Optimizing Energy Consumption of GUIs in Android Apps:
A Multi-objective Approach

Mario Linares-Vasquez', Gabriele Bavota?, Carlos Bernal-Cardenas!
Rocco Oliveto?, Massimiliano Di Penta*, Denys Poshyvanyk!
'The College of William and Mary, Williamsburg, VA, USA — 2Free University of Bozen, Bolzano, Italy
3University of Molise, Pesche (IS), Italy — *University of Sannio, Benevento, ltaly

ABSTRACT

The wide diffusion of mobile devices has motivated research
towards optimizing energy consumption of software systems—
including apps—targeting such devices. Besides efforts aimed
at dealing with various kinds of energy bugs, the adoption
of Organic Light-Emitting Diode (OLED) screens has mo-
tivated research towards reducing energy consumption by
choosing an appropriate color palette. Whilst past research
in this area aimed at optimizing energy while keeping an
acceptable level of contrast, this paper proposes an approach,
named GEMMA (Gui Energy Multi-objective optiMization
for Android apps), for generating color palettes using a multi-
objective optimization technique, which produces color so-
lutions optimizing energy consumption and contrast while
using consistent colors with respect to the original color
palette. An empirical evaluation that we performed on 25
Android apps demonstrates not only significant improvements
in terms of the three different objectives, but also confirmed
that in most cases users still perceived the choices of colors
as attractive. Finally, for several apps we interviewed the
original developers, who in some cases expressed the intent
to adopt the proposed choice of color palette, whereas in
other cases pointed out directions for future improvements.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms

User interfaces

Keywords
Energy consumption, Mobile applications, Empirical Study

1. INTRODUCTION

The impressive adoption and inclusion of mobile devices
and apps in daily activities has motivated the need for re-
ducing their energy consumption. While significant efforts

have been aimed at engineering energy-friendly hardware
components in mobile devices, some recent research has also
focused on energy-aware development practices for reducing
the energy consumption in mobile apps. For instance, com-
mon energy bugs in mobile apps have been identified and
catalogued [27,28,32,34,42], as well as typical hot spots [39]
together with energy greedy APIs [26,33]. In addition, several
infrastructures and methods have been proposed to measure
and estimate the energy consumption of mobile devices and
apps [16,18,23,29].

Some practices for avoiding and fixing energy hotspots
(bugs) in mobile apps focus on how the apps should use
energy-greedy hardware components in the device, such as
GPS, Wi-Fi, or the screen. In the case of LCD displays,
the energy drawn from the battery is constant regardless of
the colors displayed on the screen. However, this is not the
case for OLED displays, for which the energy consumption
depends on the combinations of colors at the sub-pixel level.
This property of OLED displays motivated the adoption
of power models for estimating the energy drawn by the
graphical user interfaces (GUI) displayed on the screen. In
fact, previous work have used power models to estimate
and improve the energy consumption of web browsers [11],
mobile web apps [24], and mobile apps in general [12,39].
All these prior techniques on improving energy consumption
of GUIs running on OLED devices have been mostly driven
by a single objective to reduce energy consumption at all
costs. Also, these approaches generally exploit only a small
subset of possible color schemas one can define to optimize
the GUI. For example, using predefined themes or using
color transformations starting only from the original scheme
can drastically reduce the color palettes and compositions
that can be explored as a potential solution [12]. This is
also the case when the proposed solution uses by default
dark colors in the background and generates the composition
using the background as a reference [24,39]. Another issue
with previous approaches is that the solutions are generated
individually for each GUI in the app, which can leed to
inconsistencies in the whole design concept [24, 39].

In this paper we propose a multi-objective approach, namely
GEMMA", for generating color compositions that reduce the
energy consumption of GUIs in Android apps and are visually
attractive at the same time. GEMMA combines power mod-
els, pixel-based engineering, color theory, dynamic analysis,
and a multi-objective optimization technique—namely Non-
dominated Sorting Genetic Algorithm (NSGA)-II [10]—to
produce a Pareto-optimal set of design solutions (i.e., GUI

LGui Energy Multi-objective optiMization for Android apps

color compositions) across three different objectives: (i) re-
ducing energy consumption, (ii) increasing contrast, and (iii)
improving the attractiveness of the chosen colors by keeping
the palette close to the original one.

To the best of our knowledge GEMMA introduces the
following unique advantages:

e [s multi-objective. This is the first approach adopt-
ing multi-objective optimization to choose colors for
mobile apps with the main goal of reducing energy
consumption. Multi-objective optimization avoids a
direct aggregation of different, potentially conflicting
objectives, and, as it will be shown in our empirical
evaluation, it allows developers to evaluate different
possible solutions that optimize specific objectives or
achieve a compromise between two or three of them;

e Accounts for multiple screens and the duration of time
they are displayed. Since a GUI consists of multiple
screens, it is particularly important to optimize colors
for screens that are used longer in typical usage scenar-
ios, while screens that just appear for few moments may
have lesser contribution to the overall energy consump-
tion. This is accounted for in the GEMMA’s energy
objective function;

e Produces pleasant and consistent color combinations.
In addition to energy consumption and contrast, this
is the first approach taking GUI design principles—at
least in terms of choosing colors—into account. First,
for the color palette generation we combine the original
color scheme in an app with three models based on
color theory harmonies. Then, GEMMA generates
compositions such that if two or more components
have a given color (say yellow) in the original palette,
they will appear with the same color (say blue) in the
proposed solutions, so to avoid producing inconsistent
GUIs. Finally, as mentioned before, the multi-objective
optimization has a third, “design-related” objective
aimed at choosing colors that are not too distant from
the original ones.

To validate the quality of the color schemas recommended
by GEMMA, we used it to generate optimized GUIs for 20
free apps available in Google Play and for five commercial
apps developed by Italian companies. The colorfulness of the
GUIs derived for the 25 apps was evaluated by 85 mobile
apps users in an online survey; also, we interviewed devel-
opers and managers from Italian companies to gather their
feedback concerning the GUIs generated by GEMMA for
their apps. Overall, GEMMA has been evaluated across
three dimensions: (i) the ability to optimize the three objec-
tives, (ii) the extent to which potential users consider the
choices of colors acceptable enough, and (iii) the extent to
which the original developers of commercial apps would be
willing to account for GEMMA’s recommendations.

2. OPTIMIZING ENERGY CONSUMPTION
OF GUIS WITH GEMMA

This section describes GEMMA, a multi-objective search-
based optimization technique that suggests possible color
alternatives achieving a tradeoff between three desirable and
possibly conflicting objectives: (i) reducing energy consump-
tion on OLED displays; (ii) increasing contrast between

adjacent GUI elements; and (iii) preserving a consistency
in the color usage with respect to the original design (i.e.,
proposing color schemas that are close to the one adopted by
developers in the original app’s GUI). In addition to nearly
optimizing the objectives mentioned above, GEMMA can
also verify that the proposed GUIs satisfy some specified
constraints. For instance, the current implementation of
GEMMA does not consider GUISs’ color schemas as valid in
which adjacent elements have the same color or colors having
a very low contrast between them, in order to promote the
readability of the recommended GUIs.

To solve the optimization problem, first, we obtain a power
model of the corresponding display, relating pixel colors to
power consumption (Section 2.1). Then, we identify GUI ele-
ments composing each screen (Section 2.2). Finally, we define
a multi objective Genetic Algorithm (GA) aimed at finding
near-optimal solutions to the stated problem (Section 2.3).

