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ABSTRACT
The large body of existing research in Test Case Prioriti-
zation (TCP) techniques, can be broadly classified into t-
wo categories: dynamic techniques (that rely on run-time
execution information) and static techniques (that operate
directly on source and test code). Absent from this curren-
t body of work is a comprehensive study aimed at under-
standing and evaluating the static approaches and compar-
ing them to dynamic approaches on a large set of projects.

In this work, we perform the first extensive study aimed
at empirically evaluating four static TCP techniques com-
paring them with state-of-research dynamic TCP techniques
at different test-case granularities (e.g., method and class-
level) in terms of effectiveness, efficiency and similarity of
faults detected. This study was performed on 30 real-word
Java programs encompassing 431 KLoC. In terms of effec-
tiveness, we find that the static call-graph-based technique
outperforms the other static techniques at test-class level,
but the topic-model-based technique performs better at test-
method level. In terms of efficiency, the static call-graph-
based technique is also the most efficient when compared to
other static techniques. When examining the similarity of
faults detected for the four static techniques compared to
the four dynamic ones, we find that on average, the faults
uncovered by these two groups of techniques are quite dis-
similar, with the top 10% of test cases agreeing on only ≈
25% - 30% of detected faults. This prompts further research
into the severity/importance of faults uncovered by these
techniques, and into the potential for combining static and
dynamic information for more effective approaches.

CCS Concepts
•Software and its engineering → Software testing
and debugging;
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1. INTRODUCTION
Modern software is constantly evolving; developers make

various program changes to add new features or refactor ex-
isting code. During this process, it is crucial to ensure that
developers do not introduce new bugs, known as software re-
gressions. Regression testing is a methodology for efficiently
and effectively validating software changes against an exist-
ing test suite aimed at detecting such bugs [37, 60]. One of
the key tasks, which is of critical importance to the regres-
sion testing process, is regression test case prioritization.

Regression test prioritization techniques reorder test ex-
ecutions in order to maximize a certain objective function,
such as exposing faults earlier or reducing the execution time
cost [37]. For insatnce, Microsoft researchers have built test
prioritization systems for development and maintenance of
Windows for a decade [48, 10]. Moreover, a large body of
research work has been proposed to design and evaluate re-
gression TCP techniques [54, 59, 45, 44, 37, 33]. Most tra-
ditional TCP techniques are based on the dynamic coverage
information of the regression test suite in previous software
versions. A typical dynamic approach applies a certain test
prioritization strategy on a particular test coverage criteri-
on to iteratively compute each test’s priorty, and then ranks
them to generate a prioritized list of tests. Researchers have
proposed various approaches for traditional TCP, such as
greedy (total and additional strategies) [59, 45, 44], adap-
tive random testing [28], and search-based strategies [36].

Although dynamic test prioritization techniques can be
powerful in practice, they may not be always applicable due
to notable disadvantages (e.g., time-consuming [40], perfor-
mance degradation over new program versions and test cas-
es [37]). Thus, researchers have proposed a number of test
prioritization techniques that rely solely upon static infor-
mation extracted from the source and test code. The intro-
duction of purely static techniques begs several important
questions in the context of past work on dynamic techniques,
such as: How does the effectiveness of static and dynam-
ic techniques compare on real-world software projects? Do
static and dynamic techniques uncover similar faults? ; How
efficient are static techniques when compared to one anoth-
er? The answers to these questions will guide future work
in developing new test-case prioritization techniques.

Several empirical studies have been conducted in an at-
tempt to examine and understand varying aspects of differ-
ent white and black-box TCP approaches [44, 19, 15, 43, 50].
However, there is a clear gap in the existing body of empir-
ical studies characterized by the following: 1) recently pro-
posed TCP techniques, particularly static techniques, have



not been thoroughly evaluated against each other or against
techniques that require dynamic coverage; 2) no previous s-
tudy including static approaches comprehensively examines
the impact of different test granularities (e.g., prioritizing
entire test classes or individual test methods), the efficien-
cy of the techniques, and the similarities in terms of un-
covered faults; and 3) prior studies have not typically been
conducted on several mature real-world software systems.
Each of these points are important considerations that call
for a thorough empirical investigation. Studying the effec-
tiveness and similarity of faults uncovered for both static
and dynamic techniques would help inform researchers of
potential opportunities to design more effective and robust
TCP approaches. Additionally, evaluation on a large group
of sizable real-world java programs would help bolster the
generalizability of these results.

To answer the previously posed questions and address the
current gap in the existing body of TCP research we per-
form an extensive empirical study comparing four popular
static TCPs, i.e., call-graph-based (with total and additional
strategies) [62], string-distance-based [35], and topic-model
based techniques [50] to four state-of-the-art dynamic TCPs
(i.e., the greedy-total [44], greedy-additional [44], adaptive
random [28], and search-based techniques [36]) on 30 real-
world software systems. All TCPs are implemented based
on the papers that initially proposed them and the imple-
mentation details are given in Section 3.4. It is worth noting
that different granularities of dynamic coverage may impact
the effectiveness of dynamic TCPs. In this paper, we chose
to examine statement-level coverage for dynamic techniques,
since previous work [37, 40] has shown that statement-level
coverage is at least as effective as other common coverage
criteria (e.g., method and branch coverage) in the TCP do-
main. In our evaluation criteria we examine the effectiveness
of these techniques, in terms of Average Percentage of Fault-
s Detected (APFD), and the similarity of detected of faults
at different test granularities (e.g., both method and class
levels). Additionally we examine the efficiency, in terms of
execution time, of static TCPs to better understand the time
cost associated with running these approaches on subjects.

When examining static approaches, we found that the
call-graph-based (with “additional” strategy) technique out-
performs all studied techniques at the test-class level. At the
test-method level, the topic-model based technique perform-
s better than other static techniques, but worse than two
dynamic techniques, the additional and search-based tech-
niques. Our results indicate that the test granularity dramat-
ically impacts the effectiveness of TCP techniques. While
nearly all techniques perform better at method-level granu-
larity, the static techniques perform comparatively worse to
dynamic techniques at method-level as opposed to class lev-
el. In terms of execution time, call-graph based techniques
are the most efficient of the static TCPs. Finally, the results
of our similarity analysis study suggest that there is minimal
overlap between the uncovered faults of the studied dynamic
and static TCPs, with the top 10% of prioritized test-cases
only sharing ≈ 25% - 30% of uncovered faults. This suggests
that future TCPs may benefit from the severity/importance
of faults uncovered by different techniques, and the potential
for combining static and dynamic information. This paper
makes the following contributions:

• To the best of the author’s knowledge, this is the first
extensive empirical study that compares the effective-

ness, efficiency, and similarity of uncovered faults of
both static and dynamic TCP techniques at different
granularities on a large set of real-world programs.

• We discuss the relevance and potential impact of the
findings in the study, and provide a set of learned
lessons to help guide future research.

• We provide a publicly available, extensive online ap-
pendix and dataset of the results of this study to ensure
reproducibility and aid future research [38].

