
1

Integrating Conceptual and Logical Couplings

for Change Impact Analysis in Software

Huzefa Kagdi1, Malcom Gethers2*, and Denys Poshyvanyk3

1Wichita State University
2University of Maryland Baltimore County

3The College of William and Mary

*Malcom Gethers completed this work during his Ph.D. at College of William and Mary

kagdi@cs.wichita.edu, mgethers@umbc.edu, denys@cs.wm.edu

http://www.cs.wm.edu/semeru/
http://serl.cs.wichita.edu/

Abstract The paper presents an approach that combines conceptual and evolutionary techniques to

support change impact analysis in source code. Conceptual couplings capture the extent to which

domain concepts and software artifacts are related to each other. This information is derived using

Information Retrieval based analysis of textual software artifacts that are found in a single version

of software (e.g., comments and identifiers in a single snapshot of source code). Evolutionary

couplings capture the extent to which software artifacts were co-changed. This information is

derived from analyzing patterns, relationships, and relevant information of source code changes

mined from multiple versions in software repositories. The premise is that such combined methods

provide improvements to the accuracy of impact sets compared to the two individual approaches.

A rigorous empirical assessment on the changes of the open source systems Apache httpd,

ArgoUML, iBatis, KOffice, and jEdit is also reported. The impact sets are evaluated at the file and

method levels of granularity for all the software systems considered in the empirical evaluation.

The results show that a combination of conceptual and evolutionary techniques, across several cut-

off points and periods of history, provides statistically significant improvements in accuracy over

either of the two techniques used independently. Improvements in F-measure values of up to 14%

(from 3% to 17%) over the conceptual technique in ArgoUML at the method granularity, and up to

21% over the evolutionary technique in iBatis (from 9% to 30%) at the file granularity were

reported.

Keywords Change impact analysis, Information Retrieval, conceptual and logical coupling,

mining software repositories, open-source software, software evolution and maintenance

1 Introduction

Software maintenance and evolution is a particularly complex phenomenon in case of long-lived,
large-scale systems (Lehman and Belady 1985; Rajlich and Bennett 2000). It is not uncommon for
such systems to progress through years of development history, a number of developers, and a
multitude of software artifacts including millions of lines of code. Therefore, realizing even a slight
change may not be always straightforward. According to Bohner and Arnold (Bohner and Arnold
1996), software-change impact analysis, or simply impact analysis (IA), is defined as the
determination of potential effects to a subject system resulting from a proposed software change.
IA is a key task in software maintenance and evolution. The premise of impact analysis is that a

2

proposed change may result in undesirable side effects and/or ripple effects. A side effect is a
condition that leads the software to a state that is erroneous or violates the original
assumptions/semantics as a result of a proposed change. A ripple effect is a phenomenon that
affects other parts of a system on account of a proposed change. The task of an impact analysis
technique is to estimate the (complete closure of) ripple effects and prevent side effects of a
proposed change. The scope of the analyzed and estimated software artifacts may include
requirements, design, source code, and/or test cases.

Decades of research efforts have produced a wide spectrum of approaches, ranging from the
traditional static and dynamic analysis techniques (Briand et al. 1999; Law and Rothermel 2003;
Orso et al. 2004; Ren et al. 2004; Robillard 2005; Petrenko and Rajlich 2009) to the contemporary
methods such as those based on Information Retrieval (IR) (Canfora and Cerulo 2005; Hill et al.
2007; Poshyvanyk et al. 2009; Gethers and Poshyvanyk 2010) and Mining Software Repositories
(MSR) (Gall 1998; Ying et al. 2004; Fluri et al. 2005; Zimmermann et al. 2005; Canfora et al. 2010;
Kagdi et al. 2010). Although ample progress has been made, there still remains much work to be
done in further improving the effectiveness (e.g., accuracy) of the state-of-the-art IA techniques.
Our goal is to develop a new and improved IA approach by utilizing some of the existing solutions.
Central to our approach are the information sources that are developer/human centric (e.g.,
comments and identifiers, and commit practices), rather than (formal) language/artifact centric (e.g.,
static and dynamic dependencies such as call graphs).

In this paper, we present an approach that combines conceptual and evolutionary couplings to
support IA in source code. Conceptual couplings capture the extent to which domain concepts and
software artifacts are related to each other. This information is derived using Information Retrieval
based analysis of textual software artifacts that are found in a single version of software (e.g.,
comments and identifiers in a single snapshot of source code). This analysis focused on a single
version is consistent with its previous usages in IA (Antoniol et al. 2000; Poshyvanyk et al. 2009).
Evolutionary couplings capture the extent to which software artifacts were co-changed. This
information is derived from analyzing patterns, relationships, and relevant information of source
code changes mined from multiple versions in software repositories.

The core research philosophy behind our approach is that present+past of software systems
leads to better IA. For IA, both single (present) and multiple versions (past) analysis methods have
been utilized independently, but their combined use has not been previously investigated. Our
larger research objective is focused on the investigation of these combinations of IR and MSR
techniques for IA. The combinations presented in this paper are a fundamental and necessary
baseline step in this direction. We investigate two different combinations, i.e., disjunctive and
conjunctive, and compute impact sets at varying source code granularity levels (e.g., files and
methods). Our primary research hypothesis is that such combined methods provide improvements
to the accuracy of impact sets.

An extensive empirical study on hundreds of changes from open source systems, such as Apache
httpd, ArgoUML, iBatis, KOffice, and jEdit, was conducted to test the research hypothesis. The
results of the study show that the disjunctive combination of IR and MSR techniques, across several
cut-off points (impact set sizes), provides statistically significant improvements in accuracy over
either of the two standalone techniques. For example, the disjunctive method reported
improvements in F-measure values of up to 14% (from 3% to 17%) over the conceptual technique
in ArgoUML at the method granularity, and up to 21% over the evolutionary technique in iBatis
(from 9% to 30%) at the file granularity. Also, we found that using larger history periods for
computing evolutionary couplings improves impact analysis results for the combined technique.
These results are encouraging considering that the combinations do not require an overly complex
blending of two standalone approaches.

We significantly extends our previous work (Kagdi et al. 2010). In particular, we present
detailed analysis results at the method level granularity for all the studies software systems: Apache
httpd, ArgoUML, iBatis, and KOffice. These results were not available in (Kagdi et al. 2010). We
added and analyzed data from another software system (jEdit) for the file and method granularity
levels. Also, we extended the statistical tests to all the systems for both file and method levels of
granularity. Finally, we investigated an additional research question (RQ3) in our empirical
evaluation that studies the impact of history on the accuracy of our approach on Apache httpd,
ArgoUML, iBatis, and KOffice software systems.

The rest of the paper is organized as follows. Section 2 provides a brief discussion of the related
work, whereas section 3 presents our combined approach. The empirical assessment is presented in
Section 4. We conclude in Section 5.

3

2 Background and Related Work

The paper addresses software change impact analysis by involving conceptual and evolutionary
couplings. There is a rich volume of literature covering each of these areas. Our intention is not to
cover every individual work exhaustively, but to provide a breadth of the solutions offered to these
problems.

2.1 Software Change Impact Analysis (IA)

Dependency analysis and traceability analysis are the two primary methodologies for
performing impact analysis. Broadly, dependency analysis refers to impact analysis of software
artifacts at the same level of abstraction (e.g., source code to source code or design to design).
Traceability analysis refers to impact analysis of software artifacts across different levels of
abstractions (e.g., source code to UML). Various dependency-analysis methods based on call
graphs, program slicing (Gallagher and Lyle 1991), hidden dependency analysis (Rajlich 1997;
Chen and Rajlich 2001; Yu and Rajlich 2001), lightweight static analysis approaches (Moonen
2002; Petrenko and Rajlich 2009), concept analysis (Tonella 2003), dynamic analysis (Law and
Rothermel 2003; Orso et al. 2004; Ren et al. 2004), hypertext systems, documentation systems,
UML models (Briand et al. 2002), and Information Retrieval (Antoniol et al. 2000; Poshyvanyk et
al. 2009) are already investigated in the literature. Queille et al. (Queille et al. 1994) proposed an
interactive process in which the programmer, guided by dependencies among program components
(i.e., classes, functions), inspects components one-by-one and identifies the ones that are going to
change – this process involves both searching and browsing activities. This interactive process was
supported via a formal model, based on graph rewriting rules (Chen and Rajlich 2000).

Coupling measures have been also used to support impact analysis in Object Oriented systems
(Briand et al. 1999; Wilkie and Kitchenham 2000; Poshyvanyk et al. 2009; Gethers and Poshyvanyk
2010). Wilkie and Kitchenham (Wilkie and Kitchenham 2000) investigated if classes with high
CBO (Coupling Between Objects) coupling metric values are more likely to be affected by change
ripple effects. Although CBO was found to be an indicator of change-proneness in general, it was
not sufficient to account for all possible changes. Briand et al. (Briand et al. 1999) investigated the
use of coupling measures and derived decision models for identifying classes likely to be changed
during impact analysis. The results of an empirical investigation of the structural coupling measures
and their combinations showed that the coupling measures can be used to focus the underlying
dependency analysis and reduce impact analysis effort. On the other hand, the study revealed a
substantial number of ripple effects, which are not accounted for by the highly coupled (structurally)
classes.

More recent work appears in (Robillard 2005; Hill et al. 2007; Saul et al. 2007; Robillard 2008),
where proposed tools could help navigate and prioritize system dependencies during various
software maintenance tasks. The work in (Hill et al. 2007) relates to our approach only to the extent
that it also uses lexical (textual) clues from the source code to identify related methods. Several
recent papers presented algorithms that estimate the impact of a change on tests (Rountev et al.
2001; Kosara et al. 2003). A comparison of different impact analysis algorithms is provided in
(Orso et al. 2004).

2.2 Conceptual Information in Software

Identifiers used by programmers for names of classes, methods, or attributes in source code or
other artifacts contain important information and account for approximately half of the source code
in software (Deissenboeck and Pizka 2005; Deissenboeck and Pizka 2006). These names often
serve as a starting point in many program comprehension tasks (Caprile and Tonella 1999; Haiduc
and Marcus 2008; Abebe et al. 2009; Arnaoudova et al. 2010). Hence, it is essential that these
names clearly reflect the concepts that they are supposed to represent, as self-documenting
identifiers decrease the time and effort needed to acquire a basic comprehension level for a
programming task (Antoniol et al. 2007; Binkley et al. 2009).

The software maintenance research community recently recognized the problem of extracting
and analyzing conceptual information in software artifacts. IR-based methods have been applied to
support practical tasks. For instance, IR methods have been successfully used to support feature
location (Liu et al. 2007; Poshyvanyk et al. 2007; Poshyvanyk and Marcus 2007; Eaddy et al. 2008;
Revelle and Poshyvanyk 2009; Revelle et al. 2010; Dit et al. 2012a; Dit et al. 2012b; Poshyvanyk et
al. 2012), traceability link recovery (Antoniol et al. 2002; Hayes et al. 2006; De Lucia et al. 2007;
Cleland-Huang et al. 2010; Oliveto et al. 2010; Gethers et al. 2011), and impact analysis (Antoniol
et al. 2000; Canfora and Cerulo 2005; Poshyvanyk et al. 2009; Gethers and Poshyvanyk 2010;

4

Gethers et al. 2012). We do not discuss other applications of IR-based techniques in the context of
software maintenance due to space limitations; however, interested readers are referred to (Binkley
and Lawrie 2010a; Binkley and Lawrie 2010b) for such an overview.

2.3 Evolutionary Information in Software Repositories

The term MSR has been coined to describe a broad class of investigations into the examination
of software repositories (e.g., Subversion and Bugzilla). The premise of MSR is that empirical and
systematic investigations of repositories will shed new light on the process of software evolution,
and the changes that occur over time, by uncovering pertinent information, relationships, or trends
about a particular evolutionary characteristic of the system.

We now briefly discuss some representative works in MSR for mining of evolutionary
couplings. Zimmerman et al. (Zimmermann et al. 2005) used CVS logs for detecting evolutionary
coupling (or logical couplings as defined by Gall et al.(Gall 2003)) among source code entities.
Association rules based on itemset mining were formed from the change-sets and used for change-
prediction. Canfora et al. (Canfora and Cerulo 2005) used the bug descriptions and the CVS commit
messages for the purpose of change prediction. An information retrieval method is used to index
the changed files, and commit logs, in the CVS and the past bug reports from the Bugzilla
repositories.