2.1 Estimating the Power Consumption

The power consumption of OLED screens can be estimated
by using the color components of each pixel [11,12,24,39].
According to the specific pixel matrix of the screen, each color
in a pixel is rendered by using a combination of red, green,
and blue sub-pixels at different levels (a.k.a., intensity) in the
standard RGB (sRGB) color model. In the case of OLED
screens the power consumption of sub-pixels depends on the
color component level. The power consumption of an OLED
pixel is a linear function of its linear RGB values, i.e., the
gamma decoding result from its values in the standard RGB
space [11,12]. Therefore, given a power profile P oior (level)
that returns the power consumption of a color level, the
power consumption of a pizel in the position (x,y) with
colors,, and components Red, Green, and Blue is estimated
as in Equation 1, and the total power consumed by the screen
when painting a GUI is the sum of pixel power consumption
over all the X x Y pixels in the screen (Equation 2).

P(colors,y) = Piry(Ra,y) + Pay(Ga,y) + Py (Bzy) (1)

TP(GUI) = zx: ZY: P(colors,y) (2)

rz=1y=1

The power profile of the color components represented
by the Picoiory functions is screen specific. In fact, this
characteristic of the OLED screen has been exploited before
to build power models that estimate the consumption of
GUIs [11,12,24,39]. In our case we built the power model
for a SUPER AMOLED screen (1080 x 1920 pixels) in a
Samsung Galaxy S4, by using a monsoon power monitor [30].
To define each P.oory function, we measured the current
drawn by the screen when painting it with all the pixels set to
black (i.e., idle period) during 30 seconds, and full screen with
all the pixels set to the same primary color component for
each level € [1,255] during 30 seconds (i.e., measurement
period). We are not considering the effect of the screen
brightness, consequently, we set the display brightness to the
maximum value. For both, idle and measurement periods
we computed the average current of a pixel dividing the raw
value, measured with the power monitor, by the total number
of pixels in the screen (1080 x 1920). After collecting all the
values, we subtracted the current in idley from the current
in the corresponding measurement; to account only for the
current drawn by the screen pixels. Finally, we removed
noise by using the Tukey’s smoother implemented in R [37].

Q .
S Linear RGB ™
< —— P<R>=76.23x+0.23 o
E g | P<G>=89.97x+2.34 -
- - —
= —— P=148.40x+7.30 -
g T el
5 — i ieanees
o __‘_— iR
g] ‘_d_,.r'/ i =
- e
o

Color level
Figure 1: Current (mA) consumption models for
primary colors of the Galaxy S4 SUPER AMOLED
screen in linear RGB color space.

To derive the power model, we followed the same procedure
previously adopted in [11,12]. With the 255 measurements
representing the power profile of a primary color in sSRGB,
we transformed the intensities to linear RGB, and then we
found the linear function describing the power consumption
(Fig. 1). The linear RGB simplifies the construction of the
model without loss of information [11]. With the power
models using as input the color intensities in linear RGB, it
is possible to estimate the current drawn by all the pixels
in the Galaxy S4 AMOLED screen when a specific GUI is
painted, by using Equation 2. The model in Fig. 1 shows
current measurements in mA (milli Amperes); the current is
proportional to power (Watts) because the voltage is constant
during the measurements; thus, there is no need to plot the
results in terms of Watts. These measurements are consistent
with the ones by Dong et al. [11,12] for OLED screens.

2.2 Extracting Color Composition from GUIs

Using the power model to estimate the power consumption
of GUIs requires extracting pixel-based representations of
the GUIs. This extraction can be done online when the
target GUIs are displayed on the device’s screen [11], or
offline by relying on screenshots [39] or server-side code [24].
The representation is usually the GUI-based color histogram
or a set of tuples (pixel, red-level, green-level, blue-level).
GEMMA relies on dynamic analysis of an app to extract
GUI-based information, since the GUI is shown on the device
(or emulator), and the Android View Server running on the
device can be queried to collect features of the GUI compo-
nents such as location, dimensions, text, and component’s
hierarchy. With this information available, the extraction
can be focused on detecting the color scheme (i.e., individual
colors and composition) instead of detecting shapes represent-
ing GUI components. Moreover, the information provided by
the View Server allows us to distinguish components with im-
ages, components with/without text, and containers. This is
particularly important to avoid transformation/distortion of
images/logos that belong to the GUI or even to third-parties.

In terms of representation, GEMMA extracts bag-of-color-
pixels (BOCP) and bag-of-color-components (BOCC) of An-
droid app GUIs. A BOCP is a collection of pixels with
the same color in the GUI, and a BOCC is a collection of
components having pixels with the same color in the GUI.
The BOCPs/BOCCs extraction procedure starts with get-
ting a snapshot of the current GUI in the device, and the
components in the GUI, by querying the View Server with
the UI Automator utility in the Android SDK. The snapshot
contains an XML-based representation of the GUI hierar-

chy (including location, type, dimensions, and text for each
component), and a screenshot of the GUI. To identify the
representative colors of each component we used a clustering-
based quantization on the color histogram of the component.
Only components different from ImageView and ImageBut-
ton were considered. Pixels belonging to each component
are detected by traversing the GUI hierarchy in a bottom-up
fashion, i.e., deepest level is processed first. A pixel in the
screen is assigned to only one component, and the priority for
this assignment is based on the depth of the GUI hierarchy.
These heuristics allow assigning pixels according to the z-
index in the GUI; if there are components inside a container,
the pixels are first assigned to the components, and then,
the leftover pixels are assigned to the container. The set of
pixels assigned to a component/container are then used to
derive a color histogram.

Top-k colors (i.e., centroids) are detected in the histogram
of each component while avoiding gradients and font shadows.
For that, GEMMA traverses the sorted histogram—from
high to low frequency— looking for changes in the contrast
ratio [38] higher than a threshold r. For instance, let us
assume a text edit component with dark gray gradient (back-
ground) and white fonts; a lot of “grays” will surface at the
beginning of the sorted histogram, and then white will ap-
pear. However, the contrast ratio between the grays is going
to be low (close to one), and the ratio between grays and
white is going to be higher. Thus, the top-1 color in the
histogram is the centroid for the first cluster, then a new
cluster is detected when the contrast ratio is higher than r.
This procedure is applied until k centroids are detected. The
values we adopted for k and r are reported in Section 3.3.

Finally, the colors of the GUI components are discretized
(i-e., color quantization) using the color centroids in the
histogram. It means that the pixels are assigned the closest
quantized color (i.e., color centroid) to the original pixel color.
The BOCPs is a hash-map structure for all the pixels in the
GUI, in which the key is a quantized color color™ and the
value is a list of pixels assigned to that color. The BOCCs is
a hash-map too, in which the key is a quantized color color™
and the value is a set of the components associated with the
pixels in BOCPs[color™].

2.3 Multi-objective Optimization Model

In the following, we describe the GA component in GEMMA.
The values we use for the GA parameters are reported in
Section 3.3. The GA has been implemented using jMetal [13].

Representation. Our representation contains a gene for
each BOCP, i.e., each gene will define the color to all the
pixels assigned to that BOCP. We indicate a generic solution
of our optimization problem as S, and with S[i] we denote
the color this solution assigns to the i-th BOCP.

Multi-Objective Genetic Algorithm. Rather than
evaluating each solution according to a single fitness func-
tion, a multi-objective GA produces frontiers composed of
Pareto-optimal solutions. A solution X is said to be Pareto-
optimal if-and-only-if it is non-dominated by any other so-
lution within the search space, i.e., if-and-only-if no other
solution Y exists which would improve one of the objective
functions, without worsening other objectives. All the so-
lutions that are not dominated by any other solution are
said to form a Pareto-optimal set, while the corresponding
objective vectors (containing the values of the objective func-
tions) are said to form a Pareto frontier. Identifying a Pareto

frontier is useful because the software engineer can use the
frontier to make a well-informed decision that balances the
trade-offs between the different objectives. In our context,
one could select color choices achieving the lowest energy con-
sumption, having the highest contrast, being the closest to
the original design, or a compromise among these objectives.
The specific multi-objective GA we use for GEMMA is the
Non-dominated Sorting Genetic Algorithm(NSGA)-II [10].
NSGA-II tries to ensure diversity in the evolving populations
to avoid the situation where populations have been filled
only with dominating solutions (because of the elitism effect,
i.e., best solutions are preserved).

