IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X 1

Exemplar: A Source Code Search Engine For
Finding Highly Relevant Applications

Collin McMillan, Member, IEEE, Mark Grechanik, Member, IEEE, Denys Poshyvanyk, Member, IEEE,
Chen Fu, Member, IEEE, Qing Xie, Member, IEEE

Abstract —A fundamental problem of finding software applications that are highly relevant to development tasks is the mismatch
between the high-level intent reflected in the descriptions of these tasks and low-level implementation details of applications. To reduce
this mismatch we created an approach called Exemplar (EXEcutable exaMPLes ARchive) for finding highly relevant software projects
from large archives of applications. After a programmer enters a natural-language query that contains high-level concepts (e.g., MIME,
data sets), Exemplar retrieves applications that implement these concepts. Exemplar ranks applications in three ways. First, we consider
the descriptions of applications. Second, we examine the Application Programming Interface (API) calls used by applcations. Third, we
analyze the dataflow among those API calls. We performed two case studies (with professional and student developers) to evaluate how
these three rankings contribute to the quality of the search results from Exemplar. The results of our studies show that the combined
ranking of application descriptions and API documents yields the most-relevant search results. We released Exemplar and our case
study data to the public.

Index Terms —Source code search engines, information retrieval, concept location, open source software, mining software repositories,
software reuse.

O

1 INTRODUCTION

ROGAMMERS face many challenges when attempting to Existing code search engines (e.g., Google Code Search,

locate source code to reuse [42]. One key problem 8burceForge) often treat code as plain text where all words
finding relevant code is the mismatch between the high-leveve unknown semantics. However, applications contain-fun
intent reflected in the descriptions of software and lovwelevtional abstractions in a form of API calls whose semantics
implementation details. This problem is known as tloacept are well-defined. The idea of using API calls to improve code
assignment problerf6]. Search engines have been developestarch was proposed and implemented elsewhere [14], [8];
to address this problem by matching keywords in querié®wever, it was not evaluated over a large codebase using a
to words in the descriptions of applications, comments standard information retrieval methodology [30, pages-151
their source code, and the names of program variables &lf8].
types. These applications come from repositories which mayWe created an application search system caledmplar
contain thousands of software projects. Unfortunatelynyna(EXEcutable exaMPLes ARchivay part of ourSearching,
repositories are polluted with poorly functioning proef21]; Selecting, and Synthesizi{§%) architecture [35]. Exemplar
a match between a keyword from the query with a word inelps users find highly relevant executable applications fo
the description or in the source code of an application doemuse. Exemplar combines three different sources of irderm
not guarantee that this application is relevant to the query tion about applications in order to locate relevant sofevar

Many source code search engines return snippets of cdbe textual descriptions of applications, the API callsduse

that are relevant to user queries. Programmers typicakyl nanside each application, and the dataflow among those API
to overcome a high cognitive distance [25] to understamalls. We evaluated the contributions by these differepé$yof
how to use these code snippets. Moreover, many of thés@rmation in two separate case studies. First, in Se@&jare
code fragments are likely to appear very similar [12]. I€ompared Exemplar (in two configurations) to SourceForge.
code fragments are retrieved in the contexts of executable analyzed the results of that study in Section 7 and created
applications, it makes it easier for programmers to undadst a new version of Exemplar. We evaluated our updates to
how to reuse these code fragments. Exemplar in Section 8. Our key finding is that our search
engine’s results improved when considering the API calls
e C. McMillan and D. Poshyvanyk are with the Department of Cotep in applications instead of only the applications’ desaoips.

Science, College of William & Mary, Williamsburg, VA, 23185 We have made Exemplar and the results of our case studies
E-mail: {cmc, denys@cs.wm.edu . i
e M. Grechanik, C. Fu, and Q. Xie are with Accenture Technolbgis, available to the publ
Chicago, IL, 60601.
E-mail: {mark.grechanik, chen.fu, ging.}i@accenture.com 1. http://www.xemplar.org (verified 03/28/2011)

Manuscript received X Mon. 201X.

For information on obtaining reprints of this article, plsa send e-mail
to: tse@computer.org, and reference IEEECS Log Number GUBB-0000.
Digital Object Identifer no. 00.0000/TSE.201X.00000.

0000-0000/00/$00.0®) 201X IEEE Published by the IEEE Computer Society

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

2 EXEMPLAR APPROACH and the corresponding API callsncrypt andenmi | are
21 The Problem connected via some dataflow, then an application with these

A direct approach for finding highly relevant applicatioedo connected API calls are more relevant to the query than

- .. applications where these calls are not connected.
search through the descriptions and source code of apphisat ppiicat . .
: Consider two API callstring encrypt () andvoi d
to match keywords from queries to the names of program _. . L :
. . emai | (string). After the call encrypt is invoked, it
variables and types. This approach assumes that programme . . : .
. . refurns a string that is stored in some variable. At some late
choose meaningful names when creating source code, whic . . :
. point a call to the functioremai | is made and the variable
is often not the case [2].

This problem is partially addressed by programmers WH% passed as the input parameter. In this case these fusiction

create meaningful descriptions of the applications inveare are connected using a dataflow link which reflects the implici

o . logical connection between keywords in queries. Spediical
repositories. However, state-of-the-art search engise®xact 9 Y q pecif

. the data should be encrypted and then sent to some destinatio
matches between the keywords from queries, the words in yp

the descriptions, and the source code of applications. fitirfo

nately, it is difficult for users to guess exact keywords bsea 2-3 Motivating Example

“no single word can be chosen to describe a programmi&gemplar returns applications that implement the tasks de-
concept in the best way” [11]. The vocabulary chosen bysaribed in by the keywords in user queries. Consider the
programmer is also related to the concept assignment problllowing task: find an application for sharing, viewing,can
because the terms in the high-level descriptions of apjdica. exploring large data sets that are encoded using MIME, and
may not match terms from the low-level implementation (e.ghe data can be stored using key value pairs. Using the fol-

identifier names and comments). lowing keywordsM ME, t ype, dat a, an unlikely candidate
application called BIOLAP is retrieved using Exemplar with
2.2 Key Ideas high ranking score. The description of this applicationchat

only the keyworddat a, and yet this application made it to
Suppose that a programmer needs to encrypt and comprt%seg[top ten of the list.

ggtgoﬁriggé%ngn%r v;llr:ltgra:(uera\:\ll)é:ggnstgca;]s:;rccrh eTglgre;lr(ljsuc BIOLAP uses the claskl neType, specifically its method
y yp et Par amret er Map, because it deals with MIME-encoded

conpress. The programmer then looks at the source co f{\(t)a. The descriptions of this class and this method contain

of th_e programs returned by these search engines to CheCt e desired keywords, and these implementation details are
see if some API calls are used to encrypt and compress d%ta

The presence of these API calls is a good starting point f; ||ghly-relevant o the given task. BIOLAP does not show on
P - 90 9p file top 300 list of retrieved applications when the search is
deciding whether to check these applications further.

What we seek is to augment standard code search to incllﬁ)(%formed with the SourceForge search engine.

help documentations of widely used libraries, such as the
standardlava Development Kit (JDR) Existing engines allow 2.4 Fundamentals of Exemplar
users to search for specific API calls, but knowing in advan@onsider the process for standard search engines (e.ggeSou
what calls to search for is hard. Our idea is to match keyworétsge, Google code seartKrugle®) shown in Figure 1(a). A
from queries to words in help documentation for API callkeyword from the query is matched against words in the de-
These help documents are descriptions of the functionefity scriptions of the applications in some repository (Souragd)
API calls as well as the usage of those calls. In Exemplar, we words in the entire corpus of source code (Google Code
extract the help documents that come in the forndaxfaDocs Search, Krugle). When a match is found, applicatiapg
Programmers trust these documents because the documentgpp,, are returned.
come from known and respected vendors, were written byConsider the process for Exemplar shown in Figure 1(b).
different people, reviewed multiple times, and have beauuskeywords from the query are matched against the description
by other programmers who report their experience at differeof different documents that describe API calls of widelydise
forums [10]. software packages. When a match is found, the names of the
We also observe that relations between concepts entefl calls cal | 1 to cal | « are returned. These names are
in queries are often reflected as dataflow links between ARiatched against the names of the functions invoked in these
calls that implement these concepts in the program cods. Thpplications. When a match is found, applicatiaysp, to
observation is closely related to the concept of software app, are returned.
reflexion model$ormulated by Murphy, Notkin, and Sullivan. In contrast to the keyword matching functionality of stan-
In these models, relations between elements of high-lewilrd search engines, Exemplar matches keywords with the
models (e.g., processing elements of software architesfurdescriptions of the various API calls in help documentsc&in
are preserved in their implementations in source code323][a typical application invokes many API calls, the help docu-
For example, if the user enters keywostscur e andsend, ments associated with these API calls are usually written by

different people who use different vocabularies. The ragdm
2. http://sourceforge.net/ (verified 03/28/2011)
3. http://lwww.oracle.com/technetwork/java/javase/dmads/index.html

- 4. http://lwww.google.com/codesearch (verified 03/281301
(verified 03/28/2011)

5. http://opensearch.krugle.org (verified 03/28/2011)

MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 3

descriptions

app '
! descriptions

API call app,

keyword = keyword — API call,
of apps app, of API calls API call, app.
(a) Standard search engines. (b) Exemplar search engine.

Fig. 1. lllustrations of the processes for standard and Exemplar search engines.

of these vocabularies makes it more likely to find matcheserm Frequency/Inverse Document Frequefidy/IDF). Using

and produce API calléPl cal | ; to APl cal | «. If some TF/IDF, the weight for a term is calculated &es= Lnk where

help document does not contain a desired match, some othés the number of occurrences of the term in EtF1e document,

document may yield a match. This is how we address thady, ny is the sum of the number of occurences of the term

vocabulary problem [11]. in all documents. Then the similarities among the documents
As it is shown in Figure 1(b), APl call$\PI call 1, are calculated using the cosine distance between eachfpair o

APl call,, andAPI call 3 are invoked in theapp;. It documentscog6) = % whered; andd, are document

is less probable that the search engine fails to find matchesctors.

in help documents for all three API calls, and therefore the
applicationapp, will be retrieved from the repository. 3.3 RAS Ranking Scheme

Searching help documents produces additional benefits. AIFHe documents in our approach are the different documents
calls from help documents (that match query keywords) Afat describe each API call (e.g., each JavaDoc). The tiniec
linked to locations in the project source code where theS?API documents is defined aSA,PI: (DL, D2 DK,)

AP calls are used thereby allowing programmers to naVig"‘}&ecorpus 's created fromDap; and repr’gém’*epc'j’ as the term-
directly to these locations and see how high-level CONCERIS_ocumentn x k matrix M. wherem is the number of terms

from queries are implemented in the source code. Doing gﬁdk is the number of APl documents in the collection. A
solves an instance of the concept location problem [34].

generic entryali, j] in this matrix denotes a measure of the
weight of theit" term in thej" API document [40].
3 RANKING SCHEMES API calls that are relevant to the user query are obtained by
3.1 Components of Ranking ranking documentdap that describe these calls as relevant

There are three components that compute different scoredgrt® query Q. This relevance is computed as a conceptual
ilarity, C, (i.e., the length-normalized inner product) be-

the Exemplar ranking mechanism: a component that compu?érgI
a score based on word occurrences in project descriptidh§€" the user query, and each API documenDap. AS
(WOS), a component that computes a score based on i;héesult the_ set of tripleéA,C,n) is returned, Wh_ere‘\ is the _
relevant AP calls (RAS), and a component that computé‘fl caII,_n is the _number of occurrences qf this API call in
a score based on dataflow connections between these Ctgil??appllcatlon W'th the conceptual similarity, of the API
(DCS). The total ranking score is the weighted sum of thegél documentation to query terms. S
three ranking scores. The API caII-basepd ranking score for the applicatipnis
We designed each ranking component to produce results Zln'J -Cij

from different perspectives (e.g., application desoipsi, API computed a§(jas: i A where|A[l is the total number

calls, and dataflows among the API calls). The following éhre s Ap calls in the applicatiorj, andp is the number of API
sections describe the components. Section 4 discussem{he(jaus retrieved for the query.