In addition, conceptual information has been utilized in conjunction with evolutionary data to
support several other tasks, such as assigning incoming bug reports to developers (Anvik et al.
2006; Jeong et al. 2009; Kagdi and Poshyvanyk 2009; Kagdi et al. 2011; Kagdi et al. 2012),
identifying duplicate bug reports (Runeson et al. 2007; Wang et al. 2008), estimating time to fix
incoming bugs (Weiss et al. 2007) and classifying software maintenance requests (Di Lucca et al.
2002). Finally, we conducted a comprehensive literature survey on MSR approaches during the

Figure 1 A method named addShape() from KOffice showing the conceptual information that is

latent in (some of the) identifier names.

Figure 2 A method named removeShape() from KOffice showing the conceptual information that

is latent in (some of the) identifier names.

5

prologue of this work (Kagdi et al. 2007). Xie’s online bibliography and tutorial1 on MSR is
another well-maintained web resource.

The above discussion shows that both IR and MSR have been used for impact analysis. Also,
IR techniques have been applied to software repositories. Our work differs in that we limit the use
of IR to a single snapshot (i.e., to derive conceptual couplings) of source code and data mining
techniques are used on past commits of source code versions (i.e., to derive evolutionary couplings).
To the best of our knowledge, such a combined use of IR and MSR has not been presented
elsewhere or empirically investigated before in the research literature. Our approach builds on
existing solutions, but synergizes them in a new holistic integrated technique.

3 A Combined Approach to Impact Analysis

A typical IA technique takes a software entity in which a change is proposed or identified, and
estimates other entities that are also potential change candidates, referred to as an estimated impact
set (Zimmermann et al. 2005; Hill et al. 2007; Petrenko and Rajlich 2009; Poshyvanyk et al. 2009;
Kagdi et al. 2010). Our general approach computes the estimated impact set with the following
steps:

Step 1: Select the first software entity, es, for which IA needs to be performed. For example,
this first entity could be a result of a feature location activity. Note that IA starts with a given entity.

Step 2: Compute conceptual couplings with IR methods from the version of a software system
in which the first entity is selected. Let EI(es) be the set of entities that are conceptually related to
the source code entity from Step 1.

Step 3: Mine commits from the source code repository and compute evolutionary couplings.
Here, only the commits that occurred before the version in the above step are considered. Let
EM(es) be the set of entities that are evolutionary coupled to the entity from Step 1.

Step 4: Compute the estimated impact set, E(es), from the combinations of couplings computed
in steps 3 and 4.

We now discuss the details of these steps, especially conceptual and evolutionary couplings, and
their combinations.

3.1 Conceptual Couplings

We use conceptual similarity as a primary mechanism for capturing conceptual coupling among
software entities. This measure is designed to capture the conceptual relationship among
documents. Formally, the conceptual similarity between software entities ek and ej (where ek and ej

can be methods), is computed as the cosine between the vectors vek and vej, corresponding to ek and
ej in the vector space constructed by an IR method (e.g., Latent Semantic Indexing or simply LSI):

CSE(ek, ej) =
2 2| | | |

T
k j

k j

ve ve

ve ve
 Eq. I

The value of CSE(ek, ej) [-1, 1], as CSE is a cosine in the Vector Space Model (VSM). In order to
comply with non-negativity property of coupling metrics (Briand et al. 1999), we redefine CSE as:

CSE(ek, ej) =
CSE e

k
, e

j if CSE e
k
, e

j 0

else 0

Eq. II

For source code documents, the entities can be attributes, methods, classes, files, etc. In computing
attribute-attribute or method-method similarities, CSE is straightforward (e.g., ek and ej are
substituted by ak and aj in the CSE formula given in Eq. I), while deriving method-class or class-
class CSE (given in Eq. II) requires additional steps. We define the conceptual similarity between a
method mk and a class cj (CSEMC) with t number of methods as follows:

CSEMC(mk, cj) =
1

(,)
t

k jq
q

CSE m m

 /t, Eq. III

which is an average of the conceptual similarities between method mk and all the methods from
class cj. Using CSEMC (given in Eq. III) we define the conceptual similarity between
two classes (CSEBC) ck C with r number of methods and cj C (where C is a set of classes in
software) as:

1 https://sites.google.com/site/asergrp/dmse

6

CSEBC(ck, cj) = CSEMC(m
kl

,c
j
)

l1

r

 /r, Eq. IV

which is the average of the similarity measures between all unordered pairs of methods from
class ck and class cj. The assumption, which is used in defining CSE, CSEMC, and CSEBC, is that if
the methods of a class relate to each other, then the two methods or classes are also related
(Poshyvanyk and Marcus 2006; Poshyvanyk et al. 2009). Please note that conceptual couplings at
class level granularity are computed using CSE(ek, ej), where ek and ej are files implementing
respective classes, however we present all the formulas for completeness purposes if a method level
granularity is desired for computing conceptual couplings.

To analyze conceptual information in a given version of a software system, the source code is
parsed using a developer-defined granularity level (i.e., methods or files). A corpus is created, so
that each software artifact will have a corresponding document in it. We rely on srcML (Collard et
al. 2003) for the underlying representation of the source code and textual information. srcML is an
XML representation of source code that explicitly embeds the syntactic structure inherently present
in source code text with XML tags. The format preserves all the original source code contents,
including comments, white space, and preprocessor directives, which are used to build the corpus.

Figure 1 and Figure 2 show the implementation of two methods named addShape and
removeShape() from KOffice. To derive the conceptual similarity between these methods, we
extract the identifier names and terms in comments from methods (i.e., corpus creation). All terms
in the method, with the exception of stop words (common English words and programming
language keywords) are included in the corpus. The corpus is indexed using LSI and its real-valued
vector subspace representation is created. The vector space is represented with a term-document
matrix. Dimensionality reduction is performed in this step, capturing the important semantic
information about identifiers and comments in the source code, and their relationships. In the
resulting subspace, each document (method) has a corresponding vector. Similarities between each
pair of documents (i.e., methods) in the source code are computed using the cosine measure. The
first two rows in Table I show the conceptual coupling values for the method pair addShape and
removeShape(). The conceptual coupling value is between 0 and 1. The conceptual coupling
between addShape and removeShape() is 0.78. Notice that it is a symmetric metric, i.e., the values
of (addShape, removeShape()) and (removeShape(),addShape) are the same. The terms such as
canvas, frameset, and shape contribute to the conceptual similarity between these methods. For
example, the occurrences of the term shape are highlighted in red in Figure 1 and Figure 2 to
provide a visual emphasis of its contribution. For more details and examples, please refer to our
prior work on conceptual coupling measures (Poshyvanyk and Marcus 2006; Poshyvanyk et al.
2009).

3.2 Evolutionary Couplings

We mine the change history of a software system for evolutionary relationships. In our
approach, evolutionary couplings are essentially mined patterns of changed entities. We use itemset
mining (Agrawal and Srikant 1995), as the specific order of change between artifacts is not
considered. This unordered set allows the computed evolutionary couplings to be consistent with
the conceptual couplings (with no change order between coupled artifacts).

Table I Excerpt of conceptual coupling values for the methods addShape() and removeShape() in

KOffice software system.

 KWDocument::addShape KWDocument::removeShape KWDocument::InsertPage

KWDocument::

addShape
1 0.78 0.24

KWDocument::

removeShape
0.78 1 0.27

KWDocument::

InsertPage
0.24 0.27 1

7

Formally, a software change history, SCH, is a set of change-sets (commits) submitted to the
source-control repository during the evolution of the system in the time interval . Also, let

 be the set of m entities, each of which was changed in at least one change-set during the

time interval . An unordered evolutionary coupling is a set of source code entities that are found to
be recurring in at least a given number (min) of change-sets, ecu = {ep, eq, …, eo} where each e E
and there exists a set of related change-sets, S(ec) = {c SCH | ec c } with its cardinality, (ec) =
|S(ec)| ≥ min. The (ec) value of a mined pattern is termed its support value in the data mining

vocabulary. Similarly, the min value is termed as minimum support value. Also, let EC =

be a set of all the evolutionary couplings observed in SCH.
For any given software entity from E, which could be the initial entity es for impact analysis, we

compute all the association rules from the mined evolutionary couplings where it occurs as an
antecedent (lhs) and another entity from E as a consequent (rhs). Simply put, an association rule
gives the conditional probability of the rhs also occurring when the lhs occurs, measured by a
confidence value. That is, an association rule is of the form lhs rhs. Multiple rules are possible
for the same lhs entity (and also the rhs entity). When multiple rules are found for a given entity,
they are first ranked by their confidence values and then by their support values; both in a
descending order (higher the value, stronger the rule). We allow a user specified cut-off point to
pick the top n rules. Thus, EM(es) is the set of all consequents in the selected n rules.

Broadly, the presented approach for mining fine-grained evolutionary couplings and prediction
rules consists of three steps:

1) Extract Change-sets from Software Repositories
Modern source-control systems, such as Subversion, preserve the grouping of several changes in

multiple files to a single change-set as performed by a committer. This information can be easily
obtained (e.g., svn log and pysvn).

Figure 3 shows a log entry from the Subversion repository of kdelibs (a part of KDE repository.)
A log entry corresponds to a single commit operation. This information can be readily obtained in
an XML format by using the command–line client svn log. Subversion’s log entries include the
dimensions author, date, and paths involved in a change-set. In this case, the changes in the files
khtml_part.cpp and loader.h are committed together by the developer kling on the date/time 2005-
07-25T17:46:20.434104Z. The revision number 438663 is assigned to the entire change-set (and
not to each file that is changed as is in the case with some version-control systems such as CVS).
Additionally, a text message describing the change entered by the developer is also recorded. Note
that the order in which the files appear in the log entry is not necessarily the order in which they
were changed. In the rest of the section, we use the term change-sets for the log entries in
Subversion repositories.

2) Convert to Fine-grained Change-sets
The differences in a file of a change-set could be readily obtained at the file-and-line level

granularity (e.g., with the GNU diff utility). These line differences in the files need to be mapped to
the corresponding fine-grained differences in the syntactic constructs. The proposed approach
employs a lightweight methodology for fine-grained differencing of files in a change-set. The
previous and current versions of a source code file are processed using a word-differencing tool,
namely dwdiff (http://os.ghalkes.nl/dwdiff.html). This differencing produces two source code files
along with the changed locations. The first file is marked with the exact locations from where
tokens, i.e., words of a programming language, are deleted and the second file is marked with the
exact locations where tokens are added. These markers are appropriately labeled with “specialized”
source code comments.

Both files produced from the word differencing are converted to the srcML representation
(Collard et al. 2003). The format preserves all the original source code contents including
comments, white space, and preprocessor directives. Finally, both srcML files are processed with

<?xml version="1.0" encoding="utf-8"?>
<log>
 <log entry revision="438663">
 <author>kling</author>
 <date>2005-07-25T17:46:20.434104Z</date>
 <paths>
 <path action="M">khtml_part.cpp</path>
 <path action="M">loader.h</path>
 </paths>
 <msg>
 Do pixmap notifications when
 running ad filters.
 </msg>
 </log entry>
</log>

Figure 3 A Snippet of kdelibs Subversion Log

8

the standard XML processing tools to give a list of added and deleted constructs in a hierarchical
manner up to the granularity of an identifier. The entire process is realized in the form of a fine-
grained differencing tool, namely codediff. The codediff approach has a very close similarity to
Collard’s srcDiff representation (Maletic and Collard 2004) that achieves fine-grained differencing
using line differencing (i.e., diff) and srcML. The important distinction between the two is that
codediff achieves much finer levels of difference granularity than the srcDiff toolset and avoids
situations of a line change cross-cutting multiple constructs. The tool codediff is used to process all
the files in every change-set for source code differences at a fine-grained syntactic level.
Alternatively, heavyweight approaches such as AST based and semantic comparisons are not
practically feasible due to a very high computational cost involved in processing a number of
versions (Mens 2002; Raghavan et al. 2004). Additionally, they typically require a system-wide
parsing and as such may need additional files that are outside a given change-set to the extent of the
entire system. Our codediff approach requires only processing of commits and nothing beyond.

3) Mine Evolutionary Couplings
A mining tool, namely sqminer (Kagdi et al. 2006), was previously developed to uncover

evolutionary couplings from the set of commits (processed at fine-granularity levels with codediff
should the need be). The basic premise of sqminer is if the same set of source code entities
frequently co-changes then there is a potential evolutionary coupling between them. sqminer
supports mining of both unordered and ordered patterns. These patterns are used to generate
association rules that serve as prediction rules for source code changes.

sqminer is based on the Sequential Pattern Discovery Algorithm (SPADE) (Zaki 2001) which
utilizes an efficient enumeration of ordered patterns based on common-prefix subsequences and
division of search space using equivalence classes. Additionally, it utilizes a vertical input-
transaction format (i.e., a set of transactions for each file vs. a set of transactions consisting of files)
for efficiency.

