
Noname manuscript No.
(will be inserted by the editor)

License Usage and Changes: A Large-Scale Study on GitHub

Christopher Vendome,
Mario Linares-Vásquez,
Gabriele Bavota,
Massimiliano Di Penta,
Daniel German,
Denys Poshyvanyk

Received: date / Accepted: date

Abstract Open source software licenses determine, from a legal point of view, under
which conditions software can be integrated and redistributed. The reason why devel-
opers of a project adopt (or change) a license may depend on various factors, e.g., the
need for ensuring compatibility with certain third-party components, the perspective
redistribution or commercialization of the software, or the need for protecting against
somebody else’s commercial usage of software. This paper reports a large empirical
study aimed at quantitatively and qualitatively investigating when and why develop-
ers adopt or change software licenses. Specifically, we first identify licenses’ changes
in 39,563,885 commits, representing the entire history of 51,757 projects hosted on
GitHub written in C, C++, C#, JavaScript, Python, and Ruby. Then, to understand the
rationale of license changes, we perform a qualitative analysis—following an open
coding approach inspired by grounded theory—on commit notes and issue tracker
discussions concerning licensing topics and, whenever possible, try to build trace-

C. Vendome
The College of William and Mary
E-mail: cvendome@cs.wm.edu

M. Linares-Vásquez
The College of William and Mary
E-mail: mlinarev@cs.wm.edu

G. Bavota
Free University of Bolzano
E-mail: gabriele.bavota@unibz.it

M. Di Penta
University of Sannio
E-mail: dipenta@unisannio.it

D. M. German
University of Victoria
E-mail: dmg@cs.uvic.ca

D. Poshyvanyk
The College of William and Mary
E-mail: denys@cs.wm.edu



ability links between discussions and changes. On one hand, our results highlight
how, in different contexts, license adoption or changes can be triggered by various
reasons. On the other hand, the results also highlight a lack of traceability of when
and why licensing changes are made. This can be a major concern, because a change
in the license of a system can negatively impact those that reuse it. In conclusion,
results of the study trigger the need for a better tool support for guiding developers
in choosing/changing licenses, and in keeping track of the rationale behind license
changes.

Keywords Software Licenses ·Mining Software Repositories · Empirical Studies

1 Introduction

In recent and past years, the availability of Free and Open Source Software (FOSS)
projects is significantly increasing, along with the availability of forges hosting such
projects (e.g., SourceForge1 or GitHub2) and foundations supporting and promoting
the development and diffusion of FOSS (examples are the Apache Software Foun-
dation3, the GNU Software Foundation4, or the Eclipse Software Foundation5). The
availability of open source software is a precious resource for developers, who can
reuse existing assets, extend/evolve them, and in this way create new work pro-
ductively and reduce costs. Noteworthy, this can happen not only in the context of
open source projects; such practices are becoming more frequent even in commercial
projects.

Nevertheless, whoever is interested in integrating FOSS code in their software
project (and redistributing resulting source code with the project itself), or modifying
existing FOSS projects to create new work—referred to as “derivative work”—must
be aware that such activities are regulated by software licenses and in particular by
certain FOSS licenses. In order to license a software project, developers either add a
licensing statement as a comment on top of source code files, or else include a textual
file containing the license statement in the project source code root directory or in its
sub-directories.

Generally speaking, FOSS licenses can be classified into restrictive (also referred
to as “copyleft” or “reciprocal”) and permissive licenses. A restrictive license requires
developers to use the same license to distribute new software that incorporates soft-
ware licensed under such restrictive license (i.e., the redistribution of the derivative
work must be licensed under the same terms); meanwhile, permissive licenses allow
re-distributors to incorporate the reused software under a difference license [29,17].
The GPL is a classic example of a restrictive license. In Section 5 of the GPL-3.0, the
license addresses code modification stating that “You must license the entire work, as
a whole, under this License to anyone who comes into possession of a copy” [4]. The

1 http://sourceforge.net
2 https://github.com
3 https://www.apache.org
4 http://www.gnu.org
5 http://www.eclipse.org/



BSD Licenses are examples of permissive licenses. For instance, the BSD 2-Clause
has two clauses that detail the use, redistribution, and modification of licensed code:
(i) the source must contain the copyright notice and (ii) the binary must produce the
copyright notice and contain the disclaimer in documentation [1].

When developers (or organizations) decide to make a project available as open
source, they can license their code under many different existing licenses or specify
a new unique license. The choice may be dictated by the set of dependencies that
the project has (e.g., towards libraries) released under various different licenses. For
example, if a project has to (statically) link some GPL code, then it must be released
under the same GPL version; failing to fulfill such a constraint would create potential
legal implications. Also, as shown by Di Penta et al. [14], the choice of the licenses
in a FOSS project may have massive impact on its success, as well as on projects us-
ing it. For example—as it happened for the IPFilter project [5]—a highly restrictive
license may prevent others from redistributing the project (in the case of IPFilter, this
caused its exclusion from OpenBSD distributions). An opposite case is the one of
MySQL connect drivers, originally released under GPL-2.0, whose license was mod-
ified with an exception [28] to allow the driver’s inclusion in other software released
under some open source licenses in principle incompatible with the GPL (e.g., the
Apache license). In summary, the choice of the license—or even a decision to change
an existing license—is a crucial crossroad point in the context of software evolution
of every FOSS project.

In order to encourage developers to think about licensing issues early in the
development process, some forges (e.g., GitHub) have introduced specific mecha-
nisms such as the possibility of picking the project license at the time the repos-
itory is created. Also, there are some specific Web applications (e.g., http://
choosealicense.com/) helping developers to choose a license. Furthermore,
there are numerous research efforts aimed at supporting developers in classifying
source code licenses [22,21] and identifying licensing incompatibilities [18]. Even
initiatives such as the Software Package Data Exchange (SPDX) [6] have been aimed
at proposing a formal model for licenses. However, despite of the effort put by the
FOSS community, researchers, and independent companies, it turns out that devel-
opers usually do not have a clear idea yet on the exact consequences of licensing (or
not) their code using a specific license, or they are unsure, for example, on how to
re-distribute code licensed with a dual license among the other issues [32].

Paper contributions. This paper reports the results of a large empirical study
aimed at quantitatively and qualitatively investigating when and why licenses change
in projects, which were written in C, C++, C#, JavaScript, Python, and Ruby, hosted
on GitHub. We also compare the findings to our earlier work on 16,221 Java projects [33].
To conduct this study, we first mined the entire change history of 4,671 C, 1,902
C#, 4,209 C++, 14,161 JavaScript, 9,349 Python, and 17,984 Ruby projects extract-
ing the license type (e.g.,GPL or Apache) and version (e.g.,v1, v2) from each of the
32,223,454 files involved in a total of 39,563,885 commits. Starting from this data,
we provide quantitative evidence on (i) the diffusion of licenses in FOSS systems,
(ii) the most common license-change patterns, and (iii) the traceability between the
license changes to both the commit messages and the issue tracker discussions. After
that, following an open coding approach inspired by grounded theory [11], we qual-



itatively analyze a sample of commit messages and issue tracker discussions likely
related to license changes. Such qualitative analysis allowed us to provide a rationale
on the reasons why developers adopt specific license(s), both for initial licensing and
for licensing changes. We discuss such results along with those previously obtained
for Java projects [33].

The study reported in this paper poses its basis on previous work aimed at explor-
ing license incompatibilities [18], license changes [14], license evolution[25] and in-
tegration patterns [20]. Building upon previous work on licensing analysis, this paper
make the following specific contributions:

1. To the best of the authors’ knowledge, this paper represents the largest study
aimed at analyzing the change patterns in licensing of software systems (ear-
lier work was limited to the analysis of up to six projects [25,14] as well as
16,221 Java projects in our earlier work [33], whereas this work analyzes 51,757
projects) and considers multiple popular programming languages;

2. To the best of our knowledge, this is the first work aimed at linking licensing
changes to their rationale by means of a qualitative analysis of commit notes and
issue tracker discussions.

The achieved results suggest that determining the appropriate license of a soft-
ware project is far from trivial and that a community can influence developers when
picking a license. We also observe that licensing expectations may be different based
on the programming language. Although choosing a license is considered important
for developers, even since early releases of their projects, forges and third party-tools
provide little or no support to developers when performing licensing-related tasks,
e.g., picking a license, declaring the license of a project, changing license from a re-
strictive one towards a more permissive one (or vice versa) and, importantly, keeping
track of the rationale for license changes. Also, there is a lack of consistency and stan-
dardization in the mechanism that should be used for declaring a license (e.g., putting
it in source code heading comments, separate license files, README files, etc.).
Moreover, the legal nature of the licenses exacerbate this problem since the implica-
tions and grants or restrictions are not always clear for developers when the license
is present. Last, but not least, the currently available Software Configuration Man-
agement (SCM) technology provide a very limited support to trace licensing-related
discussions and decisions onto actual changes, whereas such traceability links can be
useful to understand the impact of such decisions.

Paper structure. The paper is organized as follows. Section 2 overviews exist-
ing work on licensing analysis. Section 3 describes the study design and the details
behind the data analysis procedure. The results are reported and discussed in Section
4. Lessons learned from the study results are summarized in Section 5, while Section
6 discusses the threats to the study’s validity. Finally, Section 7 concludes the paper
and outlines directions for future work.



2 Related Work

Our work is mainly related to (i) techniques and tools for automatically identifying
and classifying licenses in software artifacts, and (ii) empirical studies focusing on
different aspects of license adoption and evolution.

2.1 Identifying and Classifying Software Licensing

To the best of our knowledge, the problem of license identification has firstly been
tackled in the FOSSology project [22] aimed at building a repository storing FOSS
projects and their licensing information and using a machine learning approach to
classify licenses. Tuunanen et al. [30] proposed ASLA, a tool aimed at identifying
licenses in FOSS systems; the tool has been shown to determine licenses in files with
89% accuracy.

German et al. [21] proposed Ninka, a tool that uses a pattern-matching based ap-
proach for identifying statements that characterize various licenses. Given any text
file as an input, Ninka outputs the license name and version. In the evaluation re-
ported by the authors, Ninka achieved a precision ∼95% while detecting licenses.
Ninka is currently considered the state-of-the-art tool in the automatic identification
of software licenses.

While the typical license classification problem arises when source code is avail-
able, in some cases, it may not available—i.e., only byte code or binaries are available—
and the goal is to identify whether the byte code has been produced from source
code under a certain license. To this aim, Di Penta et al. [13] combined code search
and textual analysis to automatically determine a license under which jar files were
released. Their approach automatically infers the license from decompiled code by
relying on Google Code Search. Note that, differently from the previous techniques,
the approach in [13] is only able to identify the license family (e.g., GPL) without
specifying the version (e.g., 2.0).

2.2 Empirical Studies on License Adoption and Evolution

Di Penta et al. [14] investigated—on six open source projects written in Java, C, and
C++ programming languages—the migration of licenses over the course of a project’s
lifetime. The study suggests that licenses changed version and type during software
evolution, but there was no generic patterns generalizable to the six analyzed FOSS
projects.

Manabe et al. [25] analyzed the changes in licenses of FreeBSD, OpenBSD,
Eclipse, and ArgoUML, finding that each project had different evolution patterns.

With respect to the above works, we (i) perform a larger study on projects written
in five different programming languages (six considering our previous results for Java
[33]), and (ii) complement the quantitative analysis with open coding of licensing-
related commit messages and issue tracker discussions.

