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Abstract —A fundamental problem of finding software applications that are highly relevant to development tasks is the mismatch
between the high-level intent reflected in the descriptions of these tasks and low-level implementation details of applications. To reduce
this mismatch we created an approach called Exemplar (EXEcutable exaMPLes ARchive) for finding highly relevant software projects
from large archives of applications. After a programmer enters a natural-language query that contains high-level concepts (e.g., MIME,
data sets), Exemplar retrieves applications that implement these concepts. Exemplar ranks applications in three ways. First, we consider
the descriptions of applications. Second, we examine the Application Programming Interface (API) calls used by applcations. Third, we
analyze the dataflow among those API calls. We performed two case studies (with professional and student developers) to evaluate how
these three rankings contribute to the quality of the search results from Exemplar. The results of our studies show that the combined
ranking of application descriptions and API documents yields the most-relevant search results. We released Exemplar and our case
study data to the public.
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1 INTRODUCTION

PROGAMMERS face many challenges when attempting to
locate source code to reuse [42]. One key problem of

finding relevant code is the mismatch between the high-level
intent reflected in the descriptions of software and low-level
implementation details. This problem is known as theconcept
assignment problem[6]. Search engines have been developed
to address this problem by matching keywords in queries
to words in the descriptions of applications, comments in
their source code, and the names of program variables and
types. These applications come from repositories which may
contain thousands of software projects. Unfortunately, many
repositories are polluted with poorly functioning projects [21];
a match between a keyword from the query with a word in
the description or in the source code of an application does
not guarantee that this application is relevant to the query.

Many source code search engines return snippets of code
that are relevant to user queries. Programmers typically need
to overcome a high cognitive distance [25] to understand
how to use these code snippets. Moreover, many of these
code fragments are likely to appear very similar [12]. If
code fragments are retrieved in the contexts of executable
applications, it makes it easier for programmers to understand
how to reuse these code fragments.
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Existing code search engines (e.g., Google Code Search,
SourceForge) often treat code as plain text where all words
have unknown semantics. However, applications contain func-
tional abstractions in a form of API calls whose semantics
are well-defined. The idea of using API calls to improve code
search was proposed and implemented elsewhere [14], [8];
however, it was not evaluated over a large codebase using a
standard information retrieval methodology [30, pages 151-
153].

We created an application search system calledExemplar
(EXEcutable exaMPLes ARchive)as part of ourSearching,
Selecting, and Synthesizing(S3) architecture [35]. Exemplar
helps users find highly relevant executable applications for
reuse. Exemplar combines three different sources of informa-
tion about applications in order to locate relevant software:
the textual descriptions of applications, the API calls used
inside each application, and the dataflow among those API
calls. We evaluated the contributions by these different types of
information in two separate case studies. First, in Section6, we
compared Exemplar (in two configurations) to SourceForge.
We analyzed the results of that study in Section 7 and created
a new version of Exemplar. We evaluated our updates to
Exemplar in Section 8. Our key finding is that our search
engine’s results improved when considering the API calls
in applications instead of only the applications’ descriptions.
We have made Exemplar and the results of our case studies
available to the public1.

1. http://www.xemplar.org (verified 03/28/2011)
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2 EXEMPLAR APPROACH

2.1 The Problem

A direct approach for finding highly relevant applications is to
search through the descriptions and source code of applications
to match keywords from queries to the names of program
variables and types. This approach assumes that programmers
choose meaningful names when creating source code, which
is often not the case [2].

This problem is partially addressed by programmers who
create meaningful descriptions of the applications in software
repositories. However, state-of-the-art search engines use exact
matches between the keywords from queries, the words in
the descriptions, and the source code of applications. Unfortu-
nately, it is difficult for users to guess exact keywords because
“no single word can be chosen to describe a programming
concept in the best way” [11]. The vocabulary chosen by a
programmer is also related to the concept assignment problem
because the terms in the high-level descriptions of applications
may not match terms from the low-level implementation (e.g.,
identifier names and comments).

2.2 Key Ideas

Suppose that a programmer needs to encrypt and compress
data. A programmer will naturally turn to a search engine such
as SourceForge2 and enter keywords such asencrypt and
compress. The programmer then looks at the source code
of the programs returned by these search engines to check to
see if some API calls are used to encrypt and compress data.
The presence of these API calls is a good starting point for
deciding whether to check these applications further.

What we seek is to augment standard code search to include
help documentations of widely used libraries, such as the
standardJava Development Kit (JDK)3. Existing engines allow
users to search for specific API calls, but knowing in advance
what calls to search for is hard. Our idea is to match keywords
from queries to words in help documentation for API calls.
These help documents are descriptions of the functionalityof
API calls as well as the usage of those calls. In Exemplar, we
extract the help documents that come in the form ofJavaDocs.
Programmers trust these documents because the documents
come from known and respected vendors, were written by
different people, reviewed multiple times, and have been used
by other programmers who report their experience at different
forums [10].

We also observe that relations between concepts entered
in queries are often reflected as dataflow links between API
calls that implement these concepts in the program code. This
observation is closely related to the concept of thesoftware
reflexion modelsformulated by Murphy, Notkin, and Sullivan.
In these models, relations between elements of high-level
models (e.g., processing elements of software architectures)
are preserved in their implementations in source code [33][32].
For example, if the user enters keywordssecure andsend,

2. http://sourceforge.net/ (verified 03/28/2011)
3. http://www.oracle.com/technetwork/java/javase/downloads/index.html

(verified 03/28/2011)

and the corresponding API callsencrypt and email are
connected via some dataflow, then an application with these
connected API calls are more relevant to the query than
applications where these calls are not connected.

Consider two API callsstring encrypt() andvoid
email(string). After the call encrypt is invoked, it
returns a string that is stored in some variable. At some later
point a call to the functionemail is made and the variable
is passed as the input parameter. In this case these functions
are connected using a dataflow link which reflects the implicit
logical connection between keywords in queries. Specifically,
the data should be encrypted and then sent to some destination.

2.3 Motivating Example

Exemplar returns applications that implement the tasks de-
scribed in by the keywords in user queries. Consider the
following task: find an application for sharing, viewing, and
exploring large data sets that are encoded using MIME, and
the data can be stored using key value pairs. Using the fol-
lowing keywordsMIME, type, data, an unlikely candidate
application called BIOLAP is retrieved using Exemplar witha
high ranking score. The description of this application matches
only the keyworddata, and yet this application made it to
the top ten of the list.

BIOLAP uses the classMimeType, specifically its method
getParameterMap, because it deals with MIME-encoded
data. The descriptions of this class and this method contain
the desired keywords, and these implementation details are
highly-relevant to the given task. BIOLAP does not show on
the top 300 list of retrieved applications when the search is
performed with the SourceForge search engine.

2.4 Fundamentals of Exemplar

Consider the process for standard search engines (e.g., Source-
forge, Google code search4, Krugle5) shown in Figure 1(a). A
keyword from the query is matched against words in the de-
scriptions of the applications in some repository (Sourceforge)
or words in the entire corpus of source code (Google Code
Search, Krugle). When a match is found, applicationsapp1
to appn are returned.

Consider the process for Exemplar shown in Figure 1(b).
Keywords from the query are matched against the descriptions
of different documents that describe API calls of widely used
software packages. When a match is found, the names of the
API calls call1 to callk are returned. These names are
matched against the names of the functions invoked in these
applications. When a match is found, applicationsapp1 to
appn are returned.

In contrast to the keyword matching functionality of stan-
dard search engines, Exemplar matches keywords with the
descriptions of the various API calls in help documents. Since
a typical application invokes many API calls, the help docu-
ments associated with these API calls are usually written by
different people who use different vocabularies. The richness

4. http://www.google.com/codesearch (verified 03/28/2011)
5. http://opensearch.krugle.org (verified 03/28/2011)
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Fig. 1. Illustrations of the processes for standard and Exemplar search engines.

of these vocabularies makes it more likely to find matches,
and produce API callsAPI call1 to API callk. If some
help document does not contain a desired match, some other
document may yield a match. This is how we address the
vocabulary problem [11].

As it is shown in Figure 1(b), API callsAPI call1,
API call2, and API call3 are invoked in theapp1. It
is less probable that the search engine fails to find matches
in help documents for all three API calls, and therefore the
applicationapp1 will be retrieved from the repository.

Searching help documents produces additional benefits. API
calls from help documents (that match query keywords) are
linked to locations in the project source code where these
API calls are used thereby allowing programmers to navigate
directly to these locations and see how high-level concepts
from queries are implemented in the source code. Doing so
solves an instance of the concept location problem [34].

3 RANKING SCHEMES

3.1 Components of Ranking

There are three components that compute different scores in
the Exemplar ranking mechanism: a component that computes
a score based on word occurrences in project descriptions
(WOS), a component that computes a score based on the
relevant API calls (RAS), and a component that computes
a score based on dataflow connections between these calls
(DCS). The total ranking score is the weighted sum of these
three ranking scores.

We designed each ranking component to produce results
from different perspectives (e.g., application descriptions, API
calls, and dataflows among the API calls). The following three
sections describe the components. Section 4 discusses the im-
plentation of the components and includes important technical
limitations that we considered when building Exemplar. We
examine how WOS, RAS, and DCS each contribute to the
results given by Exemplar in Section 7. Section 7 also covers
the implications of our technical considerations.

