques that can be found in the literature,
and these options were deliberately picked to illustrate an example, as opposed to
conducting a rigorous experiment to identify the configuration of factors that could
produce the best results.

The main point of this example is that even in this simple scenario of using VSM for a
typical traceability task, there are many options on how we can instantiate and use this
technique, which leads to completely different results. However, all these problems could be
eliminated if all these details are encoded in the experiment description, for example, by
designing an experiment in TraceLab.

3 Background and Related Work

This section provides the background details about TraceLab as an environment for SM
research and compares and contrasts TraceLab to other research tools specific to other
domains.

1 http://web.soccerlab.polymtl.ca/tefse09/Challenge.htm
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3.1 TraceLab

TraceLab (Cleland-Huang et al. 2011, 2012; Keenan et al. 2012) is a framework designed to
support the reproducibility of experiments in software engineering and software maintenance.
More specifically, it provides a visual workbench (see Fig. 2) that allows researchers to create,
evaluate, compare, and most importantly share experiments in SM research. TraceLab was
developed at DePaul University in collaboration with researchers at the College of William and
Mary, Kent State University, and University of Kentucky, and it is already being used by
numerous users throughout the world (see Fig. 5 for a geographical distribution of these users).

The heart of a TraceLab experiment lies in its workflow of components (see Fig. 2(1)).
Components are reusable user-defined code units that are designed to accomplish a very
specific task. They exchange data with other components through their inputs and outputs via
shared memory. The components are represented in TraceLab as ovals (see examples from
Figs. 2(1) and 3).

An experiment is a collection of components (or nodes) connected in the form of a
precedence graph. The execution of an experiment begins at the “Start” node and continues
along every path until the “End” node is reached, thus completing the experiment. Since it is a
precedence graph, unless otherwise specified, each node must wait for all of the incoming
edges to complete before executing. This ensures that the previous techniques have completed
their execution and the correct data is available. The execution of components in TraceLab was
designed to be parallelizable. Each component is given its own copy of the data and is run in a
separate thread. The main reason for this design decision was to ensure that running

Fig. 1 Precision-Recall curves for EasyClinic for recovering traceability links between use cases and classes
using a VSM-based traceability technique and different preprocessing techniques (raw – gray color, preprocessed
– black color) and weighting schemes (no weight – dash line, tf-idf – solid line)
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experiments will not encounter any errors caused by nondeterministic behavior triggered by
race conditions, which means that developers do not have to worry about race conditions when
designing their own custom components. Therefore, when two components branch out from a
parent component (e.g., components “Import Use Cases” and “Import Code Classes” in
Fig. 2(1)) they each will run concurrently and independently. This feature is built into the
TraceLab framework, and it will be automatically applied to all execution paths of an
experiment.

TraceLab was designed to run experiments fully automatically and without any interaction
from the user. Moreover, the same experiment can be applied to multiple datasets, making it a
great tool for batch experiment processing. ATraceLab experiment essentially takes as input (i)
data (which, depending on the type of experiment was extracted from software systems,
version control systems, issues tracking systems, execution traces, etc.) and (ii) an oracle (or
ground truth) that was also generated using external tools or human support. Next, this data is

Fig. 2 The four “quadrants” of TraceLab in clockwise order from top-right are (1) the sample TraceLab
experiment that implements our motivating example in Section 2; (2) an output window for reporting execution
status of an experiment; (3) the Workspace containing the data and the values of the experiment; and (4) the
Component Library
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typically imported, converted to appropriate internal TraceLab datatypes, processed, and the
evaluated based on a set of predefined metrics and the oracle. The results of an experiment
could be visualized or exported for further analysis.

3.1.1 TraceLab Features

TraceLab provides many control elements that allow flexibility when designing an experiment.
For example, Goto decisions (see Fig. 3(a)) allow execution redirection to any of the outgoing
nodes based on a given condition. If statement decisions (see Fig. 3(b)) provide additional

(a)

(c)(b)

Fig. 3 Control flow options provided by TraceLab: a Goto decision, b If statement and (c) While loop

Fig. 4 Information pane for the Vector Space Model TraceLab component (left). The information pane shows
the inputs and outputs, settings (e.g., weighting scheme) and other metadata information
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control, by allowing execution of one of a number of sub-graphs (called scopes) based on a
given condition. Scopes provide independent experiment sub-graphs that execute in their own
namespace and once completed, provide control to the parent graph. Similarly, While loops
(see Fig. 3(c)) repeatedly execute the scope as long as the given condition is true.

The workspace (see Fig. 2(3)) is the data-sharing interface that allows components to
communicate with the preceding and following nodes. Components can load and store data to
and from the workspace only for their declared inputs and outputs. Data may also be read from
the workspace for use in a control-flow node. Any information in the workspace may be
serialized to disk as an XML file for later use or debugging purposes. Additionally, any data
type with a viewer (including all standard types) can be viewed from the workspace by
clicking on their workspace entry. There are already a large number of predefined datatypes
and components to handle these datatypes (e.g., importers, exporters, etc.), but if needed,
researchers can adapt existing datatypes or create custom ones to fit their needs. Some of the
predefined data types include TLArtifact (i.e., a generic data type that can represent any textual
software artifact, such as requirements, design specifications, UML diagrams and defect logs,
test cases, or software code; it has two fields, namely ID and textual information),
TLArtifactsCollection (i.e., a collection of TLArtifacts), TLSimilarityMatrix (i.e., a datatype
that represents the set of links from source artifacts to target artifacts with assign probability
score of their relationship; this matrix can be used either as standard similarity matrix, an
answer matrix, a traceability matrix, etc.). Moreover, the predefined data types include Lists,
HashTables, Dictionaries, etc., which can be used for various tasks ranging from representing
stop words to storing different values for the Box Plot points used to represent the results. In
our experiments, we used a Program Dependence Graph (PDG), which stores basic informa-
tion about the nodes and dependencies in the graph. However, since most applications that use
a PDG require various types of information, practitioners are free (i) to use our PDG as is, (ii)
to customize it for their unique needs (i.e., refining it), or (iii) to create a brand new PDG data
type. In either case, an existing experiment that was exported and shared through TraceLab’s
packaging feature will still reference the correct component, regardless of the existence of
other versions of the component. In other words, a shared experiment will still reference the
“old” PDG (i.e., the one that was used for creating the experiment), and will not be affected by
the newly created PDG (which can be part of future experiments).

The status of an executing experiment is reported in the Output view (see Fig. 2(2)) in the
form of messages displayed to the user. The messages have different levels of severity, such as
info, trace, debug, warning, and error. Each message displays the component name, severity,
custom message provided by the author of the component (if any), and optionally an exception
dialogue describing an uncaught exception and a stack trace.

A major contribution of this paper is a Component Library, designed to implement a wide
range of SM techniques that can be easily accessed from TraceLab (see Fig. 2(4)) to build and
execute experiments. The Component Library is included in the distribution of the official
TraceLab release.