German et al. [20] analyzed 124 open source packages exploited by several ap-
plications to understand how developers deal with license incompatibilities. Based on



this analysis, they built a model outlining when specific licenses are applicable and
what are their advantages and disadvantages. Later, German et al. [18] presented an
empirical study focused on the binary packages of the Fedora-12 Linux distribution
aimed at (i) understanding if licenses declared in the packages were consistent with
those present in the source code files and (ii) detecting licensing issues derived by de-
pendencies between packages; they were able to find some licensing issues confirmed
by Fedora.

German et al. [19] analyzed the presence of cloned code fragments between the
Linux Kernel and two distributions of BSD, i.e., OpenBSD and FreeBSD. The aim
was to verify whether the cloning was performed in accordance to the terms of the
licenses. Results show that, in most cases, these code-migrations were admitted since
they went from less restrictive licenses towards more restrictive ones.

Wu et al. [34] investigated license inconsistencies between cloned files. They per-
formed an empirical study on Debian 7.5 to demonstrate the ways in which licensing
can become inconsistent between the file clones (e.g., the removal of a license in one
of the clone pairs).

Vendome et al. conducted a survey with developers that contributed to projects
that had experienced changes in licensing to understand the rationale for adopting
and changing licensing [32]. The survey results indicated that facilitating commer-
cial reuse is a common reason for license changes. Also the survey highlighted that,
in general, developers lack understanding of the legal implications of open source
licenses, which highlights the need for recommenders aimed at supporting them in
choosing and changing the licenses.

While we share similar goals with prior related work—understanding insights
into license usage and migration—our analysis is done on a much larger scale, i.e.,
across 51K+ projects (besides the 16K from the original study to which we compare
the new findings [33]) vs. less than ten projects in prior work (although German et
al. [18] considered a single version of Fedora, the work investigated 1,475 source
and 2,399 binary packages for that system). This work also investigates multiple pro-
gramming languages to understand the influence that a programming language may
have with respect to licensing. In addition, we performed an in-depth analysis of the
rationale behind license usages and migrations by systematically studying and cate-
gorizing a multitude of related software artifacts (i.e., source code files, commit notes,
and issue tracker discussions).

3 Design of the Empirical Study

The goal of our study is to investigate license adoption and evolution in FOSS projects
hosted on GitHub, with the purpose of understanding the rationale behind adding
licensing, picking a particular license, or changing licenses. The perspective is of
researchers interested in understanding what are the main factors leading towards
specific license adoption and change.The context consists of the change history of
17,984 Ruby, 14,161 JavaScript, 9,349 Python, 4,671 C, 3,690 C++, and 1,902 C#
open source projects mined from GitHub, as well as their issue tracker discussions.



This study is a replication of our previous work, where we limited our attention to the
analysis of 16,221 Java projects [31].

3.1 Research Questions

Our study aims at answering the following four research questions:

1. RQ1 What is the usage of different licenses by projects in GitHub? This research
question examines the proportions of different types of licenses that are intro-
duced by FOSS projects hosted in GitHub. In doing this, we should consider that
GitHub is a relatively young forge, which has seen exponential growth in the
number of projects over the past few years, and that most of the projects it hosts
are young in terms of the first available commit or the date when the repository
was created.

2. RQ2 What are the most common licensing change patterns? Our second re-
search question investigates the popular licensing change patterns in the GitHub
open source community with the aim of driving out—from a qualitative point
of view—the rationale behind such change patterns (e.g., satisfying dependency
constraints).

3. RQ3 To what extent are licensing changes documented in commit messages or is-
sue tracker discussions? This research question investigates on whether licensing
changes in a system can be traced to commit messages or issue discussions.

4. RQ4 What rationale do these sources contain for the licensing changes? This
research question investigates the rationale behind the particular change in li-
cense(s) from a developer’s perspective.

We address the four research questions by looking at the licensing phenomenon
from two different points of view, namely (i) a quantitative analysis of the licenses
under which projects were released, their changes across their evolution history, and
the ability to match these changes to either commit notes or issue tracker discussions;
and (ii) a qualitative analysis of developers’ licensing-related discussions made over
the issue trackers and of the way in which developers documented licensing changes
through commit notes. For the case of licensing changes, we are interested in analyz-
ing license migration patterns that fall in the following three categories:

– No license → some License(s) – N2L. This reflects the case where developers
realized the need for a license and added a licensing statement to files;

– some License(s)→ No license – L2N . In this case, for various reasons, licensing
statements have been removed from source code files; for example, because a
developer accidentally added a wrong license/license version;

– some License(s) → some other License(s) – L2L. This is the most general case
of a change in licensing between distinct licenses.

While RQ1 and RQ2 have been addressed by performing a quantitative analysis
of licensing contained in the source code files and their changes, RQ3 and RQ4 have
been addressed through a qualitative analysis of commit messages and issues posted
on the projects’ issue trackers. Since the qualitative analysis requires multiple rounds



of manual classification of artifacts, as it will be detailed below, it is limited to a
sample of 1,133 commits and 213 issue discussions from 857 projects (189 projects
contributing with issue discussions, 685 projects with commits, and 17 projects with
both).

3.2 Context selection

In order to extract the data set to be used in the study, we mined the commit history of
a total of 51,757 projects, including 17,984 Ruby projects, 14,161 JavaScript projects,
9,349 Python projects, 4,671 C projects, 3,690 C++ projects, and 1,902 C# projects
publicly available on GitHub. GitHub hosts over twelve million Git repositories cov-
ering many popular programming languages, and provides a public API [3] that can
be used to query and mine project information. Also, the Git version control system
allows for local cloning of the entire repository, which facilitates the comprehensive
analysis of the project change history and thus of the license changes detected in each
commit.

To extract data for our quantitative analysis, first we mined a comprehensive list
of projects hosted on GitHub by implementing a script exploiting GitHub’s APIs.
GitHub limits the number of requests (or queries) per hour by IP Address to 60 for
non-authenticated requests and 5,000 for the authenticated ones. Our script exploited
authenticated tokens from personal accounts to maximize our request limit and uti-
lized timeouts to ensure compliance with GitHub’s regulations.

The computation of the comprehensive list resulted in over twelve million projects.
We excluded the Java projects, since we considered a significant number of projects
in this programming language in our previous study [31] that this study replicates.
We focused on systems written in six programming languages: C, C++, C#, Python,
JavaScript, and Ruby by selecting only those satisfying the following two criteria: (i)
they were not forks of the main repository, and (ii) they had at least one star (i.e., at
least one user expressed appreciation for the repository) or watcher (i.e., at least one
user asked to receive notification about changes made in the repository). These se-
lection criteria were used to exclude from our analysis personal repositories (e.g., the
website of a person) that might have biased our results. All 51,757 projects satisfying
the selection criteria were cloned in a workstation.

3.3 Quantitative analysis of licensing and their changes

Once the Git repositories had been cloned, we used a code analyzer developed in
the context of the MARKOS European project [9] to extract licensing information
at commit-level granularity. The MARKOS code analyzer uses the Ninka license
classifier [21] to identify and classify licenses contained in all the files hosted under
the versioning system of each project. For each of the 51,757 projects in our study, the
MARKOS code analyzer mined the change log, producing the following information
for each commit:



1. Commit Id: The identifier of the commit that is currently checked out from the
Git repository and analyzed;

2. Date: The timestamp associated with the commit;‘
3. Author: The person responsible for the commit;
4. Commit Message: The message attached to the commit;
5. File: The path of the files committed;
6. Change to File: A field to indicate whether each file involved in the commit was

Added, Deleted, or Modified;
7. License Changed: A Boolean value indicating whether the file has experienced

a change in a license in this commit with respect to its previous version. This
feature applies to modified files only. In the case of an addition or deletion of a
file, this field is set to false;

8. License: The name and version (e.g., GPL-2.0) of each license applied to the file.

The computation of such information for all 51,757 projects took almost 60 days,
and resulted in the analysis of a total of 39,563,885 developers’ commits involving
32,223,454 files. Note that for the BSD and CMU licenses Ninka was not able to
correctly identify its version (reporting it as BSD var and CMU var). Additionally,
the GPL and the LGPL may contain a “+” after the version number (e.g., 3.0+),
which represents a clause in the license granting the ability to use future versions
of the license (i.e., the GPL-2.0+ would allow for utilization under the terms of the
GPL-3.0). Also, we have values of “no license” and “unknown”, which represents the
case that no license was attached to the file or Ninka was unable the determine the
license.

We quantitatively analyze the collected data by presenting descriptive statistics
about the license adoption and the most common atomic license changes in the an-
alyzed projects. The latter are defined as the commits in which we detected a spe-
cific kind of license change within at least one source code or textual file. For exam-
ple, given a commit with three files experiencing the licensing change No license→
Apache-2.0, and ten files with GPL-2.0→ GPL-3.0, the atomic license changes from
that commit are one No License→ Apache-2.0 change and one GPL-2.0→ GPL-3.0
change. We prefer not to count the number of changes at file level as it was done in
previous work [14] to avoid inflating our analysis because of large commits and to
make commits performed on both small and large projects comparable.

At the end, we did not identify any license changes among the six languages. We
investigated the repositories as well as the number of commits to better understand
our dataset. We observed that the vast majority of projects were smaller in terms
of the number of commits. Additionally, we observed that certain projects appeared
to be mirrored on GitHub, indicating that they were mature but their development
took place elsewhere. We also observed that certain projects had commits prior to
the starting commit of the repository so it is possible that segments of the history
were inaccessible to our analysis. Thus, we observe that many projects are either
immature and so they do not have enough change history, where licensing changes
are likely to occur, and it would be supported by the findings in [32]. Alternatively, the
projects may be mature, but the change histories are not complete. However, we do
present the findings from the Java study to which we compare our work. For Java, we



identified atomic license changes for 1,833 out of 16,221 Java projects, This subset
of projects was used to investigate license change traceability. Intuitively, we require
the presence of license changes in order to determine how well changes in licensing
are documented in either the commit notes or issue tracker discussion.

Therefore, we used a web crawler to identify, among these 1,833 projects, those
using the GitHub issue tracker, finding a total of 1,586 projects having at least one
issue on it. To link the licensing changes to commit notes/issue reports, we performed
both string matching and date matching between either the commit notes or the issue
tracker discussions and the extracted licensing information (e.g., a license name or a
date when a license was committed).

3.4 Qualitative Analysis

Our qualitative analysis is based on manual inspection and categorization of a sample
of issue tracker discussions and commits related to licensing changes. While commits
can be queried from the repository using the Git log command, the former have been
extracted by building a Web crawler collecting the information present in all issue
trackers of the studied projects. In particular, for each issue our crawler collected (i)
its title and description, (ii) the text of each comment added to it, (iii) and the date the
issue was opened and closed (when applicable).