3.2 WOS Ranking Scheme

The WOS component uses theVector Space Model(VSM),
which is a ranking function used by search engines to rank
matching documents according to their relevance to a given
search query. VSM is a bag-of-words retrieval technique that
ranks a set of documents based on the terms appearing in each
document as well as the query. Each document is modeled
as a vector of the terms it contains. The weights of those
terms in each document are calculated in accordance to the

Term Frequency/Inverse Document Frequency(TF/IDF). Using
TF/IDF, the weight for a term is calculated ast f = n

∑k nk
where

n is the number of occurrences of the term in the document,
and∑k nk is the sum of the number of occurences of the term
in all documents. Then the similarities among the documents
are calculated using the cosine distance between each pair of
documentscos(θ) = d1·d2

‖d1‖‖d2‖
whered1 and d2 are document

vectors.

3.3 RAS Ranking Scheme

The documents in our approach are the different documents
that describe each API call (e.g., each JavaDoc). The collection
of API documents is defined asDAPI = (D1

API,D
2
API, . . . ,D

k
API).

A corpus is created fromDAPI and represented as the term-
by-documentm×k matrix M, wherem is the number of terms
and k is the number of API documents in the collection. A
generic entrya[i, j] in this matrix denotes a measure of the
weight of theith term in the jth API document [40].

API calls that are relevant to the user query are obtained by
ranking documents,DAPI that describe these calls as relevant
to the query Q. This relevance is computed as a conceptual
similarity, C, (i.e., the length-normalized inner product) be-
tween the user query,Q, and each API document,DAPI. As
a result the set of triples〈A,C,n〉 is returned, whereA is the
API call, n is the number of occurrences of this API call in
the application with the conceptual similarity,C, of the API
call documentation to query terms.

The API call-based ranking score for the application,j, is

computed asSj
ras =

p

∑
i=1

n j
i ·C

j
i

|A| j
, where|A| j is the total number

of API calls in the applicationj, and p is the number of API
calls retrieved for the query.

3.4 DCS Ranking Scheme

To improve the precision of ranking we derive the struc-
ture of connections between API calls and use this struc-
ture as an important component in computing rankings.
The standard syntax for invoking an API call ist
var=o.callname(p1, . . . , pn). The structural relations be-
tween API calls reflect compositional properties between these
calls. Specifically, it means that API calls access and manip-
ulate data at the same memory locations.

There are four types of dependencies between API calls:
input, output, true, and anti-dependence [31, page 268]. True
dependence occurs when the API callf write a memory
location that the API callg later reads (e.g.,var=f(. . .); . . .;
g(var, . . .);). Anti-dependence occurs when the API callf
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reads a memory location that the API callg later writes (e.g.,
f(var, . . .), . . .; var=g(. . .);). Output dependence occurs
when the API callsf andg write the same memory location.
Finally, input dependence occurs when the API callsf andg
read the same memory location.

Consider an all-connected graph (i.e., a clique) where nodes
are API calls and the edges represent dependencies among
these calls for one application. The absence of an edge means
that there is no dependency between two API calls. Let the
total number of connections amongn retrieved API calls be
less or equal ton(n−1). Let a connection between two distinct
API calls in the application be defined asLink; we assign some
weight w to this Link based on the strength of the dataflow
or control flow dependency type. The ranking is normalized
to be between 0 and 1.

The API call connectivity-based ranking score for the ap-

plication, j, is computed asSj
dcs=

n(n−1)

∑
i=1

wj
i

n(n−1) , wherewi is the
weight to each type of flow dependency for the given link
Link, such that 1> wtrue

i > wanti
i > wout put

i > winput
i > 0. The

intuition behind using this order is that these dependencies
contribute differently to ranking heuristics. Specifically, using
the values of the same variable in two API calls introduces a
weaker link as compared to the true dependency where one
API call produces a value that is used in some other API call.

3.5 Integrated Scheme

The final ranking score is computed asS = λwosSwos+
λrasSras+λdcsSdcs, whereλ is the interpolation weight for each
type of the score. These weights are determined independently
of queries unlike the scores, which are query-dependent.
Adjusting these weights enables experimentation with how
underlying structural and textual information in application
affects resulting ranking scores. The formula forS remains
the same throughout this paper, and all three weights were
equal during the case study in Section5. We explore alterations
to Exemplar, includingλ, based on the case study results in
Section 7.

4 IMPLEMENTATION DETAILS

Figure 2 shows the architecture of Exemplar. In this section
we step through Figure 2 and describe some technical details
behind Exemplar.

Two crawlers,Application ExtractorandAPI Call Extractor
populate Exemplar with data from SourceForge. We currently
have run the crawlers on SourceForge and obtained more than
8,000 Java projects containing 414,357 files6. The Application
Extractor downloads the applications and extracts the descrip-
tions and source code of those applications (the Application
Metadata(1)). The API Call Extractor crawls the source
code from the applications for the API calls that theyuse, the
descriptions of the API calls, and the dataflow amoung those
calls (the API Call Metadata(2)). The API Call Extractor
ran with 65 threads for over 50 hours on 30 computers:

6. We ran the crawlers in August 2009.

three machines have two dual-core 3.8Ghz EM64T Xeon
processors with 8Gb RAM, two have four 3.0Ghz EM64T
Xeon CPUs with 32Gb RAM, and the rest have one 2.83Ghz
quad-core CPU and 2Gb RAM. The API Call Extractor found
nearly twelve million API invocations from the JDK 1.5 in
the applications. It also processes the API calls for their
descriptions, which in our case are the JavaDocs for those
API calls.

Our approach relies on the tool PMD7 for computing
approximate dataflow links, which are based on the patterns
described in Section 3.4. PMD extracts data from individual
Java source files, so we are only able to locate dataflow links
among the API calls as they are used in any one file. We follow
the variables visible in each scope (e.g., global variablesplus
those declared in methods). We then look at each API call in
the scope of those variables. We collect the input parameters
and output of those API calls. We then analyze this input and
output for dataflow. For example, if the output of one API call
is stored in a variable which is then used as input to another
API call, then there is dataflow between those API calls. Note
that our technique is an approximation and can produce both
false positive and false negatives. Determining the effects of
this approximation on the quality of Exemplar’s results is an
area of future work.

TheRetrieval Enginelocates applications in two ways(3).
First, the input to the Retrieval Engine is the user query, and
the engine matches keywords in this query(5) to keywords in
the descriptions of applications. Second, the Retrieval Engine
finds descriptions of API calls which match keywords8. The
Retrieval Engine then locates applications which use thoseAPI
calls. The engine outputs a list of Retrieved Applications(6).

The Ranking Engineuses the three ranking schemes from
Section 3 (WOS, RAS, and DCS) to sort the list of retrieved
applications(7). The Ranking Engine depends on three
sources of information: descriptions of applications, theAPI
calls used by each application, and the dataflow among those
API calls (4). The Ranking Engine uses Lucene9, which is
based on VSM, to implement WOS. The combination of the
ranking schemes (see Section 3.5) determines the relevancyof
the applications. The Relevant Applications are then presented
to the user(8).

5 CASE STUDY DESIGN

Typically, search engines are evaluated using manual relevance
judgments by experts [30, pages 151-153]. To determine how
effective Exemplar is, we conducted a case study with 39
participants who are professional programmers. We gave a
list of tasks described in English. Our goal is to evaluate how
well these participants can find applications that match given
tasks using three different search engines: Sourceforge (SF)
and Exemplar with (EWD) and without (END) dataflow links
as part of the ranking mechanism. We chose to compare Exem-
plar with Sourceforge because the latter has a popular search

7. http://pmd.sourceforge.net/ (verified 03/28/2011)
8. Exemplar limits the number of relevant API calls it retrieves for each

query to 200. This limit was necessary due to performance constraints. See
Section 7.4.

9. http://lucene.apache.org (verified 03/28/2011)
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Experiment Group Search Engine Task Set

1
G1 EWD T1
G2 SF T2
G3 END T3

2
G1 END T2
G2 EWD T3
G3 SF T1

3
G1 SF T3
G2 END T1
G3 EWD T2

TABLE 1
Plan for the case study of Exemplar and Sourceforge.

engine with the largest open source Java project repository, and
Exemplar is populated with Java projects from this repository.

5.1 Methodology

We used a cross validation study design in a cohort of 39
participants who were randomly divided into three groups.
We performed three separate experiments during the study.
In each experiment, each group was given a different search
engine (i.e., SF, EWD, or END) as shown in Table 1. Then,
in the experiments, each group would be asked to use a
different search engine than that group had used before. The
participants would use the assigned engine to find applications
for given tasks. Each group used a different set of tasks in each
experiment. Thus each participant used each search engine
on different tasks in this case study. Before the study we
gave a one-hour tutorial on using these search engines to find
applications for tasks.

Each experiment consisted of three steps. First, participants
translated tasks into a sequence of keywords that described
key concepts of applications that they needed to find. Then,
participants entered these keywords as queries into the search
engines (the order of these keywords does not matter) and
obtained lists of applications that were ranked in descending
order.

The next step was to examine the returned applications
and to determine if they matched the tasks. Each participant

Fig. 2. Exemplar architecture.

accomplished this step by him or herself, assigning a confi-
dence level,C, to the examined applications using a four-level
Likert scale. We asked participants to examine only top ten
applications that resulted from their searches. We evaluated
only the top ten results because users of search engines rarely
look beyond the tenth result [13] and because other source
code search engines have been evaluated using the same
number of results [19].

The guidelines for assigning confidence levels are the fol-
lowing.

1) Completely irrelevant - there is absolutely nothing that
the participant can use from this retrieved project, noth-
ing in it is related to your keywords.

