
Amalgamating Source Code Authors, Maintainers, and
Change Proneness to Triage Change Requests

Md Kamal Hossen, Huzefa Kagdi
Department of Electrical Engineering and

Computer Science
Wichita State University
Wichita, KS 67260-0083

{mxhossen, huzefa.kagdi}@wichita.edu

Denys Poshyvanyk
Computer Science Department

The College of William and Mary
Williamsburg, VA 23185
denys@cs.wm.edu

ABSTRACT
The paper presents an approach, namely iMacPro, to rec-
ommend developers who are most likely to implement in-
coming change requests. iMacPro amalgamates the textual
similarity between the given change request and source code,
change proneness information, authors, and maintainers of
a software system. Latent Semantic Indexing (LSI) and a
lightweight analysis of source code, and its commits from the
software repository, are used. The basic premise of iMacPro
is that the authors and maintainers of the relevant source
code, which is change prone, to a given change request are
most likely to best assist with its resolution. iMacPro unifies
these sources in a unique way to perform its task, which was
not investigated and reported in the literature previously.

An empirical study on three open source systems, Ar-
goUML, JabRef , and jEdit , was conducted to assess the ef-
fectiveness of iMacPro. A number of change requests from
these systems were used in the evaluated benchmark. Recall
values for top one, five, and ten recommended developers are
reported. Furthermore, a comparative study with a previous
approach that uses the source-code authorship information
for developer recommendation was performed. Results show
that iMacPro could provide recall gains from 30% to 180%
over its subjected competitor with statistical significance.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-
neous; D.2.8 [Software Engineering]: Metrics—complex-
ity measures, performance measures

Keywords
Change Request, Expert Developer Recommendation, Soft-
ware Maintenance, Triaging

1. INTRODUCTION
Software change requests and their resolution are an in-

tegral part of software maintenance and evolution. It is not
uncommon in open source projects to receive tens of change

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC 2014 Hyderabad, India
Copyright 2014 ACM 0-12345-67-8/90/01 ...$15.00.

requests daily that need to be promptly resolved [1]. Issue
triage is a crucial activity in addressing change requests in
an effective manner (e.g., within time, priority, and qual-
ity factors). The task of automatically assigning issues or
change requests to the developer(s) who are most likely to
resolve them has been studied under the umbrella of bug or
issue triaging. A number of approaches to address this task
have been presented in the literature [1, 16, 17, 28, 31]. They
typically operate on the information available from software
repositories, e.g., models trained from bug or issue reposi-
tories and/or source-code change repositories. Recently, an
approach that does not require any mining of software repos-
itories and only uses the source-code authorship information
was introduced [17]; however, other sources of information,
such as the change-proneness of source code, remain largely
untapped in solving this problem.

We propose a new approach, namely iMacPro, for assign-
ing the incoming change requests to appropriate developers
who have necessary expertise for resolving them. iMacPro
takes the textual description of an incoming change request
(e.g., a short bug description) and locates relevant units
(e.g., files) from a source-code snapshot. Latent Seman-
tic Indexing (LSI), an information retrieval technique, is
used in this step [10]. The relevant source-code units are
ranked based on their change proneness, which is derived
from their involvement in previous maintenance activities.
Finally, the authors, extracted from a source code snapshot
of these units, and the maintainers of these units, derived
from past change activities, are forged together to arrive at
the final list of developers. The developers in this list are
ranked and are presumed to be best-fit candidates for re-
solving the change request in the order of their rank. The
basic premise of our approach is that the developers who are
authors and/or maintainers of relevant source code, which
is change prone, to a change request are most likely to best
assist with its resolution. In summary, our approach fa-
vors maintainers of change-prone source code. It uses LSI,
Maintainers, authors, and change Proneness of source code;
hence, the name iMacPro. It needs the source code and its
change history (i.e., commits); however, it does not require
any training from the previously resolved bug reports.

To evaluate the accuracy of our technique, we con-
ducted an empirical study on three open source sys-
tems/repositories: ArgoUML, JabRef , and jEdit . Recall
metric values of the developer recommendations on a num-
ber of bug reports sampled from these systems are presented.
That is, how effective our iMacPro approach is at recom-

Figure 1: An example file Mode.java from the
open source system jEdit. The author Slava Pestov
(spestov), Mike Dillon (mdillon) and (Dale Anson)
daleanson are found in the header comment of the
file which are all underlined in red.

mending the actual developer who ended up fixing these
bugs. Additionally, our iMacPro approach is empirically
compared with a previously reported approach that uses the
source-code authorship information [17]. The results show
that the proposed iMacPro approach outperformed the base-
line competitor. Lowest recall gains of 28%, 56%, and 33%
were recorded for ArgoUML, JabRef , and jEdit respectively.
Highest recall gains of 31%, 57%, and 75% were recorded for
ArgoUML, JabRef , and jEdit respectively.