The component library provides a set of tools and techniques to researchers for using in
experiments. Components may be categorized by multiple tags, both by component developers
and users. In order to use a component in an experiment, the user only needs to drag-and-drop
the component from the component library into the experiment (see Fig. 2(1)) and connect it
with the other components. Each component has a set of metadata that uniquely identifies it
within TraceLab. The primary identifier is the component’s name, which appears in the
component library and on the component node within the experiment. Components contain
additional information such as a description, author, versioning information (see Fig. 4), inputs
and outputs. For example, if a component takes in two sets of artifacts and produces a ranked
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list of similarities between the two, it must explicitly declare two TLArtifactsCollection objects
as input and declare a TLSimilarityMatrix as output (see Fig. 4). This allows TraceLab to
evaluate the experiment graph before running it, checking for valid inputs and control-flow
errors. For example, if a component declares an input that is not an output of any preceding
components, TraceLab will catch the error before the experiment starts. In addition to inputs
and outputs, a component can allow the configuration of specific settings (e.g., weighting
scheme for the Vector Space Model – see Fig. 4).

An important feature of TraceLab consists of generating composite components. More
specifically, a group of individual components that are often used together as a group to
accomplish a specific task can be combined to form composite components. This feature
provides an additional level of abstraction for common functionality, it improves the reusabil-
ity of components in the same experiment and across different experiments, and it improves
the readability of the graph experiment. An example of such a composite component is the
node with rectangular edges labeled Queries preprocessing in Fig. 7, which performs prepro-
cessing on a corpus of documents by encapsulating the functionality of various components,
such as identifier splitting, stemming, and stop-words removal.

In addition to all these features, arguably the most important and distinctive feature
provided by TraceLab is the packaging feature for encapsulating and sharing experiments.
In order to share a TraceLab experiment, all of the necessary information (i.e., data,

Fig. 5 Distribution of TraceLab users worldwide as of April 2013. Red dots indicate core developers. Blue dots
indicate active contributors. Green dots indicate alpha and beta testers

Fig. 6 Diagram of the hierarchy of the CDK in the context of TraceLab. CDK and CL are part of TraceLab.
Researchers can contribute to the CDK and the datasets (gray arrow), and reviewers and researchers (green
arrow) can use TraceLab to verify details of existing experiments
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components and settings) must be included. Therefore, the packaging feature of TraceLab
allows a user to encapsulate all the datasets and custom components used in the experiment,
including all the dependencies and specific versions of datasets and components. The resulting
self-contained experiment can be shared with the research community. The original experiment
along with exact data and settings can be run by other researchers by unpacking and installing
the original package experiment, using the associated functionality in TraceLab. Paths are
relative to the package and they reference the data “inside” the package. Therefore, a shared
package can be used as is by other researchers regardless of the location on their machine,
because the paths are relative to the content of the package. The packaging feature not only
allows to include data, but it can also reference existing packages which contain experiments
and/or data. In other words, a researcher does not have to include the same data in different
experiments, because she can choose to reference them. Once an experiment has been
imported from a package, prior to running the experiment, one can change the configuration
of the components that load/save data (i.e., if they want to use the same workflow on different
data), or one can add/remove components to alter the workflow of the experiment if needed. In
fact this one of the strengths of TraceLab. It ships with multiple importers, capable of
importing data from multiple formats and converting it into standard data structures, while,
at the same time, allowing the creation of new customized data importers. As a result,
experiments can easily be run against different datasets. We would like to emphasize that
there are two major reasons we include datasets in the packages. First, it ensures that the
experiments are executable “out of the box”, and we have observed that new users find it far
easier to change a data source of an experiment that actually runs correctly, rather than having
to find and configure the data to run the experiment. Second, one of the goals of TraceLab is to
help new researchers get started, which implies providing them not only with the experiments,
but also with the data.

It is important to highlight that researchers can create as many component types as they
want (although we encourage reuse of components if possible). Each experiment consists of a
particular dataset (which has a particular format and version), and a specific set of components
(with their own version, configuration options) and dependencies between components. Once
an experiment is created, and shared, it will reference specific versions of components and data
types, even though some components may have evolved in the meanwhile. Therefore, the
evolution of existing techniques will not affect the reproducibility of existing experiments.

We also note that our philosophy in creating TraceLab was to allow flexibility in the way
components are designed, and we illustrated this with an example. We recently developed a
newWeka component for a series of experiments, and this component is in effect a wrapper for
the underlying Weka library. We needed to choose between (i) creating multiple TraceLab-

Fig. 7 TraceLab experiment for reproducing the IRDynWM FLT (Dit et al. 2013e) (without the components
highlighted with red dashed border). TraceLab experiment for implementing IRDynWMFMF (all components,
including the highlighted ones)
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Weka components to perform specific classification functions (e.g., a J48 component, a Bayes
Regression Classifier, etc.) or (ii) creating one generic component, which served as a general
Weka wrapper. We opted for the second choice, which means that the component can be
configured to run any classifier. This reduced the proliferation of components, but at the same
time placed more onus on the component user to understand Weka’s configuration parameters.
The point is that TraceLab allows the experimenter to make such choices, and this was a
deliberate design decision on our part.

3.1.2 Supported Languages

TraceLab ships with a software development kit (SDK) that allows users to define their own
custom components and types in .NET languages, Java, and via plugins, R-Project (2013)
Mathworks (2013) and Waikato (2013).

Any .NET language that compiles to a Dynamic Linked Library (DLL) may be used to
create user-defined components and types. This includes Visual Basic, C++, C#, and F#.

Developers can create user-defined TraceLab components and types in Java using
IKVM.NET.2 After compiling the Java components, the JAR file is converted to a DLL
through IKVM. Thus, when called in TraceLab, the Java code is actually run in the IKVM
virtual machine.

In addition to .NET and Java, TraceLab components can execute R code. Although tools
like R.NET3 exist for running R code in .NET languages, they impose additional external
dependencies on TraceLab and the development environment. Moreover, TraceLab has no
built-in mechanism for recognizing components written in R. To overcome this issue, we have
created a lightweight language plugin for R (named RPlugin) that allows R scripts to be run
from TraceLab. The component classes are written normally in .NET, and any R scripts that
need to be run interface with the plugin. RPlugin makes calls to an existing implementation of
R and has a framework for passing data and running scripts in R. RPlugin is included with the
TraceLab Component Library described section 5.

The developers of TraceLab have created a Matlab plugin similar to RPlugin that can run
Matlab scripts from .NET.

3.2 Comparing TraceLab with Other Tools

There are many other frameworks and tools that have been designed to support research
in other domains, such as information retrieval, machine learning, data mining, and
natural language processing, among others. Consequently, reuse of third party tools or
APIs is a common practice for constructing experiments and building research infra-
structure in software evolution and maintenance. For example, a common scenario is to
reuse WEKA for implementations of machine learning classifiers, R for statistical
analysis, or MALLET for topic modeling. However, these tools/APIs were not built to
support research on software evolution and maintenance. Moreover, most of the tools
were conceived as extensible APIs and only few of them provide features such as
experiment composition by using a data-flow GUI, new components implementation,
or easy sharing/publishing of experiments; moreover, not all of them can be used across
multiple platforms. Table 1 compares TraceLab to some similar tools that also use a data-
flow oriented GUI.