2) Mostly irrelevant - only few remotely relevant code
snippets or API calls are located in the project.

3) Mostly relevant - a somewhat large number of relevant
code snippets or API calls in the project.

4) Highly relevant - the participant is confident that code
snippets or API calls in the project can be reused.

Twenty-six participants are Accenture employees who work
on consulting engagements as professional Java programmers
for different client companies. Remaining 13 participantsare
graduate students from the University of Illinois at Chicago
who have at least six months of Java experience. Accenture
participants have different backgrounds, experience, andbe-
long to different groups of the total Accenture workforce of
approximately 180,000 employees. Out of 39 participants, 17
had programming experience with Java ranging from one to
three years, and 22 participants reported more than three years
of experience writing programs in Java. Eleven participants
reported prior experience with Sourceforge (which is used
in this case study), 18 participants reported prior experience
with other search engines, and 11 said that they never used
code search engines. Twenty six participants have bachelor
degrees and thirteen have master degrees in different technical
disciplines.

5.2 Precision

Two main measures for evaluating the effectiveness of retrieval
are precision and recall [49, page 188-191]. The precision is
calculated asPr =

relevant
retrieved , whererelevant is the number

of retrieved applications that are relevant andretrieved is
the total number of applications retrieved. The precision of a
ranking method is the fraction of the topr ranked documents
that are relevant to the query, wherer = 10 in this case study.
Relevant applications are counted only if they are ranked with
the confidence levels4 or 3. The precision metrics reflects the
accuracy of the search. Since we limit the investigation of the
retrieved applications to top ten, the recall is not measured in
this study.

5.3 Discounted Cumulative Gain

Discounted Cumulative Gain (DCG) is a metric for analyzing
the effectiveness of search engine results [1]. The intuition
behind DCG is that search engines should not only return
relevant results, but should rank those results by relevancy.
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Therefore, DCG rewards search engines for ranking relevant
results above irrelevant ones. We calculate the DCG for the
top 10 results from each engine because we collect confidence
values for these results. We compute DCG according to this
formula:G=C1+∑10

i=2
Ci

log2 i , whereC1 is the confidence value
of the result in the first position andCi is the confidence value
of the result in theith position. We normalize the DCG using
the following formula:NG= G

iG , whereiG is the ideal DCG
in the case when the confidence value for the first ten results
is always 4 (indicating that all ten results are highly-relevant).
We refer to normalized DCG asNG in the remainder of this
paper.

5.4 Hypotheses

We introduce the following null and alternative hypothesesto
evaluate how close the means are for the confidence levels (Cs)
and precisions (Ps) for control and treatment groups. Unless
we specify otherwise, participants of the treatment group use
either END or EWD, and participants of the control group
use SF. We seek to evaluate the following hypotheses at a
0.05 level of significance.

H0−nullThe primary null hypothesis is that there is no differ-
ence in the values of confidence level and precision
per task between participants who use SF, EWD, and
END.

H0−alt An alternative hypothesis toH0−null is that there is
statistically significant difference in the values of
confidence level and precision between participants
who use SF, EWD, and END.

Once we test the null hypothesisH0−null, we are interested
in the directionality of means,µ, of the results of control and
treatment groups. We are interested to compare the effective-
ness of EWD versus the END and SF with respect to the
values ofC, P, andNG.

H1 (C of EWD versus SF) The effective null hypothe-
sis is thatµEWD

C = µSF
C , while the true null hypothesis

is that µEWD
C ≤ µSF

C . Conversely, the alternative hy-
pothesis isµEWD

C > µSF
C .

H2 (P of EWD versus SF) The effective null hypothe-
sis is thatµEWD

P = µSF
P , while the true null hypothesis

is that µEWD
P ≤ µSF

P . Conversely, the alternative hy-
pothesis isµEWD

P > µSF
P .

H3 (NG of EWD versus SF) The effective null hypothe-
sis is thatµEWD

NG = µSF
NG, while the true null hypothesis

is that µEWD
NG ≤ µSF

NG. Conversely, the alternative hy-
pothesis isµEWD

NG > µSF
NG.

H4 (C of EWD versus END) The effective null hypothe-
sis is thatµEWD

C = µEND
C , while the true null hypoth-

esis is thatµEWD
C ≤ µEND

C . Conversely, the alternative
is µEWD

C > µEND
C .

H5 (P of EWD versus END) The effective null hypothe-
sis is thatµEWD

P = µEND
P , while the true null hypoth-

esis is thatµEWD
P ≤ µEND

P . Conversely, the alternative
is µEWD

P > µEND
P .

H6 (NG of EWD versus END) The effective null hypothe-
sis is thatµEWD

NG = µEND
NG , while the true null hypoth-

esis is thatµEWD
NG ≤ µEND

NG . Conversely, the alternative
is µEWD

NG > µEND
NG .

H7 (C of END versus SF) The effective null hypothe-
sis is thatµEND

C = µSF
C , while the true null hypothesis

is that µEND
C ≤ µSF

C . Conversely, the alternative hy-
pothesis isµEND

C > µSF
C .

H8 (P of END versus SF) The effective null hypothe-
sis is thatµEND

P = µSF
P , while the true null hypothesis

is that µEND
P ≤ µSF

P . Conversely, the alternative hy-
pothesis isµEND

P > µSF
P .

H9 (NG of END versus SF) The effective null hypothe-
sis is thatµEND

NG = µSF
NG, while the true null hypothesis

is that µEND
NG ≤ µSF

NG. Conversely, the alternative hy-
pothesis isµEND

NG > µSF
NG.

The rationale behind the alternative hypotheses toH1, H2,
and H3 is that Exemplar allows users to quickly understand
how keywords in queries are related to implementations using
API calls in retrieved applications. The alternative hypotheses
to H4, H5, H6 are motivated by the fact that if users see
dataflow connections between API calls, they can make better
decisions about how closely retrieved applications match given
tasks. Finally, having the alternative hypotheses toH7, H8,
and H9 ensures that Exemplar without dataflow links still
allows users to quickly understand how keywords in queries
are related to implementations using API calls in retrieved
applications.

5.5 Task Design

We designed 26 tasks that participants work on during experi-
ments in a way that these tasks belong to domains that are easy
to understand, and they have similar complexity. The following
are two example tasks; all others may be downloaded from the
Exemplar about page10.

1. ”Develop a universal sound and voice system that
allows users to talk, record audio, and play MIDI
records. Users should be able to use open source
connections with each other and communicate. A
GUI should enable users to save conversations and
replay sounds.”

2. ”Implement an application that performs pattern
matching operations on a character sequences in
the input text files. The application should support
iterating through the found sequences that match the
pattern. In addition, the application should support
replacing every subsequence of the input sequence
that matches the pattern with the given replacement
string.”

Additional criteria for these tasks is that they should
represent real-world programming tasks and should not be
biased towards any of the search engines that are used in
this experiment. Descriptions of these tasks should be flexible
enough to allow participants to suggest different keywordsfor
searching. This criteria significantly reduces any bias towards
evaluated search engines.

10. http://www.cs.wm.edu/semeru/exemplar/#casestudy (verified
03/28/2011)
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5.6 Normalizing Sources of Variations

Sources of variation are all issues that could cause an ob-
servation to have a different value from another observation.
We identify sources of variation as the prior experience of
the participants with specific applications retrieved by the
search engines in this study, the amount of time they spend on
learning how to use search engines, and different computing
environments which they use to evaluate retrieved applications.
The first point is sensitive since some participants who already
know how some retrieved applications behave are likely to be
much more effective than other participants who know nothing
of these applications.

We design this experiment to drastically reduce the effects
of covariates (i.e., nuisance factors) in order to normalize
sources of variations. Using the cross-validation design we
normalize variations to a certain degree since each participant
uses all three search engines on different tasks.

5.7 Tests and The Normality Assumption

We use one-way ANOVA, and randomization tests [44] to
evaluate the hypotheses. ANOVA is based on an assumption
that the population is normally distributed. The law of large
numbers states that if the population sample is sufficiently
large (between 30 to 50 participants), then the central limit
theorem applies even if the population is not normally dis-
tributed [43, pages 244-245]. Since we have 39 participants,
the central limit theorem applies, and the above-mentioned
tests have statistical significance.

5.8 Threats to Validity

In this section, we discuss threats to the validity of this case
study and how we address these threats.

5.8.1 Internal Validity
Internal validity refers to the degree of validity of statements
about cause-effect inferences. In the context of our experiment,
threats to internal validity come from confounding the effects
of differences among participants, tasks, and time pressure.

Participants. Since evaluating hypotheses is based on the
data collected from participants, we identify two threats to in-
ternal validity: Java proficiency and motivation of participants.

Even though we selected participants who have working
knowledge of Java as it was documented by human resources,
we did not conduct an independent assessment of how profi-
cient these participants are in Java. The danger of having poor
Java programmers as participants of our case study is that they
can make poor choices of which retrieved applications better
match their queries. This threat is mitigated by the fact that all
participants from Accenture worked on successful commercial
projects as Java programmers.

The other threat to validity is that not all participants could
be motivated sufficiently to evaluate retrieved applications.
We addressed this threat by asking participants to explain
in a couple of sentences why they chose to assign certain
confidence level to applications, and based on their resultswe
financially awarded top five performers.