2. BACKGROUND & RELATED WORK
In this section we formally define the TCP problem, in-

troduce the studied techniques in the context of the related
work, and distill the novelty and research gap that our pro-
posed study fulfills. Rothermel et al. [45] formally defined
the test prioritization problem as finding T ′ ∈ P (T ), such
that ∀T ′′, T ′′ ∈ P (T ) ∧ T ′′ 6= T ′ ⇒ f(T ′) ≥ f(T ′′), where
P (T ) denotes the set of permutations of a given test suite
T , and f denotes a function from P (T ) to real number-
s. In this section, we introduce the underlying methodolo-
gy of our studied techniques in detail, which include static
TCP techniques (Section 2.1) and dynamic TCP techniques
(Section 2.2). All studied techniques attempt to address
the TCP problem formally enumerated above with the ob-
jective function of uncovering the highest number of faults
with the fewest number of test cases. In our study, we limit
our focus to static TCPs that require only source code and
test cases, and the dynamic ones that only require dynamic
coverage and test cases as inputs for two reasons: 1) this rep-
resents fair comparison of similar techniques that leverage
traditional inputs (e.g., test cases, source code and coverage
info), and 2) the inputs needed by other techniques (e.g.,
requirements, code changes, user knowledge) are not always
available in real-world subject programs. Additionally, we
discuss existing empirical studies (Section 2.3). We discuss
our own re-implementation of these tools later in Section 3.

2.1 Static TCP Techniques
Call-Graph-Based. This technique builds a call graph for
each test case to obtain a set of transitively invoked method-
s, called relevant methods [62]. The test cases with a higher
number of relevant methods in the call-graph are treated as
the ones with higher test ability and thus are prioritized first.
This approach encompasses two sub-strategies, the total s-
trategy prioritizing the test cases with higher test abilities
earlier, and the additional strategy prioritizing the test cases
with higher test abilities excluding the methods that have
already been covered by the prioritized test cases. Mei et
al. extended this work to measure the test abilities of the
test cases using the number of statements in their relevan-
t methods instead of the number of relevant methods [40].
The intuition here is that test cases with a larger number
of statements in their relevant methods are more likely to
detect faults. As defined in previous work [23, 50], a white-
box static approach requires access to both the source code of
subject programs, and other types of information (e.g., test
code), whereas black-box static techniques do not require
the source code of subject programs. Static techniques can
be classified as either white or black box [50], whereas most
dynamic techniques (including the ones considered in this s-
tudy) are considered white-box techniques since they require
access to the subject system’s source code. Thus the call-
graph based technique is classified as a white box approach,



whereas the other two studied techniques are black-box ap-
proaches. We consider both types of static techniques in
this paper in order to thoroughly compare them to a set of
techniques that require dynamic computation of coverage.
String-Distance-Based. The key idea underlying this
technique is that test cases that are most different from al-
ready executed test cases, as measured by textual similarity
based on string-edit distance, should be prioritized earlier
[35]. The reason is that test cases that are textually dis-
similar have a higher probability of executing different code
paths and thus detecting more bugs. This technique is a
black-box static technique since it uses only the test case
code. In this technique, four string-edit distances are intro-
duced to calculate the gap between each pair of test cas-
es: Hamming, Levenshtein, Cartesian, and Manhattan dis-
tances. Based on prior experimental results [35], Manhattan
distance performs best in terms of detecting faults. Thus,
in our study, we implemented the string-based TCP based
on the paper by Ledru et al. [35], and chose Manhattan
distance as the representative string distance computation
for this technique. We provide explicit details regarding our
implementation of studied techniques in Section 3.
Topic-Based. This static black-box technique uses semantic-
level topic models to represent tests of differing functionality,
and gives higher prioritization to test cases that contain dif-
ferent topics form those already executed [50]. The authors
claim that topics, which abstract test cases’ functionality,
can capture more information than the existing static test
prioritization techniques, and is robust in obtaining differ-
ences between test cases. The technique creates a vector for
the code of each test case, including the test case’s corre-
lation values with each topic. After that, it calculates the
distances between test cases using Manhattan distance, and
defines the distance between one test case and a set of test
cases as the minimum distance between this test case and all
test cases in the set. During prioritization process, the test
case which is farthest from all other test cases is selected and
put into the prioritized set. Then, the technique iteratively
selects the test cases that are farthest from the prioritized
set. We implemented this technique based on the original
paper [50] with the same described parameters.
Other Approaches. An approach presented by Jiang et
al. calculates the distances between test cases based on the
input values of test cases, and favors the test cases which
are farthest from the already prioritized test case set [27].
Recently, Saha et al. proposed an approach that uses Infor-
mation Retrieval (IR) techniques to recover the traceability
links between test cases and code changes, and sorts the test
cases based on their relevant code changes, with those hav-
ing more relevant code changes being prioritized first [46].
These techniques require additional information, such as the
test input and code changes. Recall that, we focus on auto-
mated TCPs that require only the source code and the test
cases of the subjects. Thus, we choose the call-graph-based,
string-based and topic-based techniques as the focus.

2.2 Dynamic TCP Techniques
Greedy Techniques. As explained in our overview of the
Call-Graph-based approach, traditional dynamic TCPs use
two sub-techniques, the total strategy and additional strate-
gy, to prioritize test cases based on the code coverage. Sim-
ilarly, the total strategy prioritizes test cases based on their
code coverage, and the additional strategy prioritizes test
cases based on their code coverage excluding the code ele-

ments that have been covered by prioritized test cases. Thus,
the total strategy favors the test cases that cover more code,
but the additional strategy would select the test cases that
can cover different code from the already prioritized test
cases earlier. In our study, we implemented the greedy tech-
niques based on the work by Rothermel et al. [44]. The
additional strategy of this approach has been widely consid-
ered as one of most effective TCPs in previous works [28,
59]. Recently, Zhang et al. proposed a novel approach to
bridge the gaps between these two strategies by unifying the
strategies based on the fault detection probability [59, 22].

Different code coverage criteria, such as statement cov-
erage [44], basic block and method coverage [15], Fault-
Exposing-Potential (FEP) coverage [19], transition and round-
trip coverage [56], have been investigated in the domain of
dynamic TCP. For instance, Do et al. use both method and
basic block coverage information to prioritize test cases [15].
Elbaum et al. proposed an approach that prioritizes test
cases based on their FEP and fault index coverage [19], in
which the test cases exposing more potential faults will be
assigned a higher priority. Kapfhammer et al. use software
requirement coverage to measure the test abilities of test
cases for test prioritization [30].
Adaptive Random Testing. Jiang et al. proposed a nov-
el approach, called Adaptive Random Test Case Prioritiza-
tion (ART), which introduces the adaptive random testing
strategy [9] into the TCP domain [28]. ART first randomly
selects a set of test cases iteratively to build a candidate set,
then it selects from the candidate set the test case farthest
away from the prioritized set. The whole process is repeated
until all test cases have been selected. To find the farthest
test case, ART first calculates the distance between each pair
of test cases using Jaccard distance based on their coverage,
and then calculates the distance between each candidate test
case and the prioritized set. Three types of distances are
used to calculate the distance between one test case and the
prioritized set, min, avg and max. For example, min is the
minimum distance between the test case and the prioritized
test case. The authors compared ART with different dis-
tances and also the random TCP technique. The results
show that ART with min distance performs best. Thus, in
our empirical study, we implemented ART based on Jiang
et al.’s paper [28] and chose min distance to estimate the
distance between one test case and the prioritized set.
Search-based Techniques. Search-based TCP techniques
introduce the meta-heuristic search algorithm into the TCP
domain, exploring space of test case combinations to find
the ranked list of test cases that detect faults more quick-
ly [36]. Li et al. propose two search-based test prioritiza-
tion techniques, hill-climbing-based and genetic-based. The
hill-climbing-based technique evaluates all neighbors, local-
ly searching the ones that can achieve largest increase in
fitness. The genetic technique halts evolution when a pre-
defined termination condition is met, e.g., the fitness func-
tion value reaches a given value or a maximal number of
iterations has been reached. Our empirical study uses the
genetic-based test prioritization approach as the representa-
tive search-based test case prioritization technique, because
previous results demonstrate that genetic-based technique is
more effective in detecting faults [36].
Other Approaches. Several other techniques based on
leveraging dynamic program information have been proposed,
but do not fit into any of the classifications enumerated