plentation of the components and includes important teahni
limitations that we considered when building Exemplar. W, .
examine how WOS, RAS, and DCS each contribute to t e4 DCS Ranking Scheme

results given by Exemplar in Section 7. Section 7 also covet@ improve the precision of ranking we derive the struc-
the implications of our technical considerations. ture of connections between API calls and use this struc-
ture as an important component in computing rankings.
3.2 WOS Ranking Scheme The_standard syntax for invoking an API cgll 13

var =o. cal | nane(py,...,pn). The structural relations be-
The WOS component uses thector Space ModelVSM), tween API calls reflect compositional properties betweeseh
which is a ranking function used by search engines to ragkjis. Specifically, it means that API calls access and manip
matching documents according to their relevance to a giv[ate data at the same memory locations.
search query. VSM is a bag-of-words retrieval techniqué tha There are four types of dependencies between API calls:
ranks a set of documents based on the terms appearing in qﬁgm, output, true, and anti-dependence [31, page 268 Tr
document as well as the query. Each document is mOdel%bendence occurs when the API chllwrite a memory
as a vector of the terms it contains. The weights of thog§cation that the API caly later reads (e.gvar =f (...);

terms in each document are calculated in accordance to figar ,...);). Anti-dependence occurs when the API chll

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

reads a memory location that the API cgllater writes (e.g., three machines have two dual-core 3.8Ghz EM64T Xeon
f(var,...), ...; var=g(...);). Output dependence occursprocessors with 8Gb RAM, two have four 3.0Ghz EM64T
when the API call§ andg write the same memory location.Xeon CPUs with 32Gb RAM, and the rest have one 2.83Ghz
Finally, input dependence occurs when the API chllandg quad-core CPU and 2Gb RAM. The API Call Extractor found
read the same memory location. nearly twelve million API invocations from the JDK 1.5 in
Consider an all-connected graph (i.e., a clique) where :iodbe applications. It also processes the API calls for their
are API calls and the edges represent dependencies amaesgcriptions, which in our case are the JavaDocs for those
these calls for one application. The absence of an edge meaAR$ calls.
that there is no dependency between two API calls. Let theOur approach relies on the tool PMD for computing
total number of connections amomgretrieved API calls be approximate dataflow links, which are based on the patterns
less or equal ta(n—1). Let a connection between two distinctdescribed in Section 3.4. PMD extracts data from individual
API calls in the application be defined amk; we assign some Java source files, so we are only able to locate dataflow links
weight w to this Link based on the strength of the dataflo@mong the API calls as they are used in any one file. We follow
or control flow dependency type. The ranking is normalizeitie variables visible in each scope (e.g., global variaples
to be between 0 and 1. those declared in methods). We then look at each API call in
The API call connectivity-based ranking score for the apghe scope of those variables. We collect the input parameter
(n-1) J and output of those API calls. We then analyze this input and
_ zl Wi output for dataflow. For example, if the output of one API call
plication, j, is computed as} .= —z=——, Wherew; is the is stored in a variable which is then used as input to another
weight to each type of flow dependency for the given linRPI call, then there is dataflow between those API calls. Note
Link, such that I> wi™e > wai > w!'PU S W'PY 0. The that our technique is an approximation and can produce both
intuition behind using this order is that these dependesncilse positive and false negatives. Determining the effeét
contribute differently to ranking heuristics. Specifigallsing this approximation on the quality of Exemplar’s results s a
the values of the same variable in two API calls introducesasea of future work.
weaker link as compared to the true dependency where on&he Retrieval Engindocates applications in two ways3) .
API call produces a value that is used in some other API calflirst, the input to the Retrieval Engine is the user querg, an
the engine matches keywords in this quésyto keywords in
3.5 Integrated Scheme the descriptions of applications. Second, the Retrievaifien
finds descriptions of API calls which match keywofisThe

;\I’hesrfmal)\ ranking hsco;\e_ Itsh c_ortnputeldt_ &=).‘Wrc]’ﬁ"’os‘i_ h Retrieval Engine then locates applications which use tiA¢de
rasSras + AdesSes WhereA is the interpolation weight for eac c{’;\IIs. The engine outputs a list of Retrieved ApplicatioBs .

type of the score. These weights are determined indepdgden The Ranking Enginaises the three ranking schemes from

of aueries unlike the scores, which are query-dependeggction 3 (WOS, RAS, and DCS) to sort the list of retrieved
Adjusting these weights enables experimentation with hg

. . o . %plications(?). The Ranking Engine depends on three
underlying st_ructural _and textual information in appllc_)at sources of information: descriptions of applications, &l
affects resulting rankmg_ scores. The formula 8’"6_”“"“”5 calls used by each application, and the dataflow among those
the same throughout this Paper, gnd all three weights WeB calls (4) . The Ranking Engine uses Lucénavhich is
equal during t_he case study in Section5. We explore alm“.based on VSM, to implement WOS. The combination of the
tSO Et>.<em$Iar, includingh, based on the case study results IPanking schemes (see Section 3.5) determines the relegdncy
ection 7. the applications. The Relevant Applications are then pitese
to the usen(8) .

4 |IMPLEMENTATION DETAILS
Figure 2 shows the architecture of Exemplar. In this sectidh CASE STUDY DESIGN

we step through Figure 2 and describe some technical detq%ica"y, search engines are evaluated using manualaetey
behind Exemplar. judgments by experts [30, pages 151-153]. To determine how
Two crawlers Application ExtractorandAPI Call Extractor effective Exemplar is, we conducted a case study with 39
populate Exemplar with data from SourceForge. We currenhrticipants who are professional programmers. We gave a
have run the crawlers on SourceForge and obtained more thafiof tasks described in English. Our goal is to evaluate ho
8,000 Java projects containing 414,357 filékhe Application well these participants can find applications that matclergiv
Extractor downloads the applications and extracts thergesc asks using three different search engines: Sourceforgg (S
tions and source code of those applications (the Applinati@nd Exemplar with (EWD) and without (END) dataflow links
Metadata(1)). The API Call Extractor crawls the sourcezs part of the ranking mechanism. We chose to compare Exem-

code from the applications for the API calls that theyuse, tiplar with Sourceforge because the latter has a populartsearc
descriptions of the API calls, and the dataflow amoung those

calls (the API Call Metadatgd2)). The API Call Extractor 7- hitp:/pmd.sourceforge.net/ (verified 03/28/2011)

: .8. Exemplar limits the number of relevant API calls it retde for each
ran with 65 threads for over 50 hours on 30 Compmer&Uery to 200. This limit was necessary due to performancetcgints. See

) Section 7.4.
6. We ran the crawlers in August 2009. 9. http://lucene.apache.org (verified 03/28/2011)

MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 5

Experiment Géolup Seag\?\,gngme Tas%klset accomplished this step b)_/ him or _her_self, as_signing a confi-
1 G2 SF T2 dence levelC, to the examined applications using a four-level
G3 END T3 Likert scale. We asked participants to examine only top ten
2 g% E\’/\lv% % applications that resulted from their searches. We ewadliat
G3 SF T1 only the top ten results because users of search engindg rare
G1 SF T3 look beyond the tenth result [13] and because other source
3 G2 END n code search engines have been evaluated using the same
G3 EWD T2
number of results [19].
TABLE 1 The guidelines for assigning confidence levels are the fol-
Plan for the case study of Exemplar and Sourceforge. lowing.

1) Completely irrelevant - there is absolutely nothing that
the participant can use from this retrieved project, noth-
ing in it is related to your keywords.

engine with the largest open source Java project reposétndy 2) Mostly irrelevant - only few remotely relevant code

Exemplar is populated with Java projects from this repogito snippets or API calls are located in the project.
3) Mostly relevant - a somewhat large number of relevant
5.1 Methodology code snippets or API calls in the project.

We used a cross validation study design in a cohort of 394) Highly relevant - the participant is confident that code

. . . snippets or API calls in the project can be reused.
participants who were randomly divided into three groups. . .
dyTwenty-six participants are Accenture employees who work

We performed three separate experiments during the stu X i
In each experiment, each group was given a different sea&%\ consulting engagements as professional Java programmer

engine (i.e., SF, EWD, or END) as shown in Table 1. Thef\?r different client companies. Remaining 13 participaats

in the experiments, each group would be asked to useJ” duate students from the University of lllinois at Chigcag
different search engine than that group had used before. THEO have athleastdgflfx month l?f Java(lj experience. Accenture
participants would use the assigned engine to find applicati participants have difierent backgrounds, experience,

for given tasks. Each group used a different set of tasksdh edong o different groups of the total Accenture wo_rl§f0r0e of
experiment. Thus each participant used each search en peroximately _180’000 e_mploye_es. out of 39_part|C|pan'ts, L
on different tasks in this case study. Before the study wi d programming experience with Java ranging from one o

gave a one-hour tutorial on using these search engines to ﬁHEFe years, and 22 participants rgported more than th@e ye
applications for tasks. of experience writing programs in Java. Eleven participant

Each experiment consisted of three steps. First, partit:tpareported prior experience with Sourceforge (which is used

translated tasks into a sequence of keywords that descrilyé his case study), 18 participants reported prior expexie

key concepts of applications that they needed to find. Thé’K',td other shearch. engir_lres, and .11 sai.d.that thﬁy ne\t/)er #Sled
participants entered these keywords as queries into tirerse£ 09 searcd (he_ngmesr.] wenty S|xdpart|0|pe_mt§_ﬁ ave 'o:cfhe or
engines (the order of these keywords does not matter) aq]%grees and thirteen have master degrees in different n

obtained lists of applications that were ranked in desa@did'sc'pl'nes'
order.
The next step was to examine the returned applications2 Precision
and to determine if they matched the tasks. Each participamfio main measures for evaluating the effectiveness ofeneiti
are precision and recall [49, page 188-191]. The precison i

— 3 .
Application Application APl Call calculated a®; = mi‘{j/’gd, wherer el evant is the number
Extractor Archive Extractor of retrieved applications that are relevant aret ri eved is

the total number of applications retrieved. The precisiba o

@ p . ¥ . @ ranking method is the fraction of the topranked documents
Application APICall APICall that are relevgnt t_o the query, whare- 1Q in this case study. _
Descriptions Descriptions Dataflow Relevant applications are counted only if they are ranked wi
the confidence level$ or 3. The precision metrics reflects the

@} 1) accuracy of the search. Since we limit the investigatiorhef t

Retrieved retrieved applications to top ten, the recall is not measime

Retrieval Engme® Applications @r Ranking Engine this study.