Initial Population Generation. The initial population
of each GA execution uses a color palette composed of 512
colors, including m colors from the BOCPs, white, black,
a palette in equidistant color harmony with (512 — m —
2)/3 colors, a monochromatic palette of (512 — m — 2)/3
colors with difference in saturation and brightness, and the
equidistant harmony palette, but with random saturation
and brightness for each of the colors. The starting point of
the equidistant harmony and monochromatic palette (i.e.,
initial values for the tones) are randomly selected. Our choice
for a diverse palette that include equidistant harmonies and
monochromatic scale is to provide the GA with colors that
can drive it to producing visually appealing GUIs.

Equidistant harmony is the rule for color composition
in the HSB/HSV (Hue Saturation Brightness/Value) color
space that derives a color palette with the same saturation
and brightness, but modulating the tone (i.e., hue) by taking
proportional spaces in the HSB/HSV color wheel. Because
the tone in the HSB/HSV space varies from 0°to 359°, and
each integer value corresponds to one color (e.g., 0° is red,
120° is green, and 240° is blue), equidistant colors can be
derived by dividing the hue space in a target number of
colors. For instance, an equidistant harmony of 20 colors,
i.e., a difference of (360/20)°between each color, starting
at 10° and fixed values for saturation S and brightness B
would be (10°, S, B),(28°, S, B),(46°, S, B),...,{(334°, S,
B), (352°, S, B). Equidistant harmonies can also derive
into palettes with value and saturation contrast by changing
randomly the saturation and brightness of the colors in the
original equidistant harmony. Monochromatic palettes can be
generated by using the same hue but varying the saturation
and brightness randomly. In the three composition schemes
we used a brightness range [0.2, 0.9] to avoid colors that are
too bright or too dark.

Genetic Operators. In order to evolve GA individuals,
we use selection, crossover and mutation operators. The
crossover operator is the one-point crossover. Given two
parents, a one-point crossover cuts them—i.e., the array of
BOCP—in a random position p, and then all genes after
position p are exchanged to produce the offspring. Crossover
is applied to individuals of the population with a probability
Peross. LThe mutation operator is the uniform bit-flip muta-
tion that, with probability pm.:, changes the color for one
BOCP to a different color randomly selected from the palette.
The selection operator is the binary tournament selection
operator described by Deb et al. for NSGA-II [10]. A binary
tournament selection holds a competition between two solu-
tions, selecting the firstly ranked one with a probability p,
and the second one with probability p - (1 — p).

Fitness functions and constraints. Let us consider an
app having ns screens SCR,, with w =1,2,...,ns. For each

of these screens, let us assume that it has been estimated
that, on average, the h-th screen is being displayed for a
percentage pt; of the total application usage time. Such
estimates can be obtained by profiling application usages,
and are needed so to prioritize low energy consumption on
screens that are displayed for a long duration of the overall
usage time. That is, having bright colors on a splash screen
appearing for a few seconds is not as crucial as having them
on the main application GUIL. Now, let us also assume that
each screen has a X X Y resolution, and that, given a pixel in
position (x,y) of the screen h, the function B(x,y, h) returns
the index of the BOCP that the pixel belongs to. Therefore,
given a GA individual solution S, the color that such a
solution assigns to a pixel (x,y) in screen h is S[B(z,y, h)].

The first fitness function (to be minimized) is the Energy
Consumption Fitness (ECF). Given a solution S, it com-
putes its estimated consumption per unit of time based on
Equation 1, as in the following:

ECF(S)=) pn-Y> > P(SB(zyh) (3)
h=1

rz=1y=1

where ECF(S) sums the estimated power consumptions of all
the pixels in all the screens, weighting them for the estimated
fraction of time p; for a particular screen in use.

The second fitness function (to be maximized) is the con-
trast fitness (CF'), which relies on the GUI model extracted as
explained in Section 2.2. Let us consider that each screen h
is composed of nep, components C; p, the Adj(Cj,n) function
returns the set of adjacent components to C; 5, and BC(C; ;)
returns the bag of pixels to which the component belongs.

TCon(Cin) = Y Con(S[BC(Cin)],S[BC(C;n)]) (4)

C; h€AdI(Cy n)
necy,

CF(S)=> > TCon(Cin) (5)

That is, CF(S) sums, for each screen the contrast between
each component C;j in the screen h and all its adjacent
components Cj,, € Adj(Cj r), using the function Con(a,b),
that returns the contrast between two colors a and b using a
formula defined by W3C [38]:

_ 299-redq +587-greeng+114-bluey
Con(a,b) = ‘ oS
299-redp,+587-greeny+114-bluey, (6)
1000

The third fitness function (to be minimized) is the design
fitness (DF) and it aims at producing GUIs with a set of
colors that are close to the ones used in the original design.
Basically, while it can be acceptable to swap colors with
respect to the original design—e.g., to use the darker color
for the background and the brighter color for the text or
for small components—or to have relatively similar colors,
changing completely the palette might result in a GUI with
a choice of colors deviating drastically from the designer’s
intention. For this reason, the idea behind the third fitness
function for a solution S is to use the distance between each
color S[i] in S and the closest color Or[j] in the original
palette. To compute the distance between two colors a and
b, we use, according to existing literature [36], the Euclidean
distance along the green, red, and blue components of the
color. Given d(a,b) the distance between two colors a and b,
and Or*(color) is a function that, given a color, returns the
closest color in the original palette:

1 if BOCCs[color] # BOCC's [Or*(color)]
2 otherwise

il _ R (7)
DF(S) = a(S[i]) - d(Si], Or" (S[i])) (8)

i=1

acator) = {

Namely, for each color in S[i], DF(S) sums the distance to
the closest color Or*(S[i]) according to a penalization factor
(o) defined by Equation 7. The rationale here is that we
want to penalize twice color differences when they occur on
the same components (i.e., same BOCC), though this can be
a conflicting objective with respect to the ECF(S). Therefore,
if the color S[i] is used in S for the same set of components
with color Or*(S[¢]) in the original design, the distance is
penalized twice.

Besides the three fitness functions, we also define a con-
straint aimed at avoiding solutions with low contrast. Specif-
ically, we consider one constraint violation every time there
is a pair of adjacent components (Cj 5, Cjn) when:

Con(S[BC(Cin)), S[BC(C.1)]) < CnTh (9)

where CnTh is a contrast threshold. Constraints are handled
using the mechanism defined in NSGA-II [10]. Constraint
violations influence the binary tournament selection, and
this is done using an additional domination principle named
constraint domination. Namely, (i) feasible solutions (not vio-
lating any constraints) are ranked better than infeasible ones,
(ii) feasible solutions are ranked in terms of the objectives
dominance, and (iii) infeasible solutions are ranked based
on the number of violated constraints. As a consequence of
the latter point, solutions violating constraints are not neces-
sarily discarded, but, for the sake of diversity, they survive.
Clearly, once the resulting Pareto front has been obtained
when the evolutionary algorithm stops, solutions violating
constraints are discarded in case they are still present.

3. EMPIRICAL STUDY DESIGN

The goal of the study is to evaluate GEMMA in terms
of (i) the energy savings that could be achieved by running
Android apps when adopting the GUI color design recom-
mended by GEMMA; (ii) the colorfulness of the GUIs that
GEMMA produces as assessed by mobile apps users; and (iii)
GEMMA'’s suitability in an industrial context, when applied
to minimize GUI energy consumption of existing commercial
apps. The context of the study consists of 25 apps from
the Google Play and F-droid markets, 85 mobile app users,
and three software companies (for a total of three project
managers involved). The quality focus is the effectiveness of
GEMMA in producing GUIs aimed at reducing the energy
consumption of Android apps while also keeping a visually
attractive color composition and ensuring sufficient contrast.