Our paper makes the following noteworthy contributions
in the context of recommending relevant developers to re-
solve incoming change requests:

1. To the best of our knowledge, our iMacPro approach
is the first to integrate the change proneness, authors,
and maintainers of relevant source code.

2. We performed a comparative study with another ap-
proach that makes an exclusive use of the source-code
authorship information.

3. An empirical assessment of the contributions of the
maintainer information toward the overall accuracy of
iMacPro.

The rest of the paper is organized as follows: Our iMacPro
approach is discussed in Section 2. The empirical study on
three open-source projects and the results are presented in
Section 3. Threats to validity are listed and analyzed in
Section 4. Related work is discussed in Section 5. Finally,
our conclusions and future work are stated in Section 6.

2. THE iMacPro APPROACH
Overall, our approach to assign incoming change requests

to appropriate developers consists of the following steps:

1. We use Latent Semantic Indexing (LSI) [10] to lo-
cate relevant units of source code (e.g., files, classes,
and methods) in a release of the software system that
match the given textual description of a change re-
quest or reported issue. The indexed source-code re-
lease/snapshot is typically between the one in which
an issue is reported and before the change request is
implemented (e.g., a reported bug is fixed).

2. Source code units found from the above step are then
ranked based on their change proneness. Change

proneness of each source code entity is derived from
its change history (elaborated in Sections 2.1 and 2.3).

3. The developers who authored and maintained these
source code files are discovered and combined. Finally,
a final ranked list of developers who are likely to best
assist with the given change request is recommended.

Before we proceed with the finer details of our approach,
key terms are defined and discussed next.

2.1 Key Terms and Definitions
Author: Authors of a source code entity (e.g., file) are

the developers’ identities found within it. Authors are typ-
ically found in the header comments of the source code en-
tities (e.g., file, class, and method).

The header comments typically contain the copyright, li-
censing, and authorship information. Additionally, it may
also contain information about the (last version) change, au-
tomatically inserted with a keyword expansion mechanism
from version-control systems. Tags such as @author and
@contributor are commonly found in the header comments
to denote the authorship information. Oftentimes, source-
control systems automatically insert the tag $Id to signify
an additional piece of developer information. Figure 1 shows
that the authors Slava Pestov, Mike Dillon, and daleanson
are found in the header comment of the file mode.java, see
the underlined text in red in Figure 1. The extraction of
authors from source code is discussed in Section 2.4.
Maintainer: Maintainers of a source entity (e.g., file)

are the developers who performed changes on it (e.g., due
to a bug fix or a feature implementation).

Maintainers are typically found in the commit information
stored in a source code repository of a software system. Note
that we differentiate between committers (developers who
submitted the commits) and maintainers (developers who
actually contributed the changes) whenever it is possible to
do so. In situations when a developer identity is mentioned
in the textual commit message, we consider them to be a
maintainer and not the committer. Such scenarios do arise
when someone else, other than the original developer who
performed the actual change, is acting as a gatekeeper or fa-
cilitator. If no explicit developer is mentioned in the commit
message, the committer is considered to be the maintainer.

Figure 2 shows a commit log from the open source sys-
tem jEdit . This commit was performed by the developer
jarekczek. The textual message in this log clearly states

Figure 2: An example of issue #3530786 from the
open source system jEdit. jarekczek had submitted
(committed) the changes but Tom Power is the ac-
tual developer who fixed the issue.

that the developer Tom Power fixed this issue by submit-
ting a patch. Therefore, Tom Power and not jarekczek is
the maintainer in this case. The extraction of maintainers
from the source-code commits is discussed in Section 2.5.
Issue Fixing Commit (IFC): Issue Fixing Commits are

the commits in a source-code repository that have explicit
documentation of maintenance activities (e.g., corrective or
adaptive). IFC s can be determined from the textual pro-
cessing of the commit messages.