" 5.3 Discounted Cumulative Gain

A Relevant Discounted Cumulative Gain (DCG) is a metric for analyzing
pplications . . L
the effectiveness of search engine results [1]. The iotuiti

)) behind DCG is that search engines should not only return
Fig. 2. Exemplar architecture. relevant results, but should rank those results by relgvanc

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

Therefore, DCG rewards search engines for ranking relevant esis is thap§yP < uENP. Conversely, the alternative
results above irrelevant ones. We calculate the DCG for the is PP > piP.
top 10 results from each engine because we collect confidencel; (C of END versus SF) The effective null hypothe-
values for these results. We compute DCG according to this sis is thatuENP = P&, while the true null hypothesis
formula:G = Cy+ 3 1% o, whereC; is the confidence value is that yENP < p8F. Conversely, the alternative hy-
of the result in the first position ar@ is the confidence value pothesis iiENP > L&~
of the result in thdath position. We normalize the DCG using Hg (P of END versus SF) The effective null hypothe-
the following formula:NG = &, whereiG is the ideal DCG sis is thatuy5NP = piSF, while the true null hypothesis
in the case when the confidence value for the first ten results is that psNP < psF. Conversely, the alternative hy-
is always 4 (indicating that all ten results are highly-valet). pothesis igiENP > 1Sk,
We refer to normalized DCG a¥G in the remainder of this Hg (NG of END versus SF) The effective null hypothe-
paper. sis is thatughP = ps, while the true null hypothesis
is that uERP < p3F. Conversely, the alternative hy-
5.4 Hypotheses pothesis iSIGG" > HYG:

We introduce the following null and alternative hypotheges The rgtlonale behind the alternative hypot_hesebiion,
evaluate how close the means are for the confidence l&vg)s (and Hs is that Exemp]ar allows users tp quickly uqderstand
and precisionsKs) for control and treatment groups. UnIesQOW keyvvprds N quUeries are _related to |mplem§ntat|onsgjsm
we specify otherwise, participants of the treatment grose uAPI calls in retrieved appllcatlons. The alternauv_e hymestes
either END or EWD, and participants of the control groubO Ha, Hs, Hg are motivated by the fact that if users see

use SF. We seek to evaluate the following hypotheses ag%{taﬂ_ow cogne;:rt:ons llaet\/\1eentAP| %alls, tlheyi_can make better
0.05 level of significance. ecisions about how closely retrieved applications maiedig

; tasks. Finally, having the alternative hypothesesHto Hsg,
HonuiThe p_rln?[?ry m:" hyp(f)thes]:ijls thatl thelre |sdno differang Hy ensures that Exemplar without dataflow links still
enc? mk bet\xa ues ot_cpn ! tencrelz eve gg EFUVGS'S'OSJOWS users to quickly understand how keywords in queries
Per task between participants who use S, » e related to implementations using API calls in retrieved

END. L
) . . . applications.
Ho_ait An alternative hypothesis tblg_ny is that there is PP

statistically significant difference in the values of)
confidence level and precision between participangs® Task Design
who use SF, EWD, and END. We designed 26 tasks that participants work on during experi
Once we test the null hypothedity_nui, We are interested ments in a way that these tasks belong to domains that are easy
in the directionality of meangy, of the results of control and to understand, and they have similar complexity. The foihgv
treatment groups. We are interested to compare the eféectidre two example tasks; all others may be downloaded from the
ness of EWD versus the END and SF with respect to tfexemplar about pagé

values ofC, P, andNG. 1. "Develop a universal sound and voice system that

Hi (C of EWD versus SF) The effective null hypothe- allows users to talk, record audio, and play MIDI
sis is thatuE WP = 1,EF, while the true null hypothesis records. Users should be able to use open source
is that p§WP < 1&F. Conversely, the alternative hy- connections with each other and communicate. A
pothesis igEWP > L&F. GUI should enable users to save conversations and

H, (P of EWD versus SF) The effective null hypothe- replay sounds.”
sis is that5VP = p3F, while the true null hypothesis 2. "Implement an application that performs pattern
is that u5WP < usF. Conversely, the alternative hy- matching operations on a character sequences in
pothesis iuEWP > pusF. the input text files. The application should support

Hs (NG of EWD versus SF) The effective null hypothe- iterating through the found sequences that match the
sis is thatu§ &P = PRf, while the true null hypothesis pattern. In addition, the application should support
is thatu,'f,G < uﬁg Conversely, the alternative hy- replacing every subsequence of the input sequence
pothesis iu{¥P > PRE. that matches the pattern with the given replacement

Hs (C of EWD versus END) The effective null hypothe- string.”

sis is thatyg"/® = LENP, while the true null hypoth- Additional criteria for these tasks is that they should

esis is thapsVP < ueNP. Conversely, the alternative represent real-world programming tasks and should not be

is PEWD> UCND- biased towards any of the search engines that are used in
Hs (P of EWD versus END) The effective null hypothethis experiment. Descriptions of these tasks should bebllexi

sis is thatps"'® = PENP, while the true null hypoth- enough to allow participants to suggest different keywdeds

esis is thapsVP < usNP. Conversely, the alternative searching. This criteria significantly reduces any biasarals

is ps"P > psNP. evaluated search engines.
He (NG of EWD versus END) The effective null hypothe-
sis is thai E\(/;VD: UEED' while the true null hypoth- 10. http://www.cs.wm.edu/semeru/exemplar/#casestudy verified

03/28/2011)

MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 7

5.6 Normalizing Sources of Variations Tasks. Improper tasks pose a big threat to validity. If tasks

Sources of variation are all issues that could cause an @€ 100 general or trivial (e.g., open a file and read its data
servation to have a different value from another obsermatidNto memory), then every application that has file-relatéd A
We identify sources of variation as the prior experience &R!IS will be retrieved, thus creating bias towards Exem(@a

the participants with specific applications retrieved by thfhe other hand, if application and domain-specific keywords
search engines in this study, the amount of time they spend@$cribe task (e.g.geneal ogy and GENTECH), only a
learning how to use search engines, and different computityV applications will be retrieved whose descriptions amt
environments which they use to evaluate retrieved apjicat these keywords, thus creating a bias towards Sourcefomge. T
The first point is sensitive since some participants wheaalye 2veid this threat, we based the task descriptions on a dozen
know how some retrieved applications behave are likely to geecifications of different software systems that weretemit

much more effective than other participants who know ngghirPy different people for different companies. The tasks wedus
of these applications. in the case study are available for download at the Exemplar

We design this experiment to drastically reduce the effed@éepsnell- _
of covariates (i.e., nuisance factors) in order to nornealiz 1iMme pressure.Each experiment lasted for two hours, and
sources of variations. Using the cross-validation design Wor Some participants it was not enough time to explore all
normalize variations to a certain degree since each paatiti 'etrieved applications for each of eight tasks. It is a threa

uses all three search engines on different tasks. to validity that some participants could try to accomplish
more tasks by shallowly evaluating retrieved applicatiofts

57 Test dThe N lity A i counter this threat we notified participants that their itssu
' ests an € Normaiity Assumption would be discarded if we did not see sufficient reported

We use one-way ANOVA, and randomization tests [44] tevidence of why they evaluated retrieved applications with
evaluate the hypotheses. ANOVA is based on an assumptigtain confidence levels.

that the population is normally distributed. The law of karg
numbers states that if the population sample is sufficientiyg.2 External Validity

large (between 30 to 50 participants), then the centraltlimfo make results of this case study generalizable, we must
theorem applies even if the population is not normally digyygress threats to external validity, which refer to the-gen
tributed [43, pages 244-245]. Since we have 39 participanisa|izability of a casual relationship beyond the circianses

the central limit theorem applies, and the above-mentiongflor case study. The fact that supports the validity of teec

tests have statistical significance. study design is that the participants are highly represigataf
professional Java programmers. However, a threat to etern
5.8 Threats to Validity validity concerns the usage of search tools in the industria
In this section, we discuss threats to the validity of thisecaS€ttings, where requirements are updated on a regular. basis
study and how we address these threats. Programmers use these updated requirements to refine their
gueries and locate relevant applications using multipdeait
5.8.1 Internal Validity tions of working with search engines. We addressed thisithre

only partially, by allowing programmers to refine their geer
multiple times.
In addition, it is sometimes the case when engineers perform

Internal validity refers to the degree of validity of statems
about cause-effect inferences. In the context of our erpat,

threats to internal validity come from confounding the efée itin| h ing diff binati f K d
of differences among participants, tasks, and time pressur multiple searches using difierent combinations of keywor

Participants. Since evaluating hypotheses is based on tf‘?‘@d they select certain retri_eved applications from each of
data collected from participants, we identify two threatsnt- thege sear(_:h_ results. We_belleve that the results prodyced b
ternal validity: Java proficiency and motivation of paniants. asking participants to decide on keywords and then perform a

Even though we selected participants who have Worki(lfg‘gle sear(_:h and rank applications do npt deviat_e signﬂ'y;a
knowledge of Java as it was documented by human resources, _the situation where searches using multiple (refined)
we did not conduct an independent assessment of how prgf‘i'-e”es are performed. - .
cient these participants are in Java. The danger of haviog po. Another threat to e>_<ter_na| validity comes from different
Java programmers as participants of our case study is tat tg1£es O.f software rep0_3|tor|es. We populated Exemplap_sse
can make poor choices of which retrieved applications bett®"Y with a.” Java projects from thg Sourceforge repositior
match their queries. This threat is mitigated by the fact #fla address this threat to external validity.

participants from Accenture worked on successful comraérci Finally, the help documen_ta}tlon that we |n_dex n Exemplgr
projects as Java programmers. Is an external threat to validity because this documentatio

The other threat to validity is that not all participants kbu is provided by a thlrd-party, and its content and .format may
be motivated sufficiently to evaluate retrieved appliaasio vary. We aqdressed this thread to validity by usmg_the Java
We addressed this threat by asking participants to expl(ﬂﬂcu:nentatloril-extrﬁptﬁdh as Java}]P ocsffrom the official Java
in a couple of sentences why they chose to assign certBﬁve opment Kit, which has a uniform format.
qonﬁd?nce level to apph(_:atlons, and based on their rewts 11. http://www.xemplar.org, follow the "About Exemplaiihk to the "Case
financially awarded top five performers. Study” section.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

a — 0.9 - 0.9
3.5 - 0.8 - 0.8 -
3 4 0.7 - 0.7 -
0.6 0.6
25 - P -
0.5 0.5
2 -
3 0.4 0.4
1.5
0.3 0.3
1 —_
0.2 0.2
0.5 - 0.1 - 0.1 -
i} i} 1}
SF EMD BWWD SF EMD BWWD SF END BWD
(a) Confidence levelC. (b) Precision,P. (c) Normalized Discounted GaitNG.

Fig. 3. Statistical summary of the results of the case study for C and P.The center point represents the mean. The dark and
light gray boxes are the lower and upper quartiles, respectively. The thin line extends from the minimum to the maximum value.

[H [Var | Approach| Samples| Min [Max | Median| u | C] P |
Ho) € Egva igi i 3 f f:gg -0.02 | <0.0001
| P | “se | 76 | oors| 07s| ods | oas| 03¢ <0000
Ho | N6 | "Se’ | 7o | "0 | 0ms| o2 | ogs| 08| <0000
Ha | C EE‘,QVS ﬁ;g i i g g:i? 0.01 | <0.0001
U P | Ewb | 76 | 0o7s| 073| o4 | ode| 041 | 076927
He | NG| o | 76 | 0 |oo2| 058 | osp| 002| 071256
ul K 1307 1 p 2 | 2a7| 002 | <0001
Ho | P | Se | 76 | o lom| oau |oer| 04 | <0000
to N6 | 5P | 76 | 0 |oss| oz | oss| 008 | <0000

TABLE 2

Results of randomization tests of hypotheses, H, for dependent variable specified in the column Var (C, P, or NG) whose
measurements are reported in the following columns. Extremal values, Median, Means, |, and the pearson correlation coefficient,
C, are reported along with the results of the evaluation of the hypotheses, i.e., statistical significance, p.