To help prune the number of candidate patterns produced by the mining techniques, patterns
with redundant information are eliminated. A pattern that is frequent means that all possible
patterns formed from the subsets of its files are also frequent. The support of a pattern is always
less than or equal to the subset patterns. A common pruning mechanism used in frequent-pattern
mining is to eliminate all the subset patterns that have the same support of the corresponding larger
pattern. Such subset patterns are only used with other larger patterns and not in isolation by
themselves. Therefore, they give redundant information that may be of very little meaning. As a
result, only disjoint patterns (i.e., patterns with no common files) that subsume all subsets of
patterns with the same or higher support are retained. Such patterns are known as closed patterns.
Our tool produces only closed patterns.

Frequent-pattern mining algorithms typically report the support of a pattern but not the
transactions in which it occurs. Our tool records the transactions in which a pattern is found. For
uncovering both unordered and ordered change patterns, we use the same underlying mining
algorithm. The tool sqminer can also be used for frequent itemset mining. In this case the
transactions are formed with no ordering information of items. The configuration parameters of
sqminer include support, maximum number of items in a pattern, mining of sequence (association)
rules, and output in both a flat-file and XML format. For further detail on the XML output format
of the ordered patterns and rules, we refer to (Kagdi et al. 2006).

sqminer has already been applied previously to mine co-changes at the file level (Kagdi et al.
2006), uncover/discover traceability links (Kagdi et al. 2007), and mine evolutionary couplings of
localized documents (Kagdi and Maletic 2007).

For example, consider a method named getType in ArgoUML. The evolutionary coupling
{argouml/model/mdr/FacadeMDRImpl.java/getType,

argouml/model/mdr/FacadeMDRImpl.java/isAStereotype}
is mined from the commit history between versions 0.24 and 0.26.2 of ArgoUML. This coupling

is supported by three commits with ID’s 13341, 12784, and 12810. In these three commits, both
getType() and isAStereotype() are found to co-change. Based on this evolutionary coupling, the
association rule

{argouml/model/mdr/FacadeMDRImpl.java/getType}
{argouml/model/mdr/FacadeMDRImpl.java/isAStereotype}

is computed. This rule has a confidence value of 1.0 (100%) and support of three (i.e., it
appears in three commits). It suggests that should the method getType() be changed, the method
isASteretype() is also likely to be a part of the same change with a conditional probability of 100%.

3.3 Disjunctive and Conjunctive Combinations

 With regards to combining conceptual and evolutionary dependencies, there is a pertinent
research question: Should the union or intersection of the two estimations be considered, i.e., EI(es)
 EM(es) or EI(es) EM(es)? This question may not be an issue, if both EI(es) and EM(es) predict

9

the same estimation set. If the estimation sets differ, taking their union could result in increased
recall; however, at the expense of decreased precision (if a large number of false-positive are
estimated). Alternatively, taking only the intersection imposes a stricter constraint that could result
in increased precision; however, at the expense of decreased recall.

The combined approaches for IA that use the union and intersection of estimations of conceptual
and evolutionary estimations are termed as disjunctive approach and conjunctive approach
respectively (see Figure 5). That is, E(es) = EI(es) EM(es) and E(es) = EI(es) EM(es). Our
approach supports both of these combinations. Both approaches require the user to specify a
starting entity as well as a cut-off point for deriving an estimated impact set. For a given cut-off
point, μ, provided by the user, we compute the impact set of the disjunctive method E(es) by
determining EI(es) and EM(es) such that the cardinality of each set is equal (or the cardinality EI(es)
is larger by one entity, when an odd number is specified as μ) and the cardinality of their union
equals to μ. A similar approach is taken to obtain the impact set of the conjunctive method;
however, in this case we ensure the cardinality of the intersection equals to μ, if possible. The
procedures used to compute the underlying conceptual and evolutionary couplings are shown in
Figure 4. They use typical sets of parameters needed for LSI and itemset mining algorithms.

3.4 Motivating Examples

In order to explain what each technique finds and the issues that arise in the combination of the
techniques, we present an example from a real system. In Apache httpd, commit# 888310 addresses
the bug# 470872 regarding "Incorrect request body handling with Expect: 100-continue if the client

2 https://issues.apache.org/bugzilla/show_bug.cgi?id=47087

procedure to get the n ranked concep couplings for the given

entry

function getConceptual(anentity, n)

 CCBE := conceptualBase (src_code, granularity, ia_params)

 # get the top n couplings for the only the given entity

 return slice (CCBE, anentity, n)

procedure to get the n ranked evol couplings for the given entry

function getEvolutionary(anentity, n)

 ECBE := evolutionaryBase (history, granularity, m_params)

 # get the top n couplings for the only the given entity

 return slice (ECBE, anentity, n)

procedure to form a corpus with LSI and compute conc coupling

function conceptualBase (src_code, granularity, ia_params)

 # recomputed only if needed

 # form a corpus with LSI

 corpus := lsi (src_code, granularity, ia_params)

 # compute conceptual couplings between all pairs of

 # entities in the corpus

 CCBE := formConceptual (corpus)

 # CCBE is sorted by similarity values

 return CCBE

procedure to mine evolutionary couplings and form

association rules from a given commit history

function evolutionaryBase (history, granularity, m_params)

 # recomputed only if needed

 # mine patterns of co‐changes entities from the history

 # and then form binary association rules

 ECBE := mineEvolutionary (history, granularity, m_params)

 # ECBE is sorted by confidence and support values

 return ECBE

Figure 4 The procedures for computing

conceptual and evolutionary couplings

procedure to compute a disjunctive impact set

the ranking parameters that control the appropriate entities

(recursion) to get from both couplings are discarded for brevity

function disjIA(anentity, cutpoint)

 # anentity: initial entity for IA; # cutpoint: size of the impact set

 # look for equal contributions from both

 # get the top cutpoint/2 conceptual couplings

 EI := getConceptual(anentity, cutpoint/2)

 # get the top cutpoint/2 evolutionary couplings

 EM := getEvolutionary(anentity, cutpoint/2)

 # did we get the equal share? If not try again.

 if |EI U EM| < cutpoint

 return (EI U EM U disjIA(anentity, cutpoint ‐ |EI U EM|)

 # a disjunctive set is the union of the sets EI and EM

 return (EI U EM)

procedure to compute a conjunctive impact set

the ranking parameters that control the appropriate

#entities to get

function conjIA(anentity, cutpoint)

 # anentity: initial entity for IA

 # get the top cutpoint conceptual couplings

 EI := getConceptual(anentity, cutpoint)

 # get the top cutpoint evolutionary couplings

 EM := getEvolutionary(anentity, cutpoint)

 if | EI EM)| < cutpoint

 return ((EI EM) U conjIA(anentity, cutpoint ‐ |EI EM|)

 # a conjunctive set is the intersection of the sets EI and EM

 return (EI EM)

Figure 5 The procedures for disjunctive and

conjunctive impact analysis

10

does not receive a transmitted 300 or 400 response prior to sending its body." In this revision, three
source code files were changed:

/modules/http/http_filters.c, /modules/http/http_protocol.c, and /server/protocol.c.
 In order to perform impact analysis, the developer must have a starting entity. For this

example, let us assume the developer discovers, through feature location, that fixing the problem
requires modifying /modules/http/http_filters.c. From this point the developer can perform impact
analysis to discover other entities that also require modification. Using conceptual and evolutionary
couplings for impact analysis, we obtain the results in Table II. As standalone techniques neither
conceptual nor evolutionary coupling is capable of establishing 100% recall when the developer
specifies an impact set size μ = 5.

 Conceptual coupling ranks /server/protocol.c the first in the ranked list, but ranks
/modules/http/http_protocol.c as 91st.

 Evolutionary coupling ranks /modules/http/http_protocol.c second in the ranked list, but ranks
/server/protocol.c as 16th.

We can combine the results using our disjunctive approach. The conceptual coupling would
provide the following set of files

{/server/protocol.c, /modules/proxy/mod_proxy_http.c, /server/core_filters.c}
 while the evolutionary coupling would provide

{/modules/http/byterange_filter.c, /modules/http/http_protocol.c}.
 The result of the disjunctive combination is

{/server/protocol.c, /modules/proxy/mod_proxy_http.c, /modules/http/byterange_ filter.c,
/modules/http/http_protocol.c, /server/core_filters.c}.

Both evolutionary and conceptual coupling contribute approximately μ/2 files. When μ is odd, a
user-defined preference for either type of couplings could be set to contribute the remaining one
extra entity. In this case μ=5, the first two ranked files by conceptual couplings are included, then
the first two ranked files by evolutionary couplings are included, and finally the third ranked file by
conceptual couplings is included. This results in the set of entities that also appear in Table II. Here
we can see that when combined, the couplings are capable of identifying all methods requiring
modification within an impact set, i.e., cut-off point, of five methods. In the case of the conjunctive
approach, the set intersection is used as oppose to the set union. We use μ entities as opposed of μ/2
entities. In this example, the following methods appear in the set intersection of the results of
conceptual and evolutionary coupling:

{/modules/http/byterange_ filter.c, /modules/proxy/mod_proxy_http.c}.
 The algorithm would continue to iterate through the ranked list of both techniques until the

intersection is of size μ. Note that our disjunctive and conjunctive approaches result in sets as
opposed to ranked lists (i.e., the entities are unordered). Therefore, the order of picking entities in
the final impact set between the contributions of the two types of couplings is irrelevant. In our
evaluation, see Section 4, we evaluate the final impact set (and not a ranked list).

4 Case Study

In this section we describe the empirical assessment of our approach. We describe our study
following the Goal-Question-Metrics paradigm (Basili et al. 1994), which includes goals, quality
focus, and context. In the context of our case study, we aim at addressing the research questions
(RQs):

 RQ1: Does combining conceptual and evolutionary couplings improve the accuracy of IA
when compared to the two standalone techniques?

 RQ2: Does the choice of granularity, i.e., file or method, affect the accuracy of standalone
IA techniques and their combination?

 RQ3: Does the amount of training historical data impact the accuracy of the proposed
combination?

The goal of the case study is to investigate these research questions. The quality focus is on
providing improved accuracy, while the perspective was of a software developer performing a
change task, which requires extensive impact analysis of related source code entities. Our research
questions directly address the effectiveness and expressiveness of an IA solution. With regards to

Table II Example showing the accuracy gains of the disjunctive impact analysis method on the

bug# 47087 in Apache httpd

 Conceptual Evolutionary Disjunctive
1 /server/protocol.c /modules/http/byterange_filter.c /server/protocol.c
2 /modules/proxy/mod_proxy_http.c /modules/http/http_protocol.c /modules/proxy/mod_proxy_http.c
3 /server/core_filters.c /modules/proxy/mod_proxy_ftp.c /modules/http/byterange_filter.c
4 /modules/debugging/mod_bucketeer.c /server/core.c /modules/http/http_protocol.c
5 /modules/http/byterange_filter.c /include/ap_mmn.h /server/core_filters.c

11

effectiveness, it is desirable to have a technique that provides all, and only, the impacted entities,
i.e., prevents false positives and false negatives in the estimated impact set as much as possible.
Note that we give more weight to recall. In the case of impact analysis, it is important to consider
all possible source code entities that are impacted. Overlooking a single entity could possibly
introduce new issues in a software system. Additionally, it is desirable to provide the developers
with the ability to apply the IA technique at various source code granularities. Our approach offers
this feature; however, an important issue is to assess the change in effectiveness at different levels
of granularity, combination weights, and periods of training history used to derive evolutionary
coupling data.

4.1 Evaluated Subject Software Systems

The context of our study is characterized by five open source software systems, namely Apache
httpd, ArgoUML, iBatis, KOffice and jEdit. These systems represent different primary
implementation languages (e.g., C/C++ and Java), sizes, development environments, and
application domains. Apache httpd is an open source implementation of an HTTP server, which
focuses on providing a robust and commercial-grade system. ArgoUML is a Java implementation of
a UML diagramming/modeling tool. The iBatis Data Mapper framework provides a mechanism
that simplifies the use of relational database systems with Java and .NET applications. KOffice is an
application suite that includes various office productivity applications such as word (i.e., KWord)
and spreadsheet (i.e., KSpread) processing. jEdit is a popular open-source text editor. Specifics of
various system characteristics appear in Table III.