In order to find the relevant issues (i.e., those presenting discussions about soft-
ware licenses), we used a keyword search mechanism aimed at matching, in the issue
title, specific licensing keywords reduced from Ninka’s list (e.g., copyright) or li-
cense names (e.g., GPL). Specifically, we considered the following case-insensitive
keywords:

copyright, compliance, gpl, gpl-2, gpl-3, gplv2, gplv3, gplv2+, gplv3+, lgpl,
lgpl-2, lgpl-2.1, lgpl-3, lgplv2, lgplv2.1, lgplv3, lgplv2+, lgplv2.1+, lgplv3+,
licenses, license, licensed, licensee, lgpl, merchantability, mit/x-derivative,
mpl, written permission, prior permission, see the copyright.txt, licensing,
licencing, liability, legal, public domain, special exception, copyright hold-
ers, to permit this exception, disclaims copyright, gpl, apache-2, apache-
2.0, apache 2, apache 2.0, apache v2, apache v2.0, apache-1.1, apache 1.1,
apache v1.1, apl-1.1, apl-1.1, apl 1.1, apl v1.1, gpl 3, gpl 3+, gpl 2, gpl 2+,
lgpl 2, lgpl 2+, lgpl 2.1, lgpl 2.1+, lgpl 3, lgpl 3+, gpl v3, gpl v3+, gpl v2, gpl
v2+, lgpl v2, lgpl v2+, lgpl v2.1, lgpl v2.1+, lgpl v3, lgpl v3+, mit/x, mit/x11,
mit x11, mit expat, cpl-1.0, cpl-1, epl-1.0, epl-1, cpl 1.0, cpl 1, epl 1.0, epl
1, cddl-1.0, cddl-1, cddl 1.0, cddl 1, cpl v1.0, cpl v1, epl v1.0, epl v1, cddl
v1.0, cddl v1, mpl-1.0, mpl-2.0, mpl-1, mpl-2, mpl 1.0, mpl 2.0, mpl 1, mpl
2, mpl v1.0, mpl v2.0, mpl v1, mpl v2, bsd-3, bsd-2, bsd-4, bsd 3-clause, bsd
2-clause, bsd 4-clause

In some cases, our keyword-filters included bi-grams composed of the license
type and version, since some licenses types considered alone (e.g.,apache) produced
a very large amount of false positive discussions (e.g., all those talking about Apache
projects). In the end, we identified a total of 213 issue tracking discussions potentially



related to licensing, including 79 from JavaScript projects, 45 from Ruby projects, 41
from Python projects, 30 from C projects, 12 from C++ projects, and 6 from C#
projects. We compare these findings to our previous work [31], where we analyzed
273 issues from Java projects.

To identify commit notes likely related to license changes, we adopted a keyword-
based filtering based on the critical words exploited by Ninka during licenses iden-
tification augmented with license names. Specifically, we used the following case-
insensitive keywords:

as is, wrote this file, acknowledgement, advertising, agreement, attribution,
authorization, compliance, conditions, copies, being used are not cryptographic,
damages, derivative, disclaimed, disclaimer, distribute, distributed, distribut-
ing, free distribution, embargoed, executable file, fee, fees, redistributions in
any form, redistributions of any form, this can be in the form of a textual
message, free software, furnished, gpl, gpl-2, gpl-3, gplv2, gplv3, gplv2+,
gplv3+, lgpl, lgpl-2, lgpl-2.1, lgpl-3, lgplv2, lgplv2.1, lgplv3, lgplv2+, lgplv2.
1+, lgplv3+, grant, granted, http://www.gnu.org/licenses/, for more details,
juridiction, jurisdiction, law, legend, licenses, license, licensed, licensee, lgpl,
merchantability, mit/x-derivative, misrepresented, mpl, notice, obligation, writ-
ten permission, prior permission, product includes, particular purpose, redis-
tribute, redistribution, reexported, reproduce, use this software, restriction, all
rights, royalty, see the revision, see the included, see the copyright.txt, for de-
tails, all intellectual property rights, sale, sell, subject to, terms, warranties,
warranty, licensing, licencing, liability, meet some day, notices, legal, accom-
panying, included with this distribution for more information, See the file,
public domain, special exception, notwithstanding, copyright holders, to per-
mit this exception, suitability, computer program whose purpose, disclaims
copyright, software is covered, Copyright

In the end, the keyword-based filtering allowed us to identify a total of 4,203 com-
mits, including 1,133 from C, 148 from C#, 694 from C++, 650 from Python, 607
from JavaScript, and 971 from Ruby projects. Given the high number of relevant
commits, we sampled 20% of the commits found for each language as object of our
manual inspection. However, we set a minimum threshold of 100 commits per lan-
guage (e.g., in case of C projects, despite the 20% of 148 being 30 commits, still we
analyzed 100 randomly selected commits). This minimum threshold was adopted to
ensure representativeness for each of the studied languages. Note that our sampling is
statistically significant with a 95% confidence interval ± 10% or better. The number
of sampled commits by language is as the following:

– C: 227 commits out of 1,133;
– C#: 100 commits out of 148;
– C++: 139 commits out of 694;
– Python: 130 commits out of 650;
– JavaScript: 122 commits out of 607;
– Ruby: 195 commits out of 971.

After collecting commit notes and issue discussions, we used an open coding
procedure inspired by the Grounded Theory (GT) [11] to group them into categories.



The GT-based classification of commits and issue tracker discussions aimed at finding
the rationale for licensing changes in the analyzed dataset; in particular we aimed at
answering the following two sub-questions: What are the reasons pushing developers
to associate a particular license to their project? and What causes them to migrate
licenses or release their project under a new license (i.e., co-licensing)?

For the GT-based analysis, we distributed the commit notes and the issue tracker
discussions among the authors such that two authors were randomly assigned to each
message (a message can be a commit note or an entire issue tracker discussion). After
each round of open coding in which the authors independently created classifications
for the messages, the authors met to discuss the coding identified by each of the
authors, and refined the messages into the categories. Note that during each round the
categories defined in previous rounds were refined accordingly to the new knowledge
created from the additional manual inspections and from the discussions among the
authors.

Overall, the GT-based analysis concerned (i) 1,133 randomly selected licensing-
related commit notes identified via the keyword-based mechanism; and (ii) the 213
issue tracker discussions where the title matched licensing-related keywords. The
output of our GT-based analysis is a set of categories explaining why licenses are
adopted and changed. We qualitatively discuss the findings of our GT-based analysis
in Section 4.4, presenting our categories classification and examples of commit notes
and issue tracker discussions belonging to the various categories. We compared the
classification to our prior taxonomy from the study of Java projects.

3.5 Dataset Analysis

To assess external validity of our dataset, we measured the diversity metrics proposed
by Nagappan et al. [27] for our dataset. We matched the list of our mined projects
from GitHub to the list of available projects from Boa [16], and ended up with 4,413
projects that were matched by name. This subset was used in the computation of the
diversity metric, obtaining a score of 0.39, indicating that our dataset covers two fifths
of the open source projects according to six dimensions: programming language,
developers, project age, number of committers, number of revisions, and number of
programming languages. The dimensional scores are 0.47, 0.99, 1.00, 0.99, 0.98,
0.99, respectively, suggesting that our subset covers the relevant dimensions for our
analysis. However, the focus on six programming languages inherently limits the
programming language score (as these are a subset), which affects the overall score.

Another important aspect to analyze is the representativeness of the licenses present
in our dataset with respect to those diffused in the OS community. The Open Source
Initiative (OSI) specifies a list of approved 70 licenses, indicating the ones reported
in the first column of Table 1 as the most commonly used in FOSS software (they
do not specify any order). The second column of Table 1 reports the top licenses
as extracted from the FLOSSmole’s SourceForge snapshot of December 2009 [23],
while the third column shows the top licenses as extracted from our sample of GitHub
projects.



Table 1 Top licenses: OSI, SourceForge, and our dataset.

OSI Popular License (unordered) SourceForge (Dec. 2009) Our Github Data Set
Apache-2 Lic GNU Public Lics MIT Lic

BSD 2-Clause Lic Lesser GNU Public Lics GNU Public Lics
BSD 3-Clause Lic BSD Lics Apache Lics
GNU Public Lics Apache Lics Lesser GNU Public Lics

Lesser GNU Public Lics Public Domain Mozilla Public Lic
MIT Lic MIT Lic BSD Lics

Mozilla Public Lic 2 Academic Free Lic CMU Lics
Comm. Dev. and Dist. Lic Mozilla Public Lics Eclipse Public Lic

Eclipse Public Lic

Table 2 Projects in our dataset with an initial commit for each year.

Year Projects Year Projects Year Projects Year Projects Year Projects
1980 1 1995 5 2001 77 2007 1,187 2013 4,565
1988 2 1996 4 2002 78 2008 10,119 2014 68
1990 3 1997 17 2003 99 2009 11,192 2015 15
1991 1 1998 22 2004 112 2010 554
1993 5 1999 37 2005 247 2011 9,168
1994 1 2000 49 2006 572 2012 11,616

The license declared by OSI as the most commonly used was also the most com-
monly found in our dataset (BSD 2 and 3 fall both in the BSD type). In comparison
between our dataset and SourceForge, while the order of diffusion for the different
licenses is not exactly the same, six of the top eight licenses in SourceForge are also
present in our dataset (all but Public Domain and Academic Free License). This anal-
ysis, together with the diversity metrics, suggest that our dataset is representative of
open source systems.

Table 2 reports the year of the first commit date for each of the 16,221 considered
projects. This table clearly shows the large growth of GitHub around 2008, 2009,
2011, 2012, and 2013, which demonstrates that the projects conform to the rapidly
growing forge. However, we observe that the projects are older confirming what al-
ready was observed by people in the GitHub community [15]. GitHub also experi-
enced exponential growth in 2013 [7], however, our dataset does not mirror this fact
for any year after 2012. In particular, we cloned the projects during July 2015. This
was needed since, in the context of RQ2, we are interested in observing migration
patterns occurring over the projects’ change history. Thus, projects having a very
short change history were not relevant for the purpose of this study. Moreover, since
in RQ1 we are interested in observing license usages in the context of the GitHub’s
drastic expansion, we decided to exclude the 4,608 projects having the first commit in
2013 from our analysis due to the severe lack of representation in our sample despite
the continued growth of GitHub.



3.6 Replication Package

The working data set of our study is available at: http://www.cs.wm.edu/
semeru/data/IEMSE15-licensing. It includes the lists of projects and their
urls, the issues tracker and commit data, analysis scripts, and results.

4 Study Results

This section discusses the achieved results answering the four research questions for-
mulated in Section 3.1.

4.1 RQ1: What is the usage of different licenses in GitHub?

Figures 1, 2, 3,4, 5, 6, and 7 depicts the percentage of licenses that were first intro-
duced into a project in the given year, which we refer to as relative license usage. We
only report the first occurrence of each license committed to any file of the project.
For easier readability, the bars are grouped by permissive (dashed bars) or restric-
tive licenses (solid bars). Additionally, we omit data prior to 2002 due to the limited
number of projects created during those years in our sampled dataset (see Table 2).

Figure 2 shows the license usage results for C projects. Overall, we see a pre-
dominant usage of restrictive licensing. In 2002, we observed that restrictive licenses
accounted for approximately 87% of the licenses used in C projects. GPL-2.0+ and
LGPL-2.0+ were the most prevalent licenses utilized, but LGPL-2.1+ starts to be-
come more prevalent in 2004 and stays close in size to LGPL-2.0+. Overall, GPL-
2.0+ remains the most prevalent license through the period of time between 2002 and
2012. In 2007, GPL-3.0+ starts to be utilized in the projects and diminishes the share
of GPL-2.0+ usage. Interestingly, we do not observe a clear trend toward utilizing less
restrictive copy-left license (i.e., the LGPL family of licenses). Although the LGPL-
2.1 and LGPL-2.1+ variant are restrictive licenses, they are less restrictive than their
GPL counter-part. It specifically aimed at ameliorating licensing conflicts that arose
when linking code to a non-(L)GPL system; whereas, the GPL licenses would require
the system to change its license to the GPL or else the component would not legally
be able to be added. This behavior opposes our findings in Java projects as seen in
Figure 1, which suggested a bias toward using less restrictive licenses even among
the typical copy-left licenses. While restrictive licenses remain the most commonly
used in C projects, we do observe a a wider adoption of the MIT/X license and to a
much smaller extent the Apache-2.0 license. One explanation for the adoption of the
Apache-2.0 is compatibility with the GPL-3.0(+) license. Until 2011, we observed
that restrictive licenses represented approximately at least 70% or more of license
usage (excluding 2008, which drops to approximately 67%). In 2012, it drops further
to 60% usage of restrictive licensing.