All the materials used in our study are publicly available
in our replication package [25].

3.1 Research Questions

In the context of our study we formulated the following
three research questions (RQ):

RQ1: To what extent is GEMMA able to optimize the GUI
energy consumption, contrast, and design objectives? This
RQ aims at investigating the effectiveness of GEMMA in
reducing the energy consumption of the apps’ GUIs while
keeping a high contrast between its underlying components
and staying as close as possible to the original design. Such

investigation is merely performed in terms of the metrics
used to compute the fitness functions defined in Section 2.

RQa2: Are the color compositions generated by GEMMA
visually attractive as perceived by Android users? This RQ fo-
cuses on the colorfulness of the GUIs generated by GEMMA,
as it is perceived by humans instead of being evaluated in
terms of metrics. In visual aesthetics, colorfulness is the fac-
tor used to evaluate elements related to individual colors and
compositions [31]. We do not focus on the whole concept of
visual attractiveness; a complete appraisal of visual aesthetics
should include other facets, such as simplicity, diversity, and
craftsmanship that are related to the GUI layout and design
concepts [31]. Therefore, we focus on the colorfulness only,
because GEMMA only generates alternative color schemes
and keeps the GUI layout intact.

RQs: Would actual developers of mobile applications con-
sider changing colors in an app as recommended by GEMMA ?
For an approach like GEMMA a successful technological
transfer is the main target objective. In the context of this
research question we investigate the industrial applicabil-
ity of GEMMA with the help of three software companies
developing Android apps.

Note that our three research questions have a high de-
gree of complementarity in GEMMA'’s evaluation. The first
two research questions quantitatively analyze the efficacy
of GEMMA in producing energy saving GUI color schemas
while still keeping those GUIs visually attractive for the apps’
users. These two aspects are then qualitatively investigated
in an industrial context in our RQs.

3.2 Context Selection

The list of the 25 apps considered in our study is reported
in our replication package [25]. It is worth noting that,
while all 25 apps have been used in the context of the first
two research questions, the investigation performed in the
software companies (i.e., RQj3) is clearly limited to the set
of five apps they developed and provided to us for the study.
As for the remaining 20 apps considered in our study we
targeted a diverse set of apps in terms of domain categories.
Two of the authors inspected Google Play and F-droid to
randomly select a set of native apps (i.e., non-HTML based)
to use in the context of our study. The selected set of apps
cover ten categories (e.g., productivity, weather, etc.).

In the context of our RQ2, we involved 85 app users>
asking for their opinion about the look and feel of the GUIs
generated by GEMMA. Since RQ2 only aims at assessing
how visually attractive the generated color schemes are, the
only requirement we had for participants is to have some
basic experience with mobile apps.

As for RQgs, we involved three Italian companies, namely
GenialApps [2], Next [4] and IdeaSoftware [3], that provided
us a total of five apps to use in the context of our study.
All the companies have a multi-year experience in mobile
apps development and each of them count between ten and
20 developers. As it will be detailed later, we performed
semi-structured interviews with people from these companies
with the aim of gathering qualitative feedback about the
GUIs generated by GEMMA. In particular, two project
managers (from GenialApps and Next) and one developer
(from MediaStudio) participated in our study.

Including 50 BS, 6 MS, and 14 PhD students; 14 industrial
developers, 1 professional graphical designer and 6 others [25]

3.3 Data Collection

To answer our RQs we applied GEMMA on the 25 apps
in order to generate color schemas for GUIs. As explained
in Section 2, GEMMA is able to work on multiple GUIs of
the same app. Since each of the 25 apps includes a specific
number of different GUIs (or GUI states), for the sake of
consistency in our data analysis we decided to consider three
GUIs per app as the objective of GEMMA’s optimization
process. In particular, we always consider the main GUI of
the app (i.e., the one visualized when the app is launched
on the device) plus two randomly selected GUI states.

We used the following settings for GEMMA?: 1) Extracting
Color Composition from GUIs (Section 2.2): k = 3, to extract
three different colors from each GUI component: background,
text (or second main color), and the third color for the border.
As for the contrast ratio r, we found 1.6 to be a common
lower bound for the contrast between colors in borders and
background as well as background and text in the Android
apps considered in our study.

2) GA parameters (Section 2.3): Deross = 0.9; pmut =
1/|BOCP|, where | BOCP)| is the number of bags of pixels
identified in a GUI. Such parameters were the default ones in
jMetal [13]; we at least checked whether a lower crossover rate
or higher mutation did not produce better results than ours.
The other choices were population size=50 and GA number
of evaluations=50,000 (larger populations and higher number
of evaluations did not produce better results). Finally, we set
the minimum contrast ratio between adjacent components
(CnTh) to 4, as we found this value to be sufficient to ensure
readability of a text over a background.

For each app (i.e., for each of its three considered GUISs)
we run GEMMA 30 times to account for the randomness of
the multi-objective GA [8]. At each run we stored for each
solution in the Pareto front respecting the contrast ratio con-
straint (see Section 2) as well as for the original color schema
of the app: (i) its energy consumption (ECF function), (ii)
its contrast ratio (CF function), and (iii) its “distance” from
the original design (DF function)—see Section 2.

To answer RQ2 we designed an online survey, aiming at
collecting the participants’ opinion about the aspect of the
GUIs generated by GEMMA. We wanted to verify if the
energy saving GUIs generated by GEMMA are also attractive
in terms of colorfulness. The first part of our survey included
three questions aimed at gathering information about the
background of the study’s participants. The second part
of the questionnaire asked participants for their feedback
about the colorfulness of the original apps’ GUIs as well as of
those recommended by GEMMA. Since GEMMA provides
as output a set of solutions (i.e., all those in the Pareto
front respecting the contrast ratio constraint) and that we
run GEMMA 30 times on each app, we needed to make
a selection of the recommended GUIs to be shown to the
survey’s participants. For each of the 25 apps involved,
we showed to participants: (i) the original three selected
GUIs; (ii) the GEMMA’s solution having the lowest energy
consumption across those generated in the 30 executions;
and (iii) the GEMMA'’s solution having the median energy
consumption across those generated in the 30 executions.
Thus, for each app A, participants examined, in a single
page of the survey, three sets of GUIs, each one containing

3Due to space limitations we explain how we chose the set-
tings without reporting calibration details.

a different color schema for the three GUIs selected for A.
For each of them, participants had to answer the following
questions from the colorfulness evaluation as suggested by
Moshagen and Thielsch [31]: 1) Is the color composition
visually attractive?; 2) Do the colors match?; 3) Is the choice
of colors botched?; and 4) Are the colors appealing?

The possible answers for each question were presented
with a four-point Likert scale: 1=absolutely not, 2=more
no than yes, 3=more yes than no, 4=absolutely yes [31].
Each participant evaluated the colorfulness of five apps in
order to reduce the participants’ workload. Specifically, we
created five groups of apps and we assigned round-robin
each participant to a specific group aiming at balancing the
number of evaluations for each app. Given the 85 participants
to our study, each app has been evaluated by at least 15
participants. All GUIs for the same app were shown in
the same page to allow an easy comparison between the
different GUIs by participants. The order in which the apps
were evaluated by the participants was randomized as well.
Finally, note that none of the participants was aware of the
experimental goals nor which of the GUIs in each page was
the original one.