2 http://www.ikvm.net/
3 https://rdotnet.codeplex.com/
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The R Project R-Project (2013) is a programming language and environment designed to
perform statistical computing tasks on large-scale data. The tool is primarily command based,
with the ability to produce charts and graphs. There are a multitude of user-contributed
libraries for performing specialized tasks, including a variety of common software engineering
research tasks. However, R does not feature an environment for designing experiments using a
GUI-based workflow and can be difficult to reproduce when shared due to dependencies on a
large number of libraries and different versions. Additionally, researchers must learn a new
programming language when performing experiments in R.

Mathworks (2013) offers a programming language in an interactive environment geared
towards numerical computation, data analysis, visualization (e.g., 2D and 3D visualization) and
programming.Matlab was designed to be used in diverse areas, ranging from signal processing,
image processing, testing and measuring, computational finance and many others.

Mathworks (2013) is a Matlab-based tool for simulation and model-based design of
embedded systems. In Simulink, a model is composed of subsystems (i.e., a group of blocks)
or individual blocks, and the blocks can be implemented using Matlab, C/C++, or Fortran.
Building the model can be accomplished using drag-and-drop of blocks and making connec-
tions between them, which is similar to the way TraceLab allows to build experiments.

Waikato (2013) is a collection of machine learning algorithms that are packaged as an open
source Java library that also allows running the algorithms using a graphical user interface
(GUI). One of the WEKA modules is the KnowledgeFlow, which provides the user with a
data-flow oriented GUI for designing experiments. As in TraceLab, the components in the
KnowledgeFlow are categorized by tasks (DataSources, DataSinks, Filters, Classifiers,
Clusterers, Associations, Evaluation, Visualization), and there is a layout canvas for designing
experiments by dragging, dropping, and connecting components. New components can be
added to WEKA by extending or modifying the library using Java, and the experiments can be
saved and loaded for being executed in the WEKA Experimenter module.

RapidMiner Rapid-I (2013) is a data mining application that provides an improved GUI for
designing and running experiments. It includes a reusable library for designing experiments
and running them and it fully integrates WEKA as the machine learning library.

GATE (Sheffield 2011) provides an environment for text processing that includes an IDE
with components for language processing, a web application for collaborative annotation of
document collections, a Java library, and a cloud solution for large scale text processing.

Kepler (2013) is a tool that follows the same philosophy as TraceLab. By using Kepler, it is
possible to build, save, and publish experiments/components using a data-flow oriented GUI.
It is also possible to extend Kepler because of its collaborative-project nature. However, the
main difference with TraceLab is that Kepler was conceived as a tool for experiments in
sciences such as Math or Physics.

FETCH (2014) is a set of third-party open source tools linked in a pipeline to support program
analysis of large C/C++/Java software systems. Fetch does not allow researchers to design experi-
ments or extend components. Instead, it is a command-line based tool that applies several analyses to
a software system and generate reports (i.e., charts, tables, files) describing the results of the analysis.

Taverna (2014) is a workflow-based tool for designing experiments, by connecting com-
ponents deployed as web services. The components are imported into Taverna through the web
service’s WSDL (Web Service Description Language). Therefore, Taverna is independent of
the programming language, and researchers have to write their components on any language
and publish them as a discoverable web service. However, Taverna does not provide an IDE
for implementing/publishing web services. Taverna has a workbench for designing the
workflows, a server for the remote execution of workflows when required, and a command
line tool for workflow execution from a terminal.
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Although TraceLab is not specialized on simulation, natural language processing, or
machine learning, it was specifically designed to allow software engineering and maintenance
researchers the possibility to (i) develop and share their own components/experiments, and (ii)
to ensure the reproducibility of their results. During the design of TraceLab, a traditional
desktop application was preferred over a Service-Oriented Architecture solution because we
believed that the overhead of services (i) may not suit the kinds of experiments that might be
conducted in SE, and (ii) could have introduced an additional burden for the user to create and
maintain services. Furthermore, service composition adds additional overheads, which are not
suited to some experiments in the traceability domain as well as other SE domains. Hence, our
goal was to create a local solution (to avoid confidentiality issues) to allow users to quickly and
easily create and compose components. Although TraceLab was initially implemented in C#
and supported only Windows, the latest version of TraceLab is cross-platform and supports all
major OS platforms (e.g., Window, MacOS and Linux). However, we made publicly available
on GitHub the Windows version of TraceLab, and we will open-source the cross-platform
version of TraceLab after it goes through the incubation stage. In order to achieve this support
for all OS platforms, TraceLab was compiled using Mono,4 the open source, cross platform
.NET framework.

To implement the TraceLab components, researchers can use Java, any .NET language
(e.g., C#, VB, C++), R or Matlab. For the .NET languages, either Microsoft Visual Studio or
Mono can be used.

4 Mapping Study of Software Maintenance Techniques

In this section we present the methodology, analysis, and results of a mapping study
(Kitchenham et al. 2011) aimed at identifying a set of techniques from particular areas of
SM, which could be implemented as TraceLab experiments in order to constitute an initial
practical body of knowledge that would benefit the SM research community. Moreover, these
identified techniques were reverse engineered into basic modules that we implemented as
TraceLab components, in order to generate a Component Development Kit (see Section 5.1)
and a Component Library (see Section 5.2) that serves as a starting point for any interested
researcher to implement new techniques or build upon existing ones.

For our study, we used the systematic mapping process described by Petersen et al. (2008).
The process consists of five stages: 1) defining the research questions of the study, 2) searching
for papers in different venues, 3) screening the papers based on inclusion and exclusion criteria
in order to find relevant ones, 4) classifying the papers, and 5) extracting data and then
generating the systematic map.

A mapping study is different from a systematic literature review in that literature reviews
aim to answer a specific research question by extracting and analyzing the results of primary
studies (Kitchenham et al. 2011), for example, a review of studies analyzing development
effort estimation techniques to see which ones work the best (Jørgensen 2004). In contrast,
mapping studies attempt to address more abstract research topics by classifying the method-
ologies and findings into general categories. Mapping studies are useful to the research
community in that they provide an overview of trends within the search space (Petersen
et al. 2008). Furthermore, they may be used as a starting point by researchers looking to
improve the field by describing common methodologies and perhaps discovering untapped
areas that others have missed.

4 www.mono-project.com/
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4.1 Defining the Research Question

Our goal is to identify a set of representative techniques from specific areas of SM, and then
use them to generate TraceLab components and experiments to accelerate and support research
in SM. Thus, we defined the following research questions (RQs) for the mapping study:

RQ1: What types of techniques are common to experiments in software evolution and
maintenance research?
RQ2. What individual techniques are used across many SM experiments?
RQ3. How do experiments in SM research differ across different sub-domains?

RQ1 attempts to identify high-level categories containing groups of techniques designed to
perform similar research tasks. RQ2 focuses on individual techniques and aims to identify the
most common techniques used in experiments in the mapping study. RQ3 is intended to
compare and contrast how techniques are used in different high-level research tasks, such as
traceability link recovery or feature location.

These three RQs can be reformulated into a single main research question as follows:

RQ: Which SM techniques are suitable to form an initial actionable body of knowledge
that other researchers could benefit from?