A common practice in the open source software develop-
ment is for developers to include an explicit bug or issue
id in the commit message. The presence of this information
establishes the traceability between an issue or bug reported
in the bug tracking system and the specific commit(s) per-
formed to address it. Additionally, developers provide key-
words such as fix, gui, feature, and patch in the commit
messages to indicate a maintenance or evolutionary activity.
A regular-expression based method can be employed to pro-
cess commits and extract IFC s. The commit log shown in
Figure 2 is an example of an IFC.
Issue Change Proneness (ICP): Issue Change Prone-

ness of a source code entity is a measure of its change affin-
ity as determined from Issue Fixing Commits (IFC s). A
straightforward (yet as would be shown an effective) mea-
sure of the ICP of a source code entity e is given by the
number of IFC s in the commit history that contain it.

ICP (e) =| {∀c ∈ IFCs | e ∈ c} | (1)

For example, the file AbstractInputHandler.java in jEdit
was involved in a total of 11 commits from 2009-12-25 to
2006-10-02. Only two of these commits are IFC s. Therefore,
the ICP of this source code file is 2.

2.2 Locating Relevant Files with Information
Retrieval

In our approach, in order to locate textually relevant files,
we rely on an IR-based concept location technique [24]. This
technique can be summarized in the following steps:

Creating a corpus from software: The source code
is parsed using a developer-defined granularity level (i.e.,
files) and documents, i.e., in IR vocabulary, are extracted.
A corpus is created, so that each file will have a correspond-
ing document therein. Only identifiers and comments are
extracted from the source code.

Indexing a corpus: The corpus is indexed using LSI and
its real-valued vector subspace representation is created. Di-
mensionality reduction is performed in this step, capturing
the important semantic information about identifiers and
comments and their latent relationships. In the resulting
subspace, each document has a corresponding vector. The
above steps are performed offline once, while the following
two steps are repeated for a number of open change requests.

Using change requests: A set of words that describes
the concept of interest constitutes the initial query, e.g., the
short description of a bug or a feature described by the de-
veloper or reporter. This query is used as an input to rank
the documents in the following step.

Relevant documents: Similarities between the user
query (i.e., change request) and documents in the corpus
are computed. The similarity between a query reflecting a
concept and a set of data about the source code indexed via
LSI allows for the generation of a ranked list of documents
relevant to that concept. All the documents are ranked by

the similarity measure in descending order (i.e., the most
relevant at the top and the least relevant at the bottom).
We obtain a user-specified top n relevant documents. Af-
ter these relevant documents are obtained, we treat them as
a set of n documents and not a ranked list. The textual-
similarity ranking of files is used for breaking ties in a later
step (see Section 2.3).

We demonstrate the workings of the approach using an
example from ArgoUML. The change request of interest here
is the bug# 4563, which the reporter described as follows:

“Realization stereotype shows twice on abstrac-
tion”

We consider the above textual description to be a concept
of interest. We collected the source code of ArgoUML 0.22
(the bug was not fixed as of this date). We parsed the source
code of ArgoUML using the class-level granularity (i.e., each
document is a class). After indexing with LSI, we obtained
a corpus consisting of 1,439 documents and 5,488 unique
words. We formulated a search query using the bug’s textual
description. Table 1 shows the results of the search, i.e., files
ranked in the order of their textual similarity scores.

Table 1: Top five files relevant to Bug#4563 in Ar-
goUML.
Rank Files

1 diagram/ui/FigRealization.java
2 java/cognitive/critics/CrMultipleRealization.java
3 cognitive/critics/CrAlreadyRealizes.java
4 ui/foundation/core/PropPanelAbstraction.java
5 diagram/ui/FigAbstraction.java

2.3 Ranking Source Files with Issue Change
Proneness

As discussed before, there is a one-to-many relationship
between an IR query, i.e., description of a bug bi , and source
code files. Given a user provided cutoff point of n, we get
the n top ranked source code files f1, f2, . . . , fn for the
bug bi. We use the change-proneness measure to rank these
top n files. The rationale behind this choice is based on
the premise that the larger the number of changes related to
past requests (e.g., bug fixes) in which an LSI-relevant source
code file is involved, the higher the likelihood of the same file
requiring changes due to a given (new) change request. For
each relevant file, its ICP (see Section 2.1) is calculated.
We consider the most recent m IFC s for each file in the
computation of ICP. The parameter m is configurable. The
n files are ranked based on their ICPs. The file with the
highest ICP is ranked first, the one with the lowest ICP is
ranked last, and so on. If multiple files have the same ICP
value, their textual similarity values determine the ranks.
At the conclusion of this step, the n relevant files are sorted.