To address RQ3s we conducted semi-structured interviews
with the project managers of the three involved companies.
The interviews lasted for two hours with each company.
Given that we had sufficient time available and only a few
apps for each interview, for each app we showed the whole set
of solutions provided by GEMMA in a single run, i.e., the
run among the 30 we executed that provided the largest set
of solutions. This choice was made in order to have a larger
set of alternative designs to discuss with the companies. We
accompanied each of the shown solutions with information
about its energy consumption and potential saving with
respect to the original design.

During the interview, for each solution we asked the par-
ticipant to answer the following question: “Given the energy
saving provided by this design with respect to the original
design, would you adopt it in your app?”, using a score on
a four-point Likert scale: 1=absolutely no, 2=no, 3=yes,
4=absolutely yes. In addition, we also asked questions to
understand the principal reasons why the participants liked
or not the suggested colors and which are the components
for which the participants noticed a poor choice of colors.
The interviews were conducted by one of the authors, who
annotated the provided answers as well as additional insights
about the GEMMA’s points of strength and weakness that
emerged during the interviews.

3.4 Data Analysis

To answer RQ:1 we show boxplots of the energy consump-
tion, the contrast ratio, and the distance from the original
design (measured as reported in Section 2) obtained by run-
ning GEMMA 30 times on each app. We report such infor-
mation for six categories of solutions: having the lowest and
the median energy consumption, having the highest and the
median contrast ratio, and having the lowest and the median
distance from the original design (i.e., six solutions for each
run). We statistically compare the energy consumption and
the contrast ratio of the generated solutions with those of the
original design of the considered apps by using the Wilcoxon
test [9]. The results are considered statistically significant
at @ = 0.05. Since we perform multiple tests (the original
GUI of each app is compared against different categories of

Table 1: ECF and CF: Wilcoxon test (adjusted p-
values) and Cliff’s delta (d).

Test, adj. p-value d
ECF
original design vs lowest ECF <0.01 0.77 (Large)
original design vs median ECF <0.01 0.57 (Large)
original design vs highest CF <0.01 0.35 (Medium)
original design vs median CF <0.01 0.58 (Large)
original design vs lowest DF <0.01 0.49 (Large)
original design vs median DF <0.01 0.57 (Large)
CF
original design vs lowest ECF <0.01 -0.07 (Negligible)
original design vs median ECF <0.01 -0.35 (Medium)
original design vs highest CF <0.01 -0.53 (Large)
original design vs median CF <0.01 -0.34 (Medium)
original design vs lowest DF <0.01 -0.25 (Small)
original design vs median DF <0.01 -0.34 (Medium)

generated GUIs), we adjust our p-values using the Holm’s
correction procedure [19]. We also estimate the magnitude
of the observed differences by using the Cliff’s Delta (or d),
a non-parametric effect size measure for ordinal data [15].
Cliff’s d is considered negligible for d < 0.10 (positive as well
as negative values), small for 0.10 < d < 0.33, medium for
0.33 < d < 0.474, and large for d > 0.474 [15].

As for RQ2, we must firstly note that our goal is not to
determine whether GUIs recommended by GEMMA are con-
sidered more attractive than the original GUIs, but, rather,
whether they are acceptable enough, and to know what is
the “price to pay” in terms of visual aesthetics for the en-
ergy saving solutions provided by GEMMA. To this aim,
we report boxplots of the ratings assigned by participants
to the colorfulness of the different categories of GUIs. Also,
we statistically compare the ratings assigned to the original
GUIs of the 25 apps to those assigned to generated solutions
with lowest and median energy consumption by performing
the same statistical analysis used in RQ;.

Finally, for RQs we qualitatively discuss the outcomes of
the semi-structured interviews.

4. STUDY RESULTS

This section reports the analysis of the results for the three
research questions formulated in Section 3.1.
RQi: To what extent is GEMMA able to optimize
the GUI energy consumption, contrast, and design
objectives? Boxplots in Fig. 2 show the distribution of
values for the three fitness functions described in Section 2.3
exhibited by the original design* and by solutions in the
Pareto front obtained at each GEMMA’s run having the:
lowest ECF, median ECF, highest CF, median CF, lowest DF,
and median DF. In addition, Table 1 reports the results of the
Wicoxon test (adjusted p-values) and the Cliff’s d effect size.
We compared the values for the ECF (energy consumption)
and CF (contrast ratio) fitness functions between the original
designs and the different categories of solutions considered in
this research questions. The design achieving the best value
for a fitness function (i.e., the lowest value for ECF or the
highest value for CF) is highlighted in bold for each test.

Fig. 2-(a) highlights that the design solutions generated
by GEMMA have a lower energy consumption as compared
to the original design. In particular, picking on each Pareto
front the solution having the lowest value for ECF ensures a
mean energy saving of 66% (median 89%). In other words,

4For the original design there is no value for the DF, since
this fitness function reflects the distance of the color schema
of a solution from the original design.

the most energy efficient colour schemas recommended by
GEMMA consume, on average, one third of the original color
design. Interestingly enough, the other categories of solu-
tions proposed by GEMMA and considered in this research
question offer a substantial energy savings as compared to
the original design. For instance, the solution ensuring the
highest contrast level between the GUI components (Highest
CF in Fig. 2) offers a mean energy saving of 18% (median
8%) with respect to the original design. The statistical com-
parison in terms of energy consumption (ECF) between the
original design and the solutions proposed by GEMMA (top
part of Table 1) always highlight a statistically significant
difference in favor of the GEMMA’s solution accompanied
by a large effect size for all categories of solutions but the
one ensuring the highest contrast level (medium effect size).

The results in Fig. 2-(b) highlight that, besides ensuring a
lower energy consumption, the color schemas recommended
by GEMMA also help in improving the contrast ratio be-
tween the GUI’s components (i.e., higher values for the
CF function). The GEMMA’s solutions providing the best
contrast ratio are able to obtain a mean improvement of
the contrast of 61% (median 54%). It is surprising to see
how GEMMA'’s solutions having the lowest energy consump-
tion are able to improve the contrast of the original design
(mean +16%, median=21%). While this result does not
ensure the pleasantness of the color schemas generated by
GEMMA (this aspect is investigated in RQ2 and RQ3), at
least it should ensure the readability of the generated GUIs
(i-e., high contrast between the GUIs components). The re-
sults of the statistical test (bottom part of Table 1) show that
the contrast ratio ensured by the GEMMA” color schemas is
significantly higher with respect to the original ones. The ef-
fect size ranges between negligible (for the solutions ensuring
the lowest ECF values) and large (for the solutions having
the highest CF). While the negligible effect size achieved for
solutions in the lowest ECF group might seem like a negative
result, it is worth noting that such color schemas are able
to achieve a mean reduction of energy consumption of 66%,
while also being able to improve its contrast ratio (even with
a negligible effect size).

An example of a solution generated by GEMMA for one
of the subject apps in our study is shown in Fig. 3 flanked
by the original design (left side). The proposed solution
offers energy consumption savings of up to 53% as well as
an increase in terms of contrast ratio by 31%.

Finally, by looking at Fig. 2-(c), it is interesting to under-
stand what happens to the DF fitness function. Remember
that this function equals zero when the evaluated solution
(i.e., color schema) exactly matches the original design. In
all categories of solutions we selected and reported, there are
solutions having zero as value for DF (as visible by the lower
whisker of the boxplots “touching” the zero value). This
indicates that DF function in GEMMA lets the GA search
for solutions that very close to the original design.

RQ2: Are the color compositions generated by GEM-
MA visually attractive as perceived by Android users?