Tasks. Improper tasks pose a big threat to validity. If tasks
are too general or trivial (e.g., open a file and read its data
into memory), then every application that has file-related API
calls will be retrieved, thus creating bias towards Exemplar. On
the other hand, if application and domain-specific keywords
describe task (e.g.,genealogy and GENTECH), only a
few applications will be retrieved whose descriptions contain
these keywords, thus creating a bias towards Sourceforge. To
avoid this threat, we based the task descriptions on a dozen
specifications of different software systems that were written
by different people for different companies. The tasks we used
in the case study are available for download at the Exemplar
website11.

Time pressure.Each experiment lasted for two hours, and
for some participants it was not enough time to explore all
retrieved applications for each of eight tasks. It is a threat
to validity that some participants could try to accomplish
more tasks by shallowly evaluating retrieved applications. To
counter this threat we notified participants that their results
would be discarded if we did not see sufficient reported
evidence of why they evaluated retrieved applications with
certain confidence levels.

5.8.2 External Validity
To make results of this case study generalizable, we must
address threats to external validity, which refer to the gen-
eralizability of a casual relationship beyond the circumstances
of our case study. The fact that supports the validity of the case
study design is that the participants are highly representative of
professional Java programmers. However, a threat to external
validity concerns the usage of search tools in the industrial
settings, where requirements are updated on a regular basis.
Programmers use these updated requirements to refine their
queries and locate relevant applications using multiple itera-
tions of working with search engines. We addressed this threat
only partially, by allowing programmers to refine their queries
multiple times.

In addition, it is sometimes the case when engineers perform
multiple searches using different combinations of keywords,
and they select certain retrieved applications from each of
these search results. We believe that the results produced by
asking participants to decide on keywords and then perform a
single search and rank applications do not deviate significantly
from the situation where searches using multiple (refined)
queries are performed.

Another threat to external validity comes from different
sizes of software repositories. We populated Exemplar’s repos-
itory with all Java projects from the Sourceforge repository to
address this threat to external validity.

Finally, the help documentation that we index in Exemplar
is an external threat to validity because this documentation
is provided by a third-party, and its content and format may
vary. We addressed this thread to validity by using the Java
documentation extracted as JavaDocs from the official Java
Development Kit, which has a uniform format.

11. http://www.xemplar.org, follow the ”About Exemplar” link to the ”Case
Study” section.
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(a) Confidence level,C. (b) Precision,P. (c) Normalized Discounted Gain,NG.

Fig. 3. Statistical summary of the results of the case study for C and P.The center point represents the mean. The dark and
light gray boxes are the lower and upper quartiles, respectively. The thin line extends from the minimum to the maximum value.

H Var Approach Samples Min Max Median µ C p

H1 C
EWD 1273 1 4 2 2.35 -0.02 < 0.0001SF 1273 1 4 1 1.82

H2 P
EWD 76 0.12 0.74 0.42 0.41 0.34 < 0.0001SF 76 0.075 0.73 0.48 0.46

H3 NG
EWD 76 0.02 0.89 0.47 0.48

-0.05 < 0.0001SF 76 0 0.83 0.26 0.28

H4 C
EWD 1273 1 4 2 2.35 0.01 < 0.0001
END 1273 1 4 3 2.47

H5 P
EWD 76 0.12 0.74 0.42 0.41 0.41 0.78927
END 76 0.075 0.73 0.48 0.46

H6 NG
EWD 76 0.02 0.89 0.47 0.48 -0.02 0.71256END 76 0 0.92 0.53 0.52

H7 C
END 1307 1 4 3 2.47

-0.02 < 0.0001SF 1307 1 4 1 1.84

H8 P
END 76 0.075 0.73 0.5 0.47 0.4 < 0.0001
SF 76 0 0.71 0.24 0.27

H9 NG
END 76 0 0.92 0.53 0.52 0.08 < 0.0001
SF 76 0 0.83 0.26 0.28

TABLE 2
Results of randomization tests of hypotheses, H, for dependent variable specified in the column Var (C, P, or NG) whose

measurements are reported in the following columns. Extremal values, Median, Means, µ, and the pearson correlation coefficient,
C, are reported along with the results of the evaluation of the hypotheses, i.e., statistical significance, p.

6 EMPIRICAL RESULTS

In this section, we report the results of the case study and
evaluate the null hypotheses.

6.1 Variables
A main independent variable is the search engine (SF, EWD,
END) that participants use to find relevant Java applications.
Dependent variables are the values of confidence level,C,
precision, P, and normalized discounted cumulative gain,
NG. We report these variables in this section. The effect of
other variables (task description length, prior knowledge) is
minimized by the design of this case study.

6.2 Testing the Null Hypothesis

We used ANOVA[43] to evaluate the null hypothesisH0−null

that the variation in an experiment is no greater than that due

to normal variation of individuals’ characteristics and error in
their measurement. The results of ANOVA confirm that there
are large differences between the groups forC with F = 129>
Fcrit = 3 with p ≈ 6.4 · 10−55 which is strongly statistically
significant. The meanC for the SF approach is 1.83 with the
variance 1.02, which is smaller than the meanC for END,
2.47 with the variance 1.27, and it is smaller than the mean
C for EWD, 2.35 with the variance 1.19. Also, the results
of ANOVA confirm that there are large differences between
the groups forP with F = 14> Fcrit = 3.1 with p≈ 4 ·10−6

which is strongly statistically significant. The meanP for the
SF approach is 0.27 with the variance 0.03, which is smaller
than the meanP for END, 0.47 with the variance 0.03, and it
is smaller than the meanP for EWD, 0.41 with the variance
0.026. Based on these results we reject the null hypothesis and
we accept the alternative hypothesisH0−alt .
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A statistical summary of the results of the case study forC,
P, andNG (median, quartiles, range and extreme values) are
shown as box-and-whisker plots in Figure 3(a), Figure 3(b),
and Figure 3(c) correspondingly with 95% confidence interval
for the mean.

6.3 Comparing Sourceforge with Exemplar

To test the null hypothesisH1, H2, H3, H7, H8, and H9

we applied six randomization tests, forC, P, and NG for
participants who used SF and both variants of Exemplar. The
results of this test are shown in Table 2. The columnSamples
shows that 37 out of a total of 39 participants participated in
all experiments and created rankings forP (two participants
missed one experiment).Samples indicates the number of
results which were ranked in the case of variableC. For NG,
Samples shows the number of sets of results. Based on these
results we reject the null hypothesesH1, H2, H3, H7, H8, and
H9, and we accept the alternative hypotheses that states that
participants who use Exemplar report higher relevance
and precision on finding relevant applications than those
who use Sourceforge.

6.4 Comparing EWD with END

To test the null hypothesesH4, H5, and H6, we applied two
t-tests for paired two sample for means, forC, P, and NG
for participants who used END and EWD. The results of this
test are shown in Table 2. Based on these results we reject
the null hypothesisH4, and that say thatparticipants who
use END report higher relevance when finding relevant
applications than those who use EWD. On the other hand,
we fail to accept the null hypothesesH5 andH6, and say that
participants who use END do not report higher precision
or normalized discounted cumulative gain than those who
use EWD.

There are several explanations for this result. First, given
that our dataflow analysis is imperfect, some links are missed
and subsequently, the remaining links cannot affect the ranking
score significantly. Second, it is possible that our dataflow
connectivity-based ranking mechanism needs fine-tuning, and
it is a subject of our future work. Finally, after the case study,
a few participants questioned the idea of dataflow connections
between API calls. A few participants had vague ideas as to
what dataflow connections meant and how to incorporate them
into the evaluation process. This phenomenon points to a need
for better descriptions of Exemplar’s internals in any future
case studies.

6.5 Qualitative Analysis and User Comments

Thirty-five of the participants in the case study completed
exit surveys (see Table 3) describing their experiences and
opinions. Of these, 22 reported that seeing standalone frag-
ments of the code alongside relevant applications would be
more useful than seeing only software applications. Only four
preferred simply applications listed in the results, whilenine
felt that either would be useful. Several users stated that
seeing entire relevant applications provides useful context for

Question
1 How many years of programming experience do you have?
2 What programming languages have you used and for how

many years each?
3 How often do you use code search engines?
4 What code search engines have you used and for how long?
5 How often can you reuse found applications or code frag-

ments in your work?
6 What is the biggest impediment to using code search engines,

in your opinion?
7 Would you rather be able to retrieve a standalone fragment

of code or an entire application with a relevant fragment of
code in it?

TABLE 3
The seven questions answered by the case study

participants during the exit survey. All questions were
open-ended.

code fragments, while others read code in order to understand
certain algorithms or processes, but ultimately re-implement
the functionality themselves. After performing the case study,
we responded to these comments by providing the source code
directly on Exemplars results page, with links to the lines
of files where relevant API calls are used. This constitutes
a new feature of Exemplar, which was not available to the
participants during the user study.

Nineteen of the participants reported using source code
search engines rarely, six said they sometimes use source code
search engines, and nine regularly. Of those that only rarely
use source code search engines, eight adapted Googles web
search to look for code. Meanwhile, when asked to state the
biggest impediment in using source code search engines, 14
participants answered that existing engines return irrelevant
results, four were mostly concerned with the quality of the
returned source code, six did not answer, and 11 reported some
other impediment. These results support the recent studies[42]
and point to a strong need for improved code engines that
return focused, relevant results. New engines should show the
specific processes and useful fragments of code. We believe
that searching by API calls can fill this role because calls have
specific and well-defined semantics along with high-quality
documentation.

The following is a selection of comments written by partic-
ipants in the user study. Scanned copies of all questionnaires
are publicly available on the Exemplar about page.

• “The Exemplar search is handy for finding the APIs
quickly.”