The ICP values for each of the five files in Table 1 was
computed for the purposes of ranking them based on their
change proneness. We limited the computation to the most
recent 20 ICF s for each file in this case. The column entitled
ICP in Table 2 shows the corresponding value of each file.
These files are presented in the rank of their ICP. Clearly,
this ranking differs from the LSI ranking in Table 1. The files
FigRealization.java and CrMultipleRealization.java have the
same ICP value of 4. The file FigRealization.java is ranked
higher than the file CrMultipleRealization.java based on the
LSI similarity (rank) in Table 1, i.e., it is ranked ahead.

2.4 Extracting Authors from Source Code
The next step is to extract authors from each of the top

n relevant files obtained from Step 2.2. Specifics of this
extraction component are provided below:

Obtaining source code files: The source code of each
of the top relevant files that are retrieved by the concept
location component of our technique is first obtained. These
source code files are derived from a system snapshot between
when the change request is reported and before it is resolved.

Converting files to srcML representation: The
source code files in the above step are converted to the
srcML-based representation. srcML is a lightweight XML
representation for C/C++/Java source code with selective
Abstract Syntax Tree information embedded [9]. This con-
version is done for the ease of extraction of comments from
the source code. We use srcML; however, any lightweight
source-code analysis methods, including regular expressions
or island grammar [23], can be also used.

Extracting header comments: All the header com-
ments are extracted from each srcML file. The header com-
ments are generally the first comments in source code files,
source code classes, and/or methods.

Extracting authors from comments: The content
and format of the author listing in the header comments may
vary across systems. From a thorough manual examination
of a number of open source projects, we devised regular ex-
pressions to extract the authors from the header comments.
Authors are extracted from each of the relevant files. Note
that the same developer could have multiple identities. We
extracted all the entities of each developer from the project
resources, and mapped them to a unique identifier. For
example, the identities MichielvanderWulp (full name),
mvw@tigris.org (email address) and mvw (user name) rep-
resent the same developer, which is mapped to the identity
mvw. Similarly, the identities jaap.branderhorst@xs4all.nl
and jaap represent the same developer, which is mapped to
the identity jaap.

Ranking Authors: For each file, the authors are ranked
according to the lexical positions of the constructs in which
they are found. That is, a top-down, left-right order is fol-
lowed. For example, the authors appearing in the header
comment of the file are ranked higher than those appearing
in the header comment of the (main) class. If multiple au-
thors appear in the same comment, the one that is encoun-
tered first lexically is ranked first, and so forth. It is possible
that the same author is discovered from multiple places in
the same file. We assign the rank of the earliest lexical po-
sition to such an author. Figure 1 shows that the author
SlavaPestov is found in the first line of the header com-
ment of the file Mode.java. Thus, the author SlavaPestov
is ranked first. The same author is discovered again in the
header comments of the class Mode, which is ignored. Next
the author Mike Dillon is found in the copyright header in
the lexical order. Finally, the author Dale Anson is found.
The final ranked list of authors for the file mode.java is
[spestov, mdillon, daleanson]. After this step, a ranked
author list for each of the top n relevant files is established.

In our running example, the source code of each of the
five files in Table 1 was then processed to find a ranked
list of authors. Table 2 shows this list for each file in the
column entitled Authors. The file FigRealization.java has
only the author tfmorris. The file CrAlreadyRealizes.java
has the ranked list of authors [linus, jrobbins].

2.5 Extracting Maintainers from Change His-
tory

For each relevant file, its most recent IFCs are sorted with
the most recent commit appearing first and the least recent
commit appearing last. Maintainers from these IFCs are
extracted (see Section 2.1). We compiled a list of developer
IDs from the software repositories and project documenta-
tion, similar to extracting authors. The maintainer of the
most recent commit is ranked first and that of the least re-
cent commit is ranked last. The rationale for this choice
is based on the premise that developers who made the most
recent changes are likely to be most familiar with the cur-
rent state of source code. Therefore, they would be better
able to assist with a given change request than others. In
cases where the same maintainer was responsible for multi-
ple commits in IFCs, the highest ranked position is retained
and others are discarded. After this step, a ranked main-
tainer list for each of the top n relevant files is established.