4.2 Accuracy Metrics – Precision, Recall, and F-Measure

Impact analysis techniques are typically assessed with the two widely used metrics precision
(i.e., inverse measure of false positives) and recall (i.e., inverse measure of false negatives). These
two metrics are often collectively represented by F-measure values. These metrics are computed
from the estimated impact set produced from a technique and the actual impact set from the
established ground truth (e.g., change-sets/patches after the proposed change is actually
implemented or developer verification).

For a given entity es (e.g., file and method), let EI(es) be the set of entities that are conceptually
related to the entity es. Let Ri be the set of actual or correctly changed entities with the entity es. The
precision of conceptual couplings, PEI, is the mean percentage of correctly estimated changed
entities over the total estimated entities. The precision is defined by Eq. V. The recall of
conceptual couplings, REI, is the mean percentage of correctly estimated changed entities over the
total correctly changed entities. The recall is given by Eq. VI. F-measure considers both precision
and recall, and can be interpreted as a weighted average of the precision and recall, where an FβEI
score (for positive real β=2) reaches its best value at 1 and worst score at 0. Note that we set β=2 to
give more weight to recall. The F-measure is given by Eq. VII.

PEI = 1

n

| EIiRi |

| EIi |
100%

i1

n

Eq. V

REI=
1

1 | |
100%

| |

n
i i

ii

EI R

n R

Eq. VI

F2EI= 2
2

(1 2)
(2)

EI EI

EI EI

P R

P R

Eq. VII

The precision and recall values for evolutionary couplings, disjunctive, and conjunctive methods

can be similarly computed. The set EM(es) would indicate the set of entities that are related to a
known entity es based on evolutionary couplings. The sets E(es) and E(es) would indicate the
couplings from the disjunctive and conjunctive methods respectively.

4.3 Evaluation Procedure

The source code changes in software repositories, i.e., commits, are used for the evaluation
purpose. Our general evaluation procedure consists of the following steps:

Table III Characteristics of the subject systems considered in the empirical evaluation.

System Version LOC Files Methods Terms
Apache(httpd) 2.2.3 311K 782 3.9K 6,583

ArgoUML 0.28 367K 1,995 13.3K 9,384
iBatis 3.0.0-216 70K 774 5.5K 3,772

KOffice 2.0.91 2.0.91 231K 6.5K 104.6K 48,513
KOffice 2.0.1 2.0.1 257K 6.7K 68.4K 32,212

jEdit 4.3 109K 503 6.4K 13,904

12

1. Compute conceptual couplings on one particular version (e.g., KOffice 2.0.91) of a subject
system – Conceptual Training Set.

2. Mine evolutionary couplings (and association rules) from a set of commits in a history
period prior to the selected version in Step 1 – Evolutionary Training Set.

3. Select a set of commits in a history period after the selected version in Step 1 –Testing Set.
Each commit in the testing set is considered as an actual impact set, i.e., the ground truth,
for evaluation purposes.

4. Derive disjunctive and conjunctive impact sets from the two training sets for each commit in
the testing set.

5. Compute accuracy metrics for the two standalone techniques and their two combinations.
6. Compare standalone and combination accuracy results.
7. Repeat the above steps for all the considered subject systems and versions.

The details of the training and testing sets are presented next.

4.3.1 Conceptual training sets - Corpora

We generated two sets of corpora from the subject systems corresponding to documents at the
file and method levels of granularity. The process of generating a corpus consisted of extracting
textual information, i.e., identifiers and comments, from the source code for the specific granularity
level. The identifiers and comments, i.e., terms, from each file (or a method if that is the chosen
granularity) formed a document, whereas a complete collection of these documents formed a
corpus. Once a corpus was built, LSI was used to index its term-by-document co-occurrence matrix.
Conceptual couplings between source code documents, i.e., files or methods, were then computed
(see Section 3). Details of the corpora, including the versions indexed, are provided in Table III.
The associated computing time was consistent with the previous uses (Antoniol et al. 2000;
Poshyvanyk et al. 2009).

4.3.2 Evolutionary training sets

 In order to obtain evolutionary training sets, we selected a period of history, which preceded the
version of the system used to build the corpus. For example, the corpus created for Apache httpd
used the source code from version 2.3.3. The commit history from versions 2.2.9 to 2.3.3 was
considered for the evolutionary training set. These commits spanned across 373 total days. Days
on which no commits were submitted were not included in the total count. We discarded all non-
source code files from the commits, as our approach here focuses on source code. Commits with
more than ten source files were also discarded. This type of filtering is a common heuristic used in
mining techniques to mitigate factors such as updating the license information on every file or
performing merging and copying (Zimmermann et al. 2005; Kagdi et al. 2007; Alali et al. 2008).
The training set consisted of 1,736 commits with 2,086 files that were changed. In this set, 318
commits contained 1,468 function changes. Note that not all the commits with the file changes
contributed to changes in functions, as not all the changed files contained changes in functions. We
considered two different release periods of KOffice. The release history 2.0.0-2.0.91 contains the
development versions that were involved toward the next major release 2.1.0 from the major release

Table IV Evolutionary training and (testing) datasets used for the empirical evaluation. The

numbers within the brackets are for the testing set and those without the brackets are for the

training set.

 History File Level Method Level

System
Training Testing # of

Commits
of
Files

of
Commits

of
Meth
odsReleases Days Releases Days

Apache(httpd) 2.2.9-
2.3.3 373 2.3.3-

2.3.5 48 1,736
(287)

2,086
(982) 318 (19) 1,468

(107)

ArgoUML 0.24-
0.26.2 519 0.26.2-

0.28 103 3,375
(773)

4,217
(621)

1,157
(227)

7,294
(1580)

iBatis
3.0.0-

190_b1 -
3.0.0-

216_b7

33

3.0.0-
216_b7 -

3.0.0-
240_b10

11 108 (40) 461
(118) 18 (21) 94

(154)

KOffice 2.0.91 2.0.0-
2.0.91 154 2.0.91-

2.1.0 28 2,749
(522)

5,580
(1,072) 1,082 (29) 6,344

(106)

KOffice 2.0.1 2.0.0-
2.0.1 27 2.0.1-

2.0.2 12 763 (255) 1,233
(533) 577 (192) 5,530

(1438)

jEdit 4.2.0-
4.3.0 719 4.3.0-

4.3.2 60 2,525
(160)

584
(125)

2,344
(142)

6,344
(106)

13

2.0.0. The release history 2.0.0-2.0.2 includes the maintenance release for the major release 2.0.0.
These two history periods allow us to investigate development and maintenance periods.

The tool sqminer was employed to mine evolutionary couplings (and association rules) in the
itemset mining mode with the minimum support values of 1, 2, 4, and 8. Also, we considered all the
possible (binary) association rules with the confidence values greater than zero. Mining was
performed at both file and method levels of granularity. The mining time was in the order of a few
seconds.

4.3.3 Testing set

The testing sets were extracted similar to training sets; however, the periods of history used were
different from the training set. The testing set consists of commits extracted from a period of
history after the release date of the version of the system used to build the corpus. For example, the
commit history of Apache httpd after the version 2.3.3 and up to the version 2.3.5 was considered
for the testing set. The testing set consisted of 287 commits with 982 files that were changed. In
this set, 19 commits contained 107 function changes. Similar to the training set, not all the commits
with the file changes contributed to changes in functions in the testing set, as not all the changed
files contained changes in functions. The testing set provides a way to evaluate our proposed
approach. Similar approaches for the training and testing sets are previously reported in the
literature, for example in (Zimmermann et al. 2005; Kagdi et al. 2007).

Table IV shows the details of the evolutionary training and testing sets considered at the file and
method levels. The file level granularity is on the left-hand side of the table, whereas method level
granularity is on the right-hand side. They include a range of versions corresponding to different
history periods. Also, the numbers of commits and files (methods) during those periods of history
are provided. The (larger) training sets and (smaller) testing sets were extracted from the History
(Table IV) periods before and after the Versions (Table III) used to index with LSI. For the method
level, the number of commits corresponds to commits that contained method changes (and so differs
from those at the file level). We used codediff to process the commits at the method-level
granularity level here, whereas, srcDiff was used in our previous work (Kagdi et al. 2010). This
choice of a different tool helps address the differencing-specific tool bias in the processing of the
commits at the fine-grained method level.

Table V Orthogonality check for various cut-off points of conceptual (Conc), evolutionary (Evol),

and their combination. The results show that conceptual and evolutionary couplings provide

orthogonal information, and support a strong case for combining them.

 File Level Method Level
 10 20 30 40 50 10 20 30 40 50

Apache

Conc\Evol 33 35 35 35 37

Apache

Conc\Evol 48 49 51 53 61

Evol\Conc 36 28 23 20 17 Evol\Conc 29 26 24 22 18

ConcEvol 32 37 42 45 46 ConcEvol 23 25 25 25 21

ArgoUML

Conc\Evol 51 44 41 41 40

ArgoUML

Conc\Evol 24 22 22 23 25

Evol\Conc 26 28 25 24 22 Evol\Conc 68 66 64 61 57

ConcEvol 23 29 34 35 38 ConcEvol 8 12 14 16 18

iBatis

Conc\Evol 65 69 70 70 70

iBatis

Conc\Evol 86 86 87 87 87

Evol\Conc 21 14 14 13 12 Evol\Conc 13 12 11 11 11

ConcEvol 13 16 16 17 18 ConcEvol 1 2 2 2 2

KOffice

2.0.91

Conc\Evol 62 64 64 63 64
KOffice

2.0.91

Conc\Evol 57 63 63 63 63

Evol\Conc 22 16 13 12 11 Evol\Conc 40 35 35 35 35

ConcEvol 16 20 23 24 26 ConcEvol 3 2 2 2 2

KOffice

2.0.1

Conc\Evol 41 40 42 43 44

KOffice 2.0.1

Conc\Evol 48 46 47 46 46

Evol\Conc 38 36 35 33 32 Evol\Conc 51 52 50 51 51

ConcEvol 21 23 23 23 24 ConcEvol 1 2 3 3 3

jEdit

Conc\Evol 24 20 23 24 26

jEdit

Conc\Evol 12 8 6 9 9

Evol\Conc 44 39 40 43 41 Evol\Conc 85 85 86 84 83

ConcEvol 32 41 37 33 33 ConcEvol 3 7 8 7 8

14

4.4 Results

We present the findings from investigating our research questions below.

4.4.1 RQ1: Does combining conceptual and evolutionary couplings

improve accuracy of IA?

Prior research efforts have investigated the performance of coupling metrics that use specific
sources of information (e.g., structural and textual) to capture couplings in source code. Our first
research question focuses on determining if we can improve the accuracy of IA by augmenting
metrics based on complementary underlying information.

Orthogonality of the Conceptual and Evolutionary Couplings. As a step toward determining
the potential benefits of combining conceptual and evolutionary couplings, we analyze the
orthogonality of the two standalone couplings. One situation where the combination of the
techniques is beneficial is when techniques provide complementary sets of correct entities. If the
standalone techniques considered for combination provide identical or very similar information,
combining them may not be a worthwhile effort, as they would be two different ways to produce the
same result. In order to measure the degree to which the techniques could potentially complement
each other, we use the metrics given in Eq. VIII and Eq. IX:

correct
mimj

correct

mi
correct

mj

correct
mi
correct

mj

%

Eq. VIII

correct
mi \m j

correct

mi
\ correct

mj

correct
mi
correct

m j

%

Eq. IX
where correctmi represents the set of source code entities correctly identified when using coupling
metric mi for IA. The two metrics capture the overlap between the set of correct source code
entities and the percentage of correct entities identified only by mi respectively.

The results of orthogonality metrics between the two types of couplings for the various systems
at both file and method levels are given in Table V. For example, consider the file level granularity
results for Apache for the impact set size of 10, i.e., a cut-off point of 10. The Conc\Evol value is
33%, which is the percentage of the correctly contributed files by the conceptual coupling alone.
The Evol\Conc value is 36%, which is the percentage of the correctly contributed files by the
evolutionary coupling alone. The ConcEvol value is 32%, which is the percentage of the common
contribution of both conceptual and evolutionary couplings. Thus, 71% of the correctly

Table VI File level granularity: F-measure percentage (%) results of conceptual coupling (Conc),

evolutionary coupling (Evol), and disjunctive (Disj) approaches to impact analysis for all systems

using various cut-off points. The disjunctive approach outperforms standalone techniques with

statistical significance (highlighted in bold).

 10 20 30 40 50 10 20 30 40 50

Conc

A
p

ac
h

e

25 22 21 19 16

K
O

ff
ic

e
2.