6 EMPIRICAL RESULTS to normal variation of individuals’ characteristics andogrin
In this section, we report the results of the case study aHtgir measurement. The results of ANOVA confirm that there
evaluate the null hypotheses. are large differences between the groupJavith F = 129>

Feit = 3 with p ~ 6.4-107°% which is strongly statistically
6.1 Variables significant. The meag for the SF approach is.83 with the

A main independent variable is the search engine (SF, Ew)3iance 102, which is smaller than the medh for END,

END) that participants use to find relevant Java applicatior?'47 with the varian.ce 27, anq it is smaller than the mean
Dependent variables are the values of confidence l&vel, C for EWD, 235 with the variance 19. Also, the results

precision, P, and normalized discounted cumulative gainOf ANOVA confirm that there are large differences between

. i - . A4 106
NG. We report these variables in this section. The effect H?e groups foi? with F = 14> Ferip = 3.1 with p~ 4-10

other variables (task description length, prior knowledige which is strongly statistically significant. The meBrfor the
minimized by the design of this case study. SF approach is.Q7 with the variance .03, which is smaller

than the mear for END, 0.47 with the variance 03, and it
6.2 Testing the Null Hypothesis is smaller than the mealA for EWD, 0.41 with the variance

We used ANOVA[43] to evaluate the null hypothesis_nyi \(,)\;(e)ZféCBea??geogliz:ens;i\r/eesEIts(\)l:ﬁersiject the null hypothesis and
that the variation in an experiment is no greater than that du P yp B-alt-

MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 9

A Question
A statistical summary of the results of the case studyCfor T FHow many years of programming experience do you have?

P, andNG (median, quartiles, range and extreme values) are[2 [What programming languages have you used and for how
shown as box-and-whisker plots in Figure 3(a), Figure 3(b), many years each?

i i ; 0 : ; 3 [How often do you use code search engines?
and Figure 3(c) correspondingly with 95% confidence interva 7| WRaT code search engins have you used and Tor Fiow Tang?
for the mean. 5 | How often can you reuse found applications or code frag-
ments in your work?

6 | What is the biggest impediment to using code search engipes,

6.3 Comparing Sourceforge with Exemplar in your opinion?

To test the null hypothesiiﬁl Ho, Hs, H7, Hg, and Hg 7 | Would you rather be able to retrieve a standalone fragnmjent
. . L ! ! ' ! of code or an entire application with a relevant fragment| of

we applied six randomization tests, fa;, P, and NG for code in it?

participants who used SF and both variants of Exemplar. The

results of this test are shown in Table 2. The colanpl es TABLE 3

shows that 37 out of a total of 39 participants participated i ~ 1he Seven questions answered by the case study

all experiments and created rankings Rr(two participants ~ Participants during the exit survey. All questions were
missed one experimenthanpl es indicates the number of open-ended.

results which were ranked in the case of variabld-or NG,

Sanpl es shows the number of sets of results. Based on these

results we reject the null hypothesds, Ho, Hs, H7, Hg, and

Ho, and we accept the alternative hypotheses that states #dwde fragments, while others read code in order to undetstan
participants who use Exemplar report higher relevance certain algorithms or processes, but ultimately re-imgiem
and precision on finding relevant applications than those the functionality themselves. After performing the casedgt

who use Sourceforge we responded to these comments by providing the source code
directly on Exemplars results page, with links to the lines
6.4 Comparing EWD with END of files where relevant API calls are used. This constitutes

a new feature of Exemplar, which was not available to the

To test the null hypothesdd,, Hs, andHg, we applied two participants during the user study.

t-tests for paired two sample for means, for P, and NG Ninet f th ficinant ted Usi d
for participants who used END and EWD. The results of this ineteen of the participants reported using source code

test are shown in Table 2. Based on these results we rejégg;gﬂ Z?]g'i:iss rjﬁéy’nsiéxesf‘édjg?/ S%T?:\Icr;eest?;? g(;'l“mezr(;?
the null hypothesid,, and that say thaparticipants who 9 ' 9 Y yy

use END report higher relevance when finding relevant use source code search engines, eight adapted Googles web
applications than those who use EWDON the other hand search to look for code. Meanwhile, when asked to state the

we fail to accept the null hypotheskls andHg, and say that bigg_e;t impediment in using source cod_e search en_gines, 14
participants who use END do not report higher precision participants answered that existing engines return irasle

or normalized discounted cumulative gain than those who results, four were mostly c_:oncerned with the quality of the
use EWD. returned source code, six did not answer, and 11 reported som

There are several explanations for this result. First, rgivé)ther impediment. These results support the recent st{ls

that our dataflow analysis is imperfect, some links are rdiss"émd point to a strong need for improved code engines that

S : return focused, relevant results. New engines should shew t
and subsequently, the remaining links cannot affect thimgn specific processes and useful fragments of code. We believe
score significantly. Second, it is possible that our dataﬂot\?? P 9 j

connectivity-based ranking mechanism needs fine-tuning, a at S.f(.e arch:jng b3|/| ,ngl ca(ljls can f'"t.th's rlo le beg?hushg Cr? Hﬁeh?t
it is a subject of our future work. Finally, after the casedstu specilic and wefl-defined semantics along wi Igh-quality

p . . . documentation.
a few participants questioned the idea of dataflow connestio o . . .
The following is a selection of comments written by partic-

between API calls. A few participants had vague ideas as.to nts in the user studv. Scanned cobies of all questicesair
what dataflow connections meant and how to incorporate thdf} Y. P q

into the evaluation process. This phenomenon points to @ n&&® F:Ubl'dy available on the Exemplar abou_t p_age.
for better descriptions of Exemplar's internals in any fetu ¢ 1he Exemplar search is handy for finding the APIs

case studies. quickly.” , , _
« “Many SourceForge projects [have] no files or archives.”

o : « “A standalone fragment would be easy to see and de-
6.5 Qualitative Analysis and User Comments termine relevance to my needs, but an entire application
Thirty-five of the participants in the case study completed would allow for viewing context which would be useful.”
exit surveys (see Table 3) describing their experiences and “[I] typically reuse the pattern/algorithm, not [the] full
opinions. Of these, 22 reported that seeing standalone frag code.”
ments of the code alongside relevant applications would be, “Often [retrieved code or applications] give me a clue as
more useful than seeing only software applications. Only fo to how to approach a development task, but usually the
preferred simply applications listed in the results, whilae code is too specific to reuse without many changes.”
felt that either would be useful. Several users stated that, “Often, [with source code search engines] | find results
seeing entire relevant applications provides useful ocdrite that do not have code.”

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

« “[I reuse code] not in its entirety, but [I] always find RQ; Is Exemplar sensitive to differences in the user
inspiration.” queries when those queries were generated for the
« “There seems to be a lot of time needed to understand same task by different users?

the code found before it can be usefully applied.” We want to know how we can optimize Exemplar given
« “Could the line number reference [in Exemplar] invoke @answers to these research questions. Additionally, we teant
collapsible look at the code snippet?” study how design decisions (such as whether RAS considers

« “With proper keywords used, [Exemplar] is very impresthe frequency of API calls, see Section 4) affected Exemplar
sive. However, it does not filter well the executables and

non-code files. Overall, great for retrieving simple cod
shippets.” T
« “Most, if not all, results returned [by Exemplar] providedExeémplar computes a score for every application to reptesen
valuable direction/foundation for completing the reqdirethat application’s relevance to the user query (see Seéjjon
tasks.” Ideally, higher scores will be attached to applicationshwit
« “During this experiment it became clear that searchirgfeater relevance. We know from Section 6 that Exemplar

for API can be much more effective than by keywordEeturns many relevant results, but this information alogie i
in many instances. This is because it is the APIs thisufficient to claim that a high score from Exemplar for an

71 Comparing Scores in Confidence Levels

determine functionality and scope potential.” application is actually an indicator of the relevance ofttha
« “SourceForge was not as easy to find relevant softwafgplication, because irrelevant applications could stitain
as hoped for.” high scores (see Section 9).

. “[Using SourceForge] | definitely missed the report TO better understand the relationship of Exemplar ranking
within Exemplar that displays the matching APl methScores to relevance of retrieved software applicationd, tan

ods/calls.” answerRQy, we examined the scores given to all results given
« “SourceForge appears to be fairly unreliable for projec@/ Exemplar durmg the user study. We also consider the Java
to actually contain any files.” programmers’ confidence level rankings of those resultg Th
« “Exemplar seems much more intuitive and easier to u§éogrammers ranked results using a four-level Likert s(sde
than SourceForge.” Section 5.1). We grouped Exemplars scores for applicabigns
« “Great tool to find APIs through projects.” the confidence level provided by the case study participants
« “It was really helpful to know what API calls have beerfor those applications. Figure 4 is a statistical summarghef
implemented in the project while using Exemplar.” scores for the results, grouped by the confidence level.€Thes

The users were overall satisfied with Exemplar, preferting cores were obtained from Exemplar using all 209 querigs tha

to SourceForges search. In Section 6, we found that theg rat1 € user.s;j proltle:ﬁed for 22|ttasks.|dltj)?n? ths casle éd%ufﬁfye th
results from Exemplar with statistically-significantly ghier ave made all tnese results avaliable for downioad from the

confidence levels than SourceForge. From our examination":c?femplar website so that other researchers can reproduce ou

these surveys, we confirm the findings from our analysis ﬁpalyss and the results.
Section 6 and conclude that the participants in the case st
did prefer to search for applications using Exemplar rathueﬂrl'1 Hypotheses for RQy

than SourceForge. Moreover, we conclude that the reasgn ti¥¢ want to determine to what degree the mean of the scores

preferred Exemplar is because of Exemplar's search of Aﬁs@m Exemplar .increase as the user confidence level rank_ings
documentation. increase. We introduce the following null and alternative

hypotheses to evaluate the significance of any difference at
a 0.05 level of confidence.

H1io—nuil The null hypothesis is that there is no differ-
ence in the values of Exemplar scores of applications

7 ANALYSIS OF USER STUDY RESULTS

During our case study of Exemplar (see Section 5), we
found that the original version of Exemplar outperformed among the groupings by the confidence level.
SourceForge in terms of both confidence and precision. InHl(FaIt An alternative hypothesis tél1g_nu is that

this section, we will explore why Exemplar outperformed there is a statistically significant difference in the

SourceForge. Our goal is to identify which components of values of Exemplar scores of applications among the
Exemplar lead to the improvements and to determine how groupings by the confidence level.

users interpreted tasks and interacted with the source code
search engine. Specifically, we intend to answer the folilgwi 7 1 2 Testing the Null Hypothesis

research que_s’uons (RQ):) The results of ANOVA forHig_nui confirm that there are
RQ Do high Exemplar scores actually match high configtatistically-significant differences among the grouiray
dence level ranks from the participants? confidence level. Intuitively, these results mean that éigh
RQ Do the components of the Exemplar score (WO3cores imply higher confidence levels from programmers.

RAS, and DCS scores) indicate relevance of applicgiigher confidence levels, in turn, point to higher relevagses
tions when the others do not (e.g., do the components

capture the same or orthogonal information about12. Note that the participants only completed 22 out of 26 toasks
retrieved software applications)? available.

MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 11

g | _ PCI | PC2 | PC3
Proportion | 43.8% | 31.5% | 24.8%
_ Cumulative | 43.8% | 75.3% | 100%
WOS -0.730 | 0.675 | 0.106
RAS 0.995 | 0.091 | -0.039
L5 DCS -0.010 | -0.303 | 0.953
ALL 0.477 | 0.839 | 0.263
TABLE 4
14 Factor loading through Principal Component Analysis of
each of the scores (WOS, RAS, and DCS) that contribute

to the final score in Exemplar (ALL).

/
- WOS RAS DCS ALL

WOS 1 -0.741 | -0.104 | 0.142

0 - - - - RAS | -0.741| 1 | -0.046 | 0.482
DCS | -0.104 | -0.046| 1 | -0.005
1 2 3 4 ALL | 0.142 | 0482 | -0.005| 1
Fig. 4. Statistical summary of the scores from the case - TABLES
study of Exemplar. The y-axis is the score given by Exem- Spearman correlations of the score components to each
plar during the case study. The x-axis is the confidence other and to the final ranking.

level given by users to results from Exemplar.