• “Many SourceForge projects [have] no files or archives.”
• “A standalone fragment would be easy to see and de-

termine relevance to my needs, but an entire application
would allow for viewing context which would be useful.”

• “[I] typically reuse the pattern/algorithm, not [the] full
code.”

• “Often [retrieved code or applications] give me a clue as
to how to approach a development task, but usually the
code is too specific to reuse without many changes.”

• “Often, [with source code search engines] I find results
that do not have code.”
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• “[I reuse code] not in its entirety, but [I] always find
inspiration.”

• “There seems to be a lot of time needed to understand
the code found before it can be usefully applied.”

• “Could the line number reference [in Exemplar] invoke a
collapsible look at the code snippet?”

• “With proper keywords used, [Exemplar] is very impres-
sive. However, it does not filter well the executables and
non-code files. Overall, great for retrieving simple code
snippets.”

• “Most, if not all, results returned [by Exemplar] provided
valuable direction/foundation for completing the required
tasks.”

• “During this experiment it became clear that searching
for API can be much more effective than by keywords
in many instances. This is because it is the APIs that
determine functionality and scope potential.”

• “SourceForge was not as easy to find relevant software
as hoped for.”

• “[Using SourceForge] I definitely missed the report
within Exemplar that displays the matching API meth-
ods/calls.”

• “SourceForge appears to be fairly unreliable for projects
to actually contain any files.”

• “Exemplar seems much more intuitive and easier to use
than SourceForge.”

• “Great tool to find APIs through projects.”
• “It was really helpful to know what API calls have been

implemented in the project while using Exemplar.”

The users were overall satisfied with Exemplar, preferring it
to SourceForges search. In Section 6, we found that they rated
results from Exemplar with statistically-significantly higher
confidence levels than SourceForge. From our examination of
these surveys, we confirm the findings from our analysis in
Section 6 and conclude that the participants in the case study
did prefer to search for applications using Exemplar rather
than SourceForge. Moreover, we conclude that the reason they
preferred Exemplar is because of Exemplar’s search of API
documentation.

7 ANALYSIS OF USER STUDY RESULTS

During our case study of Exemplar (see Section 5), we
found that the original version of Exemplar outperformed
SourceForge in terms of both confidence and precision. In
this section, we will explore why Exemplar outperformed
SourceForge. Our goal is to identify which components of
Exemplar lead to the improvements and to determine how
users interpreted tasks and interacted with the source code
search engine. Specifically, we intend to answer the following
research questions (RQ):

RQ1 Do high Exemplar scores actually match high confi-
dence level ranks from the participants?

RQ2 Do the components of the Exemplar score (WOS,
RAS, and DCS scores) indicate relevance of applica-
tions when the others do not (e.g., do the components
capture the same or orthogonal information about
retrieved software applications)?

RQ3 Is Exemplar sensitive to differences in the user
queries when those queries were generated for the
same task by different users?

We want to know how we can optimize Exemplar given
answers to these research questions. Additionally, we wantto
study how design decisions (such as whether RAS considers
the frequency of API calls, see Section 4) affected Exemplar.

7.1 Comparing Scores in Confidence Levels

Exemplar computes a score for every application to represent
that application’s relevance to the user query (see Section4).
Ideally, higher scores will be attached to applications with
greater relevance. We know from Section 6 that Exemplar
returns many relevant results, but this information alone is
insufficient to claim that a high score from Exemplar for an
application is actually an indicator of the relevance of that
application, because irrelevant applications could stillobtain
high scores (see Section 9).

To better understand the relationship of Exemplar ranking
scores to relevance of retrieved software applications, and to
answerRQ1, we examined the scores given to all results given
by Exemplar during the user study. We also consider the Java
programmers’ confidence level rankings of those results. The
programmers ranked results using a four-level Likert scale(see
Section 5.1). We grouped Exemplars scores for applicationsby
the confidence level provided by the case study participants
for those applications. Figure 4 is a statistical summary ofthe
scores for the results, grouped by the confidence level. These
scores were obtained from Exemplar using all 209 queries that
the users produced for 22 tasks during the case study12. We
have made all these results available for download from the
Exemplar website so that other researchers can reproduce our
analysis and the results.

7.1.1 Hypotheses for RQ1

We want to determine to what degree the mean of the scores
from Exemplar increase as the user confidence level rankings
increase. We introduce the following null and alternative
hypotheses to evaluate the significance of any difference at
a 0.05 level of confidence.

H10−null The null hypothesis is that there is no differ-
ence in the values of Exemplar scores of applications
among the groupings by the confidence level.

H10−alt An alternative hypothesis toH10−null is that
there is a statistically significant difference in the
values of Exemplar scores of applications among the
groupings by the confidence level.

7.1.2 Testing the Null Hypothesis
The results of ANOVA forH10−null confirm that there are
statistically-significant differences among the groupings by
confidence level. Intuitively, these results mean that higher
scores imply higher confidence levels from programmers.
Higher confidence levels, in turn, point to higher relevance(see

12. Note that the participants only completed 22 out of 26 total tasks
available.



MCMILLAN et al.: EXEMPLAR: A SOURCE CODE SEARCH ENGINE FOR FINDING HIGHLY-RELEVANT SOFTWARE APPLICATIONS 11

Fig. 4. Statistical summary of the scores from the case
study of Exemplar. The y-axis is the score given by Exem-
plar during the case study. The x-axis is the confidence
level given by users to results from Exemplar.

Section 5). Table 6 shows the F-value, P-value, and criticalF-
value for the variance among the groups. We reject the null
hypothesisH10−null because the F> Fcritical . Additionally, P
< 0.05. Therefore, we find evidence supporting the alternative
hypothesisH10−alt .

Finding supporting evidence forH10−alt suggests that we
can answerRQ1. To confirm these results, however, we
grouped the results in terms of relevant (e.g., confidence 3
or 4) and non-relevant (e.g., confidence 1 or 2), and tested
the difference of these groups. A randomization test of these
groups showed a P-value of< 0.0001, which provides further
evidence for answeringRQ1. Therefore, we find that higher
Exemplar scores do in fact match to higher confidence level
rankings from participants in the user study.

7.2 Principal Components of the Score

The relevance score that Exemplar computes for every re-
trieved application is actually a combination of the three
metrics (WOS, RAS, and DCS) presented in Section 3. Tech-
nically, these three metrics were added together with equal
weights using an affine transformation during the case study.
Ideally, each of these metrics should contribute orthogonal
information to the final relevance score, meaning that each
metric will indicate the relevance of applications when the
others might not. To analyze the degree to which WOS, RAS,
and DCS contribute orthogonal information to the final score,
and to addressRQ2, we used Principal Component Analysis
(PCA)[24]. PCA locates uncorrelated dimensions in a dataset
and connects input parameters to these dimensions. By looking
at how the inputs connect to the principal components, we can
deduce how each component relates to the others.

To apply PCA, we ran Exemplar using the queries from
the case study and obtained WOS, RAS, DCS, and combined
scores for the top ten applications for each of the queries.
We then used these scores as the input parameters to be

PC1 PC2 PC3
Proportion 43.8% 31.5% 24.8%
Cumulative 43.8% 75.3% 100%

WOS -0.730 0.675 0.106
RAS 0.995 0.091 -0.039
DCS -0.010 -0.303 0.953
ALL 0.477 0.839 0.263

TABLE 4
Factor loading through Principal Component Analysis of
each of the scores (WOS, RAS, and DCS) that contribute

to the final score in Exemplar (ALL).

WOS RAS DCS ALL
WOS 1 -0.741 -0.104 0.142
RAS -0.741 1 -0.046 0.482
DCS -0.104 -0.046 1 -0.005
ALL 0.142 0.482 -0.005 1

TABLE 5
Spearman correlations of the score components to each

other and to the final ranking.

analyzed. PCA identified three principal components; Table4
shows the results of this analysis. We find that the first
principal component is primarily RAS (99.5% association),
the second component is somewhat linked to WOS (67.5%
association), and the third component is primarily DCS (95.3%
association). The final Exemplar score (denoted ALL) is linked
to each of the primary components, which we expect because
the input parameters combine to form the Exemplar score.
Because WOS, RAS, and DCS are all positively associated
with their own principal components, we conclude that each
metric provides orthogonal information to Exemplar.

We also computed the Spearman correlations[43] for each
input parameter to each other. These correlations are presented
in Table 5. WOS and RAS are negatively correlated to one
another, a fact suggesting that the two metrics contribute
differently to the final ranking score. Moreover, RAS exhibits
moderate correlation to the final Exemplar score, while WOS
is at least positively correlated. DCS, however, is entirely
uncorrelated to either RAS or WOS. We draw two conclusions
given these results. First, we answerRQ2 by observing that
RAS and WOS do capture orthogonal information (see PCA
results in Table 4). Second, because DCS does not correlate
to the final score and because DCS did not appear to benefit
Exemplar during the case study (see Section 6.4), we removed
DCS from Exemplar. We do not consider DCS in any other
analysis in this section.

7.2.1 Analysis of WOS and RAS
Given that WOS and RAS contribute orthogonally to the
Exemplar score, we now examine whether combining them
in Exemplar returns more relevant applications versus each
metric individually. We judged the benefit of WOS and RAS
by computing each metric for every application using the
queries from the case study. We then grouped both sets of
scores by the confidence level assigned to the application
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F P Fcritical
H10−null 12.31 6E-08 2.61
H11−null 1.97 0.12 2.61
H12−null 8.18 2E-05 2.61

TABLE 6
Results of testing H10−null, H11−null, and H12−null

by the case study participants in a setup similar to that in
Section 7.1. Figure 5a and 5b are statistical summaries
for the WOS and RAS scores, respectively. We introduce
the following null and alternative hypotheses to evaluate the
significance of any difference at a 0.05 level of confidence.