above [25, 51, 41]. Islam et al. presented an approach that
recovers traceability links between system requirements and
test cases using (IR) techniques, and dynamic information
such as execution cost and code coverage, to prioritize test
cases [25]. Nguyen et al. designed an approach that uses IR
techniques to recover the traceability links between change
descriptions and execution traces for test cases to identify
the most relevant test cases for each change description [41].
However, these TCPs require more information (e.g., execu-
tion cost, user knowledge, code changes) than code coverage.
In this paper, we choose dynamic techniques that require
only code coverage and test cases for comparison, thus we
select three techniques (i.e., Greedy (with total, additional
strategies), ART, and Search-based). Recall that we do not
study the potential impact of coverage granularity on the
effectiveness of dynamic TCPs. Previous work has already
shown that statement-level coverage is at least as effective as
other coverage types [37, 40], thus we chose statement-level
coverage for all studied dynamic TCPs.

2.3 Empirical studies on TCP techniques
Several studies empirically evaluating TCP techniques [31,

44, 7, 55, 13, 21, 58, 47, 23, 37, 20, 19, 57, 21, 43] have been
published. In this subsection we discuss the studies most
closely related to our own in order to illustrate the novelty
and research gap filled by our proposed study. Rothermel
et al. conducted a study for unordered, random, and dy-
namic TCP techniques (e.g., coverage based, FEP-based)
on C programs, to evaluate their abilities of fault detec-
tion [44]. Elbaum et al. conducted a study for several
dynamic TCP techniques on C programs, to evaluate the
impact of program versions, program types and different
code granularity on the effectiveness of TCP techniques [19].
Thomas et. al [50] compared the topic-based technique with
the string-based and call-graph-based techniques and the
greedy-additional dynamic technique at method-level on two
subjects. However, this study is limited by a small set of sub-
ject programs, a comparison to only one dynamic technique,
a comparison only at method-level, and no investigation of
fault detection similarity among the approaches.

Do et al. presented a study of dynamic test prioritiza-
tion techniques (e.g., random, optimal, coverage-based) on
four Java programs with JUnit to demonstrate that these
techniques can be effective not only on C but also on Ja-
va programs, but different languages and testing paradigms
may lead to divergent behaviors [15]. They also proposed
an empirical study to analyze the effects of time constraints
on TCP techniques [11]. Henard et al. recently conduct-
ed a study comparing white and black-box TCP techniques
in which the effectiveness, similarity, efficiency, and per-
formance degradation of several techniques was evaluated.
While this is one of the most complete studies in terms of
evaluation depth, it does not consider the static techniques
considered in this paper. Thus, our study is differentiated by
the unique goal of understanding the relationships between
purely static and dynamic TCPs.

To summarize, while each of these studies offers valuable
insights, none of them provides an in-depth evaluation and
analysis of the effectiveness, efficiency, and similarity of de-
tected faults for static TCP techniques and comparison to
dynamic TCP techniques on a set of mature open source
software systems. This illustrates that a clear research gap
exists in prior work empirically comparing more tradition-
al techniques based on dynamic information against those

Table 1: The stats of the subject programs: Size: #Loc;

TM: #test cases at method level; TC: #test cases at class

level; All: #all mutation faults; Detected: #faults can

be detected by test cases.
Subject Programs Size #TM #TC Detected All

P1-Java-apns 3,234 87 15 412 1,122
P2-gson-fire 3,421 55 14 847 1,064
P3-jackson-datatype-guava 3,994 91 15 313 1,832
P4-jackson-uuid-generator 4,158 45 6 802 2,039
P5-jumblr 4,623 103 15 610 1,192
P6-metrics-core 5,027 144 28 1,656 5,265
P7-low-gc-membuffers 5,198 51 18 1,861 3,654
P8-xembly 5,319 58 16 1,190 2,546
P9-scribe-java 5,355 99 18 563 1,622
P10-gdx-artemis 6,043 31 20 968 1,687
P11-protoparser 6,074 171 14 3,346 4,640
P12-webbit 7,363 131 25 1,268 3,833
P13-RestFixture 7,421 268 30 2,234 3,278
P14-LastCalc 7,707 34 13 2,814 6,635
P15-lambdaj 8,510 252 35 3,382 4,341
P16-javapoet 9,007 246 16 3,400 4,601
P17-Liqp 9,139 235 58 7,962 18,608
P18-cassandra-reaper 9,896 40 12 1,186 5,105
P19-raml-java-parser 11,126 190 36 4,678 6,431
P20-redline-smalltalk 11,228 37 9 1,834 10,763
P21-jsoup-learning 13,505 380 25 7,761 13,230
P22-wsc 13,652 16 8 1,687 17,942
P23-rome 13,874 443 45 4,920 10,744
P24-JActor 14,171 54 43 132 1,375
P25-jprotobuf 21,161 48 18 1,539 10,338
P26-worldguard 24,457 148 12 1,127 25,940
P27-commons-io 27,263 1125 92 7,630 10,365
P28-asterisk-java 39,542 220 39 3,299 17,664
P29-ews-java-api 46,863 130 28 2,419 31,569
P30-joda-time 82,998 4,026 122 20,957 28,382

Total 431,329 8,959 845 92,797 257,807

that operate purely on static code artifacts. The study con-
ducted in this paper is meant to close this gap, and offer
researchers and practitioners insight into the similarity and
trade-offs between such approaches.

3. EMPIRICAL STUDY
In this section, we state our research questions, and enu-

merate the subject programs, test suites, study design, and
implementation of studied techniques in detail.

3.1 Research Questions (RQs):
RQ1 How do static TCP techniques compare with each oth-

er and with dynamic techniques in terms of effectivness
measured by APFD?

RQ2 How does the test granularity impact the effectiveness
of both the static and dynamic TCP techniques?

RQ3 How similar are different TCP techniques in terms of
detected faults?

RQ4 How does the efficiency of static techniques compare
with one another in terms of execution time cost?

To aid in answering RQ1, we introduce the following null
and alternative hypotheses. The hypotheses are evaluated
at a 0.05 level of significance:

H0: There is no statistically significant difference in the ef-
fectiveness between the studied TCPs.

H1: There is a statistically significant difference in the ef-
fectiveness between the studied TCPs.