The column entitled Maintainers in Table 2 shows the
ranked list of maintainers for each of the files. The file
PropPanelAbstraction.java has the ranked list of maintain-
ers [mvw, linus, mkl, kataka, 1sturm]. The developer mvw
was the maintainer of the most recent IFC, whereas, the
maintainer 1strum was the maintainer of the least recent,
i.e., oldest, one. Although file PropPanelAbstraction.java
has the ICP value of 7, it has only 5 maintainers. Each
commit typically has a single maintainer (one committer,
for sure, unless an anonymous commit was a result of a mi-
gration process from an automatic tool). Therefore, in this
case, there was at least one maintainer who performed mul-
tiple IFC s on this file. Only the highest ranked position, i.e.,
the most recent IFC, of such as a maintainer is preserved.

2.6 Fusion of Authors and Maintainers of
Change-Prone Source Code to Recom-
mend Developers

We now describe the details of combining the change
proneness, authors, and maintainers of source code, rele-
vant to a given bug, to recommend the final ranked-list of
developers. From Section 2.4, there is a one-to-many rela-
tionship between the source code file and authors. That is,
each file fi may have multiple authors; however, it is not
necessary for all the files to have the same number of au-
thors. For example, the file f1 could have two authors and
the file f2 could have three authors. Although, the ranked
list of authors of a single file does not have any duplication,
two files may have common authors. The final ranked lists
of authors for the top n relevant files ranked based on their
ICP values are given by the matrix Da below:

Da =

 f1 Daf1
f2 Daf2.. ..
.. ..
fn Dafn

Dafi = [a1 a2 ... al] (2)

In Equation 2, Dafi represents the ranked list of authors,
with no duplication, for the file fi. aj is the jth ranked
author in the file fi, which contains l unique authors. The
ranks for the authors are in the range [1, l].

From Section 2.5, there is a one-to-many relationship be-
tween the source code file and maintainers. Each file fi may
have multiple maintainers; however, it is not necessary for
all the files to have the same number of maintainers. Al-
though, the ranked list of maintainers of a single file does
not have any duplication, two files may have common main-

tainers. The final ranked lists of maintainers for the top n
relevant files ranked based on their ICP values are given by
the matrix Dm below:

Dm =

 f1 Dmf1
f2 Dmf2.. ..
.. ..
fn Dmfn

Dmfi = [m1 m2 ... mo] (3)

In Equation 3, Dmfi represents the ranked list of main-
tainers, with no duplication, for the file fi. mj is the jih

ranked maintainer in the file fi, which contains o unique
maintainers. The ranks for the maintainers are in the range
[1, o].

To obtain a combined ranked-list of developers for each
file fi, i.e., Dma, ranked lists of maintainers (Dm) and
authors(Da) are assembled.

Dma = Dm]Da

=

 Dmaf1
=Dmf1

]Daf1
Dmaf2

=Dmf2
]Daf2..

..
Dmafn=Dmfn]Dafn

=

 f1 [d1 d2 ... dmax(l,o)]
f2 [d1 d2 ... dmax(l,o)]
..
..
fn [d1 d2 ... dmax(l,o)]

(4)

We employ a round-robin merging algorithm. For each file
fi, the first position d1 on the list is occupied by the highest-
ranked m1 maintainer, i.e., the maintainer appearing first
in the maintainer list. For the second position d2 on this
combined list, the highest-ranked author a1, i.e., the author
appearing first in the author list is considered. The rationale
behind picking first from the maintainer list and then from
the author list is based on the premise that the maintainer
who contributed recent changes to a file is more likely to have
relevant knowledge than its authors.

For each file fi, we eliminated redundancies within the
individual author and maintainer lists (Dmfi) and (Dafi);
however, these two lists may have developers in common,
i.e., the maintainer and author are the same developer.
Therefore, if a developer is already in the combined list of
developers Dmafi , it is discarded and the next one is picked
from the author or maintainer list depending on where the
redundancy was found. For example, if it was the author
list’s turn to pick a developer for the jth position and that
developer is already in the combined list, the next one on
the maintainer list is considered for this position. If either
of the author or maintainer list is exhausted, the remaining
balance is fulfilled by the other list, barring no further re-
dundancy nor is this list also exhausted. At the conclusion
of this step, we have a ranked-list of developers for each file.