Section 5). Table_6 shows the F-value, P-value, ar_ld crifeal analyzed. PCA identified three principal components; Tdble
value for the variance among the groups. We reject the nujl,ys the results of this analysis. We find that the first
hypothesisHio_nui because the B Feritical . Additionally, P i cina) component is primarily RAS (99.5% association),
< 0.05. T_herefore, we find evidence supporting the altereatiyf,o second component is somewhat linked to WOS (67.5%
hyp.oth.e3|si-|10,a|t. , , association), and the third componentis primarily DCS395.
Finding supporting ewdgnce fdf1o-ar suggests that we association). The final Exemplar score (denoted ALL) isdithk
can answerRQ. To_ confirm these results, howev_er, W&o each of the primary components, which we expect because
grouped the results in terms of rglevant (e.q., confldencet input parameters combine to form the Exemplar score.
or 4) and non-relevant (e.g., confidence 1 or 2), and testgd.,,;se WOS, RAS, and DCS are all positively associated
the difference of these groups. A randqm|zat|on test of@heg;i their own principal components, we conclude that each
groups showed a P-\{alue ef0.0001, which p_rowdes further metric provides orthogonal information to Exemplar.
evidence for answerin®Q,. Therefore, we find that higher \ye a150 computed the Spearman correlations[43] for each
Exemplar scores do in fact match to higher confidence |eygl \ narameter to each other. These correlations aremtese

rankings from participants in the user study. in Table 5. WOS and RAS are negatively correlated to one
o another, a fact suggesting that the two metrics contribute
7.2 Principal Components of the Score differently to the final ranking score. Moreover, RAS extsbi

The relevance score that Exemplar computes for every reoderate correlation to the final Exemplar score, while WOS
trieved application is actually a combination of the threis at least positively correlated. DCS, however, is entirel
metrics (WOS, RAS, and DCS) presented in Section 3. TedmAcorrelated to either RAS or WOS. We draw two conclusions
nically, these three metrics were added together with eq@iven these results. First, we answk€, by observing that
weights using an affine transformation during the case stu®AS and WOS do capture orthogonal information (see PCA
Ideally, each of these metrics should contribute orthofon&sults in Table 4). Second, because DCS does not correlate
information to the final relevance score, meaning that eatththe final score and because DCS did not appear to benefit
metric will indicate the relevance of applications when thExemplar during the case study (see Section 6.4), we removed
others might not. To analyze the degree to which WOS, RABCS from Exemplar. We do not consider DCS in any other
and DCS contribute orthogonal information to the final scoranalysis in this section.
and to addres®Q,, we used Principal Component Analysis
(PCA)[24]. PCA locates uncorrelated dimensions in a datage2.1 Analysis of WOS and RAS
and connects input parameters to these dimensions. ByngokGiven that WOS and RAS contribute orthogonally to the
at how the inputs connect to the principal components, we cBremplar score, we now examine whether combining them
deduce how each component relates to the others. in Exemplar returns more relevant applications versus each
To apply PCA, we ran Exemplar using the queries frommetric individually. We judged the benefit of WOS and RAS
the case study and obtained WOS, RAS, DCS, and combirt®d computing each metric for every application using the
scores for the top ten applications for each of the queriepieries from the case study. We then grouped both sets of
We then used these scores as the input parameters tosberes by the confidence level assigned to the application

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

oo 12'f31 6E|?08 F;'fgcl""' 7.3 Keyword Sensitivity of Exemplar
Higpu | 197 | 012 | 261 Recent research shows that users tend to generate different
Mo | 818 | 2B-05] 2,61 kinds of queries [3]. It may be the case that different users
TABLE 6 of Exemplar create different queries which represent tingesa
Results of testing Hio_nuil, Hi1nuit, @and Hio_nui task that those users need to implement. If this occurs, some

users may see relevant results, whereas others see ineleva
ones. During the case study, we provided the participants
with 22 varied tasks. The participants were then free to read
the tasks and generate queries on their own. Exemplar may
!Btrieve different results for the same task given différen
Series, even if the participants generating those queidies
terpreted the meaning of the task in the same way. This
presents a threat to validity for the case study becausereift
o) ~““participants may see different results (and produce differ
Hiznui The null hypothesis is that there is no differyankings) for the same task. For example, consider Taskn fro
ence in the values of WOS scores of applicationSection 5.5. Table 7 shows two separate queries generated
among the groupings by confidence level. independently by users during the case study for this'task
Hi1-a An alternative hypothesis tél11nui is that By including more keywords, the author of the second query
there is a statistically significant difference in thgong three different applications than the author of thet fir
values of WOS scores of applications among thgyery. In this section, we will answeRQ; by studing how
groupings by confidence level. sensitive Exemplar is to variations in the query as fornadat
Hi2 nuil The null hypothesis is that there is no differ<Dy different users for the same task.
ence in the combined values of RAS scores of ap- First, we need to know how different the queries and
plications among the groupings by confidence levele results are for individual tasks. We computed tuery
Hiz-art An alternative hypothesis tél12nui is that oyerlap to measure how similar queries are for each task.
there is a statistically significant difference in theye gefined query overlap as the pairwise comparison of the
values of RAS scores of applications among thgmber of words, which overlap for each query. The formula
groupings by confidence level. is queryoverlap= W wherequer y1 is the set of
words is the first query anduery?2 is the set of words in
the second query. For example, consider the queries “sound
We used one-way ANOVA to evaluate;y nui @andHiz—nul voice midi” and “sound voice audio midi connection gui”.
that the variation in the experiment is no greater than th@he queries share the words “sound”, “voice”, and “midi”.
due to normal variation of the case study participants @®icThe total set of words is “sound voice midi audio connection
of confidence level as well as chance matching by WOS aggdi". Therefore, the query overlap is 0.5, or 50%. To obtain
RAS, reSpeCtiVely. The results of ANOVA confirm that ther%e query Over|ap for a task, we S|mp|y Computed the Over|ap
are statistically-significant differences among the giogpby numbers for every query to every other query in the task.
confidence level for RAS, but not for WOS. Table 6 showgne queries were processed in the same way as they are in
the F-value, P-value, and critical F-value for the variancLeXemmar; we did not perform stemming or removal of stop
among the groups for WOS. Table 6 shows the same valuggds.
for RAS. We do not reject the null hypothesi$;y ny Because we see different queries for each task, we expect
because F< Feritical . Additionally, P> 0.05. Therefore, we o see different sets of results from Exemplar over a task.
can not support the alternative hypothesis a. On the other e surmise that if two users give two different queries for
hand, we reject the null hypothesi$> nui because the F the same task, then Exemplar will return different results
> Feritical. P < 0.05. Therefore, we find evidence supportings well. We want to study the degree to which Exemplar
the alternative hypothestd;s at. is sensitive to changes in the query for a task. Therefore,
We finish our study of the contributions of RAS, WOSye calculate theresults overlapfor each task using the
and DCS by concluding that RAS improves the results yrmy|a resultsoverlap= 4t9uetotal \heret ot al is the
a statistically-significant amount. Meanwhile, we canmdei [expected totall,

ot - total number of results found for a given taskyi que is the
any findings about WOS because we could not réfagtnui- number of those results which are unique, axgect ed is

We did observe specific instances in the case study Whege number of results we expect if all the results overlapped
WOS contributed to the retrieval of relevant results wherSRA(e'g_ the minimum number of unique results possible). For

did not (see Section 9). Therefore, we include WOS in the finglample, consider the situation in Table 7 where, for a singl
version of Exemplar, albeit with a weight reduced by S0%sk two users created two different queries. In the case
from 0.5 to 0.25. We also increased the weight of RAS hy,qy, participants examined the top ten results, meatiag t
50% from 0.5 to 0.75 because we found that RAS contibutes

to more relevant results than WOS. 13. We generated the results in Table 7 using Exemplar in thmes
configuration as in the case study, which can be accessed Higyg/www.
xemplar.org/original.html (verified 03/28/2011)

by the case study participants in a setup similar to that
Section 7.1. Figure 5a and 5b are statistical summari
for the WOS and RAS scores, respectively. We introdug
the following null and alternative hypotheses to evaluaie t
significance of any difference at a 0.05 level of confidence.

7.2.2 Testing the Null Hypotheses

MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 13

0.8 - 0.8 -
0.6 - 0.6 -
0.4 - 0.4 -
»

. . <
0.2 J * 0.2 J
. W = N B BN N

1 2 3 | 1 2 3 |

(@ wWos (b) RAS

Fig. 5. Statistical summary of the WOS and RAS scores from the case study of Exemplar.

“sound voice midi” “sound voice audio midi P
connection gui” 7.4 Sensitivity to the Number of API Calls

1 | Tritonus Tritonus The RAS component of Exemplar is responsible for ranking
;2>, ﬁgﬁn ig‘gngeS /F:SEPJUSeDviE)p applications based on the API calls made in those applitstio

2 TuxGuitar TuxGuitar This component first locates a number of descriptions of API
5 | MidiQuickFix MidiQuickFix calls which match the keywords provided in the user’s query.

? éluq('j% Bleve'op g{’cllj"_? :Ound Res then matches those API calls to applications which use those

ul ItC| : F
8 T DGuitar DGuTar calls. During the case study, we limited the number of API
9 | Cesar Music and Audio calls that RAS considers to 200 due to performance overhead.
10 | Saiph JVAPTools In this section, we analyze the effect this design decisih h
TABLE 7 on the search results.

The maximum number of APIs to consider is an internal
parameter to Exemplar calledaxapi To study its effects, we
first obtained all 209 queries written by participants in the
case study from Section 5. We then s&ixapito infinity (so
that potentially every API could be returned) and ran every
query through Exemplar. From this run, we determined that
the maximum number of API calls extracted for any query
was 406. We also stored the list of results from this run.

We then ran Exemplar with various entries as input for
maxapiranging between 1 and 456 We then calculated the
results overlafdor the results of each of these runs against the
results from the run in whicmaxapiwas set to infinity. In this
way, we computed the percent of overlap of the various levels
Exemplar returned 20 total results. At least ten of the t8SUbt maxapiwith case in which all API calls are considered. The
must be unique, which is the expected number if Exemplatgits of this analysis are summarized in Figure 7. We olser
returned the same set for all three queries. In Table 7, hervey ot whermaxapiis set to a value greater than or equal to 200,
13 of the results were unique, results overlap would be Ofe percent overlap is always above 80%, meaning that 80%

or 70% overlapped. of the results are identical to those in the case when all API

Statistical summaries of the results overlap and query-ovek s are considered. We setaxapito 200 in the remainder
lap are in Figure 6. The Spearman correlations for the opsrlgys ihis paper.

was 0.356. We observe a weak correlation between results
and query overlap, which we expect because more similgg sensitivity to Frequency of API Calls

queries will most likely cause Exemplar to .produ_ce MOhe RAS component ranking considers the frequency of each
similar results. Therefore, to answef);, we do find evidence . S .
API call that occurs in each application. For example, if an

that Exemplar is sensitive to differences in the queriesnev
if those queries were created to address the same task.

The top ten applications returned by Exemplar for two
separate queries. Both queries were generated by users
during the case study while reading the same task.
Shaded cells indicate applications in both sets of results.
Application names in bold were rated with confidence
level 3 or 4 (relevant or highly-relevant) by the author of
the associated query. Note: Ties of relevance scores are
broken randomly; applications with identical scores may appear
in a different order.