3.2 Subject Programs, Test Suites and Faults
We conduct our study on 30 real-world Java programs.

The program names and sizes in terms of lines of code (LOC)
are shown in Table 1, where the sizes of subjects vary from
3,234 to 82,998 LoC; all are available on GitHub[1]. Our
subjects are larger in size and quantity than previous work
in the TCP domain [37, 23, 50, 35, 28]. To perform this
study, we checked out the most current master branch of
each program, and provide the version IDs in our online
appendix [38]. For each program, we used the original JUnit



Table 2: Studied TCP Techniques
Type Tag Description

Static

TPcg−tot Call-graph-based (total strategy)
TPcg−add Call-graph-based (additional strategy)
TPstr The string-distance-based

TPtopic−r Topic-model-based using R-lda package
TPtopic−m Topic-model-based using Mallet

Dynamic

TPtotal Greedy total (statement-level)
TPadd Greedy additional (statement-level)
TPart Adaptive random (statement-level)

TPsearch Search-based (statement-level)

test suites for the corresponding program version. Since one
of the goals of this study is to understand the impact of
test granularity on the effectiveness of TCP techniques, we
introduce two groups of experiments in our empirical study
based on two test-case granularities: (i) the test-method and
(ii) the test-class granularity. The numbers of test cases on
test-method level and test-class level are shown in Columns
3 & 4 of Table 1 respectively.

One goal of this empirical study is to compare the effec-
tiveness of different test prioritization techniques by evalu-
ating their fault detection capabilities. Thus, each technique
will be evaluated on a set of program faults introduced us-
ing mutation analysis. As mutation analysis has been widely
used in regression test prioritization evaluations [59, 12, 37,
61] and has been shown to be suitable in simulating real
program faults [3, 29], this is a sensible method of intro-
ducing program defects. We applied the PIT [42] mutation
tool’s built-in mutators to produce mutation faults for each
project. All mutation operators can be found in our online
appendix [38]. Note that not all produced mutation fault-
s can be detected/covered by test cases, thus we ran PIT
with all test cases to obtain the faults that can be detected
and used these detected faults in our study. The numbers
of detected mutation faults and the numbers of all mutation
faults are shown in Columns 5 and 6 of Table 1 respectively.
As the table shows, the numbers of detected mutation faults
range from 132 to 20,957. There are of course certain threats
to validity introduced by such an analysis, namely the the
potential bias introduced by the presence of equivalent and
trivial mutants [4, 2]. We summarize the steps we take in
our methodology to mitigate this threat in Section 5.

3.3 Design of the Empirical Study
As discussed previously (see Section 2), we limit the fo-

cus of this study to TCP techniques that do not require
non-traditional inputs, such as code changes or software re-
quirements. We select two white-box and two black-box
static techniques, and four white-box dynamic techniques
with statement-level coverage as the subject techniques for
this study, which are listed in Table 2. We sample from
both white and black box approaches as the major goal of
this study is to examine the effectiveness and trade-offs of
static and dynamic TCPs under the assumption that both
the source code of the subject application, as well as the test
cases are available. It is worth noting that our evaluation
employs two versions of the static topic model-based tech-
nique, as when contacting the authors of [50], they suggest-
ed that an implementation using the Mallet [39] tool would
yield better results than their initial implementation in R
[50]. We now describe the experimental procedure utilized
to answer each RQ posed above.

RQ1: The goal of RQ1 is to compare the effectiveness of
different TCP techniques, by evaluating their fault detection
capabilities. Following existing work [59, 37], we fixed the

number of faults for each subject program. That is, we ran-
domly chose 500 different mutation faults and partitioned
the set of all faults into groups of five (e.g., a mutant group)
to simulate each faulty program version. Thus, 100 different
faulty versions (i.e., 500/5 = 100) were generated for each
program. If a program has less than 500 mutation faults, we
use all detected mutation faults for this program and sepa-
rate these faults into different groups (five faults per group).
For the static techniques, we simply applied the techniques
as described in Sections 2 & 3.4 to the test and source code
of each program to obtain the list of prioritized test cases
for each mutant group. For the dynamic techniques, we ob-
tained the coverage information of the test-cases for each
program. We then used this coverage information to imple-
ment the dynamic approaches as described in Sections 2 &
3.4. Then we are able to collect the fault detection informa-
tion for each program according to the fault locations.

To measure the effectiveness in terms of rate of fault de-
tection for each studied test prioritization technique, we uti-
lize the well-accepted Average Percentage of Faults Detected
(APFD) metric in TCP domain [44, 62, 45, 14, 17, 19, 16].
Formally speaking, let T be a test suite and T ′ be a permu-
tation of T , the APFD metric for T ′ is computed according
to the following metric:

APFD = 1−
∑m

i=1 TFi

n ∗m +
1

2n
(1)

where n is the number of test cases in T , m is the num-
ber of faults, and TFi is the position of the first test case
in T ′ that detects fault i. Recall that every subject pro-
gram has 100 mutant groups (five mutations per group).
Thus, we created 100 faulty versions for each subject (each
version contains five mutations) and ran all studied tech-
niques over these 100 faulty versions. That is, running each
technique 100 times for each subject. Then, we performed
statistical analysis based on the APFD results of these 100
versions. To test whether there is a statistically significant
difference between the effectiveness of different techniques,
we first performed a one-way ANOVA analysis on the mean
APFD values for all subjects and a Tukey HSD test[49], fol-
lowing the evaluation procedures utilized in related work [40,
37]. The ANOVA test illustrates whether there is a statisti-
cally significant variance between all studied techniques and
the Tukey HSD test further distinguishes techniques that are
significantly different from each other, as it classifies them
into different groups based on their mean APFD values [49].
These statistical tests give a statistically relevant overview
of whether the mean APFD values for the subject programs
differ significantly. Additionally, we performed a Wilcoxon
signed-rank test between each pair of TCP techniques for
their average APFD value across all subject techniques, to
further illustrate the relationship between individual subjec-
t programs. We choose to include this non-parametric test
since we cannot make assumptions about wether or not the
data under consideration is normally distributed.

RQ2: The goal of this RQ is to analyze the impact of
different test granularities on the effectiveness of TCP tech-
niques. Thus, we choose two granularities: test-method and
test-class level. The test-method level treats each JUnit test
method as a test case, while test-class level treats each JUnit
test class as a test case. We examine both the effectiveness
and similarity of detected faults for both granularities.

RQ3: The goal of this RQ is to analyze the similarity of
detected faults for different techniques to better understand



the level of equivalency of differing strategies. It is clear that
this type of analysis is important, as while popular metrics
such as APFD measure the effectiveness between two differ-
ent techniques, this does not reveal the similarity of the test
cases in terms of uncovered faults. For instance, let us con-
sider two TCP techniques A and B. If technique A achieves
an APFD of ≈ 60% and technique B achieves an APFD of
≈ 20%, while this gives a measure of relative effectiveness,
the APFD does not reveal how similar or orthogonal the
techniques are in terms of the faults detected. For instance,
all of the faults uncovered by top ten test cases from tech-
nique B could be different than those discovered by top ten
test cases from technique A, suggesting that the techniques
may be complimentary. To evaluate the similarity between
different TCP techniques, we utilize and build upon similar-
ity analysis used in recent work [23, 24] and construct binary
vector representations of detected faults for each technique
and then calculate the distance between these vectors as a
similarity measure.