Additionally, we observe a similar phenomena to the Java license usage in that
restrictive licenses seem to survive the introduction of newer licenses. We observe
a consistent presence of GPL-2.0 and GPL-2.0+ licenses. While the proportion di-
minishes to greater usage of GPL-3.0+ and MIT/X licenses, GPL-2.0+ in particular



remains the most prevalent license. Thus, we do not observe the same behavior that
older versions of restrictive remain widely used despite newer versions.

Figure 3 shows the license usage for C++ projects and reflects a similar behavior
as C projects. In 2002, all licenses were restrictive licenses. In 2003, MIT/X is intro-
duced as the only permissive license, but it is not adopted the following year and so
2004 only depicts restrictive license adoption. Starting in 2005, we observe that C++
projects begin following a more similar behavior to C projects, where permissive li-
censes become more prevalent led by MIT/X and Apache-2.0. However, Apache-2.0
reaches approximately the same usage proportion as MIT/X. As previously stated,
the Apache-2.0 usage may be related to compatibility to GPL-3.0(+). Additionally,
this seems more likely as the Apache-2.0 usage coincided with less GPL-2.0+ usage
(an incompatible license). Until 2010, we observe that restrictive licenses account for
at least about 75% of the licenses introduced each year. While we initially observe
GPL-2.0+ as the most commonly introduced license (similar to C), we observe more
diffused license usage among the restrictive licenses. Similarly, we observe the same
survivability of restrictive licenses.

In Figure 4, we observe that 2002 and 2003 did not have any licenses being in-
troduced into C# projects. Interesting, we observe sufficiently more volatility in li-
censing. By that, we mean that the license usage drastically changes each year. This
behavior is likely due to the small number of detected license adoptions in the period
of time between 2002 and 2012. Initially, we observe GPL-2.0 and GPL-2.0+ equally
sharing the prevalence for license usage. In 2005, LGPL-2.1(+) is most widely in-
troduced into the C# projects. In 2007, permissive licenses with the MIT/X license
accounts for 60% of the licenses that were introduced. Between 2008 and 2012, we
observed fluctuations where permissive and restrictive licensing alternates as the most
dominant type of license. In this time, we also observe a wider diversity of licenses
being introduce as compared to the prior years. Additionally, the MIT/X license is
the single most prevalent license starting in 2007. This observation is similar to the
observations in JavaScript and Ruby described later in this section.

Similarly to the C#, Figure 5 shows the lack of license introduction in 2002 and
2004, and it shows the consistent movement from restrictive to predominantly (almost
entirely) permissive licenses as well the dominance of the introduction of the MIT/X
license. Similar to C#, JavaScript had a limited number of projects with licenses in-
troduced; however, it is interesting that MPL-1.1 had such a large prevalence (almost
30%) in 2004, since its relative usage is sufficiently less in other languages. More
importantly, we observe a rapid movement towards permissive licenses. By 2008,
over 70% of the licenses introduced were permissive licenses. It decreases in 2009
and 2010, where permissive licenses are less prevalent; however, the trend reversed
by 2012 and we observed that permissive licenses were approximately 90% of the
licenses that were being adopted by JavaScript projects. By 2012, MIT/X maintained
a large prevalence, but Apache-2.0 also accounts for a large proportion of licenses
introduced at approximately 39%. Thus, we observed a much stronger movement
towards permissive licensing than C# projects.

Interestingly, Figure 6 demonstrates that restrictive licenses are more prevalent
than permissive licenses until 2011. In 2011 and 2012, we observe that permissive
licenses are more prevalent predominantly due to Apache-2.0 and MIT/X licenses.



We first observe an increase in restrictive license adoption as it reaches 100% in
2003. Subsequently, it declines in 2004 with the adoption of MPL-1.1, but reclaims
dominance in 2005 as MPL-1.1 is not introduced to any projects that year. In 2006,
we observe the beginning of a decline for restrictive licensing. MIT/X and Apache-
2.0 start gaining prevalence among the introduced licensing, and permissive licenses
adoption exceed the adoption of restrictive licenses in 2011. Additionally, we observe
a similar phenomena as seen in C and C++ projects, where developers still adopt ear-
lier versions of restrictive licenses (both the GPL and LGPL families of licenses). In
fact, we observe that despite GPL-3.0(+) becoming more prevalent and GPL-2.0(+)
declining, the two licenses are adopted with a similar (almost equal) frequency in
2011 and 2012.

In the case of Ruby projects, we observe that the MIT/X license is the most preva-
lent license during the entire period of time between 2002 and 2012, as seen in Figure
7. In 2002 and 2003, we only observe the MIT/X license, and GPL-2.0+ is the only
license introduced in 2004 and 2005. In 2006, restrictive licenses reach their greatest
proportion of adoption at approximately 35% with the additional adoption of GPL-
2.0. However, we observe permissive licenses becoming more prevalent starting in
2007 as Apache-2.0 is introduced more to the projects in our dataset. In 2011 and
2012, permissive licenses account for over 90% with approximately 74% of the li-
cense adoptions being the MIT/X license and 12% being the Apache-2.0 license with
the remaining few percent distributed among MPL-1.1, MPL-1.0, DWTFYW-2.0, and
BSD-variant licenses. It is important to not that unlike C# and JavaScript, Ruby had
a sufficiently larger number of projects adopting licenses (e.g., the adoption in 2008
of the MIT/X license represents 1,608 projects adoption the MIT/X license).

Comparing the aforementioneds findings of the six languages of our study to
Java projects, Figure 1 demonstrates that initial restrictive licenses were slightly more
prevalent than permissive licenses across the Java projects. By the subsequent year
(2003), a clear movement toward using less restrictive licenses can be seen with
the wider adoption of the MIT/X11 license as well as the Apache-1.1 license. Ad-
ditionally, we observe that the LGPL is still prominent, while the CMU, CPL-1.0,
and GPL-2.0+ licenses were declining. During the following five years (2004-2008),
the Apache-2.0, CDDL-1.0, EPL-1.0, GPL-3.0, LGPL-3.0, and DWTFYW-2 licenses
were created. Also during this period, the work of Bavota et al. showed that the
Apache ecosystem grew exponentially [8]. This observation explains the rapid dif-
fusion of the Apache-2.0 license among FOSS projects. We observed a growth that
resulted in the Apache-2.0 license accounting for approximately 41% of licensing in
2008. Conversely, we observed a decline in the relative usage of both GPL and LGPL
licenses, excluding 2007. Combined, the two observations suggest a stronger move-
ment toward permissive licenses since approximately 65% of licenses attributed were
permissive for 2005, 2006, and 2008; while initially it was at approximately 63% in
2004, the percentage of permissive licenses only dropped below 60% during 2007 to
approximately 55%.

Another interesting observation was that the newer version of the GPL (GPL-3.0
or GPL-3.0+) had a lower relative usage compared to its earlier version until 2011.
Additionally, the adoption rate was more gradual than for the Apache-2.0 license that
appears to supersede Apache-1.1 license. However, the LGPL-3.0 or LGPL-3.0+ does



not have more popularity than prior versions in terms of adoption, despite the relative
decline of the LGPL-2.1’s usage starting in 2010. Our manual analysis of commits
highlighted explicit reasons that pushed some developers to chose the LGPL license.
For instance, a developer of the hibernate-tools project when committing the
addition of the LGPL-2.1+ license to her project wrote:

The LGPL guarantees that Hibernate and any modifications made to Hiber-
nate will stay open source, protecting our and your work

This commit note indicates that LGPL-2.1+ was chosen as the best option to balance
the freedom for reuse and guarantee that the software will remain free.

Conversely, we observed the abandonment of licenses as newer FOSS licenses are
introduced. For example, Apache-1.1 and CPL-1.0 become increasingly less preva-
lent or no longer used among the projects. In both cases, a newer license appears to
replace the former license. While the Apache-2.0 offers increased protections (e.g.,
protections regarding patent litigation), the EPL-1.0 primarily resembles a textual re-
placement of “Common” in the CPL-1.0 to “Eclipse” in the EPL as well as altering
the copyright by replacing “IBM” with “The Eclipse Foundation”. Thus, the two li-
censes are intrinsically the same from a legal perspective, which explains why the
EPL adoption grew as the CPL usage shrunk.

Finally, we observed fluctuations in the the adoption of the MIT/X11 license. As
the adoption of permissive licenses grew with the introduction of the Apache-2.0
license, it first declined in adoption and was followed by growth to approximately its
original adoption. Ultimately, we observed a stabilization of the MIT/X11 usage at
approximately 10% starting in 2007.

Fig. 1 shows the initial results for Java projects. In 2002, we observed that restric-
tive licenses and permissive licenses have been used approximately equally with a
slight bias toward using restrictive licenses. Although the LGPL-2.1 and LGPL-2.1+
variant are restrictive licenses, they are less restrictive than their GPL counter-part. It
specifically aimed at ameliorating licensing conflicts that arose when linking code to
a non-(L)GPL system; whereas, the GPL licenses would require the system to change
its license to the GPL or else the component would not legally be able to be added.
Thus, it suggests a bias toward using less restrictive licenses even among the typical
copy-left licenses. By the subsequent year (2003), a clear movement toward using
less restrictive licenses can be seen with the wider adoption of the MIT/X11 license
as well as the Apache-1.1 license. Additionally, we observe that the LGPL is still
prominent, while the CMU, CPL-1.0, and GPL-2.0+ licenses were declining.

During the following five years (2004-2008), the Apache-2.0, CDDL-1.0, EPL-
1.0, GPL-3.0, LGPL-3.0, and DWTFYW-2 licenses were created. Also during this
period, the work of Bavota et al. showed that the Apache ecosystem grew exponen-
tially [8]. This observation explains the rapid diffusion of the Apache-2.0 license
among FOSS projects. We observed a growth that resulted in the Apache-2.0 license
accounting for approximately 41% of licensing in 2008. Conversely, we observed a
decline in the relative usage of both GPL and LGPL licenses, excluding 2007. Com-
bined, the two observations suggest a stronger movement toward permissive licenses
since approximately 65% of licenses attributed were permissive for 2005, 2006, and



2008; while initially it was at approximately 63% in 2004, the percentage of permis-
sive licenses only dropped below 60% during 2007 to approximately 55%.

Another interesting observation was that the newer version of the GPL (GPL-3.0
or GPL-3.0+) had a lower relative usage compared to its earlier version until 2011.
Additionally, the adoption rate was more gradual than for the Apache-2.0 license that
appears to supersede Apache-1.1 license. However, the LGPL-3.0 or LGPL-3.0+ does
not have more popularity than prior versions in terms of adoption, despite the relative
decline of the LGPL-2.1’s usage starting in 2010. Our manual analysis of commits
highlighted explicit reasons that pushed some developers to chose the LGPL license.
For instance, a developer of the hibernate-tools project when committing the
addition of the LGPL-2.1+ license to her project wrote:

The LGPL guarantees that Hibernate and any modifications made to Hiber-
nate will stay open source, protecting our and your work

This commit note indicates that LGPL-2.1+ was chosen as the best option to balance
the freedom for reuse and guarantee that the software will remain free.

Conversely, we observed the abandonment of licenses as newer FOSS licenses are
introduced. For example, Apache-1.1 and CPL-1.0 become increasingly less preva-
lent or no longer used among the projects. In both cases, a newer license appears to
replace the former license. While the Apache-2.0 offers increased protections (e.g.,
protections regarding patent litigation), the EPL-1.0 primarily resembles a textual re-
placement of “Common” in the CPL-1.0 to “Eclipse” in the EPL as well as altering
the copyright by replacing “IBM” with “The Eclipse Foundation”. Thus, the two li-
censes are intrinsically the same from a legal perspective, which explains why the
EPL adoption grew as the CPL usage shrunk.