In particular, we focused on a subset of SM areas in which the authors have expertise. This
allowed us to generate an initial and extensible body of knowledge that could support the
research community. The SM research community, can contribute to the body of knowledge
by continually adding new techniques and components.

4.2 Conducting the Search

In order to find these techniques, we narrowed the search space to the publications from the
last 10 years of a subset of journals and software engineering conferences. In addition, in our
search we incorporated the “snowballing” discovery technique (i.e., following references in the
related work) discussed by Kitchenham et al. (2011). The list of journals and conferences from
which we selected at least one paper in our mapping study is presented in Table 2. Additional
information can be found in our online appendix.

4.3 Screening Criteria

The primary inclusion criterion consisted of identifying whether the research paper described a
technique that addressed one of the following maintenance tasks: traceability link recovery,
feature location, program comprehension and duplicate bug report identification. In most cases,
this information was determined by the authors of this paper by reading the title, abstract,
keywords, and if necessary the introduction and the conclusion of the investigated paper.

The exclusion criteria were as follows. First, we discarded techniques that could not have
been implemented effectively in TraceLab due to various reasons, such as (i) lack of sufficient
implementation details, (ii) lack of tool availability or (iii) the technique was not fully
automated, and would require interaction with the user. Second, we did not implement
complex techniques that would have required a lengthy development time, or techniques that
are outside the expertise of the authors. Third, we discarded techniques with numerous
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dependencies to deprecated libraries or other techniques, as our goal was to implement the
most popular techniques that can be incorporated or built upon.

4.4 Classification

In our mapping study we used two independent levels of classification. The first one consisted
of categorizing the papers based on the SM task (e.g., traceability link recovery, feature
location, program comprehension and detecting duplicate bug reports) they presented (see
Section 4.3). This classification was targeted at answering RQ3.

The second level of classification was identifying common functionality between the basic
building blocks used in an approach (e.g., all the functionality related to identifier splitting,
stemming, stopword removal and others, were grouped under “preprocessing”). This level of
classification is necessary for answering RQ1 and RQ2.

4.5 Data Extraction

The list of papers that we identified in our study is presented in Table 3 in the first column
along with the Google Scholar citation count as of December 1, 2013 (second column). The
papers are grouped by the primary SM tasks they address, and are sorted chronologically.

The remaining columns constitute the individual building blocks and components we
identified in each approach, grouped by their common functionality. A checkmark (✓) denotes
that we implemented the component in the CL. An X denotes that the code related to the
components appears in the approach, but is not implemented in the CL at this time (see
Section 5.2 and Section 8).

Table 3 shows only a subset of the information. For the complete information, we refer the
interested reader to our online appendix.

5 Component Library and Development Kit

From the 27 papers identified in the mapping study, we reverse engineered their techniques in
order to create a comprehensive library of components and techniques with the aim of

Table 2 List of Journals and Conferences for which we identified at least one paper in our mapping study

Abbreviation Venue name # papers

ASE Automated Software Engineering 1

CSMR European Conference on Software Maintenance and Reengineering 2

EMSE Empirical Software Engineering 1

ICSE International Conference on Software Engineering 6

ICPC International Conference on Program Comprehension 9

ICSM International Conference on Software Maintenance 3

MSR Working Conference on Mining Software Repositories 2

TEFSE International Workshop on Traceability in Emerging Forms of Software Engineering 1

TSE Transactions in Software Engineering 1

WCRE Working Conference on Reverse Engineering 1

Total 27
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providing the necessary functionality that SM researchers would need to reproduce experi-
ments and create new techniques.

This process resulted in generating (i) a Component Development Kit (CDK) that contains
the implementation of all the SM techniques from the study, (ii) a Component Library (CL)
that adapts the CDK components to be used in TraceLab and (iii) the associated documentation
and usage examples for each.

5.1 Component Development Kit

The Component Development Kit (CDK) is a multi-tiered library of common tools and
techniques used in SM research. These tools are organized in a well-defined hierarchical
structure and exposed through a public API. The intent of this compilation is to aid researchers
in reproducing existing approaches and creating new techniques for software maintenance and
evolution. Therefore, the appropriate name for this CDK would be Component Development
Kit-Software Maintenance and Evolution (CDK-SME), in order to distinguish it from other
CDKs (e.g., related to requirements engineering) that will be developed in the near future by
other groups in the research community surrounding TraceLab (see Fig. 5). However, for
brevity, and because in this paper we are only discussing the CDK for software maintenance
and evolution, throughout the paper we will refer to CDK-SME as CDK.

By providing access to tools and techniques related to software maintenance and evolution
tasks, the Component Development Kit facilitates the research evaluation process, and re-
searchers no longer have to start from scratch or spend time adapting their pre-existing tools to
a new project. Furthermore, researchers can use combinations of these tools to create new
techniques and drive new research.

At the top level, the CDK is separated into categories of high-level tasks, such as I/O,
preprocessing techniques, artifact comparison techniques, and metrics calculations (see Fig. 6).
Those categories are then further broken down as needed into more specific tasks. This design
aids technique developers in locating relevant functionality quickly and easily, as well as
providing base points for integrating new functionality in the future. The high-level categories
are described as follows:

Data preprocessing techniques primarily convert the raw data into a different form that
will be used in other steps of the approach. For text-based approaches, preprocessing
typically involves extracting comments and identifiers from source code, removing stop-
words, stemming, as well as other methods for text manipulation. For structural ap-
proaches, preprocessing could involve parsing an execution trace or calculating a static
dependency graph. The preprocessing techniques are usually the first to run, before any
other steps of the approach.

Artifacts comparison techniques encapsulate all the techniques that implement any kind of
comparison between software artifacts to determine relationships between them. These tech-
niques usually take in a set of software artifacts (such as source code or requirements
documents) as input and produce a set of suggested relationships between documents. These
suggestions may include a confidence score, textual similarity scores, etc., which are useful for
ranking the set of input artifacts based on various criteria.

The metrics category encapsulates the measures by which an approach is evaluated. These
are used to determine the accuracy (or performance) of a technique and to compare it with
other techniques. Examples of such metrics include precision, recall, effectiveness, etc.

Guided by findings from the mapping study, we evaluated each technique based on
coverage, usefulness, and perceived difficulty and effort in implementation. In addition to
our design goals of providing a clean and easy to use API, another goal was to minimize the
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number of external dependencies necessary to implement the technique. As such, some
techniques that have numerous external dependencies were left out.

5.2 Component Library

The Component Library (CL) is comprised of metadata and wrapper classes registering certain
functionality as components in TraceLab. It acts as a layer in between TraceLab and the CDK,
adapting the functionality of the CDK to be used within TraceLab. A typical component will
import data from TraceLab’s data sharing interface (the Workspace), call various functions on
the data using the CDK, and then store the results back to the Workspace.

To register a component in TraceLab, a classmust inherit from theBaseComponent abstract class
defined in the TraceLab SDK.All componentsmust override the Compute() methodwhich contains
the desired functionality of the component within the context of a TraceLab experiment. Component
classesmay also override PreCompute() and PostCompute() to pre-allocate and dispose of resources
(these methods are called immediately before and after the Compute() method).