We employ two methodologies in order to give a compre-
hensive view of the similarity of the studied TCPs. At the
core of both of these techniques is a measure of similarity us-
ing the Jaccard distance to determine the distance between
vectorized binary representations of detected faults (where
a 1 signifies a found fault and a 0 signifies an undiscovered
fault) for different techniques across individual or groups of
subject programs. We use the following definition [23]:

J(T i
A, T

i
B) =

| T i
A ∩ T i

B |
| T i

A ∪ T i
B |

(2)

where T i
A represents the binary vectorized discovered faults

of some studied technique A after the execution of the ith

test case in the techniques prioritized set, and T i
B repre-

sents the same meaning for some studied technique B and
0 ≤ J(T i

A, T
i
B) ≤ 1. While we use the same similarity met-

ric as in [23], we report two types of results: 1) results
comparing the similarity of the studied static and dynamic
techniques using the average Jaccard coefficient across all
subjects at different test-case granularities, and 2) result-
s comparing each technique in a pair-wise manner for each
subject program. For the second type of analysis, we exam-
ine each possible pair of techniques and rank each subject
program according to Jaccard coefficient as highly similar
(1.0 - 0.75), similar (0.749 - 0.5), dissimilar (0.49 - 0.25), or
highly dissimilar (0.249-0). This gives a more informative
view of how similar two techniques might be for different
subject programs. To construct both types of binary fault
vectors, we use the same fault selection methodology used to
calculate the APFD, that is, we randomly sample 500 faults
from the set of known discoverable faults for each subject.

RQ4: The final goal of our study is to understand the effi-
ciency of static techniques, in terms of execution costs. Note
that, we only focus on the efficiency of static techniques, s-
ince dynamic techniques are typically run on the previous
version of a program to collect coverage information, and
thus the temporal overhead is quite high and well-studied.
To evaluate the efficiency of static techniques, we collect t-
wo types of time information: the time for pre-processing
and the time for prioritization. The time for pre-processing
contains different phases for different techniques. For exam-
ple, TPcg−tot and TPcg−add need to build the call graphs for
each test case. TPstr needs to analyze the source code to
extract identifiers and comments for each test case. Besides,
TPtopic needs to pre-process extracted textual information

and use the R-LDA package and Mallet [39] to build topic
models. The time for prioritization refers to the time cost
for TCP on different subjects.

3.4 Tools and Experimental Hardware
We reimplemented all of the studied dynamic and static

TCPs in Java according to the specifications and descrip-
tions in their corresponding papers, since the implementa-
tions were not available from the original authors and had to
be adapted to our subjects. All three of the authors carefully
reviewed and tested the code to make sure the reimplemen-
tation is reliable. We also invited an expert working in the
area of test case prioritization to review our code.
TPcg−tot/TPcg−add: Following the paper by Zhang et al.
[62], we use the IBM T. J. Watson Libraries for Analysis
(WALA) [53] to collect the RTA static call graph for each
test, and traverse the call graphs to obtain a set of relevant
methods for each test case. Then, we implement two greedy
strategies (i.e., total and additional) to prioritize test cases.
TPstr: Based on the paper by Ledru et al. [35], each
test case is treated as one string without any preprocess-
ing. Thus, we directly use JDT [26] to collect the textual
test information for each JUnit test, and then calculate the
Manhattan distances between test cases to select the one
that is farthest from the prioritized test cases.
TPtopic−r and TPtopic−m: Following the topic-based TCP
paper [50], we first use JDT to extract identifiers and com-
ments from each JUnit test, and then pre-process those (e.g.,
splitting, removing stop words, and stemming). To build
topic models, we used the R-LDA package [34] for TPtopic−r

and Mallet [39] for TPtopic−m. All parameters are set with
previously used values [50, 8]. Finally, we calculated the
Manhattan distances between test cases, and selected the
ones that are farthest from the prioritized test cases.
Dynamic TCP techniques: We use the ASM bytecode
manipulation and analysis toolset [6] to collect the cover-
age information for each test. Specifically, in our empirical
study, it obtains a set of statements that can be executed
by each test method or test class. The greedy techniques
are replicated based on the paper by Rothermel et al. [44].
For the ART and search-based techniques, we follow the
methodology described in their respective papers [28, 36].
Experimental Hardware: The experiments were carried
out on Thinkpad X1 laptop with Intel Core i5-4200 2.30
GHz processor and 8 GB DDR3 RAM.

4. RESULTS
In this section, we outline the experimental results to an-

swer the RQs listed in Section 3.

4.1 RQ1 & RQ2: Effectiveness of Studied Tech-
niques at Different Granularities

The values of APFD across all subjects at class-level are
shown in Figure 1(a) and Table 3. Based on this figure,
we make the following observations. First, somewhat sur-
prisingly, at the test-class level, the static TPcg−add tech-
nique performs the best across all studied TCP techniques
(including all dynamic techniques) with an average APFD
value of 0.793 (see Table 3). TPcg−tot performs worse than
TPcg−add, followed by TPstr, TPtopic−m and TPtopic−r. The
best performing dynamic technique at class-level is TPadd

followed by TPsearch, TPtotal, and TPart. It is notable that
at test-class level granularity, the most effective dynamic
technique TPadd and the most effective static technique per-
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(a) The values of APFD on test-class level across all subject programs.
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(b) The values of APFD on test-method level across all subject programs.
Figure 1: The box-and-whisker plots represent the values of APFD for different TCP techniques at different
test granularities. The x-axis represents the APFD values. The y-axis represents the different techniques.
The central box of each plot represents the values from the lower to upper quartile (i.e., 25 to 75 percentile).

Table 3: Results for the ANOVA and Tukey HSD tests on the average APFD values depicted in Figures 1(a) & 1(b).
Granularity Metric TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value

Test-class
Avg 0.782 0.793 0.769 0.680 0.747 0.748 0.789 0.659 0.786

1.86e-7
HSD A A A BC AB AB A C A

Test-method
Avg 0.768 0.816 0.819 0.783 0.828 0.794 0.898 0.795 0.883

1.69e-13
HSD D CD CD CD BC CD A CD AB

form similarly, 0.793 versus 0.789 respectively. This suggests
that at the test-class level, the call-graph based strategy per-
forms about as well as dynamic coverage information, which
is notable. Additionally, overall the static techniques out-
perform the dynamic techniques at test-class granularity.

To further investigate RQ1 and answer RQ2 we ran all of
the subject TCPs on the subject programs at test-method
level which we can compare to the results at test-class level
outlined above (see RQ1). The results are shown in Fig-
ure 1(b) and Table 3. First, when examining the static
techniques with test-method granularity, they perform dif-
ferently as compared to the results on test-class level. Sur-
prisingly, Ttopic−m (0.828) performs better than the other
static techniques, followed by TPstr, TPcg−add, TPtopic−r

and TPcg−tot respectively. It is worth noting that the ef-
fectiveness of the topic-model based technique varies quite
dramatically depending on the tools used for its implemen-
tation: Mallet [39] significantly outperforms the R-based im-
plementation. However, as a whole the effectiveness of the
dynamic techniques outpaces that of the static techniques
at method-level granularity, with TPadd performing the best
of all studied techniques (0.898). This finding is consistent
with previous studies [22]. Overall, on average, all static
and dynamic TCPs perform better on test-method level as
compared to the results on test-class level. Logically, this is
not surprising, as using a finer level of granularity (e.g., pri-
oritizing individual test-methods) gives each technique more
flexibility, which leads to more accurate targeting and prior-
itization. Furthermore, the ranges of average of APFD for
all TCPs on test-method level are smaller than the results
on test-class level, confirming that the performance of the
TCP at test-method level is more stable.