H11−null The null hypothesis is that there is no differ-
ence in the values of WOS scores of applications
among the groupings by confidence level.

H11−alt An alternative hypothesis toH11−null is that
there is a statistically significant difference in the
values of WOS scores of applications among the
groupings by confidence level.

H12−null The null hypothesis is that there is no differ-
ence in the combined values of RAS scores of ap-
plications among the groupings by confidence level.

H12−alt An alternative hypothesis toH12−null is that
there is a statistically significant difference in the
values of RAS scores of applications among the
groupings by confidence level.

7.2.2 Testing the Null Hypotheses
We used one-way ANOVA to evaluateH11−null and H12−null

that the variation in the experiment is no greater than that
due to normal variation of the case study participants choices
of confidence level as well as chance matching by WOS and
RAS, respectively. The results of ANOVA confirm that there
are statistically-significant differences among the groupings by
confidence level for RAS, but not for WOS. Table 6 shows
the F-value, P-value, and critical F-value for the variance
among the groups for WOS. Table 6 shows the same values
for RAS. We do not reject the null hypothesisH11−null

because F< Fcritical . Additionally, P > 0.05. Therefore, we
can not support the alternative hypothesisH12−alt . On the other
hand, we reject the null hypothesisH12−null because the F
> Fcritical . P < 0.05. Therefore, we find evidence supporting
the alternative hypothesisH12−alt .

We finish our study of the contributions of RAS, WOS,
and DCS by concluding that RAS improves the results by
a statistically-significant amount. Meanwhile, we cannot infer
any findings about WOS because we could not rejectH11−null.
We did observe specific instances in the case study where
WOS contributed to the retrieval of relevant results when RAS
did not (see Section 9). Therefore, we include WOS in the final
version of Exemplar, albeit with a weight reduced by 50%
from 0.5 to 0.25. We also increased the weight of RAS by
50% from 0.5 to 0.75 because we found that RAS contibutes
to more relevant results than WOS.

7.3 Keyword Sensitivity of Exemplar

Recent research shows that users tend to generate different
kinds of queries [3]. It may be the case that different users
of Exemplar create different queries which represent the same
task that those users need to implement. If this occurs, some
users may see relevant results, whereas others see irrelevant
ones. During the case study, we provided the participants
with 22 varied tasks. The participants were then free to read
the tasks and generate queries on their own. Exemplar may
retrieve different results for the same task given different
queries, even if the participants generating those queriesall
interpreted the meaning of the task in the same way. This
presents a threat to validity for the case study because different
participants may see different results (and produce different
rankings) for the same task. For example, consider Task 1 from
Section 5.5. Table 7 shows two separate queries generated
independently by users during the case study for this task13.
By including more keywords, the author of the second query
found three different applications than the author of the first
query. In this section, we will answerRQ3 by studing how
sensitive Exemplar is to variations in the query as formulated
by different users for the same task.

First, we need to know how different the queries and
the results are for individual tasks. We computed thequery
overlap to measure how similar queries are for each task.
We defined query overlap as the pairwise comparison of the
number of words, which overlap for each query. The formula
is queryoverlap= |query1

⋂
query2|

|query1
⋃

query2|
wherequery1 is the set of

words is the first query andquery2 is the set of words in
the second query. For example, consider the queries “sound
voice midi” and “sound voice audio midi connection gui”.
The queries share the words “sound”, “voice”, and “midi”.
The total set of words is “sound voice midi audio connection
gui”. Therefore, the query overlap is 0.5, or 50%. To obtain
the query overlap for a task, we simply computed the overlap
numbers for every query to every other query in the task.
The queries were processed in the same way as they are in
Exemplar; we did not perform stemming or removal of stop
words.

Because we see different queries for each task, we expect
to see different sets of results from Exemplar over a task.
We surmise that if two users give two different queries for
the same task, then Exemplar will return different results
as well. We want to study the degree to which Exemplar
is sensitive to changes in the query for a task. Therefore,
we calculate theresults overlap for each task using the
formula resultsoverlap= |unique−total|

|expected−total| wheretotal is the
total number of results found for a given task,unique is the
number of those results which are unique, andexpected is
the number of results we expect if all the results overlapped
(e.g., the minimum number of unique results possible). For
example, consider the situation in Table 7 where, for a single
task, two users created two different queries. In the case
study, participants examined the top ten results, meaning that

13. We generated the results in Table 7 using Exemplar in the same
configuration as in the case study, which can be accessed here: http://www.
xemplar.org/original.html (verified 03/28/2011)
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(a) WOS (b) RAS

Fig. 5. Statistical summary of the WOS and RAS scores from the case study of Exemplar.

“sound voice midi” “sound voice audio midi
connection gui”

1 Tritonus Tritonus
2 Java Sound Res RasmusDSP
3 RasmusDSP Audio Develop
4 TuxGuitar TuxGuitar
5 MidiQuickFix MidiQuickFix
6 Audio Develop Java Sound Res
7 FluidGUI RPitch
8 DGuitar DGuitar
9 Cesar Music and Audio
10 Saiph JVAPTools

TABLE 7
The top ten applications returned by Exemplar for two

separate queries. Both queries were generated by users
during the case study while reading the same task.

Shaded cells indicate applications in both sets of results.
Application names in bold were rated with confidence

level 3 or 4 (relevant or highly-relevant) by the author of
the associated query. Note: Ties of relevance scores are

broken randomly; applications with identical scores may appear
in a different order.

Exemplar returned 20 total results. At least ten of the results
must be unique, which is the expected number if Exemplar
returned the same set for all three queries. In Table 7, however,
13 of the results were unique, results overlap would be 0.7,
or 70% overlapped.

Statistical summaries of the results overlap and query over-
lap are in Figure 6. The Spearman correlations for the overlaps
was 0.356. We observe a weak correlation between results
and query overlap, which we expect because more similar
queries will most likely cause Exemplar to produce more
similar results. Therefore, to answerRQ3, we do find evidence
that Exemplar is sensitive to differences in the queries, even
if those queries were created to address the same task.

7.4 Sensitivity to the Number of API Calls
The RAS component of Exemplar is responsible for ranking
applications based on the API calls made in those applications.
This component first locates a number of descriptions of API
calls which match the keywords provided in the user’s query.It
then matches those API calls to applications which use those
calls. During the case study, we limited the number of API
calls that RAS considers to 200 due to performance overhead.
In this section, we analyze the effect this design decision had
on the search results.

The maximum number of APIs to consider is an internal
parameter to Exemplar calledmaxapi. To study its effects, we
first obtained all 209 queries written by participants in the
case study from Section 5. We then setmaxapito infinity (so
that potentially every API could be returned) and ran every
query through Exemplar. From this run, we determined that
the maximum number of API calls extracted for any query
was 406. We also stored the list of results from this run.

We then ran Exemplar with various entries as input for
maxapiranging between 1 and 40614. We then calculated the
results overlapfor the results of each of these runs against the
results from the run in whichmaxapiwas set to infinity. In this
way, we computed the percent of overlap of the various levels
of maxapiwith case in which all API calls are considered. The
results of this analysis are summarized in Figure 7. We observe
that whenmaxapiis set to a value greater than or equal to 200,
the percent overlap is always above 80%, meaning that 80%
of the results are identical to those in the case when all API
calls are considered. We setmaxapito 200 in the remainder
of this paper.

7.5 Sensitivity to Frequency of API Calls
The RAS component ranking considers the frequency of each
API call that occurs in each application. For example, if an

14. Note that Exemplar produces the same results whenmaxapi is set to
406 and infinity since 406 was the maximum amount of API calls returned.
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applicationA makes an API callc twice, and an application
B makes an API callc only once, andc is detemined to be
relevant to the user query, then applicationA will be ranked
higher thanB. In Exemplar, we use static analysis to determine
the API calls used by an application. Therefore, we do not
know the precise number of times an API call is actually
made in each application because we do not have execution
information for these applications. For example, considerthe
situation where applicationA calls c twice andB calls c once.
If the call to c in B occurs inside a loop,B may callc many
more times thanA, but we will not capture this information.

We developed a binary version of RAS to study the effects
this API frequency information may cause in our case study.
The binary version of RAS does not consider the frequency of
each API call in the applications. More formally, the binary
RAS calculates the scores according to the formulaSj

ras =
p

∑
i=1

C j
i

|A| j
, where |A| j is the total number of API calls in the

application j, and p is the number of API calls retrieved for
the query.

We then executed Exemplar using the 209 queries from
the case study in Section 5 for both the binary version of
RAS and the RAS that considers frequencies of API calls as
described in Section 3.3. We computed theresults overlap
between the results for both. The mean overlap for the results
of every query was 93.2%. The standard deviation was 13.4%.
Therefore, we conclude that the results from Exemplar with
the binary version of RAS are not dramatically different from
the frequency-based version of RAS. We use the frequency-
based version of RAS in the remainder of this paper.

8 EVALUATION OF CHANGES TO EXEMPLAR

We made several alterations to Exemplar based on our analysis
in Section 7. Specifically, we removed DCS, rebalanced the
weights of WOS and RAS (to 0.25 and 0.75), and updated the

Fig. 6. Statistical summary of the overlaps for tasks. The
x-axis is the type of overlap. The y-axis is the value of the
overlap.