Furthermore, all components have a component declaration attribute (or annotation in Java
terminology) that describes information about the component. For example, the [Component]
attribute specifies information about the component’s name, description, author, version, and
optional configuration object. The configuration object is responsible for all the settings
associated with the component (e.g., weighting schema for Vector Space Model, input path
for a component loading a corpus, etc.). Any inputs and outputs from and to the workspace
must be declared with individual [IOSpec] attributes describing the input or output name and
data type. Lastly, components may optionally declare [Tag] attributes for automatic categori-
zation in the component library. The declaration of all these attributes serve two purposes,
namely to (i) allow the class to be registered in TraceLab as a component, and (ii) to ensure that
a component can only be connected with a compatible component. Figure 4 shows an example
of a component that used three [IOSpec] attributes (two for input and one for output) to define
the name (e.g., TargetArtifacts, SourceArtifacts and Similarities) and data type (e.g.,
TLArtifactsCollection and TLSimilarityMatrix) of inputs and outputs. In addition, the meta-
data specific to the component, which was defined using the [Component] attribute is
presented in the lower right corner of the figure.

After compiling, libraries containing components should be placed in a registered compo-
nent directory, in order to allow TraceLab to recognize them and make them available in the
Component Library (see Fig. 2(1)). These directories are defined in TraceLab’s settings menu
and user-defined directories can be added or removed as needed.

In addition to custom components, the TraceLab SDK allows users to define custom data
types. These user-defined data types must declare a [WorkspaceType] attribute in order for
TraceLab to recognize them as workspace types that can be used in the workspace. These types
must also declare a [Serializable] attribute to allow data to be transferred between the
workspace, components, and disk. It is important to note that any custom data types that do
not need to be used in the workspace (e.g., intermediate data used within a component) do not
need to be registered with TraceLab. Libraries containing types must also be placed in a
registered directory containing types, which is usually separate from the components library.
Workspace types may also provide custom visualizations for inspecting the data after an
experiment has run.

The Component Library uses the same structure as the CDK (see Fig. 6), providing a
mapping from TraceLab to the CDK. Components can be organized in TraceLab through the
use of hierarchically organized developer and user Tags, another feature of the TraceLab SDK.
Components are grouped via Tags into the same high-level tasks as the CDK.
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From the building blocks of the CDK identified in the mapping study, we implemented 25
out of 51 as TraceLab components. In many cases, this was done as a one-to-one mapping
from the CDK to the CL. However, some techniques could be broken down into more general
ones, which were desirable for component re-use. For example, the Vector Space Model
(VSM) is a straightforward technique, but there can be many variations on its implementation
(see Section 2). We implemented a few weighting schemes (e.g., binary term frequency, tf-idf,
and log-idf) and similarity functions (e.g., cosine, Jaccard), so that a component developer
could pick and choose from the desired schemes.

Another example is the precision and recall metrics in traceability link recovery. Although
this component consists of only one column in the mapping study, the CDK covers many of
the commonly used metrics in the literature (e.g., precision, recall, average precision, mean
average precision, F-measure, and precision-recall curves). Component developers could
choose from any of these measures in their experiments.

5.3 Documentation

Documentation of the CDK and CL plays a key role in assisting researchers and component
developers new to TraceLab. In addition to code examples and API references, documentation
provides vital information about a program’s functionality, design, and intended use. This adds
a wealth of knowledge to someone who wants to use TraceLab and start designing new
experiments from components. We provide this information in a wiki format on our website5,6

which includes a developer guide, the CDK API reference, release notes, and code examples.

5.4 Extending the CDK and CL

The CL and CDK themselves are not the definitive collection of all the SM tools that
researchers will ever need. However, their design and implementation in conjunction with
TraceLab’s framework provide a foundation for extending SM research in the future.

Both the CL and CDK are released under an Open Source license (GPL) in order to
facilitate collaboration and community contribution. As new techniques are invented, they can
be added to the existing hierarchy and thus into TraceLab.

In creating the CL and CDK, we leveraged TraceLab’s ability to modify existing compo-
nents or to create custom (i.e., user made) components that will fit the need of a researcher,
through the TraceLab SDK. Researchers can also create adapt or modify existing datatypes or
create new ones if needed. It is important to know that multiple versions of the same datatypes
can exist, but once a particular version of a datatype or component is referenced in a particular
experiment, that version of the datatype or component will be exported and shared with the
community (using TraceLab’s packaging feature – see Section 3.1.1), to ensure the reproduc-
ibility of an experiment even in the case of having multiple versions of the same datatype or
component. As the body of SM techniques grows, researchers can utilize our components and
extend them to new ones via the same process. Part of our future work will be dedicated to
ensuring that existing components would be easier to discover and understand by other
researchers (e.g., through proper documentation), to encourage reuse and reduce the number
of overlapping components. Moreover, we will focus on establishing a process of incorporat-
ing user-made components into the CL and CDK, by establishing a standard of quality that
each proposed component must satisfy.

5 http://coest.org/coest-projects/projects/semeru/wiki
6 https://github.com/CoEST
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6 Reproducing Existing Experiments and Evaluating New Ideas Using the Component
Library

This section presents the details of reproducing an existing feature location technique (FLT)
(Dit et al. 2013e) using the CDK and the CL proposed in this paper. We describe the original
technique, the details of reproducing it in TraceLab, and compare the results of the original and
reproduced technique. We then illustrate the process of experimenting with two new ideas that
are based on the reproduced technique. Moreover, we describe the details of reproducing two
traceability link recovery experiments by Oliveto et al. (2010) and Gethers et al. (2011) using
the proposed CDK and the CL.

6.1 Reproducing a Feature Location Technique

The FLT introduced by Dit et al. (2013e), called IRLSIDynbinWM (or IRDynWM for short), was
reproduced in TraceLab using a subset of components from the proposed CL. Please refer to
Table 4 for a list of acronyms that are introduced throughout the remaining of this section. The
high-level idea behind IRDynWM is to (i) identify a subset of methods from an execution trace
with high or low rankings using advanced web mining analysis algorithms and to (ii) remove
those methods from the results produced by the SITIR approach (Liu et al. 2007). The SITIR

Table 4 List of acronyms and their explanation for the feature location technique experiment used in Section 6

Feature location technique Explanation

IRLSIDynbinWM FLT introduced by Dit et al. (Dit et al. 2013e)

IRDynWM Abbreviation for IRLSIDynbinWM

WM WM stands for “Web Mining” and can be either PageRank,
HITS_Aut or HITS_Hub

IRDyn The FLT introduced by Liu et al. (Liu et al. 2007) that uses
information retrieval (IR) and dynamic information (Dyn)
from execution traces. This technique is also known as the
SITIR approach

IRDynPageRank An instance of the IRDynWM FLT that combines IRDyn with
PageRank scores

IRDynHITS_Aut An instance of the IRDynWM FLT that combines IRDyn with
Authority scores from the HITS algorithm

IRDynHITS_Hub An instance of the IRDynWM FLT that combines IRDyn with
Hubs scores from the HITS algorithm

IRLSIDynbin T1 from (Dit et al. 2013e)

IRLSIDynbinWMPR(freq)
t80 T2 from (Dit et al. 2013e)

IRLSIDynbinWMHITS(a,freq)
b60 T7 from (Dit et al. 2013e)

IRLSIDynbinWMHITS(h,bin)
b80 T13 from (Dit et al. 2013e)

IRDynWMFMF Variation of IRDynWM which filters frequent methods that
appear in execution traces (i.e., FMF stands for “Frequent
Method Filter”) and was introduced in Section 6.2.1

IRDynWMNSF Variation of IRDynWM which filters methods that do not
appear in execution traces that exercise no scenario
(i.e., NSF stands for “No Scenario Filter”) and was
introduced in Section 6.2.2
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approach (or IRDyn) uses information retrieval (IR) techniques to rank all the methods from an
execution trace (Dyn) based on their textual similarities to a maintenance task used as a query.