The ranges of APFD values reflect the robustness of the
TCPs. For example, the range of average of APFD across all
subjects at test-class level for TPadd is the smallest (i.e.,0.612-
0.919), implying that the performance of TPadd is usually
stable despite differing types of subjects. Conversely, the
ranges of APFD values for TPstr and TPart are much larg-
er (0.391-0.917 for TPstr, 0.298-0.852 for TPart), implying
that their performance varies on different types of subjects.

To further investigate the finding that static techniques
tend to have a higher variance in terms of effectiveness de-
pending on the program type, we investigated further by in-
specting several subject programs. One illustrative example
is that scribe-java scores 0.646 and 0.606 for the average val-
ues of APFD under TPstr and TPtopic−r respectively, which
are notably worse than the results of TPcg−tot (0.718) and
TPcg−add (0.733). To understand the reason for this discrep-
ancy, we analyzed the test code and found that Scribe-java is
documented/written more poorly than other programs. For
instance, the program uses meaningless comments and vari-
able names such as ‘param1’, ‘param2’, ‘v1’, ‘v2’ etc. This
confirms the previously held notion [50] that static tech-
niques which aim to prioritize test-cases through text-based
diversity metrics experience performance degradation when
applied to test cases written in a poor/generic fashion.

Finally, to check for statistically significant variations in
the mean APFD values across all subjects and confirm/deny
our null hypothesis for RQ1, we performed a one-way ANO-
VA and Tukey HSD test. The results of the ANOVA test,
given in the last column of Table 3, are well below our es-
tablished threshold of 0.05, thus signifying that the sub-
ject programs are statistically different from one another.
This rejects the null hypothesis and we conclude that there



Table 4: The table shows the results of Wilcoxon signed rank test on the average APFD values for each pair of TCP

techniques. The techniques T1 to T9 refer to TPcg−tot, TPcg−add, TPstr, TPtopic−r, TPtopic−m, TPtotal, TPadd, TPart,

TPsearch respectively. For each pair of TCP techniques, there are two sub-cells. The first one refers to the p-value

at test-class level and the second one refers to the p-value at test-method level. If a p-value is less than 0.05, the

corresponding cell is shaded.
T1 T2 T3 T4 T5 T6 T7 T8 T9

T1 - - 0.06 3.1e-04 0.61 3.4e-03 4.5e-04 0.32 0.03 1.1e-03 0.10 0.02 0.59 1.7e-06 2.8e-04 0.06 0.70 1.7e-06

T2 0.06 3.1e-04 - - 0.24 0.89 1.3e-04 0.01 0.02 0.39 0.03 0.07 0.67 2.6e-06 2.4e-05 0.32 0.85 1.5e-05

T3 0.61 3.4e-03 0.24 0.89 - - 2.3e-03 5.0e-03 0.01 0.04 0.13 0.06 0.45 2.9e-06 1.1e-05 0.09 0.48 7.7e-06

T4 4.5e-04 0.32 1.3e-04 0.01 2.3e-03 5.0e-03 - - 7.2e-04 2.0e-03 6.4e-03 0.47 2.6e-05 1.7e-06 0.81 0.22 2.6e-05 1.7e-06

T5 0.03 1.1e-03 0.02 0.39 0.01 0.04 7.2e-04 2.0e-03 - - 0.70 0.03 3.9e-03 3.2e-06 4.5e-04 0.02 8.2e-03 2.2e-05

T6 0.10 0.02 0.03 0.07 0.13 0.06 6.4e-03 0.47 0.70 0.03 - - 6.7e-03 4.3e-06 0.01 0.69 7.6e-03 2.0e-05

T7 0.59 1.7e-06 0.67 2.6e-06 0.45 2.9e-06 2.6e-05 1.7e-06 3.9e-03 3.2e-06 6.7e-03 4.3e-06 - - 3.7e-05 1.9e-06 0.14 4.2e-04

T8 2.8e-04 0.06 2.4e-05 0.32 1.1e-05 0.09 0.81 0.22 4.5e-04 0.02 0.01 0.69 3.7e-05 1.9e-06 - - 4.4e-05 3.5e-06

T9 0.70 1.7e-06 0.85 1.5e-05 0.48 7.7e-06 2.6e-05 1.7e-06 8.2e-03 2.2e-05 7.6e-03 2.0e-05 0.14 4.2e-04 4.4e-05 3.5e-06 - -

Table 5: The tables show the classification of subjects on different granularities using Jaccard distance. The four

values in each cell are the numbers of subject projects, the faults of which detected by two techniques are highly

dissimilar, dissimilar, similar and highly similar respectively. The technique enumeration is consistent with Table 4.

(a) This table shows the classification of subjects at the cut point 10% on test-class level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

T1 – – – – 1 2 11 16 6 7 7 10 18 8 1 3 9 6 8 7 7 9 4 10 7 7 7 9 19 7 3 1 7 8 6 9

T2 1 2 11 16 – – – – 6 7 7 10 17 10 2 1 8 12 5 5 6 10 8 6 7 8 7 8 18 10 2 0 7 8 6 9

T3 6 7 7 10 6 7 7 10 – – – – 16 6 6 2 5 7 7 11 10 6 8 6 8 7 9 6 17 7 2 4 8 7 8 7

T4 18 8 1 3 17 10 2 1 16 6 6 2 – – – – 9 7 7 7 16 7 4 3 17 6 5 2 17 6 4 3 17 7 3 3

T5 9 6 8 7 8 12 5 5 5 7 7 11 9 7 7 7 – – – – 10 11 3 6 10 10 4 6 16 8 4 2 10 10 4 6

T6 7 9 4 10 6 10 8 6 10 6 8 6 16 7 4 3 10 11 3 6 – – – – 0 5 7 18 16 8 3 3 0 5 8 17

T7 7 7 7 9 7 8 7 8 8 7 9 6 17 6 5 2 10 10 4 6 0 5 7 18 – – – – 13 9 5 3 0 0 1 29

T8 19 7 3 1 18 10 2 0 17 7 2 4 17 6 4 3 16 8 4 2 16 8 3 3 13 9 5 3 – – – – 13 8 6 3

T9 7 8 6 9 7 8 6 9 8 7 8 7 17 7 3 3 10 10 4 6 0 5 8 17 0 0 1 29 13 8 6 3 – – – –

Total 74 54 47 65 70 67 48 55 76 54 54 56 127 57 32 24 77 71 42 50 65 61 45 69 62 52 45 81 129 63 29 19 62 53 42 83

(b) This table shows the classification of subjects at the cut point 10% on test-method level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