Fig. 7. A chart of the results overlap from various levels of
maxapi. The x-axis is the value of the overlap. The y-axis
is the value of maxapi.

Experiment Group Search Engine Task Set

1
G1 NEW T1
G2 OLD T2

2
G1 OLD T2
G2 NEW T1

TABLE 8
Plan for the case study of ExemplarNEW and

ExemplarOLD.

interface so that project source code is visible without down-
loading whole projects. We compare the quality of the results
from the updated version of Exemplar against the previous
version. In this study, we refer to the previous Exemplar as
ExemplarOLD and the new Exemplar as ExemplarNEW.

8.1 Methodology

We performed a case study identical in design to that pre-
sented in Section 5, except that we evaluate two engines
(ExemplarNEW, ExemplarOLD) instead of three (EWN, END,
SF). Table 8 outlines the study. We chose END to represent
the old Exemplar because END was the best-performing
configuration. In this case, we randomly divided 26 case study
participants15 into two groups. There were two experiments,
and both groups participated in each. In each experiment, each
group was given a different search engine (e.g., ExemplarNEW

or ExemplarOLD) and a set of tasks. The participants then
generated queries for each task and entered those queries into
the specifed search engine. The participants rated each result
on a four-point Likert scale as in Section 5. From these ratings,
we computed the three measures confidence (C), precision (P),
and normalized discounted cumulative gain (NG).

15. Nine of the participants in this study were graduate students from the
University of Illinois at Chicago. Five were graduate students at the College
of William & Mary. Ten were undergraduate students at William & Mary. We
reimbursed the participants $35 after the case study.
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8.2 Hypotheses

We introduce the following null and alternative hypothesesto
evaulate the differences in the metrics at a 0.05 confidence
level.

H13 The null hypothesis is that there is no dif-
ference in the values ofC for ExemplarNEW versus
ExemplarOLD. Conversely, the alternative is that there
is statistically significant difference in the values of
C for ExemplarNEW versus ExemplarOLD.

H14 The null hypothesis is that there is no dif-
ference in the values ofP for ExemplarNEW versus
ExemplarOLD. Conversely, the alternative is that there
is statistically significant difference in the values of
P for ExemplarNEW versus ExemplarOLD.

H15 The null hypothesis is that there is no differ-
ence in the values ofNG for ExemplarNEW versus
ExemplarOLD. Conversely, the alternative is that there
is statistically significant difference in the values of
NG for ExemplarNEW versus ExemplarOLD.

8.3 Results

We applied randomization tests to evaluate the hypothesesH13,
H14, andH15. The results of this test are in Table 9. We do not
reject the null hypothesisH14 because the P-value is greater
than 0.05. Therefore, participants do not report a statistically-
significant difference in terms of precision of the results.On
the other hand, we reject the null hypothesesH13 and H15,
meaning that participants report higher confidence level in
the results. Also, the participants report higher normalized
discounted cumulative gain when using ExemplarNEW versus
ExemplarOLD.

The difference in average confidence level between the
updated and original versions of Exemplar is statistically
significant, as seen in Figure 8(a), though the difference is
very small. The difference in precision is not statistically
significant (see Figure 8(b)). One explanation for the small
size of this difference is that both versions of Exemplar return
the same sets of applications to the user. Returning the same
set of applications is expected because both ExemplarNEW and
ExemplarOLD use the same underlying information to locate
these applications (e.g., API calls and project descriptions).
The order of the results is also important, and the new version
of Exemplar does return the more-relevant results in higher
positions, as reported by the normalized discounted cumulative
gain (NG, see Figure 8(c)).

Table 10 illustrates an example of the improvement made
by ExemplarNEW. This table includes the results for the same
query on both engines as well as the confidence level for the
applications as reported by a participant in the case study.
The normalized discounted cumulative gain is higher in this
example for ExemplarNEW than ExemplarOLD. Even though a
majority of the applications are shared by both sets of results,
ExemplarNEW organizes the results such that the most-relevant
applications appear sooner.

“glyph painting”
ExemplarOLD ExemplarNEW

Jazilla 1 Jazilla 1
DrawSWF 4 DrawSWF 4
Image inpainting 1 McBilliards 3
SandboxPix 1 Waba for Dos 3
McBilliards 3 BioGeoTools 1
Waba for Dos 3 TekMath 2
BioGeoTools 1 SWTSwing 0
TekMath 2 Java2C 0
SWTSwing 0 JSpamAssassin 0
DESMO-J 0 netx 0

NG Top 6 0.5143 0.5826
NG Top 10 0.4247 0.4609

TABLE 10
The search results from a single query from the second case

study; applications are listed with the assigned confidence
levels. A case study participant generated the query and

provided the relevancy rankings when evaluating ExemplarOLD.
Applications with a confidence level zero were not able to be

accessed by the participant, and are discarded during our
analysis. We ran the same query on ExemplarNEW. The

confidence levels for the results of ExemplarNEW are copied
from the confidence levels given by the participant who ran

ExemplarOLD. NG represents the normalized discounted
cumulative gain for the top 6 (all evaluated, zeros discarded)

and top 10 (all retrieved, zeros included).

8.4 Participant Comments on Exemplar NEW

Seventeen of the case study participants answered the same
exit survey from Table 3. The responses generally support
those which we discuss in Section 6.5: roughly half of the
participants reported rarely or never using source code search
engines, and of those a majority prefer to use Google. The top
reason cited for not using source code search engines was the
preceived poor quality results given by those engines. These
results, along with those in Section 6.5, are a strong motivation
for improvements in source code search engines.

In addition to rebalacing the weights of the ranking com-
ponents in ExemplarNEW, we made the source code of the
applications immediately available through the engine. The
following are comments provided by participants regarding
these changes. We conclude from these comments that (1)
users prefer to see source code along with relevant appli-
cations, and (2) API calls helped participants determine the
relevance of results.

• “Very convenient to be able to open to view source files
immediately. Much much more convenient to user.”

• “[WOS in ExemplarOLD] got in the way quite a bit”
• “I definitely like viewing code in the browser better”
• “[ExemplarNEW] is really useful since we can know which

API we should choose.”
• “[API calls] are very useful if the call is relevant, a lot

of API calls had nothing to do with the task.”
• “[API calls] are very useful for determining initial area

of source code which should be examined.”
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(a) Confidence level,C. (b) Precision,P. (c) Normalized Discounted Gain,NG.

Fig. 8. Statistical summary of C, P, and NG from the case study evaluating the new version of Exemplar. The y-axis is
the value for C, P, or NG from the case study. The x-axis is the version of Exemplar.

H Var Approach Samples Min Max Median µ C p

H13 C
ExemplarNEW 556 1 4 2 2.27 0.05 0.00156
ExemplarOLD 556 1 4 2 2.30

H14 P
ExemplarNEW 40 0 1.00 0.40 0.38 -0.15 0.23738ExemplarOLD 40 0 0.90 0.30 0.37

H15 NG
ExemplarNEW 40 0.19 1.00 0.47 0.50

-0.15 0.04507ExemplarOLD 40 0 0.82 0.49 0.46

TABLE 9
Results of randomization tests of hypotheses, H, for dependent variable specified in the column Var (C, P, or NG) whose

measurements are reported in the following columns. Extremal values, Median, Means, µ, and the pearson correlation coefficient,
C, are reported along with the results of the evaluation of the hypotheses, i.e., statistical significance, p.

8.5 Suggestions for Future Work

The participants in the case study had several suggestions
for Exemplar, and we have incorporated these into our future
work. One participant asked that we filter “trivial” resultssuch
as API calls namedequal() or toString(). Another
suggested that we provide descriptions of API calls directly
on the results page. A participant also requested a way to sort
and filter the API calls; he was frustrated that some source
code files contain “the same type-check method many times.”

9 SUPPORTING EXAMPLES

Table 11 shows the results from Exemplar for three separate
queries, including the top ten applications and the WOS
and RAS scores for each16. For instance, consider the query
connect to an http server. Only one of the top ten results
from Exemplar is returned (see Table 11) due to a high
WOS score (e.g., because the query matches the high-level
description of the project). The remaining nine projects per-
tain to different problem domains, including internet security
testing, programming utilities, and bioinformatics. These nine

16. We generated the results in Table 11 using Exemplar in thesame
configuration as in the case study, which can be accessed here: http://www.
xemplar.org/original.html

applications, however, all use API calls from the Java class
java.net.HttpURLConnection17. Exemplar was able to retrieve
these applications only because of the contribution from the
RAS score.

Other queries may reflect the high-level concepts in a soft-
ware application, rather than low-level details. For example,
for the query text editor, Exemplar returns six of ten top
results without any matching from RAS (see Table 11). While
the query does match certain API calls, such as those in
the class javax.swing.text.JTextComponent18, Exemplar finds
several text editing programs, which do not use API calls
from matching documentation. Locating these applications
was possible because of relatively high WOS scores.