The IRDynWM FLT takes as input a description of a maintenance task in natural language
(e.g., bug report description), the source code of the system, and an execution trace of a
scenario that exercises the feature described in the maintenance task. The execution trace
contains a list of methods that were executed during the scenario exercised by the user. The
execution trace is processed and converted into a program dependence graph (PDG), where a
pair of connected nodes represents a caller-callee relation between two methods from the
execution trace. The PDG is used as an input for two link analysis algorithms, namely
PageRank (Brin and Page 1998) and HITS (Kleinberg 1999), which generate a score for each
node from the PDG (i.e., each method from the execution trace). PageRank produces one score
for each method, which represents the popularity or importance of that method within the
graph (Brin and Page 1998). HITS produces two scores for each method: (i) an authority score,
based on the content of the method and the number of methods pointing to it (i.e., methods that
are called by other methods should have a higher authority score), and (ii) a hub score, based
on the outgoing links of a method (i.e., methods that call numerous other methods have higher
hub values) (Kleinberg 1999). The different scores produced by PageRank and HITS are used
to rank methods and identify the ones with high or low importance scores in order to remove
them from the list of results produced by the SITIR (IRDyn) approach (Liu et al. 2007).

The reproduced IRDynWM FLT, where WM = {PageRank or HITS_Aut or HITS_Hub}, is
presented as a TraceLab experiment in Fig. 7 (see components in the upper part of the figure,
which are not highlighted by the red dashed line).

The experiment uses TraceLab’s loop structure (see the node labeled “While Loop
(Queries)” in Fig. 7 which has two arrows labeled “in” pointing to it, and one arrow labeled
“out” exiting it) to iterate through all the queries in the dataset and (i) retrieves and parses its
execution trace (Parse Execution Trace), (ii) generates a program dependence graph based on
the caller-callee relations identified in the trace (Generate PDG), (iii) generates a transition
probability matrix for PageRank (Generate TPM) and applies PageRank (PageRank) to
generate the importance scores, and similarly, it generates an adjacency matrix (Generate
AM) used by HITS (HITS) to generate the authorities and hubs scores associated with these
methods. The parsed methods from the execution trace are used by the IRDyn component to
produce the results of the SITIR approach, and these results, along with the results produced
by the PageRank component, are used to generate the results for the IRDynPageRank FLT (see
IR Dyn PageRank component). Similarly, using the HITS authorities and hubs scores, the
IRDynHITS_Aut and IRDynHITS_Hub FLTs are computed. Moreover, the components asso-
ciated with the IRDynWM FLT can be configured with user defined thresholds for the
percentage of methods to filter (Dit et al. 2013e).

The results produced by the replicated technique are the same as the ones reported in the
original paper, even though the original technique used different implementations of Latent
Semantic Indexing (LSI) (Deerwester et al. 1990), PageRank and HITS algorithms, as well as
other scripts to compute the results. Figure 8 shows a subset of the results produced by our
TraceLab implementation, which are the same as the ones that were reported in (Dit et al.
2013e) Fig. 4(c) for the jEdit dataset (see Fig. 10, which is a reproduction of (Dit et al. 2013e)
Fig. 4(c)). Figure 8 represents the box plots of the effectiveness measure (i.e., the rank of the
first relevant method in the list of results (Liu et al. 2007)) for the techniques T1, T2, T7 and T13
corresponding to IRLSIDynbin, IRLSIDynbinWMPR(freq)

t80, IRLSIDynbinWMHITS(a,freq)
b60,

IRLSIDynbinWMHITS(h,bin)
b80 from (Dit et al. 2013e) Fig. 4(c), using the notation from (Dit

et al. 2013e). For simplification, T2, T7, and T13 correspond to the IRDynPageRank,
IRDynHITS_Aut and IRDynHITS_Hub respectively. These techniques were chosen as an
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example in Fig. 8 because they produced the best results for the jEdit dataset (Dit et al. 2013e)
and to illustrate that the implemented technique produces the same results as the original
technique.

Fig. 8 Box plots of effectiveness measure (see y-axis) obtained from reproducing the experiments in (Dit et al.
2013e). The results of techniques T1, T2, T7 and T13 correspond to IRLSIDynbin, IRLSIDynbinWMPR(freq)

t80,
IRLSIDynbinWMHITS(a,freq)

b60, IRLSIDynbinWMHITS(h,bin)
b80 from (Dit et al. 2013e) Fig. 4(c)

Fig. 9 Box plots of effectiveness measure (see y-axis) comparing (i) the techniques that produced the best results
in (Dit et al. 2013e) for the jEdit4.3 dataset (e.g., T2, T7, and T13 - see Fig. 8 for exact names) against the (ii) No
Scenario Filter (suffix NSF) and (iii) Frequent Methods Filter (FMF)
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6.2 Experimenting with New Ideas

Using the IRDynWM FLT (Dit et al. 2013e) as a starting point we experimented with
incorporating new ideas for further improving the results. We describe the two new ideas
and present their results in comparison with the original ones.

6.2.1 Filtering Frequent Methods from Execution Traces

The first idea that we instantiated in TraceLab consisted of filtering out some of the “noise”
found in execution traces. More specifically, given a set of execution traces we identify the
methods that appear in more than X% (i.e., a user defined threshold) of execution traces and we
filter them out from the results produced by the IRDynWM technique. For example, consider
our jEdit 4.3 dataset (Dit et al. 2013a, e) which contains 150 execution traces generated while
exercising particular scenarios. Based on a specified threshold (e.g., 66 %) we (i) identified the
methods that appear in 100 traces or more, and we (ii) filtered them out of the results produced
by IRDynWM. Our intuition was that if a particular method captured in an execution trace
appears in a large number of traces, the probability of that method to be part of a specific
feature is low and therefore, could be eliminated. In a way, this filtering technique is similar to
the process of eliminating stop words from corpora, where the stop words were identified as
appearing frequently and carrying no real meaning in the corpus.