0.
91

 22 20 18 16 12

Evol 27 20 15 12 12 14 12 10 8 8

Disj 34 29 22 20 17 29 25 21 19 16

Conc

A
rg

oU
M

L

16 14 13 14 11

K
O

ff
ic

e
2.

0.
1 17 13 11 11 8

Evol 11 11 10 10 8 20 16 14 11 8

Disj 19 17 16 14 15 27 22 18 15 16

Conc

iB
at

is

27 29 24 22 19

jE
d

it

11 10 8 8 4

Evol 12 9 7 8 8 13 11 8 8 8

Disj 29 30 27 22 19 14 11 8 8 8

15

recommended files are individually contributed, indicating the orthogonally of these couplings.
Based on our datasets, the overlap between the sets of correctly estimated IA entities by the two
approaches did not exceed 46% and 21% at the file and method levels. A minimal overlap indicates
potential orthogonality between the two techniques. One exception is the case where virtually all
the correct entities identified by one technique makes up a small subset of the correct entities
identified by the other technique. A similar scenario is where one technique performs inadequately
and returns very few correct entities. Both cases are captured by our metric correctmi\mj. Our results
contain cases where conceptual couplings are capable of identifying a large portion of correct
entities that is not identified by evolutionary couplings, and vice versa. In case of KOffice 2.0.1
both techniques are capable of capturing a similar portion of correct entities. These findings support
our premise that combining conceptual and evolutionary couplings could identify a larger set of
correct entities.

F-measure Performance of the Standalone and Combined Approaches. Based on our
datasets, conceptual and evolutionary couplings identify correct entities orthogonally. With this
knowledge, we direct our attention to our second step towards demonstrating the benefits of
combining the couplings. Table VI and Table VII provide F-measure results for the subject systems
under study at class and method level granularity respectively. These results are obtained by using
the various couplings for IA. Only a subset of the cut-off points (μ) we considered are shown in
Table VI and Table VII. The cut-off points represent the sizes of the impact set considered with our
combinations. For example, a cut-off point of 10 indicates that the estimated impact set with our
approach contained 10 entities.

We considered both disjunctive and conjunctive approaches to combining couplings. The
disjunctive approach outperforms the conjunctive approach in all cases considered (see Table VI
and Table VII). Additionally, the conjunctive approach is generally unable to provide improvement
over either technique. This is somewhat expected because the two couplings appear complementary
(see Table V). The orthogonality between the sets of correct entities identified by the two couplings
appears to contribute to the lackluster performance of the conjunctive approach. The utility of the
conjunctive approach is probably better suited for scenarios where a pair of couplings identifies
similar sets of correct entities, but varying sets of false positives. For such a scenario the
conjunctive approach may serve as a useful filtering mechanism for false positives. The disjunctive
approach better leverages the orthogonality between the two couplings. The rest of the discussion
about the combinations of two couplings refers to the disjunctive approach.

The prevailing pattern in our finding is that the combination of conceptual and evolutionary
couplings improves the performance over either standalone technique. Consider a case in Table VI
where μ = 30 (i.e., the impact set size is 30 files) for Apache httpd at the file level granularity.
Conceptual and evolutionary couplings yield F-measure values of 21% and 15% respectively, while
the combination of the two increases F-measure to 22%. Similar improvements are apparent
throughout all the datasets considered in our evaluation. Another example is where μ = 50 for

Table VII Method level granularity: F-measure percentage (%) results of conceptual coupling

(Conc), evolutionary coupling (Evol), and disjunctive (Disj) approaches to impact analysis for all

systems using various cut-off points. The disjunctive approach outperforms standalone IA

techniques with statistical significance (highlighted in bold).

 10 20 30 40 50 10 20 30 40 50

Conc

A
p

ac
h

e

18 17 14 14 11

K
O

ff
ic

e
2.

0.
91

 11 9 10 8 8

Evol 14 15 14 13 11 10 10 8 7 7

Disj 23 23 22 21 20 19 18 16 15 12

Conc

A
rg

oU
M

L

4 3 4 4 4

K
O

ff
ic

e
2.

0.
1 4 4 4 3 3

Evol 12 14 14 13 13 12 13 12 12 11

Disj 16 17 17 16 15 14 16 14 14 12

Conc

iB
at

is

15 15 13 11 11

jE
d

it

2 0 0 0 0

Evol 4 3 3 3 0 9 9 7 7 7

Disj 20 15 13 11 11 10 9 7 7 7

16

KOffice 2.0.1 (file-level granularity). In this case, both couplings yield the F-measure value of 8%,
while the combination of the two increases F-measure to 16%. Within our results a few cases
surface that illustrate the importance of both techniques. For example, in the case where μ = 5 for
iBatis combining conceptual and evolutionary couplings does not improve accuracy. This can be
partially attributed to the accuracy of the evolutionary coupling metric. In this case, the inadequate
individual performance of a technique limits the gain acquired when they are combined.

Figure 6 and Figure 7 show the results of F-measures across cut-off points at the file-level
granularity and method-level granularity respectively. The blue (diamond), red (square), and green
(cross) curves show the performances of conceptual, evolutionary, and disjunctive approaches. We
observe that the disjunctive approach generally outperforms both conceptual and evolutionary
couplings across the cut-off points. Also, we notice that conceptual couplings tend to provide better
accuracy (with the apparent exception of jEdit) than the evolutionary couplings. These trends are
consistent regardless of the level of granularity. This indicates that the disjunctive approach
provides an improvement despite the change in granularity.

(a) Apache httpd (b) ArgoUML

(c) iBatis (d) KOffice 2.0.91

(e) KOffice 2.0.1 (f) jEdit

Figure 6 File level granularity: F-measure (F) percentages results of conceptual coupling (Conc),

evolutionary coupling (Evol), and disjunctive (Disj) approaches to impact analysis for all systems

using various cut-off points. ImpC and ImpE show the improvement obtained by the disjunctive

approach compared to conceptual and evolutionary couplings respectively. The disjunctive

approach outperforms standalone techniques with statistical significance.

0

5

10

15

20

25

30

35

40

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

5

10

15

20

25

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

5

10

15

20

25

30

35

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

5

10

15

20

25

30

35

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

5

10

15

20

25

30

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

2

4

6

8

10

12

14

16

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

17

Our results for combining conceptual and evolutionary couplings are promising. To further
ascertain our conclusions on our initial dataset, we carried out a statistical test. Although, we have
summarized all the results with F-measure, we wanted to determine the individual statistical impact
of both precision and recall metrics. We developed four testable null hypotheses (both at file and
method level granularity):

H0 CP: Combining conceptual and evolutionary couplings does not significantly improve
precision results of impact analysis compared to conceptual couplings.

H0 CR: Combining conceptual and evolutionary couplings does not significantly improve recall
results of impact analysis compared to conceptual couplings.

H0 EP: Combining conceptual and evolutionary couplings does not significantly improve
precision results of impact analysis compared to evolutionary couplings.

H0 ER: Combining conceptual and evolutionary couplings does not significantly improve recall
results of impact analysis compared to evolutionary couplings.

We also developed alternative hypotheses for the cases where the null hypotheses can be
rejected with relatively high confidence. For example:

Ha CP: Combining conceptual and evolutionary couplings significantly improves precision results
of impact analysis compared to conceptual couplings.

(a) Apache httpd

(b) ArgoUML

(c) iBatis

(d) KOffice 2.0.91

(e) KOffice 2.0.1

(f) jEdit

Figure 7 Method level granularity: F-measure (F) percentages results of conceptual coupling

(Conc), evolutionary coupling (Evol), and disjunctive (Disj) approaches to impact analysis.

Disjunctive approach outperforms the two standalone approaches with statistical significance.

0

5

10

15

20

25

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

5

10

15

20

25

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

0

2

4

6

8

10

12

10 20 30 40 50

Cut point

F
-M

ea
su

re

Conc Evol Disj

18

The remaining three alternative hypotheses are formulated in a similar manner and are left out
for brevity.

To test for statistical significance, we used the Wilcoxon signed-rank test, a non-parametric
paired samples test. We use the testing data (see Table IV) as our sample. Our application of the
test determines whether the improvement obtained using the combination of conceptual and
evolutionary couplings compared to standalone approaches is statistically significant.

Table VIII presents the results of performing the Wilcoxon signed-rank test. We performed the
test for each of the four hypotheses for each system to determine whether the improvements for
precision and recall when combining the techniques are statistically significant over the accuracy of
standalone conceptual and evolutionary couplings at the file level granularity. With a few
exceptions, we obtained a p-value of less than 0.0125 (applying Bonferroni correction to ensure the
four null hypotheses are correct 95% of the time – 0.05 * 1/4), indicating that the improvement in
accuracy obtained is not by chance. Thus, we rejected all our null hypotheses and accepted the
alternate hypotheses.

4.4.2 RQ2: Does the choice of granularity (i.e., file vs. method) impact

standalone techniques and their combinations?

Our second research question focuses on the impact of granularity on the accuracy of the
standalone techniques, as well as their combinations. We examined the impact of different
granularities on the accuracy of the couplings when they are used for IA. Here, we focused on the
accuracy of the various couplings on the systems Apache, ArgoUML, iBatis, KOffice 2.0.1, KOffice
2.0.92, and jEdit. For these systems we obtained results at both file and method levels of
granularity. F-measure results of the techniques for IA are shown in Table VI and Table VII. There
is a noticeable decrease in F-measure values when the method level granularity is used. Consider a
case in Table VII where μ = 40 (i.e., the impact set size is set of 40 files) for Apache httpd.
Conceptual and evolutionary couplings yield the F-measure value of 14% each, while the
combination of the two increases it to 22%. Similar improvements are apparent throughout all the
datasets across all the three metrics considered in our evaluation. Figure 7 shows the results of F-
measures across cut-off points at the method-level granularity. The blue (diamond), red (square),
and green (cross) curves show the performances of conceptual, evolutionary, and disjunctive
approaches. We observe that the disjunctive approach generally outperforms both conceptual and
evolutionary couplings across the cut-off points. Also, we notice that evolutionary couplings tend
to provide better accuracy (with the apparent exception of iBatis and KOffice 2.0.91) than the
conceptual couplings. The training set for KOffice 2.0.91 contained only minor releases, which
indicates the mined evolutionary couplings may not provide for accurate and complete
recommendations. The training and testing sets of iBatis consisted of a relatively small number of
commits and entities compared to other systems in our evaluation.

Overall, conceptual couplings are more affected by the difference in granularity than
evolutionary couplings. For the conceptual couplings, going from the coarse granularity of files to
the finer granularity of methods resulted in the reduction of the sizes of the documents. The
documents were reduced in terms (and frequency). That is, a file is typically much “bigger” than a
method. Previous works on the application of information retrieval techniques in software

Table VIII Results of Wilcoxon signed-rank test (μ = 30). The p-values of less than 0.05 (marked

in green) indicate that the disjunctive approach provided improvement is not by chance.

Granularity System H0 CP H0 CR H0 EP H0 ER

File Level
Granularity

Apache(httpd) 0.0002 0.0003 0.0001 0.0003

ArgoUML 0.0050 0.0039 < 0.0001 < 0.0001

iBatis 0.0126 0.0126 0.0001 0.0002

KOffice 2.0.91 < 0.0001 < 0.0001 < 0.0001 < 0.0001

KOffice 2.0.1 < 0.0001 < 0.0001 < 0.0001 < 0.0001

jEdit 0.0300 0.0070 0.0180 0.0180

Method Level
Granularity

Apache(httpd) 0.0160 0.0070 0.0180 0.0180

ArgoUML < 0.0001 < 0.0001 < 0.0001 < 0.0001

iBatis 0.0010 0.0010 0.3100 0.3100

KOffice 2.0.91 0.0200 0.0003 0.0100 0.0100

KOffice 2.0.1 < 0.0001 < 0.0001 < 0.0001 < 0.0001

jEdit < 0.0001 < 0.0001 0.1000 0.1000

19

engineering have observed a similar sensitivity trend with respect to the size of the document and
the accuracy of the intended tasks (Revelle et al. 2011). For the evolutionary couplings, only the
co-change information in commits was utilized for evolutionary couplings. The accuracy
difference from the file level to the method level was due to the fact that there was no one-to-one
mapping between file and method changes in commits. That is, not all the files that were involved
in the commits had method-level changes. On the other hand, there were files with multiple method
level changes. As a result, despite of a correct recommendation of an impact set at the file level,
there was no corresponding recommendation at the method level. It is interesting to note that there
was also an observation on the opposite end of the spectrum. That is, we observed a gain in
accuracy at the method level over the file level (precision of 11% over 6% for Apache). The “false”
couplings inferred at the file level granularity from the training set (e.g., f1 f2) were not repeated
in the testing set (f1 f3). The method-level couplings identified from a single file (e.g., m1 m2
from the file f1) in the training set were repeated in the testing set (e.g., m1 m2 in the file f1).
Overall, the accuracy difference for evolutionary couplings across the granularly levels do not show
a sharp change. Regardless of the decrease in accuracy of the standalone techniques, when the two
are combined there exists a statistically significant improvement in accuracy. Generally, only a
small portion of correct methods identified by both techniques overlap, i.e., they exhibit
orthogonality. This allows their combination to provide an enriched set of correct methods.