Finally, we observed fluctuations in the the adoption of the MIT/X11 license. As
the adoption of permissive licenses grew with the introduction of the Apache-2.0
license, it first declined in adoption and was followed by growth to approximately its
original adoption. Ultimately, we observed a stabilization of the MIT/X11 usage at
approximately 10% starting in 2007.

Interestingly, we observed a much stronger prevalence of MIT/X licenses in our
dataset as compared to Java, where Apache-2.0 was more prevalent. It is likely that
external factors like community influence, such as the Apache Foundation, contributes
the observations and would corroborate the results from [32]. The findings also paral-
lel the issue tracker discussions, where we observed that developers request the usage
of permissive licenses, like the MIT/X license, to facilitate commercial reuse.

The results also suggest that the language may impact the license usage and
trends. For example, Java leans towards the adoption permissive Apache-2.0 licens-
ing, while C projects typically adopted more restrictive GPL and LGPL families of
licenses, and Ruby projects predominantly adopted the MIT/X license. Additionally,
we observed less licensing diversity across the projects, excluding C projects. In fact,
the license diffusion tended to be biased more towards a few licenses in our dataset
as compared to Java, where we observed a large diversity. Since we observed more
adoption of MIT/X until the introduction of Apache-2.0, we do not observe similar
patterns of newer permissive licenses replacing their earlier versions in terms of adop-
tion. However, the results of the other languages further demonstrate the survival of



0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

2002# 2003# 2004# 2005# 2006# 2007# 2008# 2009# 2010# 2011# 2012#

Pe
rc
en

ta
ge
)o
f)p

ro
je
ct
s)W

he
re
)th

e)
Li
ce
ns
e)
Ap

pe
ar
s)F

or
)th

e)
Fi
rs
t)

Ti
m
e)
in
)a
)C
om

m
it)

Year)

LGPL#v3+#
LGPL#v3#
LGPL#v2+#
LGPL#v2.1+#
LGPL#v2.1#
LGPL#v2#
GPL#v3+#
GPL#v3#
GPL#v2#
GPL#v1+#
GPL#v2+#
MIT/X11#
zend#v2#
svnkit+#
NPL#v1.1#
MPL#v1.0#
MPL#v1.1#
EPL#v1#
DWTFYW#v2#
CPL#v1#
CMU#
CDDL#v1#
BSD#
Apache#v2#
Apache#v1.1#

Fig. 1 Relative License Usage between 2002 and 2012 for Java Projects (dashed pattern representing
permissive licenses).

restrictive licenses. In particular, we observe that GPL-2.0 remains widely adopted
despite the release of the GPL-3.0 license.

Summary for RQ1. We observed a clear trend towards using permissive licenses
like Apache-2.0 and MIT/X11 for C#, Java, JavaScript, Python, and Ruby projects,
while C and C++ had a trend towards adopting restrictive licenses. Additionally,
for Java, we found permissiveness or restrictiveness of a license seems to impact
the adoption of newer versions, where permissive licenses are more rapidly adopted.
However, this finding was not strongly supported in six languages in this study. Con-
versely, we found miore support reinforcing that restrictive licenses seem to maintain
a greater ability to survive in usage as compared to the permissive licenses, which
become superseded. Finally, we observed a stabilization in the license adoption pro-
portions of particular licenses, despite the exponential growth of GitHub.

4.2 RQ2: What are the most common licensing change patterns?

Interestingly, we find very different and surprising results in terms of atomic license
changes in the analysis of C, C++, C#, JavaScript, Python, and Ruby as compared to
the results for Java study. In our Java study, we found 204 different atomic license
change patterns. However, we did not identify any changes in licensing in the other
languages. This result was unexpected since we observed that 1,833 projects (out of
16,221 projects) experienced a change in licensing for the Java projects.

In order to understand the lack of licensing, we manually investigated projects
written in C. As other studies have found changes in licensing for C based projects,



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Apache:2

Apache:1.1

NPL:1.1

MPL:1.1

MPL:1.0

zend:2

CMU:var

DWTFW:2

CDDL:1

BSD:var

IBM:1

svn+

EPL:1

MIT:X

LGPL:3+

LGPL:2.1+

LGPL:2.1

LGPL:2+

LGPL:2

GPL:3+

GPL:3

GPL:2+

GPL:2

GPL:1+

GPL:1

Fig. 2 Relative License Usage between 2002 and 2012 or C Projects.

these projects seemed likely to help determine the lack of licensing. In our man-
ual investigation, we found that certains projects contained squashed histories (i.e.,
the repositories contained commits that dated back earlier in the development, but
the project repository started at a more recent commit and not he earlier commits).
Additionally, we observed that projects utilize GitHub to mirror releases and do not
contain the actual development of system. Because of this aspect, the projects are up-
loaded at a mature state and contain licenses already, and this maturity is also likely
to indicate more stability with respect to licensing.

In addition, the relatively small number of commits is another factor that may
contribute the lack of changes in licensing. Table 3 shows the distributions of the
number of commits. We observe that median and third quartile of the number of
commits is sufficiently small (less than 100). It is likely that these systems have not
undergone enough development where a license change is likely to occur. This obser-
vation is consistent with our findings in [32], where we observed that license changes
typically occur after a period of more development (measured by the number of com-
mits).

Finally, two other potential factors may impact the lack of license changes: i)
limitations arise from the underlying license identification tool (ninka), which may
not have been able to accurately capture particular licenses that are more prevalent
in other language, and ii) the filtering may remove projects that exhibit delayed li-
censing, since we aimed to remove lower quality projects. In terms of the former



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Apache:2

Apache:1.1

MPL:1.1

NPL:1.1

svn+

BSD:var

MIT:X

LGPL:3+

LGPL:3

LGPL:2.1+

LGPL:2.1

LGPL:2+

LGPL:2

GPL:3+

GPL:3

GPL:2+

GPL:2

GPL:1+

Fig. 3 Relative License Usage between 2002 and 2012 for C++ Project.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Apache:2

Apache:1.1

MPL:1.1

BSD:var

EPL:1

MIT:X

LGPL:3+

LGPL:2.1+

LGPL:2.1

LGPL:2+

GPL:3+

GPL:3

GPL:2+

GPL:2

Fig. 4 Relative License Usage between 2002 and 2012 for C# Projects.

limitation, ninka is the state-of-the-art tool for license identification and has been
used in the prior studies in licensing. In the latter case, we aimed to analyze meaning-
ful projects and not class/test repositories, which do not represent real open source
development.

While we did not identify license changes in C, C++, C#, JavaScript, Python,
and Ruby, our study on Java projects analyzed commits where a license change oc-
curred, with a two-fold goal (i) analyze license change patterns to understand both



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Apache:2

Apache:1.1

NPL:1.1

MPL:1.1

MPL:1.0

BSD:var

EPL:1

DWTFYW:2

MIT:X

LGPL:3+

LGPL:3

LGPL:2.1+

LGPL:2.1

LGPL:2+

GPL:3+

GPL:3

GPL:2+

GPL:2

Fig. 5 Relative License Usage between 2002 and 2012 for JavaScript Projects).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Apache:2

Apache:1.1

NPL:1.1

MPL:1.1

DWTFYW:2

BSD:var

svn+

MIT:X

LGPL:3+

LGPL:3

LGPL:2.1+

LGPL:2.1

LGPL:2+

GPL:3+

GPL:3

GPL:2+

GPL:2

Fig. 6 Relative License Usage between 2002 and 2012 for Python Projects.

the prevalence and types of changes affecting software systems, and (ii) understand
the rationale behind these changes. Overall, we found 204 different atomic license
change patterns. To analyze them, we considered their prevalence across the projects
(i.e., global patterns) and within a project (i.e., local patterns). We sought to distin-
guish between dominant global patterns (Table 4) and dominant local patterns (Table



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Apache:2

Apache:1.1

BSD:var

EPL:1

MPL:1.1

MPL:1.0

DWTFYW:2

MIT:X

LGPL:3+

LGPL:3

LGPL:2.1+

LGPL:2.1

LGPL:2+

GPL:3+

GPL:3

GPL:2+

GPL:2

GPL:1+

Fig. 7 Relative License Usage between 2002 and 2012 for Ruby Projects.

5). The former was extracted by identifying and counting the presence of a pattern
only once per project. The latter was extracted by first identifying and counting the
patterns in a given project; then, those results were compared for each project to
identify the patterns that were dominant in a local scope (i.e., within a given project).

The most dominant global patterns the projects were either a change from no
license or an unknown license to particular license, or a change from a particular
license to no license or an unknown license. By particular, we mean that we were
able to extract the license. Table 4 shows the top 10 global patterns. We observe that
the inclusion of Apache-2.0 was the most common pattern for unlicensed or unknown
code.

Table 4 also shows the most common global migrations when focusing the at-
tention on migrations happened between different licenses. We observe that the mi-
gration toward the more permissive Apache-2.0 was a dominant change among the
top 10 atomic license changes for global license migrations. An interesting observa-
tion is the license upgrade and downgrade between GPL-2.0+ and GPL-3.0+. GPL-
3.0 is considered by the Free Software Foundation as a compatible license with the
Apache-2.0 license. Due to the large usage of Apache code in Java, this pattern is
quite expected. However, the migration GPL-3.0+→ GPL-2.0+ is interesting since
still allows for the project to be redistributed as GPL-3.0, but allows for the usage as
GPL-2.0, which is less restrictive, as well.

Table 5 shows the most common local migrations. The migrations appear to be
toward a less restrictive license or license version. The low frequency of the atomic
license change local patterns indicates that migrating licenses is non-trivial. It can
also introduce problems with respect to reuse. For example, we observed a single
project where GPL-1.0+ code was changed to LGPL-2.0+ a total of 9 times. LGPL
is less restrictive than GPL when the code is used as a library. Thus, if parts of the



Table 3 Distribution of the number of commits for the projects of each language.

C C++ C# JavaScript Python Ruby
Minimum 0 0 0 0 0 0
Quartile 1 4 4 2 4 2 3
Median 17 16 9 12 14 11
Mean 2317 516 69 78 122 76
Quartile 3 86 67 33 38 49 34
Maximum 547,518 121,570 7,241 48,939 41240.0 51,843

system are GPL, the developer must comply with the more restrictive and possibly
incompatible constraints.

Until now, we considered atomic license changes among any file in the reposi-
tory. This was needed since most of the analyzed projects lack of a specific file (e.g.,
license.txt) declaring the project license. To extract the declared project license, we
considered a file in the top level directory named: license, copying, copyright, or
readme. When just focusing on projects including such files, we extracted 24 dif-
ferent change patterns. Table 6 illustrates the top eight licensing changes between
particular licenses (i.e., we excluded no license or unknown license from this table)
for declared project licenses. We only considered the top eight, since there was tie
between five other patterns or the next group of change patterns. We observe that the
change from Apache-2.0→ MIT/X11 was the most prevalent license change pattern,
and the co-license of MIT/X11 with Apache-2.0 is the second most prevalent one. In-
terestingly, this pattern was not dominant in our file-level analysis, although the GT
analysis provided us support for this pattern. The MIT/X11 license was used to allow
commercial reuse, while still maintaining the project’s Open Source nature.

Our third pattern of GPL-2.0+ → GPL-3.0+ in Table 6 was expected since it
was tied for the most prevalent among global atomic license changes. Similarly, the
patterns of MIT/X→ Apache-2.0, GPL-3.0+→ Apache-2.0, and Apache-2.0→GPL-
3.0 were also among the top eight global changes. Another notable observation is that
license changes are frequently toward permissive licenses. Excluding the five changes
from Apache-2.0→ GPL-3.0+, the remaining changes for the top eight are either a
licensing change from a restrictive (or copyleft) license to a permissive license or a
licensing change between two different permissive licenses.