We observed instances during the case study where the
negative correlation between WOS and RAS improved the
final search results. Consider Task 2 from Section 5.5. For
this task, one programmer entered the queryfind replace
string text filesinto Exemplar (see Table 11). The first result

17. The documentation for this API class can be found at: http:
//download.oracle.com/javase/6/docs/api/java/net/HttpURLConnection.html
(verified 03/28/2011

18. The documentation for this API class can be found at:
http://cupi2.uniandes.edu.co/site/images/recursos/javadoc/j2se/1.5.0/docs/
api/javax/swing/text/JTextComponent.html (verified 03/28/2011)
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“connect to http server” “text editor” “find replace string text files”
Application WOS RAS Application WOS RAS Application WOS RAS

1 DataShare 100% 0% jeHep 52% 89% RText 91% 0%
2 X4technology 0% 100% XNap Commons 0% 100% Nodepublisher 0% 66%
3 jpTools 0% 96% SWediT 92% 0% XERP 44% 18%
4 JMS for j2ms 0% 96% Plugins jext 87% 0% J 54% 0%
5 MicroEmulator 0% 96% PalmEd 87% 0% j-sand 53% 0%
6 ReadSeq bioinfo 0% 95% PowerSwing 0% 85% DocSearch 48% 0%
7 httpunit 0% 95% Graveyard 83% 0% MMOpenGraph 43% 0%
8 WebCQ 0% 95% JavaTextEditor 82% 0% AppletServer 0% 41%
9 WebXSSDetector 0% 95% Eclipse Edit 81% 0% MultiJADS 0% 39%
10 Organism System 0% 90% Comic book edit 65% 15% GalleryGrabber 0% 39%

TABLE 11
The top ten applications returned by Exemplar for three separate queries, along with the WOS and RAS scores for

each. The DCS score was zero in every case. Note: Ties of relevance scores are broken randomly; applications with identical
scores may appear in a different order.

was a program called RText, which is a programmer’s text
editor with find/replace functionality. The second result was
Nodepublisher, a content management system for websites.
Nodepublisher’s high-level description did not match the query
and has a WOS score of 0%. The query did match several
API call descriptions, including calls inside the class java.text.
DictionaryBasedBreakIterator19 which Nodepublisher uses.
Conversely, RText contained no API calls with documentation
matching the query, but had a relevant high-level description.
Since both applications were rated as highly-relevant by the
programmer in the case study, both WOS and RAS aided
in finding a relevant result for this query. Specific situations
such as this one support our decision to keep WOS in the
final version of Exemplar, even with a reduced weight (see
Section 7.2.2). Not all applications with high WOS or RAS
scores were relevant, however. Despite occurring in the top
ten list of applications, both MMOpenGraph and AppletServer
were rated with a confidence level of 2 (“mostly irrelevant”)
by the author of the query.

10 RELATED WORK

Different code mining techniques and tools have been pro-
posed to retrieve relevant software components from different
repositories as it is shown in Table 12. CodeFinder iteratively
refines code repositories in order to improve the precision of
returned software components [16]. Codefinder finds similar
code using spreading activation based on the terms that appear
in that code. Exemplar is different in that we locate source
code based on keywords from API documentation. It is not
necessary for Exemplar to find any matching keywords in the
source code itself.

Codebroker system uses source code and comments written
by programmers to query code repositories to find relevant
artifacts [50]. Unlike Exemplar, Codebroker is dependent
upon the descriptions of documents and meaningful names of
program variables and types, and this dependency often leads
to lower precision of returned projects.

19. The documentation for this API class can be found at: http:
//www.docjar.com/docs/api/java/text/DictionaryBasedBreakIterator.html (veri-
fied 03/28/2011)

Even though it returns code snippets rather than applica-
tions, Mica is similar to Exemplar since it uses help pages
to find relevant API calls to guide code search [45]. How-
ever, Mica uses help documentation to refine the results of
the search while Exemplar uses help pages as an integral
instrument in order to expand the range of the query.

SSI examines the API calls made in source code in order
to determine the similarity of that code [5]. SSI indexes
each source code element based on the identifier names

Approach Granularity Corpora Query
Search Input Expansion

CodeFinder [16] M C D Yes
CodeBroker [51] M C D Yes
Mica [45] F C C Yes
Prospector [29] F A C Yes
Hipikat [9] A C D,C Yes
xSnippet [39] F A D Yes
Strathcona [19][20] F C C Yes
AMC [17] F C C No
Google Code F,M,A C,A D,C No
Sourceforge A C D No
SPARS-J [22][23] M C C No
Sourcerer [27] F,M,A C C No
Sourcerer API Search [4] F C,A C No
CodeGenie [26] F,M T C No
SpotWeb [47] M C C Yes
ParseWeb [48] F A C Yes
S6 [36] F C,A,T C Manual
Krugle F,M,A C,A D,C No
Koders F,M,A C,A D,C No
SNIFF [8] F,M C,A D,C Yes
Blueprint [7] F C,A C No
Exemplar [15] F,M,A C,A D,C No

TABLE 12
Comparison of Exemplar with other related approaches.

Column Granularity specifies how search results are
returned by each approach (Fragment of code, Module, or

Application), and how users specify queries (Concept, API call,
or Test case). The column Corpora specifies the scope of
search, i.e., Code or Documents, followed by the column
Query Expansion that specifies if an approach uses this

technique to improve the precision of search queries.
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and comments in that code. Then SSI adds terms to the
index of a source element. The new terms come from other
source code elements which use the same set of API calls.
Additionally, SSI seeds the index with keywords from API call
documentation. On the other hand, Exemplar matches query
keywords directly to API documentation, and then calculates
RAS, which is a ranking based on which projects uuse the
API calls that the matching documentation describes. The
fundamental difference between Exemplar and SSI is that
Exemplar bases its ranking on how many relevant API calls
appear in the source code (RAS, Section 3.3), unlike SSI,
which ranks source code based on the keyword occurrences
in the source code. Also, Exemplar has been evaluated with a
user-study of professional programmers.

SNIFF extends the idea of using documentation for API
calls for source code search [14][45] in several ways [8]. After
retrieving code fragments, SNIFF then performs intersection of
types in these code chunks to retain the most relevant and com-
mon part of the code chunks. SNIFF also ranks these pruned
chunks using the frequency of their occurrence in the indexed
code base. In contrast to SNIFF [8], MICA [45], and our
original MSR idea [14], we evaluated Exemplar using a large-
scale case study with 39 programmers to obtain statistically
significant results, we followed a standard IR methodology
for comparing search engines, and we return fully executable
applications. Exemplar’s internals differ substantiallyfrom
previous attempts to use API calls for searching, including
SNIFF: our search results contain multiple levels of granular-
ity, we conduct a thorough comparison with the state of art
search engine using a large body of Java application code, and
we are not tied to a specific IDE.

Prospector is a tool that synthesizes fragments of code in
response to user queries that contain input types and desired
output types [29]. Prospector is an effective tool to assist
programmers in writing complicated code, however, it does
not provide support for a full-fledged code search engine.

Keyword programming is a technique which translates a few
user-provided keywords into a valid source code statement
[28]. Keyword programming matches the keywords to API
calls and the parameters of those calls. Then, it links those
parameters to variables or other functions also mentioned in
the keywords. Exemplar is similar to keyword programming in
that Exemplar matches user queries to API calls, and can rec-
ommend usage of those calls. Unlike keyword programming,
Exemplar show examples of previous usage of those APIs, and
does not attempt to integrate those calls into the user’s own
source code.

The Hipikat tool recommends relevant development artifacts
(i.e., source revisions associated with a past change task)
from a project’s history to a developer [9]. Unlike Exemplar,
Hipikat is a programming task-oriented tool that does not
recommend applications whose functionalities match high-
level requirements.

Strathcona is a tool that heuristically matches the structure
of the code under development to the example code [19][18].
Strathcona is beneficial when assisting programmers while
working with existing code, however, its utility is not ap-

plicable when searching for relevant projects given a query
containing high-level concepts with no source code.

There are techniques that navigate the dependency structure
of software. Robillard proposed an algorithm for calculating
program elements of likely interest to a developer [37][38].
FRAN is a technique which helps programmers to locate
functions similar to given functions [41]. Finally, XSnippet
is a context-sensitive tool that allows developers to querya
sample repository for code snippets that are relevant to the
programming task at hand [39]. Exemplar is similar to these
algorithms in that it uses relations between API calls in the
retrieved projects to compute the level of interest (ranking) of
the project. Unlike these approaches, Exemplar requires only
a natural language query describing a programming task. We
found in this paper that considering the dataflow among API
calls does not improve the relevancy of results in our case.

Existing work on ranking mechanisms for retrieving source
code are centered on locating components of source code that
match other components. Quality of match (QOM) ranking
measures the overall goodness of match between two given
components [46], which is different from Exemplar which
retrieves applications based on high-level concepts that users
specify in queries.Component rank model (CRM)is based on
analyzing actual usage relations of the components and prop-
agating the significance through the usage relations [22][23].
Yokomori et al. used CRM to measure the impact of changes to
frameworks and APIs [52]. Unlike CRM, Exemplar’s ranking
mechanism is based on a combination of the usage of API
calls and relations between those API calls that implement
high-level concepts in queries.

S6 is a code search engine that uses a set of user-guided pro-
gram transformations to map high-level queries into a subset
of relevant code fragments [36], not complete applications.
Like Exemplar,S6 returns source code, however, it requires
additional low-level details from the user, such as data types
of test cases.

11 CONCLUSIONS

We created Exemplar, a search engine for highly relevant
software projects. Exemplar searches among over 8,000 Java
applications by looking at the API calls used in those ap-
plications. In evaluating our work, we showed that Exemplar
outperformed SourceForge in a case study with 39 professional
programmers. These results suggest that the performance of
software search engines can be improved if those engines
consider the API calls that the software uses. Also, we modi-
fied Exemplar to increase the weight of RAS, and performed
a second case study evaluating the effects of this increase.
We found that not only does including API call information
increase the relevance of the results, but it also improves the
ordering of the results. In other words, Exemplar places the
relevant applications at the top of list of results.
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