Table VI and Table VII present the results for impact analysis while using the file and method
granularity levels respectively. In general, our results indicate that granularity indeed impacts
accuracy. In many cases the decrease in accuracy is quite noticeable. For example, for μ = 30 in
for iBatis, conceptual couplings yield decreasing F-measure values from 24% to 15% and
evolutionary couplings yield decreasing F-measure value from 7% to 3%. Similar trends occur for
all the software systems considered. One point of interest is the fact that for the method level
granularity, evolutionary couplings provided better accuracy results for ArgoUML while conceptual
couplings provided generally better results at file level granularity.

Our results indicate that the level of granularity does impact the accuracy of both standalone
techniques and their combinations. Although finer granularity decreases accuracy of all approaches,
it does not prevent the combination of the two from outperforming the standalone techniques. That
is, the gain acquired by combining conceptual and evolutionary coupling exists regardless of the
granularity considered in this study. For both file-level and method-level granularity levels,
combining conceptual and evolutionary information delivers accuracy superior to either standalone
technique.

Table VIII also presents the results of performing the Wilcoxon signed-rank test for the method
level granularity. We performed the test for each of the four hypotheses, formulated similar to that

Table IX The amounts of change history periods considered for the five systems.

System Release Interval Date Interval
Days
with

Changes
Commits

Apache(httpd)

[2.2.8, 2.3.3] [2008-01-10, 2009-11-11] 481 2,320
[2.2.9, 2.3.3] [2008-06-10, 2009-11-11] 373 1,788
[2.3.0, 2.3.3] [2008-12-07, 2009-11-11] 256 1,286
[2.3.1, 2.3.3] [2009-01-03, 2009-11-11] 231 1,112
[2.3.2, 2.3.3] [2009-03-23, 2009-11-11] 176 871

ArgoUML

[0.14, 0.26.2] [2003-12-15, 2008-11-19] 1,549 9,713
[0.16, 0.26.2] [2004-07-19, 2008-11-19] 1,369 8,989
[0.18, 0.26.2] [2005-04-30, 2008-11-19] 1,101 7,207
[0.20, 0.26.2] [2006-02-09, 2008-11-19] 837 5,625
[0.22, 0.26.2] [2006-08-08, 2008-11-19] 676 4,380
[0.24, 0.26.2] [2007-02-12, 2008-11-19] 519 3,375
[0.26, 0.26.2] [2008-09-27, 2008-11-19] 41 244

iBatis

3.0.0-190_[b1, b7] [2009-08-03, 2009-12-19] 33 96
3.0.0-190_[b2, b7] [2009-08-16, 2009-12-19] 32 94
3.0.0-190_[b3, b7] [2009-08-29, 2009-12-19] 30 90
3.0.0-190_[b4, b7] [2009-10-10, 2009-12-19] 17 42
3.0.0-190_[b5, b7] [2009-11-01, 2009-12-19] 11 28
3.0.0-190_[b6, b7] [2009-12-05, 2009-12-19] 5 16

KOffice 2.0.91
[2.0.81, 2.0.91] [2009-08-23, 2009-10-23] 60 1,184
[2.0.82, 2.0.91] [2009-09-10, 2009-10-23] 43 815
[2.0.83, 2.0.91] [2009-10-03, 2009-10-23] 20 296

jEdit
[4.3-pre1, 4.3] [2004-12-31, 2009-12-22] 719 2,051
[4.3-pre2, 4.3] [2005-03-12, 2009-12-22] 481 1,388
[4.3-pre4, 4.3] [2006-05-12, 2009-12-22] 477 1,379

20

of the file level granularity, for each system to determine whether the improvements for precision
and recall when combining the techniques are statistically significant over the accuracy of
standalone conceptual and evolutionary couplings at the method level granularity. Although, we
have summarized all the results with F-measure, we wanted to determine the individual statistical
impact of both precision and recall metrics. At the file level granularity, we obtained a p-value less
than 0.05 for all the hypothesis, indicating that the improvement in accuracy obtained over the
conceptual and evolutionary couplings is not by chance. In all cases considered at the method level,
we obtained a p-value of less than 0.05 for the first two hypotheses, indicating that the improvement
in accuracy obtained over the conceptual couplings is not by chance. Thus, we rejected these two
null hypotheses and accepted the alternate hypotheses. For the third and fourth hypotheses, Apache,
ArgoUML, and KOffice (the three largest systems in our dataset) showed p-values of less than 0.05,
whereas iBatis and jEdit (the three smallest systems in our dataset) showed p-values of greater than
0.05. Therefore, we rejected these two null hypotheses and accepted the alternate hypotheses for
Apache, ArgoUML, and KOffice, indicating that the improvement in accuracy obtained over the
evolutionary couplings is not by chance. Our statistical analysis results show that the disjunctive
approach outperforms both evolutionary and conceptual couplings at the file level of granularity
across all the considered systems. Also, the disjunctive approach tends to outperform both
evolutionary and conceptual couplings at the method level of granularity for larger systems in terms
of number of files and methods.

4.4.3 RQ3: Does the amount of training historical data impact the accuracy

of the proposed combination?

Our third research question examines the impact of history on our proposed approach. We
considered various amounts of history periods for different systems. A wide spectrum of kinds of
releases, including major, minor, development, prereleases, and beta, was considered. Table IX
shows the specific release intervals, date intervals, number of days with changes, and number of
commits for all the considered systems. Note that the values in the days with changes column may
not align with the difference given by the corresponding release intervals. This mismatch is due to
the fact that not all calendar days would have commits. For example, the date interval [2009-01-03,
2009-11-11] has only 231 days with commits.

We analyze KOffice 2.0.91 in detail and summarize the F-measure performance of the
disjunctive approach on all the considered systems. For KOffice 2.0.91, we obtain evolutionary
couplings using three different periods of history from the versions 2.0.83, 2.0.82, and 2.0.81, each
as a starting point to the version 2.0.91. The interval [2.0.81, 2.0.91] represents the largest training
period, whereas the interval [2.0.83, 2.0.91] represents the shortest training period for evolutionary
couplings. These three versions are the minor releases from the development of the major release
2.1.0 of KOffice.

Table X shows the results of using different periods of history in our combined approach. They
demonstrate that using a larger period of history improves the F-measure of the results obtained for
both evolutionary coupling, as well as the combination of evolutionary and conceptual couplings.
For example, results for the file level granularity show that the F-measure value increases from 24%

Table X F-measure percentage (%) results of conceptual coupling (Conc), evolutionary coupling

(Evol), and disjunctive (Disj) approaches to impact analysis for KOffice 2.0.91 (different periods

of history) using various cut-off points. The disjunctive approach outperforms standalone IA

techniques with statistical significance (highlighted in bold).

 File Level Method Level

 10 20 30 40 50 10 20 30 40 50

Conc

K
O

ff
ic

e

2.
0.

81
 22 20 18 16 12

K
O

ff
ic

e

2.
0.

81
 11 9 10 8 8

Evol 10 7 7 4 4 10 10 8 7 7

Disj 27 23 19 16 16 19 18 16 15 12

Conc
K

O
ff

ic
e

2.
0.

82
 22 20 18 16 12

K
O

ff
ic

e

2.
0.

82
 4 4 4 3 3

Evol 10 7 7 4 4 12 13 12 12 11

Disj 27 23 19 16 16 14 16 14 14 12

Conc

K
O

ff
ic

e

2.
0.

83
 22 20 18 16 12

K
O

ff
ic

e

2.
0.

83
 2 0 0 0 0

Evol 5 4 4 4 4 9 9 7 7 7

Disj 24 22 19 16 16 10 9 7 7 7

21

to 27% whenever more history is used. More specifically, the larger period of history, starting from
version 2.0.81 as oppose to 2.0.83, demonstrates a clear improvement in accuracy at cut-off point
10, for instance. Similarly, when using the method level granularity, F-measure value increases
from 10% to 19% at the cut-off point of 10 when the history starts from version 2.0.81 instead of
2.0.83. The improvement of the standalone technique also carries over to the disjunctive
combination, as attested by the results.

Figure 8 shows the F-measure performances of the disjunctive approach with the change in the
amount of history for the considered five systems. Figure 8 (g) and Figure 8 (h) show the F-
measure values of KOffice 2.0.91 corresponding to the specific history periods across cut-off points
for the file and method levels of granularity. The change in F-measure values at the file level does
not show any noticeable difference with the increase in the amount of history (except a slight
change for the cut-off point 10). This observation indicates that there may be an increase in either
precision or recall values with an increase in the considered history period; however, there may not
be any noticeable difference in combined accuracy with the F-measure. Another interesting
observation is that the F-measure performance of the disjunctive approach shows a considerable
change at the method level granularity. Therefore, our findings suggest that when the development
versions of history are considered in the training set, the finer (method) granularity performance
may improve with the increase in change history period.

Figure 8 also shows the F-measure performances of the other four systems across the cut-off
values (shown with different marked lines) for the different commit duration. The x-axis shows the
number of commits involved in each considered history duration. These versions and durations are
given in Table IX. ArgoUML shows the same behavior as KOffice 2.0.91. The results for
ArgoUML at the file and method levels of granularity are presented in Figure 8 (c) and Figure 8 (d)
respectively. This similarity in performance could be attributed to the fact that development
versions for major releases were considered for ArgoUML, which was also the case with KOffice
2.0.91. Also, these two systems were the largest systems considered in our evaluation. For the
other systems Apache httpd, jEdit, and iBatis, the performance in F-measures do not show any
noticeable difference with the change in the amount of history. These three systems had smaller
numbers of commits and changed entities than ArgoUML and KOffice. Small differences in these
systems were largely limited to smaller cut-off points, and were more prone at the method level than
at the file level. For iBatis, only the beta (test) versions were considered. As such, the changes
between consecutive releases did not contribute much to improving the predictions in the testing set.
We considered all the major releases for jEdit from 2004 to 2007. The testing set considered in this
case was much smaller than the training set (2,344 vs. 142 files). For jEdit, the performance of the
testing had peaked for the initial training set (release 4.2 to 4.3) considered. We tried building
training sets with pre-release change history for jEdit. The flat lines in Figure 8 (i) and Figure 8 (j)
for the file and method levels of granularity indicate that when a relatively small testing set is
considered only the most recent (release) history for the training set could be sufficient.

In summary, it was observed that increasing the training history with development versions
across major releases (of larger systems) had an impact on the F-measure value, which was more
noticeable at the method-level granularity than the file level granularity.

4.5 Threats to validity

We address some of the threats to validity, including internal and external, that could have
impacted our empirical study and results.

Results are specific to only a certain parameter setting:
 The uses of LSI and itemset mining algorithms are sensitive to a set of user-defined parameters.

It is a viable risk that the improvements gained by our approach are valid only for a particular set of
these parameter values. To address this risk, we experimented with different parameter values. For
example, the accuracy of evolutionary couplings decreases with an increase in the minimum support
value; however, the trend of accuracy gains continued with our approach. With respect to LSI, we
set the dimensionality reduction parameter, k = 300. We will continue our quest to obtain the
optimal values with other studies in the future.

The measures used for accuracy do not depict a true account:
We measured the accuracy of IA with precision, recall, and F-measure metrics. It is possible

that a different accuracy metric may produce a different result; however, both these metrics are
widely used and accepted in the community, including for IA. We tried with F-measure, which is
based on precision and recall, and also noticed statistically significant improvements with our
disjunctive approach. We considered (later) commits as the gold standard for computing our
accuracy metrics.

The gold standard used for evaluation is not realistic:
It is reasonable to assume that not all the entities in a commit are related to a single change

request, and a single commit may not capture all the entities related to a change request. Therefore,

22

(a) Apache httpd (File)

(b) Apache httpd (Method)

(c) ArgoUML (File)

(d) ArgoUML (Method)

(e) iBatis (File)

(f) iBatis (Method)

(g) KOffice 2.0.91 (File)

(h) KOffice 2.0.91 (Method)

(i) jEdit (File)

(j) jEdit (Method)

Figure 8 Impact of the amount of training-set history on the accuracy gains of the disjunctive

approach on the five systems considered. F-measure was used for the accuracy. The charts on the

left and right correspond to the file and method levels of granularity.