Summary for RQ2. The key insight from the analysis of atomic license change
patterns is that the licenses tend to migrate toward less restrictive licenses.

4.3 RQ3: To what extent are licensing changes documented in commit messages or
issue tracker discussions?

In this study, we did not extract license changes from the six programming lan-
guages. Because of this, we would be unable to establish traceability links between
the commits in which an atomic license change occurred and the issue tracker. Ta-
ble 7 demonstrates that the keywords require the changed license as well as utilizing
commit hashes and dates of both the issues (open date and close date) and commits
to generate links between the change and the issue discussions.



Table 4 Top 10 global atomic license change patterns.

Top Patterns (Overall) Pattern Occurrences
no license or unknown → Apache-2.0 823
Apache-2.0 → no license or unknown 504
no license or unknown → GPL-3.0+ 269
GPL-3.0+ → no license or unknown 181
no license or unknown → MIT/X11 163
no license or unknown → GPL-2.0+ 113
GPL-2.0+ → no license or unknown 111
MIT/X11 → no license or unknown 98
no license or unknown → EPL-1.0 94
no license or unknown → LGPL-2.1+ 91
Top Patterns Between Different Licenses Pattern Occurrences
GPL-3.0+ → Apache-2.0 25
GPL-2.0+ → GPL-3.0+ 25
Apache-2.0 → GPL-3.0+ 24
GPL-2.0+ → LGPL-2.1+ 22
GPL-3.0+ → GPL-2.0+ 21
LGPL-2.1+ → Apache-2.0 16
GPL-2.0+ → Apache-2.0 15
Apache-2.0 → GPL-2.0+ 13
MPL-1.1 → MIT/X11 11
MIT/X11 → Apache-2.0 11

Table 5 Top 10 local atomic license change patterns between different licenses.

Pattern Pattern Occurrences
GPL-2.0+ → GPL-3.0+ 36
GPL-2.0+ → LGPL-3.0+ 15
LGPL-3.0+;Apache-2.0 → Apache-2.0 12
GPL-3.0+;Apache-2.0 → Apache-2.0 12
GPL-2.0+ → LGPL-2.1+ 10
GPL-1.0+ → LGPL-2.0+ 9
GPL-2.0+ → GPL-3.0+ 9
GPL-3.0+ → Apache-2.0 8
GPL-3.0+ → GPL-2.0+ 8
GPL-3.0+ → LGPL-3.0+ 8

Table 6 Top 8 license change pattern in a declared license file of a project (license,copying,copyright, or
readme file), excluding no license or unknown license.

Pattern Pattern Occurrences
Apache-2.0 → MIT/X11 12
Apache-2.0 → MIT/X11;Apache-2.0 8
GPL-2.0+ → GPL-3.0+ 7
MIT/X11 → Apache-2.0 6
GPL-3.0+ → Apache-2.0 6
MIT/X11;Apache-2.0 → Apache-2.0 5
Apache-2.0 → GPL-3.0+ 5
GPL-3.0+ → MIT/X11 3



Table 7 Traceability between licensing changes and commit messages or Issue tracker discussion com-
ments.

Data
Source Linking Query Links

Commit Commits with the keyword “license” 70746
Messages Commits containing new license name 519

Commits containing new license name and the keyword “license” 399
Issue Comments from closed issues containing the keyword “license” 0
Tracker Comments from closed issues containing the new license 0
Comment Comments from closed issues containing the new license and the keyword “license” 0
Matching Comments from open issues containing the keyword ”license” 68

Comments from open issues containing the new license 712
Comments from open issues containing the new license and the keyword “license” 16

Issue Closed comments opened before license change and closed before or at license change 197
Tracker Open comments open before the license change 2241
Date-
based

Comments from closed issues open before the license change and closed before or at the
license change with keyword “license” 0

Matching Comments from open issues open before the license change with keyword “license” 0
Issue Comments in closed issues containing the keyword ”Fixed #[issue num]” 66025
and Comments in open issues containing the keyword ”Fixed #[issue num]” 3407
Commit Comments in closed issues containing the commit hash where the license change occurs 0
Matching Comments in open issues containing the commit hash where the license change occurs 1

While we are unable to compare the results of these six languages to the findings
from Java as seen in Table 7 and further described later in this section, our GT analysis
offers possible rationale for some of the observations from the study on Java projects.
For Java, we were unable to create traceability links with closed issues. In sampling
crawled issues discussions, we found that issues tracker urls that had been identified
by our keyword search no longer existed when we inspected the repository. This
observation suggests that some of these issues may have been deleted or that the
authors utilize an external issue tracking system.

Table 7 reports the results of the traceability linking between licensing changes
and commit notes/issue tracker discussions for Java projects . We found a clear lack
of traceability between license changes in both the commit message history and the
issue tracker. In both data sources, we first extracted the instances (i.e., commit mes-
sages and issue tracker discussions) where the keyword “license” appears or where a
license name was mentioned (e.g., “Apache”). In the former case, we are identifying
potential commits or issues that are related to licensing, while the latter attempts to
capture those related to specific types of licenses.

By using the first approach, we retrieved 70,746 commits and 68 issues, while
looking for licenses’ names we identified 519 commits and 712 issues. However,
these numbers are inflated by false positives (e.g., “Apache” can relate to the license
or it can relate to one of the Apache Foundation’s libraries). For this reason, we then
looked for commit messages and issue discussions containing both the word “license”
as well as the name of a license. This resulted in a drop of the linked commit messages
to 399 and in zero issue discussions. Such results highlight that license changes are
rarely documented by developers in commit messages and issues.

We also investigated whether relevant commits and issues could be linked to-
gether. We linked commit messages to issues when the former explicitly mentions
fixing a particular issue (e.g., “Fixed #7” would denote issue 7 was fixed). We ob-
served that this technique resulted in a large number of pairs between issues and



commits; thus, our observation of a lack of license traceability is not only an ar-
tifact of poor traceability for these projects. To further investigate the linking, we
extracted the commit hashes where a license change occurred and attempted to find
these hashes in the issue tracker’s comments. Since the issue tracker comments con-
tains the abbreviated hash, we truncated the hashes appropriately prior to linking. Our
results indicated only one match for an open issue and zero matches for closed issues.

Finally, we attempted to link changes to issues by matching date ranges of the
issues to the commit date of the license change. The issue had to be open prior to
the change and if the issue had been closed the closing date must have been after the
change. However, we did not find any matches with a date-based approach.

Summary for RQ3. While we were unable to compare our new findings to the
study with Java projects, we observed that at least some of the lack of traceability
may be due to the removal of issues related to licensing or that developers prefer
external issues tracking systems and remove them from GitHub. However, we can-
not further compare the 51k+ projects of these six languages to determine whether
they also experience that the issue tracker discussions and commit messages yielded
very minimal traceability to license changes, suggesting that the analysis of licensing
requires fine-grained approaches analyzing the source code (as seen in Java projects).

4.4 RQ4: What rationale do these sources contain for the licensing changes?

Given the limited traceability, we investigated both data sources to understand the
quality of the rationale when licensing is mentioned in either the commit messages
or the issue tracker discussions (as explained in our design). We used GT analysis to
create a taxonomy for both data sources.

Initially, we sampled a total of 913 commits across the three languages: we sam-
pled 226 commits out of 1,133 total commits fo C, 100 commits out of 148 total
commits for C#, 139 commits out of 694 total commits for C++, 130 commits out of
650 total commits for Python, 122 commits out of 607 total commits for JavaScript,
and 195 commits out of 971 total commits for Ruby. The commits were distributed
among the authors and we generated YYY categories from our open coding of the
commit messages. We compared these results to our previously sampled and filtered
subset of 500 commit messages from the entire set of commit messages among all
the Java projects.

The most dominant categories from the commit messages were: License Addition,
Copyright Update, Modififcation To License File, and False Positive.

The License Addition category represented the commits that explained that a li-
cense, license file, or copyright information had been added to a project or file head-
ers. This category represents two type of additions of Added Declared License and
Generic Addition. The latter represents a generic commit message of

”added a license page to TARDIS.”

The Added Declared License type includes commit messages reporting the exact li-
cense added. For example, a developer indicated

”Add MIT license. Rename README to include rst file extension.”



Such messages make it clear to any individual how the project or component is li-
censed, but they still do not explain the rationale behind the license choice. The mes-
sage only asserts that the particular license governs the system. These results mirror
the previous findings, where we observed Generic Additions, such as

”Created LICENSE.md.”

This message is automatically generated when a license is added to an existing GitHub
project with GitHub’s licensing feature. We also observed similar case where Add
Declared Licenses appeared in the commit messages.

We also observed commit messaged that indicating Copyright Updated. These
messages could either specific the particular update, such as updating the copyright
year or authors. A particulare example that we observed is:

”Updated URL license and version number.”

The message indicates minor changes to the license’s url and not the actual license
terms. Additionally, we observe generic updates where the committer simply indi-
cated that there was an update but no other information or rationale.

Similarly, we observe Copyright Added categorized commit messages. These
were less prevalent than the updated copyright messaged and typically only indi-
cated that a copyright (or copyright file) had been added. The messages do not offer
further meaningful information regarding the nature of the copyright. In some cases,
the a particular license may be accompanied, but these messages would be classifed
as License Addition (due to the fact that a particular license was declared). Both
Copyright Updated and Copyright Added were similarly represented in the commit
messages from Java.

As done in the context of Java commit messages, we defined False Positives and
Unclear to contain cases coded as unclear, unrelated, or non-informative. Unclear
or not enough information signified messages that made it unable to determine the
purpose of the commit from a licensing perspective. The message

“Packaging and PEP8 compliance. Suite up”

indicates that the commit solved some type of compliance, but it does not necessarily
imply that the commit is related to licensing. In some case, we observe commits that
utilize the keywords in a different context. For example, one developer committed,

”Use setuptools ¿= 2.2 instead of Distribute.”

This message is identified by distribute, which is considered a licensing keyword
as the licenses specify how sourcce code can be distributed. However, the particular
message does not use distribute in terms of code distribution.

Additionally, we observed a new category that we had not previously identifed.
The category Modififcation To License File repesents reformatting the license file type
or file name. For example, developers may change the license file from the default
LICENSE.md file generated by GitHub to a .txt or .rtf. Additionally, developers
change the file name or file path to the license file. For example, we observed that
the parent directory that contained the license file was altered. These cases do not
indicate significate changes to the actual licensing, but the way in which the license
is represented.



Not surprisingly, License Change was not prevalent among the six languages as
compared to the Java projects. Since we did not observe any license changes in the
dataset, it is expected that the commit messages would seldom (if at all) mention a
change to the licensing. However, we did observe commit messages that indicated a
license change, which suggests that the underlying approach may have been unable
to identify the license of some files causing our analysis to miss some changes to the
licensing. For example, we observed the commit message:

”Relicensed CZMQ to MPLv2 - fixed all source file headers - removed COPY-
ING/COPYING.LESSER with GPLv3 and LPGv3 + exceptions - added LI-
CENSE with MPLv2 text - removed ztree class which cannot be relicensed -
(that should be reintroduced as foreign code wrapped in CZMQ code).”