We implemented this idea based on the existing IRDynWM, which resulted in the
IRDynWMFrequentMethodFilter or IRDynWMFMF technique (see the bottom part highlighted with
a red rectangle in Fig. 7). In other words, the implementation of the IRDynWM technique
requires all the components that are outside the highlighted area of Fig. 7, whereas the
implementation of IRDynWMFMF requires all the components, including the ones found in
the highlighted area of Fig. 7). The implementation required the following steps. First, we
added two new components to (i) examine all the execution traces from the dataset (compo-
nent Load All Execution Traces) and (ii) identify the methods that appear in more than X% of

Fig. 10 This figure that was first published in (Dit et al. 2013e) Fig. 4(c) is reproduced in this paper for
comparison purposes only with Fig. 8
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traces, with X% being the threshold specified by the user (component Compute Method
Frequencies). Second, for each query in the while loop we instantiated the same component
three times to filter out the most frequent execution trace methods from each technique in the
original experiment. For example, the results produced by the IRDynPageRank FLTwere used
as input for the IRDynPageRankFMF, which filtered the frequent methods produced by the
IRDynPageRank component.

The results produced by the IRDynWMFMF technique are presented in Section 6.2.3, and are
compared against the results produced by the IRDynWM technique.

6.2.2 Filtering “No Scenario” Methods from a Trace

In case a large set of execution traces is not available (i.e., the prerequisite for IRDynWMFMF is
not satisfied), a developer can use only one execution trace to get improved results, by
collecting an execution trace that exercises no scenario (i.e., without exercising any specific
features of the software). The execution trace was collected from the moment the application
started to the moment the application terminated, without exercising any user features in the
meantime. The methods captured in the No Scenario trace were filtered from the results
produced by IRDynWM, resulting in the IRDynWMNoScenarioFilter or IRDynWMNSF technique.
The intuition behind this idea is that the No Scenario trace contains a number of methods that
are not associated with any specific scenario (i.e., generic methods), which can be filtered in
order to improve the results.

The implementation of this technique is similar to the one presented in Fig. 7. The major
modification was that the Load All Execution Traces and Compute Method Frequencies
components were replaced with a component that loaded a user-specified no scenario execu-
tion trace and extracted the methods that will be filtered. In addition, the IRDynWMFMF

composite nodes were replaced with corresponding IRDynWMNSF composite nodes.
The results generated by the IRDynWMNSF technique are presented in Section 6.2.3, and are

compared against the results produced by the IRDynWM and IRDynWMFMF techniques.

6.2.3 Results for Evaluating the New Ideas

Figure 9 shows side by side the box plots of the effectiveness measure produced by IRDynWM,
IRDynWMFMF and IRDynWMNSF. For the comparison, we choose the best three configurations
of PageRank, HITS Authority and HITS Hubs that produced the best results for the jEdit
dataset in (Dit et al. 2013e), which are T2, T7 and T13 (see Fig. 8 for the labels). A

Table 5 Descriptive statistics for the box plots presented in Fig. 9. The first row (Percentage Features) represents
the percentage of features for which the technique was able to locate at least one relevant method

T2 T2-NSF T2-FMF T7 T7-NSF T7-FMF T13 T13-NSF T13-FMF

Percentage features 68 % 59 % 64 % 73 % 59 % 68 % 67 % 59 % 66 %

Min 1 1 1 1 1 1 1 1 1

25th 2 1 1 3 1.75 2 1 1 1

Median 5 3 4 5 4 4 2 1 2

75th 11 8 9 21 8.75 13.5 6 4 5

Max 237 81 145 170 141 142 35 40 35

Mean 14.81 7.47 10.02 20.85 10.36 12.72 4.92 3.56 4.25

Standard deviation 34.24 11.71 21.18 32.98 19.68 21.45 6.19 5.96 5.51
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complementary view of Fig. 9 is given by Table 5, which contains descriptive statistics of the
box plots generated by those techniques.

Figure 9 and Table 5 show that the IRDynWMFMF (e.g., T2-FMF, T7-FMF and T13-FMF)
techniques generate better results in terms of the effectiveness measure than IRDynWM, and
that IRDynWMNSF produces better results than IRDynWMFMF. For example, for T2, the median
value was five, whereas for T2-FMF and T2-NSF the median values for four and three
respectively. The same trend is observed for the average values: 14.81, 10.02 and 7.47 for
T2, T2-FMF and T2-NSF, respectively.

Our two experimental ideas produced better results than the best results presented in (Dit
et al. 2013e) for the jEdit dataset. However, the improvement in “precision”, comes at the cost
of potentially filtering out relevant methods. For example in Table 5 row Percentage Features
shows the percentage of features for which that particular technique was able to identify at
least one relevant method. As the table indicates, filtering additional methods removes noise
(i.e., irrelevant methods to the feature), as well as some relevant methods.

7 Discussion

Although for this particular dataset the two experimental ideas produced better results than the
ones reported in (Dit et al. 2013e), there is still more research to be done (e.g., investigate the
impact of removing also relevant methods, automatically setting the threshold for
IRDynWMFMF, ensuring generalizability, considering more advanced techniques for analyzing
traces (Egyed 2003; Eisenbarth et al. 2001), etc.) before considering these ideas as viable
techniques. However, this is beyond the scope of this paper.

The main goal of these examples was to illustrate the support that our Component Library
and the TraceLab framework can offer to researchers, who can quickly test new ideas and get
some preliminary results to assess the feasibility of those ideas, and decide if it is worth
pursuing them or not.

7.1 Reproducing Traceability Link Recovery Experiments

Oliveto et al. (Oliveto et al. 2010) investigated the equivalence of results produced for the
traceability link recovery task using different IR techniques, such as VSM (Salton et al. 1975),
LSI (Deerwester et al. 1990), JS (Abadi et al. 2008), and a topic modeling technique called
Latent Dirichlet Allocation (LDA) (Blei et al. 2003). The evaluation was performed on two
datasets, EasyClinic and eTour (Oliveto et al. 2010) and they reported the precision and recall
of the results in addition to link overlap metrics. They performed Principal Component
Analysis (PCA) to determine which techniques are equivalent in terms of performance in
traceability link recovery. The authors found that VSM, LSI, and JS are equivalent, while LDA
provides orthogonal results.

The approach proposed by Oliveto et al. is another example from our mapping study that
can be entirely reproduced in TraceLab. The TraceLab experiment includes the same datasets
used in the original evaluation and the same settings. Figure 11 shows the experiment in
TraceLab and Fig. 12 shows the precision and recall curves obtained from reproducing the
experiment performed by Oliveto et al.. The components on top perform standard preprocess-
ing techniques on the source and target artifacts. The four components in the center (Vector
Space Model, Jensen-Shannon divergence, Latent Semantic Analysis and Latent Dirichlet
Analysis) correspond to the four IR techniques used for comparison. The Principal Component
Analysis component is responsible for determining which of the four IR techniques produce
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equivalent results, and which produce orthogonal (complementary) results. The bottom part of
the experiment provides the standard functionality for computing results for traceability link
recovery, namely, importing the oracle, computing the precision and recall results and visual-
izing them.

Fig. 11 TraceLab experiment for reproducing the experiment proposed by Oliveto et al. (2010)

Fig. 12 Precision and recall curves obtained from reproducing in TraceLab the experiments in (Oliveto et al.
2010)
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Based on the findings of Oliveto et al. (2010), Gethers et al. (2011) investigated the effects
of combining orthogonal IR techniques to support traceability link recovery. In addition to
using VSM and JS IR techniques, the authors also used the Relational Topic Model (RTM)
(Chang and Blei 2010), which takes into account links between artifacts when determining the
topics related to those artifacts.