0

5

10

15

20

25

30

35

40

45

0 500 1,000 1,500 2,000 2,500

of Commits

F
-M

ea
su

re

10 20 30 40 50

0

5

10

15

20

25

0 500 1,000 1,500 2,000 2,500

of Commits

F
-M

e
as

u
re

10 20 30 40 50

0

5

10

15

20

25

0 2,000 4,000 6,000 8,000 10,000 12,000

of Commits

F
-M

e
as

u
re

10 20 30 40 50

0

2

4

6

8

10

12

14

0 2,000 4,000 6,000 8,000 10,000 12,000

of Commits

F
-M

e
as

u
re

10 20 30 40 50

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

of Commits

F
-M

ea
su

re

10 20 30 40 50

0

5

10

15

20

25

30

0 20 40 60 80 100 120

of Commits

F
-M

ea
su

re

10 20 30 40 50

0

5

10

15

20

25

30

0 200 400 600 800 1,000 1,200 1,400

of Commits

F
-M

e
as

u
re

10 20 30 40 50

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1,000 1,200 1,400

of Commits

F
-M

e
as

u
re

10 20 30 40 50

0

2

4

6

8

10

12

14

16

1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 2,100

of Commits

F
-M

ea
su

re

10 20 30 40 50

0

1

2

3

4

5

6

7

8

9

1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 2,100

of Commits

F
-M

ea
su

re

10 20 30 40 50

23

they may not be an accurate representation of the actual change-sets and could have compromised
our accuracy basis. However, commits have been used as a basis for accuracy assessment
previously (e.g., see Zimmerman et al. (Zimmermann et al. 2005)). We did some manual
inspection. We examined randomly selected 5-10% of the commits in the testing set from each
system. We were not able to find a strong evidence of files that were checked in together in a single
commit, but were not related to each other. This observation could be an attributed of our sampled
data, and may not be a general phenomenon. Therefore, we plan to conduct a user study with
developers to establish actual impact sets in the future.

Instruments used in mining of evolutionary couplings may introduce errors:
The commits used in the training and testing sets were obtained using a pysvn API

programmatically. Although, pysvn is robust and reliable, it is possible that we might have missed a
few commits. We compared the results of pysvn with that of Subversion’s command line interface
(i.e., svn co), and did not record any differences in the results. We processed the commits at the
method level granularity using lightweight syntactic markup language (srcML) and differencing
tools. It is possible that some of the methods may have been missed or incorrectly identified. For
mining the patterns and rules for evolutionary couplings, we used standard itemset and association
mining algorithms.

Results are specific to only a source code granularity level:
We reported our findings at the granularity of file and method levels. A possible issue here

could be how well our results hold for other granularity levels besides the two considered. We
concur with previous studies (Zimmermann et al. 2005) that file and method granularity levels
provide a realistic balance of coarse and fine granularity levels for IA. The accuracies of the two
standalone techniques, however low in certain cases to raise a practicality concern, are comparable
to other previous results (Zimmermann et al. 2005). Our work shows how to improve accuracy by
forming effective combinations.

Results may hold for a specific training-set interval
Evolutionary couplings, one of the two major sources of information, used in our approach are

mined from a chosen commit history period. This selection of training set introduces the risk that
results may only hold for a specific period. To analyze the results carefully and mitigate this threat,
we considered training sets from all minor, major, development, maintenance, and beta (test)
versions of software systems. Additionally, we also assessed the performance of our approach
across different sizes of training periods.

Results may not hold for other systems:
We evaluated on datasets from five open source systems that represent a wide spectrum of

domains, programming languages (C/C++ and Java), sizes, and development processes. However,
we do not claim that our combined approach would operate with equivalent improvement in
accuracy on other systems, including closed source.

5 Conclusions and future work

We presented an approach to software change impact analysis that combines two orthogonal
sources of information: conceptual and evolutionary couplings. These couplings are derived from
applying information retrieval and mining software repositories techniques. The empirical
assessment on five open source systems provides support for our approach with several conclusions
that combining conceptual and evolutionary couplings improves accuracy of impact analysis. Our
findings indicate that in certain cases an improvement of 21% in F-measure is achieved when
conceptual and evolutionary couplings are combined. The overall improvement obtained when
combining the two techniques is statistically significant for most of the datasets used in our
evaluation at the file level granularity and there exists a similar support at the method level
granularity for larger datasets such as Apache, ArgoUML, and KOffice. Although our combining
methods of couplings may appear straightforward, it did provide effective improvements in
accuracy. Our findings show that the disjunctive approach clearly outperforms the conjunctive
approach in accuracy. We conjecture that the difference in performance is, in part, an attribute of
the orthogonal nature of the correct entities revealed by the two couplings in our empirical analysis.

Varying granularity levels does impact accuracy; however, combining conceptual and
evolutionary couplings maintains the accuracy gains. Based on our datasets, using finer granularity
(i.e., method-level) decreases the accuracy of all the techniques considered. One important point to
note is that, regardless of the decrease in individual accuracy, the combination of conceptual and
evolutionary coupling consistently outperformed both standalone techniques. The benefits of the
approach, particularly in the larger systems are clearly evident with statistical significance at both
the file and method level granularities, which is where improved support for impact analysis maybe
much needed. Thus, there is strong evidence showing the value of the combination of conceptual
and evolutionary couplings at various levels of granularity. Furthermore, we observe that larger

24

periods of history improve evolutionary couplings and subsequently its combination with the
conceptual couplings.

We plan to devise and empirically validate other combinations of conceptual and evolutionary
couplings (e.g., weighed contributions of entities from each coupling based on the amount of
change history considered). Another key future direction includes the addition of static and dynamic
analysis information, and application of IR on multi-version artifacts (e.g., commit messages and
bug reports) in our approach, and extending our approach to provide IA support beginning from a
high-level textual change request. We are also planning extensive comparative studies with other
approaches (e.g., structural metrics). In previous studies (Antoniol et al. 2000; Poshyvanyk et al.
2009), it was reported that IR techniques performed as well as or better than those based on
structural metrics for IA. This work will serve as a guideline for our future studies.

Finally, the data used in producing the results in this paper is publicly available and other
researchers are encouraged to reproduce or verify our results
(http://www.cs.wm.edu/semeru/data/emse-impact-analysis).

Acknowledgements: We are grateful to the EMSE and WCRE 2010 reviewers, and WCRE 2010
conference participants for their pertinent comments that helped us in improving the quality of this
extended paper. We would also like to thank Bogdan Dit for his help on improving the
presentation of this paper. This work is supported by United States NSF CCF-1016868, NSF CCF-
0916260, NSF CCF-1156401, and NSF CCF-1218129 grants. Any opinions, findings, and
conclusions expressed herein are the authors’ and do not necessarily reflect those of the sponsors.

References

Abebe S. L., Haiduc S., Marcus A., Tonella P. and Antoniol G. (2009) Analyzing the Evolution of
the Source Code Vocabulary. 13th IEEE European Conference on Software Maintenance
and Reengineering (CSMR'09), Kaiserslautern, Germany, 189-198.

Agrawal R. and Srikant R. (1995) Mining Sequential Patterns. 11th International Conference on
Data Engineering, Taipei, Taiwan, IEEE Computer Society: Los Alamitos CA.

Alali A., Kagdi H. and Maletic J. I. (2008) What's a Typical Commit? A Characterization of Open
Source Software Repositories. 16th IEEE International Conference on Program
Comprehension (ICPC'08), Amsterdam, The Netherlands.

Antoniol G., Canfora G., Casazza G., De Lucia A. and Merlo E. (2002) Recovering Traceability
Links between Code and Documentation. IEEE Transactions on Software Engineering
28(10): 970 - 983.

Antoniol G., Canfora G., Casazza G. and Lucia A. (2000) Identifying the Starting Impact Set of a
Maintenance Request: A Case Study. 4th European Conference on Software Maintenance
and Reengineering (CSMR'00), Zurich, Switzerland, 227-231.

Antoniol G., Gueheneuc Y.-G., Merlo E. and Tonella P. (2007) Mining the Lexicon Used by
Programmers during Software Evolution. 23rd IEEE International Conference on
Software Maintenance (ICSM'07), Paris, France, IEEE Computer Society Press, 14-23.

Anvik J., Hiew L. and Murphy G. C. (2006) Who should fix this bug? 28th International
Conference on Software Engineering (ICSE'06), 361-370.

Arnaoudova V., Eshkevari L., Oliveto R., Guéhéneuc Y.-G. and Antoniol G. (2010) Physical and
conceptual identifier dispersion: Measures and relation to fault proneness. 26th IEEE
International Conference on Software Maintenance (ICSM'10), Timisoara, Romania, 1-5.

Basili V. R., Caldiera G. and Rombach. D. H. (1994) The Goal Question Metric Paradigm, John W
& S.

Binkley D., Davis M., Lawrie D. and Morrell C. (2009) To CamelCase or Under_score. 17th IEEE
International Conference on Program Comprehension (ICPC'09), Vancouver, British
Columbia, Canada, IEEE, 158-167.

Binkley D. and Lawrie D. (2010a). Information Retrieval Applications in Software Development.
Encyclopedia of Software Engineering. P. Laplante, Taylor & Francis LLC.

Binkley D. and Lawrie D. (2010b). Information Retrieval Applications in Software Maintenance
and Evolution. Encyclopedia of Software Engineering. P. Laplante, Taylor & Francis
LLC.

Bohner S. and Arnold R. (1996) Software Change Impact Analysis. Los Alamitos, CA, IEEE
Computer Society.

Briand L., Labiche Y. and Soccar G. (2002) Automating Impact Analysis and Regression Test
Selection Based on UML Designs. International Conference on Software Maintenance
(ICSM'02), Montreal, Quebec, Canada, 252-261.

25

Briand L., Wust J. and Louinis H. (1999) Using Coupling Measurement for Impact Analysis in
Object-Oriented Systems. IEEE International Conference on Software Maintenance
(ICSM'99), IEEE Computer Society Press, 475-482.

Briand L. C., Daly J. and Wüst J. (1999) A Unified Framework for Coupling Measurement in
Object Oriented Systems. IEEE Transactions on Software Engineering 25(1): 91-121.

Canfora G., Ceccarelli M., Cerulo L. and Di Penta M. (2010) Using Multivariate Time Series and
Association Rules to Detect Logical Change Coupling: an Empirical Study. 26th IEEE
International Conference on Software Maintenance, Timisoara, Romania.

Canfora G. and Cerulo L. (2005) Impact Analysis by Mining Software and Change Request
Repositories. 11th IEEE International Symposium on Software Metrics (METRICS'05),
20-29.

Caprile C. and Tonella P. (1999) Nomen Est Omen: Analyzing the Language of Function
Identifiers. 6th IEEE Working Conference on Reverse Engineering (WCRE'99), Atlanta,
Georgia, USA, 112-122.

Chen K. and Rajlich V. (2000) Case Study of Feature Location Using Dependence Graph. 8th
IEEE International Workshop on Program Comprehension (IWPC'00), Limerick, Ireland,
241-249.

Chen K. and Rajlich V. (2001) RIPPLES: Tool for Change in Legacy Software. International
Conference on Software Maintenance (ICSM'01), Florence, Italy, 230-239.

Cleland-Huang J., Czauderna A., Gibiec M. and Emenecker J. (2010) A machine learning
approach for tracing regulatory codes to product specific requirements. 32nd ACM/IEEE
International Conference on Software Engineering (ICSE'10), Cape Town, South Africa
155-164.

Collard M. L., Kagdi H. H. and Maletic J. I. (2003) An XML-Based Lightweight C++ Fact
Extractor. 11th IEEE International Workshop on Program Comprehension (IWPC'03),
Portland, OR, IEEE-CS, 134-143.

De Lucia A., Fasano F., Oliveto R. and Tortora G. (2007) Recovering Traceability Links in
Software Artefact Management Systems using Information Retrieval Methods. ACM
Transactions on Software Engineering and Methodology (TOSEM) 16(4).

Deissenboeck F. and Pizka M. (2005) Concise and Consistent Naming. 13th IEEE International
Workshop on Program Comprehension (IWPC'05), St. Louis, Missouri, USA, 97-106.