14. Note that Exemplar produces the same results whaxapiis set to
406 and infinity since 406 was the maximum amount of API| catsmed.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

applicationA makes an API calt twice, and an application
B makes an API calt only once, anct is detemined to be
relevant to the user query, then applicatidrwill be ranked a0%
higher tharB. In Exemplar, we use static analysis to determir

100%

the API calls used by an application. Therefore, we do n _ %%
know the precise number of times an API call is actuall 'f; 0%
made in each application because we do not have execul &
information for these applications. For example, consitier T a0
situation where applicatioA calls ¢ twice andB callsc once. E
If the call toc in B occurs inside a loo@® may callc many =%
more times tharA, but we will not capture this information. 4%
We developed a binary version of RAS to study the effec
this API frequency information may cause in our case stuc 30%
The binary version of RAS does not consider the frequency
each API call in the applications. More formally, the binar Maximum Humber of APls
RF;AS calculates the scores according to the formlla =
_ZQJ Fig. 7. A chart of the results overlap from various levels of
1=

=1, where |A|l is the total number of API calls in the maxapi The x-axis is the value of the overlap. The y-axis

]
ar‘)A[‘alicationj, and p is the number of API calls retrieved foris the value of maxapi
the query.

We then executed Exemplar using the 209 queries from Experiment Géolup Seaﬁgvﬁngi”e Tas%klset
the case study in Section 5 for both the binary version of 1 G2 OLD T2
RAS and the RAS that considers frequencies of API calls as 2 G1 OLD T2
described in Section 3.3. We computed tlesults overlap G2 NEW T
between the results for both. The mean overlap for the esult TABLE 8
of every query was 93.2%. The standard deviation was 13.4%. Plan for the case study of Exemplaryew and
Therefore, we conclude that the results from Exemplar with ExemplaroLp.

the binary version of RAS are not dramatically differentnfro
the frequency-based version of RAS. We use the frequency-
based version of RAS in the remainder of this paper.

interface so that project source code is visible without low
8 EVALUATION OF CHANGES TO EXEMPLAR loading whole projects. We compare the quality of the rasult
We made several alterations to Exemplar based on our agalygim the updated version of Exemplar against the previous
in Section 7. Specifically, we removed DCS, rebalanced thersion. In this study, we refer to the previous Exemplar as
weights of WOS and RAS (to 0.25 and 0.75), and updated tBgemplap. p and the new Exemplar as Exemplay.

8.1 Methodology

We performed a case study identical in design to that pre-
sented in Section 5, except that we evaluate two engines
0.6 (Exemplagew, Exemplap.p) instead of three (EWN, END,

) SF). Table 8 outlines the study. We chose END to represent

05 - - the old Exemplar because END was the best-performing

0.8 -

0.7

configuration. In this case, we randomly divided 26 caseystud

0.4 - participant$® into two groups. There were two experiments,
and both groups participated in each. In each experimecit, ea
03 7 group was given a different search engine (e.g., Exemplar
0.2 - or Exemplap p) and a set of tasks. The participants then
generated queries for each task and entered those queges in
01 - the specifed search engine. The participants rated eaah res
0 on a four-point Likert scale as in Section 5. From these gatin
T 1

we computed the three measures confidence (C), precisipn (P)
Results Overlap Ouery Overlap and normalized discounted cumulative gain (NG).

; ot 15. Nine of the participants in this study were graduate esitsi from the
Fig. 6. Statistical summary of the overlaps for tasks. The University of lllinois at Chicago. Five were graduate stuideat the College

x-axis is the type of overlap. The y-axis is the value of the of william & Mary. Ten were undergraduate students at Witii& Mary. We
overlap. reimbursed the participants $35 after the case study.

MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 15

8.2 HypOtheses Exemplap p gyph paning Exemplaggw
We introduce the following null and alternative hypotheges Jazilla 1 Jazilla 1
evaulate the differences in the metrics at a 0.05 confidence | DrawSWFE__ 4 | DrawSwrk 4
Image inpainting 1 McBilliards 3
level. SandboxPix 1 Waba for Dos 3
His The null hypothesis is that there is no dif- \l\l/lvcﬁi"i?deD g Eiiﬂeigools ;
ference in the values d for ExemplgNEW versus Big‘Gan‘}roolgs K S%VTgwing =
Exemplap.p. Conversely, the alternative is that there TekMath) JavazC 0
is statistically significant difference in the values of SWTSwing 0 JSpamAssassin 0
C for Exemplaggw versus Exemplaip. DESMO-J 0 netx 0
Hia The null hypothesis is that there is no dif- mg%p ?0 8'451;23 8-22(2)8
ference in the values d? for Exemplaggew versus P . -
Exemplap.p. Conversely, the alternative is that there TABLE 10
is statistically significant difference in the values of The search results from a single query from the second case
P for Exemplakew versus Exemplaip. study; applications are listed with the assigned confidence
His The null hypothesis is that there is no differ- levels. A case study participant generated the query and

ence in the values oG for Exemplaggw versus provided the relevancy rankings when evaluating Exemplarg| p.
Exemplap.p. Conversely, the alternative is that there Applications with a confidence level zero were not able to be
is statistically significant difference in the values of accessed by the participant, and are discarded during our

NG for Exemplagew versus Exemplaip. analysis. We ran the same query on Exemplaryew. The
confidence levels for the results of Exemplarygw are copied

from the confidence levels given by the participant who ran

8.3 Results) :

) o Exemplaro p. NG represents the normalized discounted
We applied randomization tests to evaluate the hypotéges ymulative gain for the top 6 (all evaluated, zeros discarded)
H14, andH;s. The results of this test are in Table 9. We do not and top 10 (all retrieved, zeros included).

reject the null hypothesikli4 because the P-value is greater

than 0.05. Therefore, participants do not report a stedily-

significant difference in terms of precision of the resu@@

the other hand, we reject the null hypothestis and His, .

meaning that participants report higher confidence level fh4 Participant Comments on Exemplar new

the results. Also, the participants report higher nornealiz Seventeen of the case study participants answered the same
discounted cumulative gain when using Exempiay versus exit survey from Table 3. The responses generally support
Exemplapp. those which we discuss in Section 6.5: roughly half of the

The difference in average confidence level between tharticipants reported rarely or never using source codelsea
updated and original versions of Exemplar is statistical§ngines, and of those a majority prefer to use Google. The top
significant, as seen in Figure 8(a), though the difference rgason cited for not using source code search engines was the
very small. The difference in precision is not statistigallpreceived poor quality results given by those engines. &hes
significant (see Figure 8(b)). One explanation for the smadfsults, along with those in Section 6.5, are a strong miiiva
size of this difference is that both versions of Exemplanmet for improvements in source code search engines.
the same sets of applications to the user. Returning the sam# addition to rebalacing the weights of the ranking com-
set of applications is expected because both Exemgpjaand ponents in Exemplagew, we made the source code of the
Exemplap.p use the same underlying information to locatépplications immediately available through the enginee Th
these applications (e.g., API calls and project descmgdio following are comments provided by participants regarding
The order of the results is also important, and the new versithese changes. We conclude from these comments that (1)
of Exemplar does return the more-relevant results in higheésers prefer to see source code along with relevant appli-
positions, as reported by the normalized discounted cuivela cations, and (2) API calls helped participants determires th
gain (NG, see Figure 8(c)). relevance of results.

Table 10 illustrates an example of the improvement made. “Very convenient to be able to open to view source files
by Exemplagew. This table includes the results for the same immediately. Much much more convenient to user.”
query on both engines as well as the confidence level for thes “[WOS in Exemplap.p] got in the way quite a bit”
applications as reported by a participant in the case study. “I definitely like viewing code in the browser better”

The normalized discounted cumulative gain is higher in this« “[Exemplafgew] is really useful since we can know which

example for Exemplaiew than Exemplas p. Even though a APl we should choose.”

majority of the applications are shared by both sets of tesul « “[API calls] are very useful if the call is relevant, a lot

Exemplagew organizes the results such that the most-relevant of API calls had nothing to do with the task.”

applications appear sooner. « “[API calls] are very useful for determining initial area
of source code which should be examined.”

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

4 1- - 1 -
3.5 1 T
0.8 - 0.8 -
Ny l
25 7 -~ o 0.6 - 0.6 -
2 -
17 0.2 - 02 -
0.5
0 . | 0 0 '
oLn NEW oLD NEW oLD HNHEW
(a) Confidence levelC. (b) Precision,P. (c) Normalized Discounted GaitNG.

Fig. 8. Statistical summary of C, P, and NG from the case study evaluating the new version of Exemplar. The y-axis is
the value for C, P, or NG from the case study. The x-axis is the version of Exemplar.

[H] Var | Approach [Samples| Min [Max | Median| u | C] p |

s | C | Cmplane | 85 | 1 | 4 | 2 | 230 005 | 0008

e | P | Eomplas | 40 | o | 0o0| 030 | oar| 08| 023738

e | o | St | 09 330 B 050 o | aonor
TABLE 9

Results of randomization tests of hypotheses, H, for dependent variable specified in the column Var (C, P, or NG) whose
measurements are reported in the following columns. Extremal values, Median, Means, |, and the pearson correlation coefficient,
C, are reported along with the results of the evaluation of the hypotheses, i.e., statistical significance, p.

8.5 Suggestions for Future Work applications, however, all use API calls from the Java class

The participants in the case study had several suggestiéi@-net.HttpURLConnectidf Exemplar was able to retrieve
for Exemplar, and we have incorporated these into our futdfeese applications only because of the contribution froe th
work. One participant asked that we filter “trivial” resustisch RAS score. _ _

as API calls namecequal () or toString(). Another Other queries may reflect the high-level C(_)ncepts in a soft-
suggested that we provide descriptions of API calls digectivare application, rather than low-level details. For ex@Emnp
on the results page. A participant also requested a way to d6f the querytext editor Exemplar returns six of ten top
and filter the API calls; he was frustrated that some sourt@sults without any matching from RAS (see Table 11). While

code files contain “the same type-check method many timelf?e query does match certain API calls, such as those in
the class javax.swing.text.JTextComporn&nExemplar finds

several text editing programs, which do not use API calls
9 SUPPORTING EXAMPLES from matching documentation. Locating these applications
Table 11 shows the results from Exemplar for three separgjgs possible because of relatively high WOS scores.
queries, including the top ten applications and the WOSwe observed instances during the case study where the
and RAS scores for eath For instance, consider the quenhegative correlation between WOS and RAS improved the
connect to an http serveOnly one of the top ten resultsfinal search results. Consider Task 2 from Section 5.5. For
from Exemplar is returned (see Table 11) due to a highis task, one programmer entered the quéind replace

WOS score (e.g., because the query matches the high-lestghg text filesinto Exemplar (see Table 11). The first result
description of the project). The remaining nine projects pe

tain to different pr0b|em domains, inc|uding internet S’HI@U 17. The documentation for this API class can be found at:: http

testing, programming utilities, and bioinformatics. Taéesne (Cjeor‘i’}’i’;'é’%%ggfz'gflc’m”a"ase/G/dOCS/ap'/Ja"a/”WLCO””eCt'O”'htm'

. . . 18. The documentation for this APl class can be found at:
16. We generated the results in Table 11 using Exemplar instm®e pn.//cupi2. uniandes.edu.colsite/images/recurmesdioc/j2se/1.5.0/docs/

configuration as in the case study, which can be accessed Higrg/www. apiljavax/swing/text/JTextComponent.html (verified ZB2011)

xemplar.org/original.html

MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 17

“connect to http server” “text editor” “find replace string text files”
Application WOS | RAS | Application WOS | RAS | Application WOS | RAS
1 DataShare 100% | 0% jeHep 52% | 89% RText 91% | 0%
2 X4technology 0% 100% | XNap Commons| 0% 100% | Nodepublisher | 0% 66%
3 | jpTools 0% 96% | SWediT 92% | 0% XERP 44% | 18%
4 JMS for j2ms 0% 96% Plugins jext 87% | 0% J 54% | 0%
5 MicroEmulator 0% 96% PalmEd 87% | 0% j-sand 53% | 0%
6 ReadSeq bioinfo | 0% 95% PowerSwing 0% 85% DocSearch 48% | 0%
7 httpunit 0% 95% Graveyard 83% | 0% MMOpenGraph | 43% | 0%
8 WebCQ 0% 95% JavaTextEditor 82% | 0% AppletServer 0% 41%
9 WebXSSDetector| 0% 95% Eclipse Edit 81% | 0% MultiJADS 0% 39%
10 | Organism System| 0% 90% Comic book edit| 65% | 15% GalleryGrabber | 0% 39%
TABLE 11

The top ten applications returned by Exemplar for three separate queries, along with the WOS and RAS scores for
each. The DCS score was zero in every case. Note: Ties of relevance scores are broken randomly; applications with identical

scores may appear in

a different order.

was a program called RText, which is a programmer’s text Even though it returns code snippets rather than applica-
editor with find/replace functionality. The second resulisw tions, Mica is similar to Exemplar since it uses help pages
Nodepublisher, a content management system for websitesfind relevant API calls to guide code search [45]. How-
Nodepublisher’s high-level description did not match thery ever, Mica uses help documentation to refine the results of
and has a WOS score of 0%. The query did match sevetla search while Exemplar uses help pages as an integral

API call descriptions, including calls inside the classajaext.
DictionaryBasedBreaklterattt which Nodepublisher uses.

instrument in order to expand the range of the query.