Their approach implemented PCA to determine the level of contribution of each technique,
which is then used as a λ parameter for an affine transformation between pairs of techniques.
The authors performed an evaluation on four datasets (e.g., EAnci, eTour, EasyClinic, and
SMOS – see (Oliveto et al. 2010)) and they reported precision, recall, and average precision of
the results as well as link overlap metrics. Based on the results of their evaluation, the authors
confirmed that VSM and JS produce equivalent results, and that RTM produces orthogonal
results. The authors also found that using the hybrid approach which ranks artifacts based on a
combination of scores produced by VSM and RTM (e.g., VSM + RTM) and the hybrid
approach that combines JS and RTM (e.g., JS + RTM) significantly increases the accuracy of
traceability link recovery, as compared to standalone techniques (e.g., either VSM, JS, or RTM
without any combination).

The approach proposed by Gethers et al. (2011) is another example identified in our
mapping study, which can be reproduced in TraceLab (see Fig. 13). This experiment reused
many components from the Component Library that were also used in the previously
mentioned traceability experiment by Oliveto et al. (see Fig. 11). These components are related
to preprocessing, VSM, JS, PCA, for computing the precision and recall values for various
configurations as well as the UI component for displaying the results. The components that are
found only in this experiment (which were also imported from the Component Library) are the

Fig. 13 TraceLab experiment for reproducing the experiment proposed by Gethers et al. (2011)
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ones that use affine transformation to combine two existing techniques in order to generate a
new one. These components are the ones with the name IRTechnique1 + IRTechnique2 (e.g.,
VSM + JS, VSM + RTM, etc.)

8 TraceLab: Alternative Uses

The community surrounding TraceLab, the Component Development Kit and the Component
Library enables the replication of experiments, helps new researchers to become productive
more quickly, and encourages innovation through equipping researchers with the means to
synthesize techniques and to rigorously explore and evaluate new ideas across different
domain. In addition, we argue that the curriculum for software engineering classes could be
positively impacted as well.

First, class assignments and projects could be designed to support their submission using
TraceLab. Students can be given a partial TraceLab experiment (e.g., loading data, saving
data), and could be asked to implement one or more components that compute the results for a
technique that supports a maintenance task. Alternatively, students can be given a complete
experiment (which implements a technique for traceability link recovery, feature location, or
any other maintenance tasks) and asked to improve on the existing techniques by writing new
components, and compare the results to the original technique (which can be used as a
baseline). The benefit of using TraceLab is that (i) it provides students the flexibility to
implement code in some of the most popular languages (Java, C++, C#) on any OS (e.g.,
Windows, Linux, Mac), and it provides the instructor with a uniform method for evaluating
and grading the assignments or projects (i.e., the instructor has to run an experiment that will
be used as a ground truth alongside the experiment submitted by the student).

Second, class assignments or projects can be assigned to students as part of a customized
Challenge, using TraceLab’s challenge feature. Instructors can define the challenge (i.e., the
problem), provide the necessary datasets, metrics, an experimental harness (in the form of a
TraceLab experiment) in which student’s solutions can be “plugged”, and ask students to
implement their solutions and submit them to an online portal supporting leaderboards, where
challenge results will be compared and ranked. In the research community, one of these TraceLab
Challenges made its debut during the 7th Traceability of Emerging Forms of Software Engineer-
ing (TEFSE) workshop in 2013, and will continue for the TEFSE workshops in 2015 and 2017.

9 Limitations

This section discusses some potential limitations for conducting research using TraceLab, the
Component Development Kit and the Component Library.

For example, the current infrastructure does not support collecting metrics (e.g., LOC,
cyclomatic complexity, depth of inheritance tree, coupling between objects, etc.) from different
software systems. However, these metrics could be computed with external tools and imported
into TraceLab and used in experiments.

Running experiments in TraceLab from code hosted in a .NET process is in general slower
than running the code associated with experiments natively. For example, for typical experi-
ments the code would require a few seconds more to run on TraceLab, but for computationally
expensive experiments (which could take hours, or days on native code) TraceLab experiments
could take from minutes to hours longer to run than experiments ran in native code. Therefore,
the time or speed factors in evaluating an approach would need to be considered.
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We attempted to identify papers that covered a number of topics in SM, which we were
familiar with or had expertise with. Within the papers we covered, in some cases we were
unable to obtain exact implementations due to lack of specific details or availability of tools.
Additionally, many experiments cannot be reproduced directly because the datasets under
study were undisclosed or unavailable.

The CL and CDK do not implement every technique and building block found in the
mapping study. The amount of time, manpower, and testing required to do so would be far
beyond the resources available. That being said, we tried to implement as many of the
techniques that we could in order to show the efficacy and usefulness of TraceLab as a
research tool in the domain of software evolution and maintenance. We are continuously
working on driving new research projects with TraceLab (Cleland-Huang et al. 2013;
Dekhtyar and Hilton 2013; Alhindawi et al. 2013; Hays et al. 2013; Li and Hayes 2013;
Rempel et al. 2013; Dit et al. 2013c; Wieloch et al. 2013) and encourage others to do so as
well.

A major issue that prevented us from using or implementing certain tools was their
copyright licensing. In some cases they do not use permissive licenses, and even if the source
code was available its license did not permit distribution. TraceLab is released under the open
source license GPL, which we follow as well with the CL and CDK. Developers may release
their own components under any license they wish, but if they wish to extend or modify the CL
or CDK, they must also release under GPL.

With any new technology or framework, as is the case with TraceLab and the CL/CDK,
there is an inherent learning curve that needs to be overcome before researchers can take
advantage of this infrastructure in order to support their research and contribute to the
community as well. To facilitate this learning process and to make it easier for new users to
create new experiments and components, we provide numerous online tutorials (e.g., wikis and
videos) to help new users get started. In fact, most of our early adopters have viewed a
selection of tutorials prior to adoption.

10 Conclusions and Future Work

This paper is an extension of our previous work (Dit et al. 2013b) and addressed the
reproducibility problem associated with experiments in SM research. Our goal was to support
and accelerate research in SE by providing a body of actionable knowledge in the form of
reproduced experiments and a Component Library and Component Development Kit that can
be used as the basis to generate novel, and most importantly reproducible techniques.

After conducting a mapping study of SM techniques in the areas of traceability link
recovery, feature location, program comprehension and duplicate bug report detection, we
identified 27 papers and techniques that we used to generate a library of TraceLab components.
We implemented a subset of these techniques as TraceLab experiments to illustrate TraceLab’s
potential as a research framework and to provide a basis for implementing new techniques.

It is obvious that our effort does not cover the entire range of SM papers or techniques.
Therefore, in the future, we are determined to continually expand the TraceLab Component
Library and Development Kit by including more techniques and expanding it to other areas of
SM (e.g., impact analysis, developer recommendation, software categorization, etc.). In
addition, we are expanding our online tutorials to make it easier for newcomers to get started
with TraceLab, and we encourage other researchers to contribute to this body of knowledge for
the benefit of conducting reproducible research, which in turn, will benefit the entire research
community.
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