Deissenboeck F. and Pizka M. (2006) Concise and Consistent Naming. Software Quality Journal
14(3): 261-282

Di Lucca G. A., Di Penta M. and Gradara S. (2002) An Approach to Classify Software
Maintenance Requests. IEEE International Conference on Software Maintenance
(ICSM'02), Montréal, Québec, Canada, 93-102.

Dit B., Revelle M., Gethers M. and Poshyvanyk D. (2012a) Feature Location in Source Code: A
Taxonomy and Survey. Journal of Software Maintenance and Evolution: Research and
Practice (JSME) doi: 10.1002/smr.567.

Dit B., Revelle M. and Poshyvanyk D. (2012b) Integrating Information Retrieval, Execution and
Link Analysis Algorithms to Improve Feature Location in Software. Empirical Software
Engineering.

Eaddy M., Aho A. V., Antoniol G. and Guéhéneuc Y. G. (2008) CERBERUS: Tracing
Requirements to Source Code Using Information Retrieval, Dynamic Analysis, and
Program Analysis. 16th IEEE International Conference on Program Comprehension
(ICPC'08), Amsterdam, The Netherlands, 53-62.

Fluri B., Gall H. and Pinzger M. (2005) Fine-Grained Analysis of Change Couplings. 5th
International Workshop on Source Code Analysis and Manipulation (SCAM'05)
Budapest, Hungary, IEEE Computer Society: Washington, DC, USA, 66-74.

Gall H., Hajek, K., Jazayeri, M. (1998) Detection of Logical Coupling Based on Product Release
History. Proceedings of the International Conference on Software Maintenance 1998
(ICSM'98), 190 - 198.

Gall H., Jazayeri, M., Krajewski, J. (2003) CVS Release History Data for Detecting Logical
Couplings. Sixth International Workshop on Principles of Software Evolution
(IWPSE'03): 13 - 23.

Gallagher K. and Lyle J. (1991) Using Program Slicing in Software Maintenance. Transactions on
Software Engineering 17(8): 751-762.

Gethers M., Dit B., Kagdi H. and Poshyvanyk D. (2012) Integrated Impact Analysis for Managing
Software Changes. 34th IEEE/ACM International Conference on Software Engineering
(ICSE'12), Zurich, Switzerland, to appear 10 pages.

Gethers M., Oliveto R., Poshyvanyk D. and De Lucia A. (2011) On Integrating Orthogonal
Information Retrieval Methods to Improve Traceability Link Recovery. 27th IEEE

26

International Conference on Software Maintenance (ICSM'11), Williamsburg, Virginia,
USA, 133-142.

Gethers M. and Poshyvanyk D. (2010) Using Relational Topic Models to Capture Coupling among
Classes in Object-Oriented Software Systems. 26th IEEE International Conference on
Software Maintenance (ICSM'10), Timişoara, Romania, 1-10.

Haiduc S. and Marcus A. (2008) On the Use of Domain Terms in Source Code. 16th IEEE
International Conference on Program Comprehension (ICPC'08), Amsterdam, The
Netherlands, 113-122.

Hayes J. H., Dekhtyar A. and Sundaram S. K. (2006) Advancing candidate link generation for
requirements tracing: the study of methods. IEEE Transactions on Software Engineering
32(1): 4-19.

Hill E., Pollock L. and Vijay-Shanker K. (2007) Exploring the Neighborhood with Dora to
Expedite Software Maintenance. 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE'07), 14-23.

Jeong G., Kim S. and Zimmermann T. (2009) Improving Bug Triage with Bug Tossing Graphs.
7th European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2009), Amsterdam, The
Netherlands.

Kagdi H., Collard M. L. and Maletic J. I. (2007) A Survey and Taxonomy of Approaches for
Mining Software Repositories in the Context of Software Evolution. Journal of Software
Maintenance and Evolution: Research and Practice (JSME) 19(2): 77-131.

Kagdi H., Gethers M. and Poshyvanyk D. (2011) SE2 Model to Support Software Evolution. 27th
IEEE International Conference on Software Maintenance (ICSM'11), Williamsburg, VA,
512-515.

Kagdi H., Gethers M., Poshyvanyk D. and Collard M. (2010) Blending Conceptual and
Evolutionary Couplings to Support Change Impact Analysis in Source Code. 17th IEEE
Working Conference on Reverse Engineering (WCRE'10), Beverly, Massachusetts, USA,
119-128.

Kagdi H., Gethers M., Poshyvanyk D. and Hammad M. (2012) Assigning Change Requests to
Software Developers. Journal of Software Maintenance and Evolution: Research and
Practice (JSME) 24(1): 3–33.

Kagdi H. and Maletic J. I. (2007) Mining Evolutionary Dependencies from Web-Localization
Repositories. Journal of Software Maintenance and Evolution: Research and Practice
19(5): 315-337.

Kagdi H., Maletic J. I. and Sharif B. (2007) Mining Software Repositories for Traceability Links.
15th IEEE International Conference on Program Comprehension (ICPC'07), Banff,
Alberta, Canada, 145-154.

Kagdi H. and Poshyvanyk D. (2009) Who Can Help Me with this Change Request? 17th IEEE
International Conference on Program Comprehension (ICPC'09), Vancouver, British
Columbia, Canada, 273-277.

Kagdi H., Yusuf S. and Maletic J. I. (2006) Mining Sequences of Changed-files from Version
Histories. 3rd International Workshop on Mining Software Repositories (MSR'06)
Shanghai, China, ACM Press: New York NY, 47-53.

Kosara R., Healey C. G., Interrante V., Laidlaw D. H. and Ware C. (2003) Visualization
viewpoints. Computer Graphics and Applications 23(4): 20-25.

Law J. and Rothermel G. (2003) Whole Program Path-Based Dynamic Impact Analysis. 25th
International Conference on Software Engineering, Portland, Oregon, 308-318.

Lehman M. M. and Belady L. A. (1985) Program Evolution: Processes of Software Change,
Academic Press Professional, Inc.

Liu D., Marcus A., Poshyvanyk D. and Rajlich V. (2007) Feature Location via Information
Retrieval based Filtering of a Single Scenario Execution Trace. 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE'07), Atlanta,
Georgia, 234-243.

Maletic J. I. and Collard M. L. (2004) Supporting Source Code Difference Analysis. 20th IEEE
International Conference on Software Maintenance (ICSM'04), Chicago, Illinois, IEEE
Computer Society: Los Alamitos CA, 210-219.

Mens T. (2002) A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering 28(5): 449-462.

Moonen L. (2002) Lightweight Impact Analysis using Island Grammars. 10th International
Workshop on Program Comprehension (IWPC'02), Paris, France, 219-228.

27

Oliveto R., Gethers M., Poshyvanyk D. and De Lucia A. (2010) On the Equivalence of
Information Retrieval Methods for Automated Traceability Link Recovery. 18th IEEE
International Conference on Program Comprehension (ICPC'10), Braga, Portugal, 68-71.

Orso A., Apiwattanapong T., Law J., Rothermel G. and Harrold M. J. (2004) An empirical
comparison of dynamic impact analysis algorithms. IEEE/ACM International Conference
on Software Engineering (ICSE'04), 776-786.

Petrenko M. and Rajlich V. (2009) Variable Granularity for Improving Precision of Impact
Analysis. 17th IEEE International Conference on Program Comprehension (ICPC'09),
Vancouver, BC, Canada, 10-19

Poshyvanyk D., Gethers M. and Marcus A. (2012) Concept Location using Formal Concept
Analysis and Information Retrieval. ACM Transactions on Software Engineering and
Methodology.

Poshyvanyk D., Guéhéneuc Y. G., Marcus A., Antoniol G. and Rajlich V. (2007) Feature Location
using Probabilistic Ranking of Methods based on Execution Scenarios and Information
Retrieval. IEEE Transactions on Software Engineering 33(6): 420-432.

Poshyvanyk D. and Marcus A. (2006) The Conceptual Coupling Metrics for Object-Oriented
Systems. 22nd IEEE International Conference on Software Maintenance (ICSM'06),
Philadelphia, PA, USA, 469 - 478.

Poshyvanyk D., Marcus A., Ferenc R. and Gyimóthy T. (2009) Using Information Retrieval based
Coupling Measures for Impact Analysis. Empirical Software Engineering 14(1): 5-32.

Poshyvanyk D. and Marcus D. (2007) Combining Formal Concept Analysis with Information
Retrieval for Concept Location in Source Code. 15th IEEE International Conference on
Program Comprehension (ICPC'07), Banff, Alberta, Canada, 37-48.

Queille J.-P., Voidrot J.-F., Wilde N., Munro M. and (1994) The Impact Analysis Task in Software
Maintenance: A Model and a Case Study. International Conference on Software
Maintenance, 234 - 242.

Raghavan S., Rohana R., Leon D., Podgurski A. and Augustine V. (2004) Dex: A Semantic-Graph
Differencing Tool for Studying Changes in Large Code Bases. 20th IEEE International
Conference on Software Maintenance (ICSM'04), Chicago, Illinois, IEEE Computer
Society: Los Alamitos CA, 188-197.

Rajlich V. and Bennett K. (2000) A Staged Model for the Software Lifecycle. Computer 33(7): 66-
71.

Ren X., Shah F., Tip F., Ryder B. G. and Chesley O. (2004) Chianti: a Tool for Change Impact
Analysis of Java Programs. 19th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications(OOPSLA '04), Vancouver, BC,
Canada, 432-448.

Revelle M., Dit B. and Poshyvanyk D. (2010) Using Data Fusion and Web Mining to Support
Feature Location in Software. 18th IEEE International Conference on Program
Comprehension (ICPC'10), Braga, Portugal, 14-23.

Revelle M., Gethers M. and Poshyvanyk D. (2011) Using Structural and Textual Information to
Capture Feature Coupling in Object-Oriented Software. Empirical Software Engineering
16(6): 773-811.

Revelle M. and Poshyvanyk D. (2009) An Exploratory Study on Assessing Feature Location
Techniques. 17th IEEE International Conference on Program Comprehension (ICPC'09),
Vancouver, British Columbia, Canada, 218-222.

Robillard M. (2005) Automatic Generation of Suggestions for Program Investigation. Joint
European Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Lisbon, Portugal, 11 - 20

Robillard M. P. (2008) Topology Analysis of Software Dependencies. ACM Transactions on
Software Engineering and Methodology 17(4): 1-36.

Rountev A., Milanova A. and Ryder B., G. (2001) Points-to analysis for Java using annotated
constraints. Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'01), Tampa Bay, FL, USA, 43-55.

Runeson P., Alexandersson M. and Nyholm O. (2007) Detection of Duplicate Defect Reports
Using Natural Language Processing. 29th IEEE/ACM International Conference on
Software Engineering (ICSE'07), Minneapolis, MN, 499-510.

Saul M. Z., Filkov V., Devanbu P. and Bird C. (2007) Recommending Random Walks. 11th
European Software Engineering Conference held jointly with 15th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE'07),
Dubrovnik, Croatia, 15-24.

Tonella P. (2003) Using a Concept Lattice of Decomposition Slices for Program Understanding
and Impact Analysis. IEEE Transactions on Software Engineering 29(6): 495-509.

28

Rajlich V. (1997) A Model for Change Propagation Based on Graph Rewriting. International
Conference on Software Maintenance (ICSM '97), Bari, ITALY, IEEE, 84-91.

Wang X., Zhang L., Xie T., Anvik J. and Sun J. (2008) An Approach to Detecting Duplicate Bug
Reports using Natural Language and Execution Information. 30th International
Conference on Software Engineering (ICSE’08), Leipzig, Germany, 461-470.

Weiss C., Premraj R., Zimmermann T. and Zeller A. (2007) How Long Will It Take to Fix This
Bug? 4th IEEE International Workshop on Mining Software Repositories (MSR'07),
Minneapolis, MN, 1-8.

Wilkie F. G. and Kitchenham B. A. (2000) Coupling measures and change ripples in C++
application software. The Journal of Systems and Software 52: 157-164.

Ying A. T. T., Murphy G. C., Ng R. and Chu-Carroll M. C. (2004) Predicting Source Code
Changes by Mining Change History. IEEE Transactions on Software Engineering 30(9):
574-586.

Yu Z. and Rajlich V. (2001) Hidden Dependencies in Program Comprehension and Change
Propagation. 9th IEEE International Workshop on Program Comprehension (IWPC'01),
Toronto, Canada, 293-299.

Zaki M. J. (2001) SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning 42(1-2): 31 - 60.

Zimmermann T., Zeller A., Weißgerber P. and Diehl S. (2005) Mining Version Histories to Guide
Software Changes. IEEE Transactions on Software Engineering 31(6): 429-445.