The commit message indicate the former licensing, the new licensing, and a change
to ensure compliance of the new licensing terms. Interestingly, the particular change
demonstrates a move towards a more permissive license, which had been prevalent
in our study of Java projects. We previously observed similar commits for those Java
projects, where a different license was chosen or the clauses of the license were mod-
ified. The following represent each case, respectively:

“Switched to a BSD-style license”

“The NetBSD Foundation has granted permission to remove clause 3 and 4
from their software”

We also observed License Removal, License Dependency Compatibility, and Code
Removal for Compliance. While less prevalent, these categeories were also important
since it demonstrates that license incompatibilities exist in the projects of these sys-
tems and were typically due to dependencies. In order to ensure license compliance,
the developers had to remove those dependencies or libraries from the system. Thus,
we observe that difficulty with respect to licensing due to dependencies is not limited
to Java or C/C++, which has been the predominant focus of the prior studies. Instead,
the difficulty is pervasive across languages.

While we were unable to identify atomic license changes for C, C++, C#, JavaScript,
Python, and Ruby, our analysis of Java atomic license changes gave further insights
to particular types of license changes. In the analysis, wpecifically targeted commit
messages where a licensing change occurred so that we could understand the rationale
behind the change. We did not apply a keyword for these messages since we knew
they were commits related to changes in licensing. When reading these commits, we
also included the atomic license change pattern that was observed at that particular
commit to add context. We observed new support for the existing categories. We re-
fer to new support as messages indicating new rationale for the existing categories.
In addition to the new rationale, we also observed more support for License Change
category from our previous analysis, such as

“Rewrite to get LGPL code.”

“Changed license to Apache v2”



In the case of Licensing Removal, we observed that licenses were removed due to
code clean up, files deletion, and dependencies removal. For example, we observed
the removal of the GPL-2.0 license with the following commit message,

“No more smoketestclientlib”

It indicates the removal of a previously exploited library. Additionally, licenses were
removed as developers cleaned up the project.

Fix Missing Licensing is related to a license addition, but it occurred when the
author intended to license the file, but forgot in the initial commit or in the commit
introducing the licensing. For example, one commit message noted,

“Added missing Apache License header.”

This observation is important since it indicates that the available source code may
inaccurately seem unlicensed.

An important observation from the second round of our analysis was the ambigu-
ity of commit messages. For example, we observed a commit classified as Copyright
Update stating,

“Updated copyright info.”

However, this commit corresponded to a change in licensing from GPL-2.0 to LGPL-
2.1+. This case both illustrates the lack of detail offered by developers in commit
notes, and it illustrates that an update can be more significant than adding a header
or changing a copyright year. More importantly, it may suggest that the projects from
our dataset written in C, C++, C#, JavaScript, Python, and Ruby also experienced
license changes that we were unable to detect.

Additionally, the GT analysis also captured similar support for these categories
to a greater extent than the initial study on Java projects. Since we sampled com-
mits from all Java projects, it was infeasible to sample a larger representative number
of commit messages. Thus, augmenting the second round benefitted the taxonomy
by targetting the commits better. However, we were able to sample statistically rep-
resentative sample sizes in this work due to pre-filtering the projects. The results
corroborate the represenativeness, since we observe the same categories.

Lastly, we investigated the issue tracker discussions in which the issue title sug-
gested it was related to licensing. The analysis of these discussions introduced six
new categories: License Clarification, Reuse, License Compatibility, Choose a Li-
cense, Missing Licensing, and Contributor License Agreement. License Clarification
represents the scenario where a non-contributor submits an issue to clarify project
licensing or the implications of a license. This category demonstrates that licensing
is not trivial when it comes to code reuse and developers are not always able to deter-
mine the license of a project. While it is related to reuse when the motivation for the
question is to include the source code in another system, the category Reuse includes
requests for a different license. For example, we found a developer created an issue
for a project entitled ”What license is this project?” and the developer elaborates in
the issue comment explaining the implication of a lack of license,

“There is no license specified anywhere. I would prefer a non copyleft open
source license (no GPL) because I don’t thinck I’m going to use it if it’s GPL.



Something like mpl, apache, new bsd or lgpl. Anyway noone’s going to use
what you created for anything because at the moment it’s proprietary with
source code visible. Whatever open source license you would like to use please
specify it.”

In the Java projects, we found similar issues stating,

“I would love to use this library, but the lack of a license is prohibiting me
from doing so.”

Similarly, developers wanting to include code for commercial use would request a
re-license or dual-license of the MIT license.

Interestingly, we observed an issue related to Reuse where one contributor sug-
gests a dual license to allow for greater reuse in other applications. The contributor
stated,

“Due to incompatibility between GPLv3 and Apache 2.0 it is hard to use
python-hpilo from, for instance, OpenStack. It would therefore be helpful if
the project code could also be released under a more permissive license, like
for instance Apache 2.0 (which is how OpenStack is licensed)”

The other contributors subsequently utilized the thread to vote and ultimately agree
upon the dual license. Not only does this example indicate the consideration for reuse,
but it also demonstrates that licensing decisions are determined by all copyright hold-
ers and not a single developer.

One interesting observation is that developers also use the issue tracker to track
the initial project licensing. We extracted the category Choosing License. We ob-
served the open issues ”Add LICENSE file,” where the issue creator commented,

”A license needs to be chosen for this repo. All contributors need to agree
with the chosen license. A list of contributors is enclosed below”

SImilarly, we found the same issues from our Java study, such as an issue titled “What
license to use” that posed the question of

“BSD, GNU GPL, APACHE?”

These observations suggest that the issue tracker is also utilized as a discussion forum
for a subset of projects

Additionally, we identified the License Compatibility category from issues where
a non-contributor identified an incompatibility in the licensing the project and the
project’s dependencies or where a non-contributor recommends a license-compatible
library. For example, a non-contributor posted an issue stating,

”Hi there, at the moment you’ve declared this project to be wholly MIT-
licensed. TyrQuake inherits the software license of the underlying Quake source
code, which is GPL-2. Therefore, the Quake and TyrQuake bits in this repos-
itory have to be GPL-2, and cannot be MIT. (This is because the GPL-2 in-
cludes extra constraints that the MIT does not). Perhaps your intention was
that your extra bits are MIT? If so, please clarify that. Additionally, any bits
of yours which are derivations from the GPL-2 stuff are in murky water. The
simplest thing to do would be to declare the whole repository GPL-2.”



Similarly, we previously observed a license incompatibility not only created a po-
tential license violation for the project but also prevented the non-contributor from
cataloging the system among projects hosted on F-Droid [2].

We observed that devleopers also are made aware of missing licenses on the issue
tracker as well, generating the Missing License categeory. In this case, the project
may have files without licensing or files may have not included the appropriate license
files may be absent. We observed one developer that indentified the project’s ” GNU
LGPL license is missing.” The developer commented,

”Under which license is this source code published? This project is heavily
based on wiring-pi and rc-switch: rc-switch: GNU Lesser GPL wiring-pi:
GNU Lesser GPL The GNU Lesser GPL could be added: http://www.gnu.org/
licenses/lgpl.html”

The developer approaches the missing licensing by asking a question about the licens-
ing, but the comment intends to explain that the LGPL license is missing. Finally, we
identified a category of Contributor License Agreement. This scenario arises when a
developer not initially on the project submits code to the project. We observed a dis-
cussion related to textual information regarding a country’s designation in the CLA.
Similarly, in our previous Java study, a developer submitted a patch but it could not be
merged into the system until that developer filled out the Contributor License Agree-
ment (CLA). A CLA makes it explicit that the author of a contribution is granting the
recipient project the right to reuse and further distribute such contribution [10]. Thus,
it prevents the contributed code from being grounds for a lawsuit.

Another important observation that appears to support the supposition from our
traceability analysis that developers remove licesning related issues from the issue
tracker is that we found links from the time our crawling to our analysis that no
longer existed. It is also possible that these cases represent developers that utilize
external bug tracking systems as well.

Summary for RQ4. While our grounded theory analysis indicated some lack of
documentation (e.g., prevalence of false positives) and poor quality in documentation
with respect to licensing in both issue tracker discussion and commits messages, we
formally categorized the available rationale. We also found that the rationale may be
incomplete or ambiguously describe the underlying change (e.g., “Updated copyright
info” representing a change between different licenses). Finally, we observed that
issue trackers also served as conduits for project authors and external developers to
discuss licensing.

5 Lessons and Implications

The analysis of license usage indicated that licensing practices, especially towards
introducing a new license to a project, seem to differ according to the programming
language. We were able to reinforce our findings that restrictive licenses tend to sur-
vive the release of newer license versions (e.g., GPL-2.0 survives despite the release
of GPL-3.0, However, we were unable to support the findings that permissive licenses
tend to be replaced by newer versions of the license. In part, the lack of support is due



to the limited diversity in licensing for five out six of the languages, which reinforces
that license adoption and usage differs between programming languages. For exam-
ple, we observed Ruby projects predominantly introduce MIT/X to projects, whereas
C consisted of GPL and LGPL licenses. Thus, this work further supports the observa-
tions from Vendome:ICSME15 that tools to assist developers with respect to licensing
should also take into account factors like language or domain, since the license usage
behaviors is not consistent across languages.

The analysis of the commit messages and issue trackers highlighted a gap in the
level of detail or information offered with respect to licensing. A developer interested
in reusing code would be forced to check the source code of the component to under-
stand the exact licensing or ask for clarification (using the issue tracker, for example).
Additionally, the reason behind the change is not usually well documented. This de-
tail is particularly important when a system uses external/third-party libraries since a
license may change during the addition or removal of those libraries. An important
observation from our GT analysis also stresses the need for better licensing traceabil-
ity and aid in explaining the license grants/restrictions. We found several instances
in which the issue tracker was used to ask for clarifications regarding licensing from
external developers (i.e., not contributors) that sought to reuse the code; this seems to
suggest that code reuse is problematic for developers due to licensing. Therefore,
our study demonstrates a need for clear and explicit licensing information for
the projects hosted on a forge.

In this work, we were unable to evaluate the traceability of licensing changes,
since we did not observe any in our dataset. However, the lack of traceability of li-
censing changes that was observed in Java is important for researchers investigating
software licensing on GitHub. While we cannot generalize to other features, it does
suggest that commit message analysis may be largely incomplete with respect to de-
tails of the changes made during that commit and ultimately source code analysis is
necessary. One way to achieve this is developers can take advantage of summariza-
tion tools such as ARENA [26] and ChangeScribe [12,24]. While ARENA analyzes
and documents licensing changes at release level, ChangeScribe automatically gen-
erates commit messages; however, using ChangeScribe would require extending it to
analyze licensing changes at commit level. Another option is that forges (and software
tools in general) verify that every file contains a license and that every project prop-
erly documents its license (this feature could be optional). It would greatly improve
traceability and assert a consistency among the repositories. In terms of licensing,
it would be beneficial for developers using another project to be informed when a
licensing change occurs. For example, a developer could mark specific projects as
dependents and receive automated notifications when particular changes occur. This
would be very beneficial with licensing since a change in the license of a dependency
could result in license incompatibilities.

The GT analysis also suggests that commercial usage of code is a concern in the
open source community. Currently, the MIT/X license seems to be the most promi-
nent license for this purpose. In fact, we observe a high prevalence of usage of this
license in our dataset. The lack of a license is an important consideration in open
source development, since it suggests that the code may in fact be closed source (or
copyrighted by the original author). We observed issues discussions related to lack of



licensing, since it hindered reuse. The aforementioned suggestion above would also
serve to address this problem.

Finally, we observed that some projects may not accurately reflect the behavior of
these system well. We observed that certain projects were mirrored mature projects
and so the projects were released on GitHub at a mature state without the complete
revision history. Additionally, we observed histories that contain earlier commits, but
the first recognized commit appears at a later date. Thus, it is possible that a subset of
projects did not contain changes to licensing because of this aspect, suggesting these
histories we compressed or inaccessible through the git version control system (it is
also possible that it is an artifact of migrating the repository from a different version
control system).