SSI examines the API calls made in source code in order
Conversely, RText contained no API calls with documentatido determine the similarity of that code [5]. SSI indexes

matching the query, but had a relevant high-level desompti each source code element based on the identifier names
Since both applications were rated as highly-relevant ley th

programmer in the case study, both WOS and RAS aidegsproach Granularity | Corpora| —Query
in finding a relevant result for this query. Specific situao Search| Input Expansion
such as this one support our decision to keep WOS in tifieCodeFinder [16] M C D Yes
final version of Exemplar, even with a reduced weight (s eﬁ?deﬁgref [51] "é g (D: zes
. IcCa es
Section 7.2.2). Not all applications WI.Ih high V\{OS_or RA Prospecior [29] = yy c Yos
scores were relevant, however. Despite occurring in the tOmHipikat [9] A C D,C Yes
ten list of applications, both MMOpenGraph and AppletServe xSnippet [39] F A D Yes
were rated with a confidence level of 2 (“mostly irrelevant” i}\;acth[clo;]a (19][20] E g g Leos
by the author of the query. Google Code FMA | CA D,C No
Sourceforge A C D No
SPARS-J [22][23] M C C No
10 RELATED WORK Sourcerer [27] FMA C C No
Different code mining techniques and tools have been prp-Sourcerer API Search [4] F CA c No
posed to retrieve relevant software components from differ gOdeGe”'e [26] FM T ¢ No
L. o . . .) potWeb [47] M C C Yes
repositories as it is shown in Table 12. CodeFinder iteetiv Farseweb [48] E A c Yes
refines code repositories in order to improve the precision p < [36] F CAT C Manual
returned software components [16]. Codefinder finds simil r*é“:jg'e Evmvﬁ E'ﬁ B’g HO
. . L | Koders M,) , o
f:ode using spreading acfuvat_lon basgd on the terms thatBppe sy B FM CA B.C Yes
in that code. Exemplar is different in that we locate sourcesiueprint [7] E CA C No
code based on keywords from APl documentation. It is n@tExemplar [15] FMA | CA D,C No
necessary for Exemplar to find any matching keywords in the TABLE 12

source code itself.

Codebroker system uses source code and comments writte

by programmers to query code repositories to find releval

artifacts [50]. Unlike Exemplar, Codebroker is dependew

upon the descriptions of documents and meaningful names ot
program variables and types, and this dependency oftes lea

to lower precision of returned projects.

19. The documentation for this APl class can be found at:: http
IIwww.docjar.com/docs/api/java/text/DictionaryBaBegaklterator.html (veri-
fied 03/28/2011)

nt

Comparison of Exemplar with other related approaches.
olumn G anul ari ty specifies how search results are
returned by each approach (Fragment of code, Module, or
lication), and how users specify queries (Concept, API call,
dpr Test case). The column Cor por a specifies the scope of
search, i.e., Code or Documents, followed by the column

Query Expansi on that specifies if an approach uses this
technique to improve the precision of search queries.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

and comments in that code. Then SSI adds terms to thkicable when searching for relevant projects given a query
index of a source element. The new terms come from othawntaining high-level concepts with no source code.
source code elements which use the same set of API callsThere are techniques that navigate the dependency stuctur
Additionally, SSI seeds the index with keywords from APIllcalof software. Robillard proposed an algorithm for calcuigti
documentation. On the other hand, Exemplar matches querpgram elements of likely interest to a developer [37][38]
keywords directly to APl documentation, and then calcwat&RAN is a technique which helps programmers to locate
RAS, which is a ranking based on which projects uuse tlfienctions similar to given functions [41]. Finally, XSnipp
API calls that the matching documentation describes. Thea context-sensitive tool that allows developers to query
fundamental difference between Exemplar and SSI is theimple repository for code snippets that are relevant to the
Exemplar bases its ranking on how many relevant API callsogramming task at hand [39]. Exemplar is similar to these
appear in the source code (RAS, Section 3.3), unlike S@lgorithms in that it uses relations between API calls in the
which ranks source code based on the keyword occurrencesieved projects to compute the level of interest (ragkiof
in the source code. Also, Exemplar has been evaluated wittha project. Unlike these approaches, Exemplar requirgs on
user-study of professional programmers. a natural language query describing a programming task. We

SNIFF extends the idea of using documentation for ARbund in this paper that considering the dataflow among API
calls for source code search [14][45] in several ways [8leAf calls does not improve the relevancy of results in our case.
retrieving code fragments, SNIFF then performs interseatif Existing work on ranking mechanisms for retrieving source
types in these code chunks to retain the most relevant and camde are centered on locating components of source code that
mon part of the code chunks. SNIFF also ranks these prunmadtch other components. Quality of match (QOM) ranking
chunks using the frequency of their occurrence in the indexmeasures the overall goodness of match between two given
code base. In contrast to SNIFF [8], MICA [45], and oucomponents [46], which is different from Exemplar which
original MSR idea [14], we evaluated Exemplar using a largeetrieves applications based on high-level concepts tbatsu
scale case study with 39 programmers to obtain statisticatipecify in queriesComponent rank model (CRNy based on
significant results, we followed a standard IR methodolognalyzing actual usage relations of the components and prop
for comparing search engines, and we return fully execatalalgating the significance through the usage relations [3R][2
applications. Exemplar’'s internals differ substantiafbpm Yokomori et al. used CRM to measure the impact of changes to
previous attempts to use API calls for searching, includifgameworks and APIs [52]. Unlike CRM, Exemplar’s ranking
SNIFF: our search results contain multiple levels of granul mechanism is based on a combination of the usage of API
ity, we conduct a thorough comparison with the state of aztlls and relations between those API calls that implement
search engine using a large body of Java application code, &igh-level concepts in queries.
we are not tied to a specific IDE. S is a code search engine that uses a set of user-guided pro-

Prospector is a tool that synthesizes fragments of codegram transformations to map high-level queries into a dubse
response to user queries that contain input types and desioé relevant code fragments [36], not complete applications
output types [29]. Prospector is an effective tool to assistke Exemplar,S® returns source code, however, it requires
programmers in writing complicated code, however, it doeslditional low-level details from the user, such as datasyp
not provide support for a full-fledged code search engine. of test cases.

Keyword programming is a technique which translates a few
user-provided keywords into a valid source code statemef{ CoONCLUSIONS
[28]. Keyword programming matches the keyW(_)rd_s to AP\}Ve created Exemplar, a search engine for highly relevant
calls and the parameters of those calls. Then, it links those, .

Software projects. Exemplar searches among over 8,000 Java

parameters to variables or other functions also mentloned.a{pplications by looking at the API calls used in those ap-

the keywords. Exemplar s similar to keyword programming Blications. In evaluating our work, we showed that Exemplar

that Exemplar matches user queries to AP calls, and can rg(l:f[performed SourceForge in a case study with 39 profeakion

ommend usage of those calls. Unlike keyword programmin
: rogrammers. These results suggest that the performance of
Exemplar show examples of previous usage of those APIs, dn . X . :

are search engines can be improved if those engines

does not attempt to integrate those calls into the user’s ovsvcr)1
P 9 consider the API calls that the software uses. Also, we modi-

source code. . . .
The Hipikat tool recommends relevant development arti;facffed Exemplar to increase the _welght of RAS, and _pe_rformed
econd case study evaluating the effects of this increase.

: L . . a
(ie., source r’eV|s_|ons associated with a pas_t change taﬁ@ found that not only does including API call information
from a project’s history to a developer [9]. Unlike Exemplar.

- ; : . increase the relevance of the results, but it also imprdves t
Hipikat is a programming task-oriented tool that does not |, .
S i g ._prdering of the results. In other words, Exemplar places the
recommend applications whose functionalities match high- L .
. relevant applications at the top of list of results.
level requirements.
Strathcona is a tool that heuristically matches the strectu
of the code under development to the example code [19][1é}.CKNOW'-EDGMENTS
Strathcona is beneficial when assisting programmers while thank the anonymous TSE and ICSE 2010 reviewers for
working with existing code, however, its utility is not aptheir comments and suggestions that helped us to greatly

improve the quality of this submission. We are grateful to

MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 19

Dr. Kishore Swaminathan, the Chief Scientist and Diregz0]
tor of Research for his invaluable support. We also thank
Malcom Gethers from W&M for assisting in computatior,,
of the statistical tests, Bogdan Dit from W&M for helpful

suggestions in editing this paper, and Himanshu Sharma fr&##
UIC for his work on the updated interface for Exemplar.

This work is supported by NSF CCF-0916139, CCF-0916260,
and Accenture Technology Labs. Any opinions, findings ané?!
conclusions expressed herein are the authors’ and do not

necessarily reflect those of the sponsors. [24]
[25]

REFERENCES [26]

[1] Azzah Al-Maskari, Mark Sanderson, and Paul Clough. Télationship
between ir effectiveness measures and user satisfactidiroteedings
of the 30th annual international ACM SIGIR conference onedesh [27]
and development in information retrieyaébIGIR '07, pages 773-774,
New York, NY, USA, 2007. ACM.

[2] Nicolas Anquetil and Timothy C. Lethbridge. Assessifhg trelevance
of identifier names in a legacy software system.CASCON page 4, [28]
1998.

[3] Sushil Bajracharya and Cristina Lopes. Analyzing andhimg an
internet-scale code search engine usage latpurnal of Empirical
Software Engineering (Special Issue MSR-20@9)09. [29]

[4] Sushil Bajracharya, Joel Ossher, and Cristina Lopesarc®éng api
usage examples in code repositories with sourcerer apctseatn
Proceedings of 2010 ICSE Workshop on Search-driven Dewvelop [30]
Users, Infrastructure, Tools and EvaluaticBUITE '10, pages 5-8, New
York, NY, USA, 2010. ACM.

[5] Sushil K. Bajracharya, Joel Ossher, and Cristina V. lsopeeveraging [31]
usage similarity for effective retrieval of examples in eagpositories.

In Foundations of software engineerinSE '10, pages 157-166, New [32]
York, NY, USA, 2010. ACM.