T1 – – – – 2 8 16 4 6 12 7 5 5 15 8 2 7 11 7 5 3 8 9 10 3 9 12 6 10 13 6 1 1 12 11 6

T2 2 8 16 4 – – – – 4 11 10 5 2 12 12 4 3 12 13 2 1 12 11 6 1 9 11 9 7 12 9 2 2 9 11 8

T3 6 12 7 5 4 11 10 5 – – – – 3 13 13 1 0 2 10 18 5 8 12 5 2 9 10 9 9 12 9 0 3 8 12 7

T4 5 15 8 2 2 12 12 4 3 13 13 1 – – – – 3 14 12 1 4 15 8 3 3 14 10 3 4 17 7 2 2 14 10 4

T5 7 11 7 5 3 12 13 2 0 2 10 18 3 14 12 1 – – – – 4 11 11 4 3 3 19 5 5 14 11 0 4 4 18 4

T6 3 8 9 10 1 12 11 6 5 8 12 5 4 15 8 3 4 11 11 4 – – – – 1 9 11 9 11 14 4 1 2 9 10 9

T7 3 9 12 6 1 9 11 9 2 9 10 9 3 14 10 3 3 3 19 5 1 9 11 9 – – – – 5 12 11 2 1 2 5 22

T8 10 13 6 1 7 12 9 2 9 12 9 0 4 17 7 2 5 14 11 0 11 14 4 1 5 12 11 2 – – – – 6 12 10 2

T9 1 12 11 6 2 9 11 8 3 8 12 7 2 14 10 4 4 4 18 4 2 9 10 9 1 2 5 22 6 12 10 2 – – – –

Total 37 88 76 39 22 85 93 40 32 75 83 50 26 114 80 20 29 71 101 39 31 86 76 47 19 67 89 65 57 106 67 10 21 70 87 62

are statistically significant differences between different TCP
techniques at the differing granularities. The results of the
Tukey HSD test illustrate the statistically significant differ-
ences between the static and dynamic techniques, by group-
ing the techniques into categories with A representing the
best performance and D representing the worst. For test-
class level, we see that the groupings slightly favor the static
techniques, as more of them are grouped in the top-ranked A
category. For test method level, it is clear that the dynam-
ic techniques outperform the static, as far more dynamic
techniques are ranked in the better performing categories.
In order to illustrate the individual relationships between s-
trategies, we present the results of the Wilcoxon signed rank
test for all pairs of techniques in Table 4. The shaded cells
represent the results that indicate a statistically significant
difference between techniques across all the subjects (e.g.,
p < 0.05) In summary we answer RQ1 & RQ2 as follows:

RQ1: There is a statistically significant difference be-
tween the effectiveness of the studied techniques. On
average, static technique TPcg−add is the most effective
technique at test-class level, whereas dynamic technique
TPadd is the most effective technique at test-method
level. Overall, the static techniques outperform the dy-
namic ones at test-class level, but the dynamic tech-
niques outperform the static ones at test-method level.

RQ2: The test granularity significantly impacts the
effectiveness of TCP techniques. All the studied tech-
niques perform better at test-method level compared to

RQ2:(continued) test-class level. There is also less vari-
ation in the APFD values at method-level compared to
class-level, which signifies that the performance of the
studied techniques is more stable at test-method level.

4.2 Similarity between Uncovered Faults for
Different TCP techniques

The results for the similarity are shown in Tables 5(a)
& 5(b) and Figures 2(b) & 2(a). The two figures repre-
sent the results comparing the average Jaccard similarity of
the studied static techniques to the studied dynamic tech-
niques for all subject programs across 500 randomly sampled
faults at different prioritization cut points. These results
indicate that there is only a small amount of similarity be-
tween these two classifications of techniques at the higher
level cut points. More specifically, for test-method level, on-
ly ≈ 30% of the detected faults are similar between the two
types of techniques for the top 10% of the prioritized test
cases, and at test-class level only about ≈ 25% are similar
for the top 10% of prioritized test cases. This result illus-
trates one of the key findings of this study: The studied
static and dynamic TCP techniques do not uncover similar
program faults at the top cut points of prioritized test cases.
The potential reason for these results is that different tech-
niques use different types of information to prioritize test
cases. For example, the studied static techniques typical-
ly aim to promote diversity between prioritized test cases
using similarity/diversity metrics such as textual distance
or call-graph information. In contrast, the studied dynamic
TCPs consider statement-level dynamic coverage to priori-
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(a) Class-level results
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(b) Method-level Results
Figure 2: Average Jaccard similarity of faults de-
tected between static and dynamic techniques across
all subjects at method and class-level granularity.

tize test cases. This finding raises interesting questions for
future work regarding the possibility of combining static and
dynamic information and the relative importance of faults
that differing techniques might uncover. It should be noted
that different coverage granularities for dynamic TCPs may
also effect the results of similarity, however we leave such
an investigation for future work. From these figures we can
also conclude that the techniques are slightly more similar
at method level than at class level.

To further illustrate this point we calculated the Jaccard
coefficients for each pair of TCPs for each subject program,
and show the results in Table 5(a). For each pair of tech-
niques we group the subjects into the categories described in
Section 3. Due to space limitations, we only show results for
the top 10% of prioritized test-cases, a complete dataset can
be found at [38]. The results confirm the conclusions drawn
from Figures 2(a) & 2(b). It is clear that when comparing
the studied static and dynamic techniques, more subjects
are classified into the highly-dissimilar and dissimilar cate-
gories. Another relevant conclusion that can be made is that
the dissimilarity between techniques is not universal across
all subjects. That is, even though two techniques may be
dissimilar across several subjects, there are some cases where
similarity still exists. This suggests that only certain types of
programs that exhibit different characteristics may present
the opportunity of performance improvement for TCPs by
using both static and dynamic information.

RQ3: The studied static and dynamic TCP tech-
niques tend to discover dissimilar faults for the most
highly prioritized test cases. Specifically, at the test-
method level static and dynamic techniques agree only
on ≈ 30% of uncovered faults for the top 10% of priori-
tized test cases. Additionally, a subset of subjects exhib-
it higher levels of ucovered fault similarity, suggesting
that only software systems with certain characteristics
may benefit from differing TCP approaches.

4.3 Efficiency of Static TCP Techniques
The results of time costs for the studied static techniques

at both of test-method and test-class levels are shown in
Table 6. Note that, the time of pre-processing for TPcg−tot

and TPcg−add are the same for both method and class lev-
els. As the table shows, all studied techniques require sim-
ilar time to pre-process the data at both method and class
levels and to rank test cases on class level. But the times
for prioritization are quite different at method level. We
find that TPcg−tot and TPcg−add take much less time to
prioritize test cases (totaling 15.00 seconds and 24.57 sec-
onds), as compared to TPstr (totalling 58,805.94 seconds),
TPtopic−r (totalling 40,875.75 seconds) and TPtopic−m (to-
talling 11,205,73 seconds). Specially, these two techniques
take much longer time on some subjects (e.g., P27 and P30
). However, these subjects have a large number of test
cases (see Table 1), implying that TPstr, TPtopic−r and
TPtopic−m will take more time as the number of test cases
increases. Overall, all techniques take a reasonable amount
of time to preprocess data and prioritize test cases. At test-
method level, TPcg−tot and TPcg−add are much more effi-
cient. TPstr, TPtopic−r and TPtopic−m require more time to
prioritize increasing numbers of test cases, answering RQ4.