Boxplots in Fig. 4 show the distribution of answers for the
visual aesthetics-related questions from the 85 participants.
The boxplots summarize the answers regarding the original
design, lowest ECF, and median ECF solutions of the 25
considered apps. In addition, Table 2 reports the results
of the Wicoxon test (adjusted p-values) and the Cliff’s d
effect size. Fig. 4 highlights that the solutions generated

—
- o [} T [} ™ o 1
& - - ® . 8
Bl v Lo S E : E -| 8
~— o— ' -+ ' ' - S ! =
0w S H ' ' —~3 = Q S 8
g S 8 o 8 . 8
¢ | [S ° [¥ 8 8 8
5 - A T T = 9 0 9
= ' H ' ' ' H v o ' ! ! | ! ' " 8
T o H ' ' ' ' =3) ' ' ' a2
S | ' ' ' ' L o5 ' H ' ' ' @
c 3 ' ' ' ' c o i ' ' H ' ' z
o ' i R=ay ' i ' c =
2 : - CE - Zo| 8 -
=3 : e = S v
%] ' '
s g3 : o -
0 I 2 o a ' ' L ' '
B c o ' H ' ' ! ! '
c ' ' S H T [R—
) ' ' o T ' N ' ' ' 2
o ' o | T | ' ' N '
' ' ' ' '
1l B8k T S - I .
S o + + + . a o + + + + +
o T T T T T T T T T T T T T T
w Original Lowest Median Highest Median Lowest Median Original Lowest Median Highest Median Lowest Median Lowestl Median Highest Median Lowest Median
Design ECF ECF CF CF DF DF Design ECF ECF CF CF DF DF ECF ECF CF CF DF DF
(a) (b) (c)

Figure 2: Boxplots of ECF, CF, and DF for the original design and for solutions provided by GEMMA.

< @Y Taskvetai d:/]

TmE

sTATUS

needs action

LocaTion
viygy

DESCRIPTION
ff
March 4,2015

February 24,2018

GEMMA's lowest ECF solution

Original Design
Figure 3: Original design vs GEMMA'’s solution.

by GEMMA have a “cost” in terms of visual aesthetics as
perceived by end users. Answers from the participants to the
colorfulness factor—described by the four questions presented
in Section 3.3—show a low evaluation for the solutions with
the lowest ECF (i.e., the one saving the maximum amount
of energy). Although end users do not totally dislike the
lowest ECF solutions, the difference with the original design
is statistically significant with a large/medium effect size. By
looking at the comments left by participants and justifying
their low ratings for the solution having the lowest ECF, it
appears clear that most of them simply do not like GUIs
having dark colors as main base: “Black backgrounds can
look very good but not when there is a lot of text”; “I prefer
other colors than black for the mobile applications”.
Instead, participants found the median ECF solutions
more visually appealing than the lowest FCF ones. The
differences reported between the original designs and the
median ECF solutions are small for the investigated color-
fulness factors. Indeed, Fig. 4 highlights how the median
and average answers for the four questions are “close” when
comparing the original designs with the median ECF so-
lutions. This is also confirmed by the statistical analysis
reported in Table 2: while there is a significant difference in
the participants’ ratings in favour of the apps’ original design
when comparing it with the median ECF solutions, such a
difference only results in a small effect size. Remember that,
as shown in the context of RQ1, solutions having a median

(a)

s
z

(d)

Il
|

g

[R
O r---&—
Je==3---+ O
|l
|

fe

PF
|

9

==
-
==
-

botched?

N
!
N
!

Is the color composition
visually attractive?
Do the colors match?
Are the colors appealing?

Is the choice of colors

== -+

¢
oD

e
E oD

N
oD LE

e [= S
e [= S

=1 ___
=g PR
=
=Edr---
m

T
oD LE

=
m

Figure 4: RQ2: Boxplots of answers provided by par-
ticipants. OD=Original Design, LE=Lowest ECF,
ME=Median ECF.

Table 2: RQ2: Wilcoxon test (p-value) and Cliff’s
delta (d).
Test

adj. p-value d
Is the color composition visually attractive?
original design vs lowest ECF <0.01 -0.67 (Large)
original design vs median ECF <0.01 -0.13 (Small)
Do the colors match?
original design vs lowest ECF <0.01
original design vs median ECF <0.01
Is the choice of colors botched?
original design vs lowest ECF <0.01
original design vs median ECF <0.01
Are the colors appealing?
original design vs lowest ECF <0.01
original design vs median ECF <0.01

-0.65 (Large)
-0.16 (Small)

0.33 (Small)
0.09 (Small)

-0.55 (Large)
-0.13 (Small)

ECF are still able to achieve a substantial energy savings
with respect to the original design (42%, on average). This
illustrates GEMMA'’s ability to balance multiple objectives,
i.e., generating energy-saving GUIs that use colors close to
the original composition and being accepted by end users.
RQs: Would actual developers of mobile applica-
tions consider changing colors in an app as recom-
mended by GEMMA?

In the following, we report the results of the interviews we
conducted with project managers of three Italian companies
aiming at analyzing the practical applicability of GEMMA in
a real development context. As explained in Section 3.3,
we asked the participants to answer the following question:
“Given the energy saving provided by this design with respect
to the original design, would you adopt it in your app?”,
using a score on a four-point Likert scale: 1=absolutely no,
2=no, 3=yes, 4=absolutely yes.

Next. The first person we interviewed was Nicola Noviello,
the project manager of Next. Such a company provided us
with two apps, namely Bollate [1] and Petrella [5]. The two
apps are from the category “Places and travels”, and provide

tourist with information on two Italian towns. Before starting
the interview, Nicola confirmed that GEMMA might have
a high practical applicability even if it would be important
to assess which percentage of the overall app energy con-
sumption is actually amenable to its GUI, and thus could be
optimized by GEMMA. This is something we plan to explore
more in the future. As for the evaluation of the solutions pro-
vided by GEMMA for the Bollate app, we showed to Nicola
eleven design alternatives, asking him if he would adopt them
in his app. None of them was considered acceptable (answer
“absolutely not”) despite the average energy saving around
85%. The reason why Nicola discarded such alternatives is
represented by the color of the background. All the alterna-
tives provided by GEMMA had a black background. In the
context of Nicola’s experience, “it is hard to make attractive
an interface with a black background”. Specifically, Nicola
claimed that he uses a black background only if it is explic-
itly required by the customer. Otherwise, he designs apps
with more vivid colors even if he recognized that this could
negatively impact the energy consumption of the app. This
suggests an interesting future direction to explore, i.e., usage
of interactive GAs, where the developer can be integrated
in the evolutionary loop and set personalized constraints
(e.g., do not use this color for this component) during the
generation of solutions. The results were different for the
Petrella app. Among the five different alternatives, Nicola
considered three as good alternatives to the original design,
claiming that he would consider their adoption (answer “yes”).
It is worth noting that the solution considered the best by
Nicola is also the one that provides the highest energy sav-
ings (71%). For this app, Nicola particularly appreciated the
recommended solutions due to their high similarity with the
original design. This characteristic allows obtaining substan-
tial energy savings just by performing small adjustments to
the original GUI. In addition, Nicola claimed that “even if
the colors of these alternatives are less vivid than the original
design, I believe that the proposed combinations—uwith some
smalls adjustments— will make the app attractive”.
Genialapps. The second person we interviewed was
Giuseppe Socci, the project manager of Genialapps. The
app that they provided was Sing Happy Birthday Songs
(HBS) [6], which has around 2,000 ratings on the Google
Play market and a number of installations between 100K
and 500K. The app is from the category “Music and Songs”
and it can be used to send happy birthday wishes with a
personalized phone call. Giuseppe was particularly interested
in GEMMA. He claimed that such an approach might have
an high industrial impact. We provided him with a set of
46 different alternatives. Among them, 29 were discarded as
not adoptable as alternative to the original design (answer
“absolutely not”). The reason why Giuseppe did not like those
alternatives is that “the colors are too dull and in a joyful app,
like HBS, colors must be vivid”. The other 17 alternatives
were considered good ones, with three of them gathering an
“absolutely yes” to the posed question (see Section 3.3). One
of these three solutions provides an energy savings of 63%.
Such an alternative, again with some small adjustments, was
considered by Giuseppe an excellent solution for his app.
During the interview, Giuseppe also pointed out an impor-
tant issue that approaches like GEMMA should take into
account. GEMMA is particularly useful “for apps that are
used for a rather long period of time (e.g., social network
app). Although it is true that many drops make the ocean,

Original Design GEMMA's lowest ECF solution

CERCAPERNOME .