6 Threats to Validity

Threats to construct validity concern the relationship between theory and observa-
tion, and relate to possible measurement imprecision when extracting data used in
this study. In mining the git repositories, we relied on both the GitHub API and the
git command line utility. These are both tools under active development and have a
community supporting them. Additionally, the GitHub API is the primary interface to
extract project information. We cannot exclude imprecision due to the implementa-
tion of such API. In terms of license classification, we rely on Ninka, a state-of-the-art
approach that has been shown to have 95% precision [21]; however, it is not always
capable of identifying the license (15% of the time in that study). With respect to
our developer rationale, we conducted a formal study using Grounded Theory. We
distributed all of the data among two authors at each stage to ensure consistence and
agreement of the classifications.

Threats to internal validity can be related to confounding factors, internal to our
study, that could have affected the results. For the atomic licensing changes, we re-
duced the threat of having the project size as a confounding factor by representing
the presences of a particular change at each commit. A license change typically is
handled at a given instance and not frequency. By using commit-level analysis, we
prevent the number of files from inflating the results so that they do not inappropri-
ately suggest large numbers of changes occurred in a project. To analyze the changes
across projects, we took a binary approach of analyzing the presence of a pattern.
Therefore, a particular project would not dominate our results due to size.

Threats to external validity represent the ability to generalize the observations in
our study. We do not claim that the rationale and atomic license change patterns are
complete or consistent across all of the systems, especially projects written in other
programming languages. However, we present results for six popular programming
languages and compare them to our earlier findings with Java. Additionally, our data
set is representative of only projects hosted on GitHub and written in Java, C, C++,
C#, JavaScript, Python, and Ruby so we do not claim that the results generalize to
any project of these languages. GitHub’s exponential growth and popularity as a pub-
lic forge indicates that it represents a large portion of the open source community.
While the exponential growth or relative youth of projects can be seen as impacting



the data, these two characteristics represent the growth of open source development
and should not be discounted. Additionally, GitHub contains a large number of repos-
itories, but it may not necessarily be a comprehensive set of all open source projects
or even all Java projects. However, the large number of projects in our dataset (and
relatively high diversity metrics values as shown in Section 3.5) gives us enough con-
fidence about the obtained findings. Further evaluation of projects across other open
source repositories and other programming languages would be necessary to validate
our observations in a more general context. It is also important to note that our ob-
servations only consider open source projects. Since we need to extract licenses from
source code, we did not consider any closed source projects and we cannot assert that
any of our results would be representative in closed source projects.

7 Conclusions

We empirically studied phenomena related to license usage and licensing changes in
a set of 51,757 projects written in six hosted on GitHub. We compared the findings to
our Java study on 16,221 projects. Quantitative data automatically mined have been
complemented with qualitative analysis manually performed on commit messages
and issue tracker discussions to provide meaningful explanations to our findings, that
are summarized as following:

– New license versions were quickly adopted by developers. Additionally, new li-
cense versions of restrictive licenses (e.g., GPL-3.0 vs GPL-2.0) favored longer
survival of earlier versions;

– While our extension analyzing C, C++, C#, JavaScript, Python, and Ruby did not
contain changes in licensing, for the Java study, we observed licensing changes
are predominantly toward or between permissive licenses, which ease some kind
of derivative work and redistribution, e.g. within commercial products;

– Developers post questions to the issue tracker to ascertain the project’s license
and/or the implications of the license suggesting that licensing is difficult;

– The lack of traceability between discussions and related license changes may be
in part due to removing licensing-related issues from the issue tracker or utilizing
an external issue tracker and removing the issues from GitHub.

This work is mainly exploratory in nature as it is aimed at empirically investigat-
ing license usage and licensing changes from both quantitative and qualitative points
of view. Nevertheless, there are different possible uses one can make of the results of
this paper. Our results indicate that developers frequently deal with licensing-related
issues, highlighting the need for development in (semi)automatic recommendation
systems supporting license compliance verification and management. Additionally,
tools compatible or integrated within the forge to support licensing documentation,
change notification, education (i.e., picking the appropriate license), and compati-
bility would benefit developers attempting to reuse code. While working in this di-
rection, one should be aware of possible factors that could influence the usage of
specific licenses and the factors motivating licensing changes. This paper provides
solid empirical results and analysis of such factors from real developers.



As part of our future agenda, we are planning on extend our study to other forges
and languages in order to corroborate our results. Also, we are planning on further
investigating licensing issues across software dependencies.

Acknowledgements

We would like to thank all the open source developers who took time to participate
in our survey. Specifically, we would like to acknowledge developers who provided
in-depths answers and responded to follow-up questions. This work is supported in
part by NSF CAREER CCF-1253837 grant. Massimiliano Di Penta is partially sup-
ported by the Markos project, funded by the European Commission under Contract
Number FP7-317743. Any opinions, findings, and conclusions expressed herein are
the authors’ and do not necessarily reflect those of the sponsors.

References

1. The BSD 2-Clause License. http://opensource.org/licenses/BSD-2-Clause. Last
accessed: 2015/01/15.

2. F-Droid. https://f-droid.org/. Last accessed: 2015/01/15.
3. GitHub API. https://developer.github.com/v3/. Last accessed: 2015/01/15.
4. GNU General Public License. http://www.gnu.org/licenses/gpl.html. Last accessed:

2015/01/15.
5. PF: The OpenBSD Packet Filter. http://www.openbsd.org/faq/pf. Last accessed:

2015/01/15.
6. Software Package Data Exchange (SPDX). http://spdx.org. Llast accessed: 2015/01/15.
7. State of the Octoverse in 2012 https://octoverse.github.com/. Last accessed:

2015/01/15.
8. G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. The evolution of project inter-

dependencies in a software ecosystem: The case of apache. pages 280–289, 2013.
9. G. Bavota, A. Ciemniewska, I. Chulani, A. De Nigro, M. Di Penta, D. Galletti, R. Galoppini, T. F.

Gordon, P. Kedziora, I. Lener, F. Torelli, R. Pratola, J. Pukacki, Y. Rebahi, and S. G. Villalonga. The
market for open source: An intelligent virtual open source marketplace. In 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering, CSMR-
WCRE 2014, Antwerp, Belgium, February 3-6, 2014, pages 399–402, 2014.

10. A. Brock. Project Harmony: Inbound transfer of rights in FOSS Projects. Intl. Free and Open Source
Software Law Review, 2(2):139–150, 2010.

11. J. Corbin and A. Strauss. Grounded theory research: Procedures, canons, and evaluative criteria.
Qualitative Sociology, 13(1):3–21, 1990.

12. L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk. On automatically generating
commit messages via summarization of source code changes. In Source Code Analysis and Manipu-
lation (SCAM), 2014 IEEE 14th International Working Conference on, pages 275–284. IEEE, 2014.

13. M. Di Penta, D. M. Germán, and G. Antoniol. Identifying licensing of jar archives using a code-search
approach. In Proceedings of the 7th International Working Conference on Mining Software Repos-
itories, MSR 2010 (Co-located with ICSE), Cape Town, South Africa, May 2-3, 2010, Proceedings,
pages 151–160, 2010.

14. M. Di Penta, D. M. Germán, Y. Guéhéneuc, and G. Antoniol. An exploratory study of the evolution
of software licensing. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages 145–154, 2010.

15. B. Doll. The octoverse in 2012 http://tinyurl.com/muyxkru. Last accessed: 2015/01/15.
16. R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: a language and infrastructure for analyzing

ultra-large-scale software repositories. In 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages 422–431, 2013.



17. Free Software Foundation. Categories of free and nonfree software. https://www.gnu.org/
philosophy/categories.html. Last accessed: 2015/01/15.

18. D. M. Germán, M. Di Penta, and J. Davies. Understanding and auditing the licensing of open source
software distributions. In The 18th IEEE International Conference on Program Comprehension, ICPC
2010, Braga, Minho, Portugal, June 30-July 2, 2010, pages 84–93, 2010.

19. D. M. Germán, M. Di Penta, Y. Guéhéneuc, and G. Antoniol. Code siblings: Technical and legal
implications of copying code between applications. In Proceedings of the 6th International Working
Conference on Mining Software Repositories, MSR 2009 (Co-located with ICSE), Vancouver, BC,
Canada, May 16-17, 2009, Proceedings, pages 81–90, 2009.

20. D. M. Germán and A. E. Hassan. License integration patterns: Addressing license mismatches in
component-based development. In 31st International Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Proceedings, pages 188–198, 2009.

21. D. M. Germán, Y. Manabe, and K. Inoue. A sentence-matching method for automatic license identi-
fication of source code files. In ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 20-24, 2010, pages 437–446, 2010.

22. R. Gobeille. The FOSSology project. In Proceedings of the 2008 International Working Conference
on Mining Software Repositories, MSR 2008 (Co-located with ICSE), Leipzig, Germany, May 10-11,
2008, Proceedings, pages 47–50, 2008.

23. J. Howison, M. Conklin, and K. Crowston. FLOSSmole: a collaborative repository for FLOSS re-
search data and analyses. IJITWE’06, 1:17–26.

24. M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk. ChangeScribe: A tool for
automatically generating commit messages. In 37th IEEE/ACM International Conference on Software
Engineering (ICSE’15), Formal Research Tool Demonstration, page to appear, 2015.

25. Y. Manabe, Y. Hayase, and K. Inoue. Evolutional analysis of licenses in FOSS. In Proceedings of the
Joint ERCIM Workshop on Software Evolution (EVOL) and International Workshop on Principles of
Software Evolution (IWPSE), Antwerp, Belgium, September 20-21, 2010., pages 83–87, 2010.

26. L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and G. Canfora. Automatic generation of
release notes. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pages 484–495, 2014.

27. M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software engineering research. In Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August
18-26, 2013, pages 466–476, 2013.

28. Oracle. MySQL - FOSS License Exception. http://www.mysql.com/about/legal/
licensing/foss-exception/. Last accessed: 2015/01/15.

29. P. Singh and C. Phelps. Networks, social influence, and the choice among competing innovations:
Insights from open source software licenses. Information Systems Research, 24(3):539–560, 2009.

30. T. Tuunanen, J. Koskinen, and T. Kärkkäinen. Automated software license analysis. Autom. Softw.
Eng., 16(3-4):455–490, 2009.

31. C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. M. Germán, and D. Poshyvanyk.
License usage and changes: A large-scale study of Java projects on GitHub. In The 23rd IEEE In-
ternational Conference on Program Comprehension, ICPC 2015, Florence, Italy, May 18-19, 2015.
IEEE, 2015.

32. C. Vendome, M. Linares-Vsquez, G. Bavota, M. D. Penta, D. M. German, and D. Poshyvanyk. When
and why developers adopt and change software licenses. In The 31st IEEE International Conference
on Software Maintenance and Evolution, ICSME 2015, Bremen, Germany, September 29 - October 1,
2015, pages 31–40. IEEE, 2015.

33. C. Vendome, M. L. Vásquez, G. Bavota, M. D. Penta, D. M. Germán, and D. Poshyvanyk. License
usage and changes: a large-scale study of java projects on github. In Proceedings of the 2015 IEEE
23rd International Conference on Program Comprehension, ICPC 2015, Florence/Firenze, Italy, May
16-24, 2015, pages 218–228, 2015.

34. Y. Wu, Y. Manabe, T. Kanda, D. M. Germán, and K. Inoue. A method to detect license inconsistencies
in large-scale open source projects. In The 12th Working Conference on Mining Software Repositories
MSR 2015, Florence, Italy, May 16-17, 2015. IEEE, 2015.