In Table 2, the ranked-list of combined developers,
i.e., Dma, for each file is shown in the last column
(Combined Developers(Dma)). For example, the ranked-
lists of maintainers (Dm) and authors (Da) for the file
CrAlreadyRealizes.java are [mkl,mvw, linus, kataka] and
[linus, jrobbins]. According to our round-robin method of
combining, we pick mkl from the maintainer list first, linux
from the author list second, mvw from the maintainer list
third, and jrobbins from the author list fourth. linus from
the maintainer list is discarded, as it already appears in
the combined list. Because the author list is exhausted, we
simply append kataka to the combined list. Therefore, the

combined list Dma for the file CrAlreadyRealizes.java is
[mkl, linus,mvw, jrobbins, kataka].

The combined lists of developers in Equation 4 contain
ranked developers for each file; however, we need to recom-
mend a user specified k developers. Therefore, we need to
obtain the absolute ranking of developers from Dma. To do
so, we coalesce developers from Dma into a single ranked list
of candidate developers. We start with the highest-ranked
developer for the highest-ranked file in Dma, move on to the
highest-ranked developer for the second-highest ranked file,
and so on. That is, the highest-ranked developers of all the
files are first added. Once they are added, the second-highest
ranked developers of the files (traversed by their rank order)
are added. This process continues, until the lowest-ranked
developers from all the lowest-ranked files are merged into
the final ranked-list of developers. Once again, the elimina-
tion of developer redundancy occurring in multiple files is
handled in the same way used for generating Dma. That is,
we have an order-preserving union of developers from the
traversal of ranked files and their developers in Dma. At the
conclusion of this step, we have a ranked-list of developers
for the given change request, i.e., Df in Equation 5.

Df = d |]n
i=1 ∀d ∈ Dmafi ∈ Dma (5)

The top k developers recommended to address the given
change request are the top k developers in Df . This step
concludes our iMacPro approach.

In our running example, the formation of the combined de-
veloper list, i.e., Df starts by taking the first developer from
the Dma of the highest ranked file. That is, mvw from the
file PropPanelAbstraction.java. Next, the first developer
from the Dma of the second-highest ranked file is consid-
ered and retained. That is, mkl from the file CrAlreadyRe-
alizes.java. Continuing in this fashion, mkl from the file
FigRealization.java is considered; however, it is already in
the list of final developers. Therefore, it is discarded. Simi-
larly, mkl andmvw from the files CrMultipleRealization.java
and FigAbstraction.java are eliminated, as they were already
picked before. At this point, all the first position developers
of all the files are exhausted and we have developers mvw
and mkl on the combined list of developers, Df . Table 3 de-
tails the formation of the final list of combined developers.
The column Position shows the workings of the ith position
developer in the Dma of each file. The row with the posi-
tion value 2 shows the second highest developers considered
from each file in their ranked order. After all the positions
are considered, the final list of combined developers, Df ,
for bug#4563 is [mvw,mkl, bobtarling, linus, tfmorris, agau-
thie, jrobbins, kataka] (see the row labeled Df . Finally, for a
user specified cutoff of k = 5, the recommended ranked list
of developers would be [mvw, mkl, bobtarling, linus,
tfmorris] (see the row labeled Df@k=5).

On examining the source code repository of ArgoUML,
we found that mvw was the developer who resolved the
bug#4563 in commit#11821. As can be seen in the final
recommendation list Df@k=5, mvw is the first ranked de-
veloper. Therefore, our iMacPro approach would have rec-
ommended the correct developer who resolved this bug with
only one recommendation.

3. EMPIRICAL STUDY
The main purpose of this case study was to investigate

Table 2: The authors and maintainers extracted from each of the top five files relevant to Bug# 4563.

Rank Files ICP Ranked
Maintainers(Dm)

Ranked
Authors(Da)

Combined
Developers(Dma)

1 . . . /PropPanelAbstraction.java 7 mvw, linus, mkl,
kataka, 1sturm

bobtarling mvw, bobtarling,
linus, mkl, kataka,
1sturm

2 . . . /CrAlreadyRealizes.java 6 mkl, mvw, linus,
kataka

linus, jrobbins mkl, linus, mvw, jrob-
bins, kataka

3 . . . /FigRealization.java 4 mkl, linus, kataka tfmorris mkl, tfmorris, linus,
kataka

4 . . . /CrMultipleRealization.java 4 mkl, linus mvw, jrobbins mkl, mvw, linus, jrob-
bins

5 . . . /FigAbstraction.java 1 mvw tfmorris, agauthie mvw, tfmorris, agau-
thie

Table 3: Developers taken from individual files in
positions 1 to 5 from Table 2. The strikeout devel-
opers are discarded and others are retained.