RQ4: On test-method level, TPcg−tot and TPcg−add

are much more efficient in prioritizing test cases. TPstr,
TPtopic−r and TPtopic−m would take more time when
the number of test cases increases. The time of pre-
processing and prioritization on test class level for all
static techniques are quite similar.

5. THREATS TO VALIDITY
Threats to Internal Validity: In our implementation,
we used PIT to generate mutation faults to simulate re-
al program faults. One potential threat is that the muta-
tion faults may not reflect all “natural”characteristics of real
faults. However, mutation faults have been widely used in
the domain of software engineering research and has been
demonstrated to be representative of the actual program
faults [29]. Additionally, further threats related to mutation
testing include the potential bias introduced by equivalent
and trivial mutants. To mitigate these threats, we randomly
selected 500 faults for each subject system when conducting
our study related to the effectiveness and similarity of faults
uncovered for the various techniques. This follows the guide-
lines and methodology of previous well-accepted studies [59,
37], minimizing this threat.

To perform the study we reimplemented eight TCP tech-
niques presented in prior work. It is possible that there may
be some slight differences between the original authors’ im-
plementations and our own. However, we performed this
task closely following the technical details of the prior tech-
niques and set parameters following the guidelines in the o-
riginal works. Additionally, the authors of this paper met for
and open code review related to the implementation of the
studied approaches, and our implementation was reviewed
by an expert in the field of test-case prioritization. Further-
more, based on our general findings, we believe our imple-
mentations to be accurate.
Threats to External Validity: The main external threat
to our study is that we experimented on only 30 software
systems, which may impact the generalizability of the result-



Table 6: Execution costs for the static TCP techniques. The table lists the average, min, max, and sum
of costs across all subject programs for both test-class level and test-method level (i.e., cost at test-class
level/cost at test-method level). Time is measured in second.

Techniques
Pre-processing Test Prioritization

Avg. Min Max Sum Avg. Min Max Sum
TPcg−tot 4.66/4.66 1.69/1.69 11.95/11.95 139.69/139.69 0.21/0.50 0/0 3.10/10.58 6.22/15.00
TPcg−add 4.66/4.66 1.69/1.69 11.95/11.95 139.69/139.69 0.19/0.82 0/0 2.87/19.98 5.70/24.57
TPstr 0.40/0.41 0.06/0.08 2.95/2.41 12.05/12.35 3.57/1,960.20 0.02/0.02 67.13/57,134.30 107.25/58,805.94

TPtopic−r 0.50/0.53 0.11/0.11 3.19/3.74 14.94/15.86 0.14/1,362.52 0/0.02 1.38/40,594.66 4.10/40,875.75
TPtopic−m 0.72/4.28 0.13/0.22 6.18/50.01 21.66/128.48 0.16/373.52 0/0.09 1.68/10,925.26 4.83/11,205.73

s. Involving more subject programs would make it easier to
reason about how the studied TCP techniques would perfor-
m on software systems of different languages and purposes.
However, we chose 30 systems with varying sizes (3,2KLoC
- 83 KLoC) and different numbers of detectable faults (132 -
20,957), which makes for a highly representative set of Java
programs. Additionally, some subjects were used as bench-
marks in recent papers [46]. Thus, we believe our study
parameters have sufficiently mitigated this threat to a point
where useful and actionable conclusions can be drawn in the
context of our research questions.

Finally, we selected four static TCP techniques to experi-
ment with in our empirical study. There are some other re-
cent works proposing static TCP techniques [5, 46], but we
focus only on those which do not require additional inputs,
such as code changes or requirements in this empirical study.
Furthermore, we only compared the static techniques with
four state-of-art dynamic TCP techniques with statement-
level coverage. We do not study the potential impact of d-
ifferent coverage granularities on dynamic TCPs. However,
these four techniques are highly representative of dynamic
techniques and have been widely used in TCP evaluation
[37, 44, 15], and statement-level coverage has been shown to
be at least as effective as other coverage types [37].

6. LESSONS LEARNED
In this section we comment on the lessons learned from

this study and their potential impact on future research:
Lesson 1. Our study illustrates that different test granular-
ities impact the effectiveness of TCP techniques, and that
the finer, method-level, granularity achieves better perfor-
mance in terms of APFD, detecting regression faults more
quickly. This finding should encourage researchers and prac-
titioners to use method-level granularity, and perhaps ex-
plore even smaller granularities for regression test-case pri-
oritization. Additionally, researchers should evaluate their
newly proposed approaches on different test granularities to
better understand the effectiveness of new approaches.
Lesson 2. The performance of different TCPs varies across
different subject programs. One technique may perform bet-
ter on some subjects but perform worse on other subject-
s. For example, TPtopic performs better than TPcg−add on
webbit, but performs worse than TPcg−add on wsc. This
finding suggests that the characteristics of each subject are
important to finding suitable TCPs. Furthermore, we find
that the selection of subject programs and the selection of
implementation tools may carry a large impact regarding the
results of the evaluation for TCPs (e.g., there can be large
variance in the performance of different techniques depend-
ing on the subject, particularly for static approaches). This
finding illustrates that the researchers need to evaluate their
newly proposed techniques on a large set of real subject pro-
grams to make their evaluation reliable. To facilitate this we
provide links to download our subject programs and data at
[38].Additionally, a potential avenue for future research may

be an adaptive TCP technique that is able to analyze cer-
tain characteristics of a subject program (e.g., complexity,
test suite size, libraries used) and modify the prioritization
technique to achieve peak performance.
Lesson 3. Our findings illustrate that the studied static
and dynamic TCP techniques agree on only a small num-
ber of found faults for the top ranked test-methods and
classes ranked by the techniques. This suggests several rel-
evant avenues for future research. For instance, (i) it may
be useful to investigate specific TCP techniques to detect
important faults faster when considering the fault severi-
ty/importance [18, 52, 32] during testing; (ii) differing TCP
techniques could be used to target specific types of faults or
even faults in specific locations of a program; and (iii) static
and dynamic information could potentially be combined in
order to achieve higher levels of effectiveness. Furthermore,
the similarity study performed in this paper has not been a
core part of many TCP evaluations, and we assert that such
an analysis should be encouraged moving forward. While
APFD gives a clear picture of the relative effectiveness of
techniques, it cannot effectively illustrate the difference set
of detected faults between two techniques. This is a criti-
cal piece of information when attempting to understand new
techniques and how they relate to existing research.

7. CONCLUSION
In this work, we perform an extensive study empirical-

ly comparing the effectiveness, efficiency, and similarity of
detected faults for static and dynamic TCP techniques on
30 real Java programs. The experiments were conducted
at both test-method and test-class levels to understand the
impact of different test granularities on the effectiveness of
TCP techniques. The results indicate that the studied stat-
ic techniques tend to outperform the studied dynamic tech-
niques at the test-class level, whereas dynamic techniques
tend to outperform the static techniques at test-method lev-
el. Additionally, we found that the faults uncovered by stat-
ic and dynamic techniques for the highest prioritized test
cases uncover mostly dissimilar faults, which suggests sev-
eral promising avenues for future work. Finally, we found
evidence suggesting that different TCP techniques tend to
perform differently on different subject programs, which sug-
gests that certain program characteristics may be important
when considering which type of TCP technique to use.
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