FIORITURA TIPOLOGIA COLOREFIORE. FIORITURA TIPOLOGIA

-l

Figure 5: IdeaSoftware app:
GEMMA'’s solution (excerpts).

and therefore, in our case, many apps not optimized used
for a short time still consume a lot of energy, it is also true
that developers are not very likely to change the GUI aiming
at saving battery. The reason is that this non-functional
requirement is quite difficult to sell, unless the app is used for
rather long time periods and thus the customer has a tangible
evidence of the energy saved.” This consideration is perfectly
inline with our weighted model for power consumption, in
which we give more importance to screens that are used more.
As well as Nicola, Giuseppe is also interested in “the actual
impact that the colors of the GUI have on the overall energy
consumption of the app”. He also pointed out that “in the
case of HBS, since it has a lightweight logic (the server is in
charge of the application logic) I suppose that the influence
of the GUI is considerable”.

IdeaSoftware. The last person we interviewed was Lu-
ciano Cutone, co-founder and the project manager of Idea-
Software. The company requested to anonymize both of
the apps that they provided for our study. In the follow-
ing, we refer to such apps as Appl and App2. Both apps
have thousands of installations on the Google Play market.
Luciano was particularly interested in GEMMA, that he
defined as “a tool that should be integrated in an IDE and
used daily”. This confirms the high industrial impact that
GEMMA might have. As for Appl, we provided to Luciano
a set of 15 different alternatives. Among them, 8 were not
considered acceptable (answer “absolutely not”) by Luciano
because “the combination of colors was not exciting”. The
other 7 solutions were instead considered as good alternative
to the original design (answer “absolutely yes”). Luciano par-
ticularly liked one solution that is reported, compared to the
original design, in Fig. 5. Due to the need for anonymization,
we only report a portion of the original and recommended
GUIs. Luciano claimed “I would definitively use this combi-
nation of colors in my app. The final result is excellent and
I really like the effect of the GUI with a black background.
This helps in saving battery and makes the app more elegant.
I will propose the new combination of colors for the next
release of the app”. Such a consideration highlights different
points of view by Luciano and Nicola about black background
emphasizing that the choice of colors is subjective and, as
mentioned before, an interactive version of GEMMA could
be worthwhile. For the App2, we only provided three dif-
ferent solutions. In addition, the average energy savings
for such solutions is around 10%, due to the already energy
efficient original design. Indeed, as pointed out by Luciano,
when designing the GUI the developers used low bright col-
ors in order to (i) make the app more professional and (ii)
save the battery of the phone since the app was designed to
be used continuously during the day. Such considerations
confirmed that the energy consumption is a problem relevant
for industry when the app is used frequently. Nevertheless,
among the three solutions, Luciano classified two of them as
good alternatives (answer “yes”).

Original design wvs

S. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation, and in this work are mainly
related to the measurements we performed in our study. One
major threat is that the measures of contrast and pleasant
design—i.e., the CF(S) and DF(S) objectives—which we use
in the optimization process and quantitatively compare with
values of the original colors (RQ1) might not represent a
proxy of what actually is perceived by users. RQ2, within
its generalizability limitations, is intended to mitigate such a
threat. Another possible threat is related to the fact that we
used power models to estimate energy consumption. So far,
such models have been already used in previous studies and
considered reliable enough, and our models are consistent
with the ones by Dong et al. [11,12] for OLED screens.

Threats to internal validity are related to factors, internal
to our study, that can influence our results. We have used GA
settings that are frequently used in the research literature
[10,13,14], and calibrated the number of evolutions so that
longer evolutions did not produce better results. Of course,
we cannot exclude that a better calibration would produce
better results. Last, but not least, we accounted for GA
randomness by executing GEMMA 30 times [8].

Threats to conclusion validity concern the relationship be-
tween experimentation and outcome. For RQ; and RQz2, as
described in Section 3.4, we have quantitatively assessed
our results using appropriate statistical procedures. In-
stead, RQ3 is exploratory in nature, intended to collect
some preliminary feedback about the practical applicability
of GEMMA in a real development context.

Threats to external validity are related to the generaliz-
ability of our findings. We are aware that our results have
to be interpreted carefully because (i) they may depend on
the specific device for which we extracted the color power
model; (ii) results of RQ2 may depend on people’s prefer-
ences, and other people might have different opinion on the
chosen colors, and (iii) although we applied GEMMA on 25
different apps, we are aware than GEMMA might produce
different results in terms of energy consumption reduction
and colorfulness on a different set of apps.

6. RELATED WORK

GEMMA is mostly related to previous work on energy
optimization of GUIs in mobile apps as well as approaches
for detecting energy greedy units in such apps.

6.1 Improving Energy Consumption of GUIs

OLED screens are suitable for optimizing energy con-
sumption of GUIs in apps, because the power consumed
by OLED screens depends on the combination of color levels
in the screen’s sub-pixels. Therefore, power models of OLED
screens estimate the energy by combining individual con-
sumption of the color sub-pixels [20,41]. These models are
particularly useful, since they allow researchers to estimate
energy consumption without using expensive power monitors.
Thus, power models have been used for energy saving visu-
alization of sequential data [40], design of energy adaptive
displays [20], and design of color-adaptive browsers [11].

As for mobile apps, representative works are the ones
by Dong and Zhong [12] for Windows mobile apps, Li et
al.’s approach [24] for mobile web applications, and Wan et
al.’s work [39] on screenshots of Android apps. The three
approaches and GEMMA are compared in Table 3. While we

Table 3: GUI-based energy optimization in Android.
Approach Opt. problem Color palettes
[12] min energy, s.t. similar 1) Predefined themes, 2)
contrast than in origi- Monochromatic palette, 3)
nal GUI black assigned to most fre-
quent color in original GUI,
then subsets of R,G,B as-
signed to the rest of pixels
[24,39] min energy, s.t. keep Background replaced with
color distance between dark colors, randomly se-
neighboring HTML ele- lected colors are assigned to
ments the rest of pixels
GEMMA min energy, maz con- Palette contains 512 colors:
trast, min distance to original 4+ black + white +
original design, s.t. con- equidistant harmonies and
trast > 4 monochromatic palette)

share with these approaches the goals of minimizing energy
consumption through properly choosing colors and using color
power models, GEMMA introduces novel aspects related to
(i) multi-objective optimization, (ii) considering contribution
of different screens based on their usage duration, and (ii)
ensuring a pleasant and consistent choice of colors.

6.2 Detecting Energy Bugs in Mobile Apps

Energy bugs and energy hot spots in Android apps—at dif-
ferent granularities—have been catalogued extensively. For
instance, Pathak et al. [32,34] describe a taxonomy of energy
bugs that depends on the hardware, software, or external con-
ditions. Kwon and Tilevich [21] focused on cloud offloading
energy consumption. Pathak et al. [33] and Linares-Vasquez
et al. [26] reported energy greedy Android APIs. Hao et
al. [17] and Li et al. [22] identified energy greedy apps, mean-
while Li et al. [23] focused on energy measurement at code
statement level. Liu et al. [27] detected energy bugs related
to misuses of wake locks and sensors. Finally, Rasmussen
et al. [35] measured the impact of ads in apps on energy
consumption. All the approaches mentioned in this section
detect different kinds of energy-greedy units in the source
code, yet not specifically related to the screen usage. For this
reason, GEMMA can be considered complementary to those
approaches: in other words, reducing the energy footprint of
mobile apps concerns considering various aspects, including,
among others, screen usage and colors.