[6] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Ebgfer. Program
understanding and the concept assigment probleéd@ammun. ACM [33]
37(5):72-82, 1994.

[7] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and ScoklBmnmer.
Example-centric programming: integrating web search theodevelop- 34]
ment environment. IiProceedings of the 28th international conference
on Human factors in computing syster@dl '10, pages 513-522, New
York, NY, USA, 2010. ACM.

[8] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Seffi. Ssearch [35]
engine for java using free-form queries. FASE pages 385-400, 2009.

[9] Davor Cubranic, Gail C. Murphy, Janice Singer, and KgJdS. Booth.
Hipikat: A project memory for software developmentEEE Trans. [36]
Software Eng.31(6):446-465, 2005.

[10] Uri Dekel and James D. Herbsleb. Improving api docuragor [37]
usability with knowledge pushing. IICSE pages 320-330, 2009.

[11] George W. Furnas, Thomas K. Landauer, Louis M. Gomea,Sarsan T. [38]
Dumais. The vocabulary problem in human-system commuaitat
Commun. ACM30(11):964-971, 1987. [39]

[12] Mark Gabel and Zhendong Su. A study of the uniquenessoafce
code. InFoundations of software engineeringSE '10, pages 147-156, [40]
New York, NY, USA, 2010. ACM.

[13] Laura A. Granka, Thorsten Joachims, and Geri Gay. E3&king
analysis of user behavior in www search. Rroceedings of the [41]
27th annual international ACM SIGIR conference on Reseant
development in information retrievaSIGIR '04, pages 478-479, New
York, NY, USA, 2004. ACM.

[14] Mark Grechanik, Kevin M. Conroy, and Katharina ProbsEinding
relevant applications for prototyping. MSR page 12, 2007. [42]

[15] Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Dgs Poshy-
vanyk, and Chad M. Cumby. A search engine for finding highlgvant

applications. INCSE (1) pages 475-484, 2010. [43]
[16] Scott Henninger. Supporting the construction and wi@h of compo-
nent repositories. INCSE pages 279-288, 1996. [44]

[17] Rosco Hill and Joe Rideout. Automatic method comptetidn ASE
pages 228-235, 2004.

[18] Reid Holmes and Gail C. Murphy. Using structural comtex recom-
mend source code examples. IBSE, pages 117-125, 2005.

[19] Reid Holmes, Robert J. Walker, and Gail C. Murphy. $ttaha example [45]
recommendation tool. IlESEC/FSEpages 237-240, 2005.

Reid Holmes, Robert J. Walker, and Gail C. Murphy. Apgintate struc-
tural context matching: An approach to recommend relevaatmgles.
IEEE Trans. Softw. Eng32:952-970, December 2006.

] James Howison and Kevin Crowston. The perils and stfaf mining

Sourceforge. IMSR 2004.

Katsuro Inoue, Reishi Yokomori, Hikaru Fujiwara, TetsYamamoto,
Makoto Matsushita, and Shinji Kusumoto. Component rankafRe
significance rank for software component searcHCS8E pages 14-24,
2003.

Katsuro Inoue, Reishi Yokomori, Tetsuo Yamamoto, Makidlatsushita,
and Shinji Kusumoto. Ranking significance of software congus
based on use relations$EEE Trans. Softw. Eng31(3):213—-225, 2005.
I.T. Jolliffe. Principal Component AnalysisSpringer Verlag, 1986.
Charles W. Krueger. Software reusACM Comput. Sury.24(2):131—
183, 1992.

Otavio Augusto Lazzarini Lemos, Sushil Bajracharylmel Ossher,
Paulo Cesar Masiero, and Cristina Lopes. Applying testedricode
search to the reuse of auxiliary functionality. $gmposium on Applied
Computing SAC’09, pages 476-482, New York, NY, USA, 2009. ACM.
Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul d®jgCristina
Lopes, and Pierre Baldi. Sourcerer: mining and searchitegriat-scale
software repositoriesData Mining and Knowledge Discover$8:300—
336, 2009. 10.1007/s10618-008-0118-x.

Greg Little and Robert C. Miller. Keyword programming java. In
Proceedings of the twenty-second IEEE/ACM internatioramiference
on Automated software engineeriySE '07, pages 84-93, New York,
NY, USA, 2007. ACM.

David Mandelin, Lin Xu, Rastislav Bodik, and Doug Kiimean. Jun-
gloid mining: helping to navigate the API jungle. RLDI, pages 48-61,
2005.

Christopher D. Manning, Prabhakar Raghavan, and Efini$chtze.
Introduction to Information RetrievalCambridge University Press, New
York, NY, USA, 2008.

Steven S. Muchnick.Advanced compiler design and implementation
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA719
Gail C. Murphy, David Notkin, and Kevin J. Sullivan. $afre reflexion
models: Bridging the gap between source and high-level lmotieFSE
pages 18-28, 1995.

Gail C. Murphy, David Notkin, and Kevin J. Sullivan. $afre reflexion
models: Bridging the gap between design and implementati&EtE
Trans. Softw. Eng27:364-380, April 2001.

D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antonioid V. Ra-
jlich. Feature location using probabilistic ranking of imeds based on
execution scenarios and information retrievaboftware Engineering,
IEEE Transactions on33(6):420 —432, jun. 2007.

Denys Poshyvanyk and Mark Grechanik. Creating andvawglsoftware
by searching, selecting and synthesizing relevant sowde.cIinICSE
Companion pages 283-286, 2009.

Steven P. Reiss. Semantics-based code seard Sl pages 243—-253,
2009.

Martin P. Robillard. Automatic generation of suggess for program
investigation. INESEC/FSEpages 11-20, 2005.

Martin P. Robillard. Topology analysis of software éagenciesACM
Trans. Softw. Eng. Methodpll7(4):1-36, 2008.

Naiyana Sahavechaphan and Kajal T. Claypool. XSnipméting for
sample code. IDOPSLA pages 413-430, 2006.

Gerard SaltonAutomatic text processing: the transformation, analysis,
and retrieval of information by computer Addison-Wesley, Boston,
USA, 1989.

Zachary M. Saul, Vladimir Filkov, Premkumar DevanbmdaChristian
Bird. Recommending random walks. Proceedings of the the 6th
joint meeting of the European software engineering confezeand the
ACM SIGSOFT symposium on The foundations of software esrgige
ESEC-FSE '07, pages 15-24, New York, NY, USA, 2007. ACM.
Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanand
Cristina V Lopes. How well do internet code search engingspst
open source reuse strategieE@SEM 2009.

R. Mark Sirkin. Statistics for the Social ScienceSage Publications,
third edition, August 2005.

Mark D. Smucker, James Allan, and Ben Carterette. A camispn of
statistical significance tests for information retrievahleation. InPro-
ceedings of the sixteenth ACM conference on Conferencefamiation
and knowledge manageme@KM '07, pages 623-632, New York, NY,
USA, 2007. ACM.

Jeffrey Stylos and Brad A. Myers. A web-search tool fordfhg API
components and examples. IBEE Symposium on VL and HC@ages
195-202, 2006.

20

[46] Naiyana Tansalarak and Kajal T. Claypool. Finding adheen the
haystack: A technique for ranking matches between compsnem
CBSE pages 171-186, 2005.

S. Thummalapenta and Tao Xie. Spotweb: Detecting freonie hotspots
and coldspots via mining open source code on the webASE '08
pages 327-336, Washington, DC, USA, 2008. IEEE Computeie§oc
Suresh Thummalapenta and Tao Xie. Parseweb: a progeamssistant
for reusing open source code on the web. ARE '07 pages 204-213,
New York, NY, USA, 2007. ACM.

lan H. Witten, Alistair Moffat, and Timothy C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and Im&gnd
Edition. Morgan Kaufmann, 1999.

Yunwen Ye and Gerhard Fischer. Supporting reuse byelitig task-
relevant and personalized information. IIBSE pages 513-523, 2002.
Yunwen Ye and Gerhard Fischer. Reuse-conducive dprsdat envi-
ronments.Automated Software Engdl2:199-235, April 2005.

Reishi Yokomori, Harvey Siy, Masami Noro, and Katsunolie. Assess-
ing the impact of framework changes using component rani@ogware
Maintenance, |EEE International Conference, @189-198, 2009.

[47]

(48]

[49]

[50]

[51]

[52]

Collin McMillan Collin McMillan is a Ph.D. Can-
didate in Computer Science at the College of
William & Mary, advised by Denys Poshyvanyk.
He received his M.S. in Computer Science from
the College of William & Mary in 2009. Collin
is a recipient of the NASA Virginia Space Grant
Consortium Graduate Research Fellowship. His
research interests are in software engineering,
software maintenance and evolution, software
repository mining, and source code analysis and
metrics. He is a member of ACM and IEEE.

Mark Grechanik Mark Grechanik is a Re-
searcher with the Accenture Technology Labs
and an Adjunct Professor at the departments of
Computer Science of several universities includ-
ing the University of lllinois at Chicago and the
Northwestern University. He earned his Ph.D.
in Computer Science from the department of
Computer Sciences of the University of Texas at
Austin. In parallel with his academic activities,
Mark worked for over 20 years as a software
consultant for startups and Fortune 500 com-
panies. Mark is a recipient of best paper awards from competitive
conferences, NSF grants, and patents.

Mark’s research focuses on increasing programmers’ productivity by
automating various activities at different stages of the development
lifecycle. In his research, Mark utilizes various techniques from software
engineering, language design, program analysis, and machine learning
to address specific issues that affect programmers when they design,
debug, and test software. Mark’s research is funded by NSF grants and
industry partners who sponsor Mark’s research by investing into his
ideas and providing platforms and applications to empirically validate
his research prototypes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 201X

Denys Poshyvanyk Denys Poshyvanyk is an
Assistant Professor at the College of William and
Mary in Virginia. He received his Ph.D. degree in
Computer Science from Wayne State University
in 2008. He also obtained his M.S. and M.A.
degrees in Computer Science from the National
University of Kyiv-Mohyla Academy, Ukraine and
Wayne State University in 2003 and 2006, re-
spectively. Since 2010, he has been serving on
the steering committee of the International Con-
ference on Program Comprehension (ICPC). He
serves as a program co-chair for the 18th and 19th International Working
Conference on Reverse Engineering (WCRE 2011 and WCRE 2012).
He will also serve as a program co-chair for the 21st International
Conference on Program Comprehension (ICPC 2013). His research
interests are in software engineering, software maintenance and evolu-
tion, program comprehension, reverse engineering, software repository
mining, source code analysis, and metrics. He is member of the IEEE
and ACM.

Chen Fu Dr. Chen Fu is a Researcher at Ac-
centure Technology Labs. His research interests
is in Program Analysis and Software Engineer-
ing. His recent research focuses on using pro-
gram analysis techniques to improve software
development and testing. The goal is to reduce
manual efforts and also human error by increas-
ing automation in these activates. He received
Ph.D in Computer Science in 2008 at Rutgers
University, under the guidance of Prof. Barbara
G. Ryder. His dissertation focused on Exception
Analysis and Robustness Testing of OO Programs.

Qing Xie Qing Xie is a Researcher at the Ac-
centure Technology Labs. She received her BS
in Computer Science in 1996 from the South
China University of Technology, her MS and PhD
in Computer Science in 2002 and 2006 respec-
tively from the University of Maryland, College
Park. She is a recipient of best paper awards
from the International Conference of Software
Testing, Verification and validation (ICST'09) and
International Symposium on Software Reliability
and Engineering (ISSRE’10). Her research in-
terests include program testing, software engineering, software mainte-
nance, and empirical studies. She is a member of the ACM Sigsoft and
the IEEE Computer Society and has served on program committees
of several international conferences and as the reviewers of reputable
journals.