7. CONCLUSION AND FUTURE WORK

We presented GEMMA, a multi-objective approach for
generating energy-friendly color schemas for Android app
GUIs. The multi-objective optimization balances the energy
reduction objective with other objectives related to contrast
and closeness to the original design.

GEMMA successfully generated designs for 25 Android
apps with significant reduction in energy consumption. While
the empirical evaluation highlighted that solutions with the
highest energy savings are usually not preferred by end-
users, mainly because of the dark background, GEMMA still
generated solutions that achieve a good energy reduction
while being acceptable by end-users. Also, by evaluating the
solutions on five commercial apps, we confirmed that some
project managers and developers are ready to account for
GEMMA'’s recommendations in future app releases. In the
future work, we are planning on relying on a more precise
approach for reverse engineering app GUIs, which would
account for a proper choice of colors for GUI elements such
as text fields and buttons.

8.
1]

2]
3]
[4]
[5]

[6

[19]

[20]

REFERENCES

Bollate. https://play.google.com/store/apps/
details?id=com.comunicazione360.bollate.

Genial apps website.
\url{http://www.genialapps.eu/portale/}.
Mediastudio website. http://www.mediastudio.it/.
Next website. http://www.nextopenspace.it/.
Petrella. https://play.google.com/store/apps/
details?id=it.nextlabs.platform.petrella.

Sing happy birthday songs.
http://happybirthdayshow.net/en/.

Weplant.
https://play.google.com/store/apps/details?id=
it.nextlabs.platform.weplanet\&hl=it.

A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in
software engineering. In Proceedings of the 33rd
International Conference on Software Engineering,
ICSE 11, pages 1-10, New York, NY, USA, 2011.
ACM.

W. J. Conover. Practical Nonparametric Statistics.
Wiley, 3rd edition edition, 1998.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182 — 197, 2002.

M. Dong and L. Zhong. Chameleon: A color-adaptive
web browser for mobile oled displays. IEEE Transaction
on Mobile Computing, 11(5):724-738, May 2012.

M. Dong and L. Zhong. Power modeling and
optimization for oled displays. IEEFE Transaction on
Mobile Computing, 11(9):September, 2012.

J. J. Durillo and A. J. Nebro. jmetal: A java framework
for multi-objective optimization. Advances in
Engineering Software, 42:760-771, 2011.

D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., 1st edition, 1989.

R. J. Grissom and J. J. Kim. Effect sizes for research:
A broad practical approach. Lawrence Earlbaum
Associates, 2nd edition edition, 2005.

S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating Android applications’ CPU energy usage via
Bytecode profiling. In GREENS’12, pages 1-7, 2012.
S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating mobile application energy consumption
using program analysis. In ICSE’13, pages 92-101,
2013.

A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow,

J. Campbell, and S. Romansky. Greenminer: a
hardware based mining software repositories software
energy consumption framework. In MSR’1}, pages
12-21, 2014.

S. Holm. A simple sequentially rejective Bonferroni test
procedure. Scandinavian Journal on Statistics, 6:65-70,
1979.

S. Iyer, L. Luo, R. Mayo, and P. Ranganathan.
Energy-adaptive display system designs for future
mobile environments. In International Conference on
Mobile Systems, Applications, and Services
(MobiSys’03), 2003.

(21]

22]

23]

24]

(25]

(26]

27]

(28]

29]

(30]

(31]

32]

(33]

(34]

(36]

37]

Y. K.won and E. Tilevich. Reducing the energy
consumption of mobile applications behind the scenes.
In ICSM’18, pages 170-179, 2013.

D. Li, S. Hao, J. Gui, and W. Halfond. An empirical
study of the energy consumption of android
applications. In International Conference on Software
Maintenance and Evolution (ICSME’14), page to
appear, 2014.

D. Li, S. Hao, W. G. J. Halfond, and R. Govindan.
Calculating source line level energy information for
android applications. In ISSTA’13, pages 78-89, 2013.
D. Li, A. H. Tran, and W. Halfond. Making web
applications more energy efficient for oled smartphones.
In International Conference on Software Engineering
(ICSE’14), pages 573-538, 2014.

M. Linares-Vasquez, G. Bavota, C. Bernal-Cérdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk.
Replication package.
http://www.cs.wm.edu/semeru/data/GEMMA/.

M. Linares-Vasquez, G. Bavota, C. Bernal-Cérdenas,
R. Oliveto, M. D. Penta, and D. Poshyvanyk. Mining
energy-greedy API usage patterns in android apps: an
empirical study. In 11th IEEE Working Conference on
Mining Software Repositories (MSR’14), pages 2-11,
2014.

Y. Liu, C. Xu, S. Cheung, and J. Lu. Greendroid:
Automated diagnosis of energy inefficiency for
smartphone applications. IEEE Transactions on
Software Engineering, Preprint, 2014.

Y. Liu, C. Xu, and S. C. Cheung. Where has my
battery gone? finding sensor related energy black holes
in smartphone applications. In PerCom’13, pages 2-10,
2013.

I. L. Manotas-Gutiérrez, L. L. Pollock, and J. Clause.
Seeds: a software engineer’s energy-optimization
decision support framework. In ICSE’1}, pages
503-514, 2014.

Monsoon-Solutions. Power monitor. http:
//www.msoon. com/LabEquipment/PowerMonitor/.

M. Moshagen and M. T. Thielsch. Facets of visual
aesthetics. Human-Computer Studues, 68:689-709,
2010.

A. Pathak, Y. Hu, and M. Zhang. Bootstrapping
energy debugging on smartphones: A first look at
energy bugs in mobile devices. In Hotnets’11, page
Article No 5, 2011.

A. Pathak, Y. Hu, and M. Zhang. Where is the energy
spent inside my app? fine grained energy accounting on
smartphones with eprof. In FuroSys’12, pages 29-42,
2012.

A. Pathak, A. Jindal, Y. Hu, and S. P. Midkiff. What
is keeping my phone awake? characterizing and
detecting no-sleep energy bugs in smartphone apps. In
MobiSys’12, pages 267-280, 2012.

K. Rasmussen, A. Wilson, and A. Hindle. Green
mining: energy consumption of advertisement blocking
methods. In GREENS’14, pages 38-45, 2014.

G. Sharma. Digital Color Imaging Handbook. CRC
Press, Inc., Boca Raton, FL, USA, 2002.

J. W. Tukey. Ezploratory Data Analysis.
Addison-Wesley, 1977.

[38]

[39]

W3C. Contrast ratio definition. http:
//www.w3.org/WAL/ER/WD-AERT/#color-contrast.

M. Wan, Y. Jin, D. Li, and W. G. J. Halfond.
Detecting display energy hotspots in android apps. In
8th IEEE International Conference on Software
Testing, Verification and Validation (ICST’15), page to
appear, 2015.

J. Wang, X. Lin, and C. North. Greenvis:
Energy-saving color schemes for sequential data
visualization on oled displays. Technical Report

(41]

42]

TR~12-09, Department of Computer Science, Virginia
Tech, 2012.

Y. Xiao, R. Bhaumik, Z. Yang, M. Siekkinen,

P. Savolainen, and A. Yla-Jasski. A system-level model
for runtime power estimation on mobile devices. In
International Conference on Green Computing and
Communications, pages 27-34, 2010.

J. Zang, A. Musa, and W. Le. A comparison of energy
bugs for smartphone platforms. In MOBS’13, 2013.