Position Combined Developers(Df)
1 mvw, mkl, mkl, mkl, mvw
2 bobtarling, linus, tfmorris, mvw, tfmorris
3 linus, mvw, sout linus, linus,agauthie
4 mkl, jrobbins, kataka ,jrobbins
5 kataka, kataka

Df mvw, mkl, bobtarling, linus, tfmorris, agau-
thie, jrobbins, kataka

Df@k=5 mvw, mkl, bobtarling, linus, tfmorris

how well our iMacPro approach recommends expert devel-
opers to assist with incoming change requests. Moreover,
we compare iMacPro with a previous approach for devel-
oper recommendation (denoted here as iA [17]). Similar to
iMacPro, iA uses LSI to identify relevant source files and
then uses the author information in those files for recom-
mending developers. However, it does not use the main-
tainer information from the source code commit history.
Another way iMacPro differs from iA is in the use of the
change-proneness, i.e., ICP in ranking the relevant files.
Therefore, we provide another comparison between iMacPro
and an approach that is identical to iMacPro but does not
use the maintainer information (denoted here as iAcPro).
This comparison would permit the assessment of the impact
of including maintainers in iMacPro.

We investigate the following research questions (RQs) in
our case study:

• RQ1: What is the accuracy of iMacPro when assessed
on open-source systems?

• RQ2: How does the accuracy of iMacPro compare to
iA, i.e., a previous approach based on the source code
authorship alone?

• RQ3: How does the accuracy of iMacPro compare to
iAcPro, i.e., when the maintainer information is not
utilized in iMacPro, giving us iAcPro?

The rationale behind RQs is two-fold: 1) To assess whether
our iMacPro approach can identify correct developers to
handle change requests in open source systems. 2) To dis-
cover how well the accuracy of the iMacPro approach com-
pares to those of iA and iAcPro approaches?

3.1 iA and iAcPro Approaches
We briefly summarize the iA and iAcPro approaches for

reproducibility purposes. The iA consists of two steps:

1. The first step is identical to the iMacPro approach (see
Section 2.2).

2. A union of all the authors appearing in all n files from
the previous step is created, which gives a set of d
unique authors. For each author di, the number of
files in which they appear is counted. Once this fre-
quency count for each author is obtained, all the au-
thors are sorted in descending order of their file fre-
quency counts. From this sorted list of authors, the top
k ranked authors to assist with fixing the bug/change
request in question are recommended.

We chose this approach for a comparative baseline for ac-
curacy here because it was shown to perform comparably
or better than a few of its contemporaries [17]. This previ-
ous comparison of iA included a machine learning approach
applied on past bug reports to recommend developers.

The iAcPro approach is identical to iMacPro; however,
maintainers are not included in the list of recommended de-
velopers. After getting the list of n relevant files from IR,
a list of top k developer is created using the same ranking
mechanism of iMacPro. In iAcPro, source files are sorted
based on their ICP values, similar to iMacPro; however,
only the authors of the files are considered.

The accuracy comparison between the aproaches iMacPro
and iAcPro would help us assess the level of the maintainer
contribution to the accuracy of iMacPro. That is, is it re-
ally worthwhile to put in the additional work of extracting
maintainers to recommend developers, or would the author
and change proneness information would suffice?

3.2 Subject Software Systems
The context of our study is characterized by three open

source Java systems: jEdit v4.3, a popular text editor, Ar-
goUML v0.22, a well-known UML modeling tool, and JabRef
v1.8, an open source bibliography reference manager. Ar-
goUML and jEdit were used in a previous study [17]. The
sizes of these considered systems range from 75K to 150K
LOC and contain between 4K and 11K methods. The de-
scriptive statistics of these systems are given in Table 4.

3.3 Building The Benchmarks
For each of the subjected systems, we created a bench-

mark of bugs and the actual developers who fixed them to

Table 4: Subject software system used in case study.
System Ver LOC Files Methods Terms
jEdit 4.3 103,896 503 6,413 4,372

ArgoUML 0.22 148,892 1,439 11,000 5,488
JabRef 1.8 38,680 311 2,465 2,464

conduct our case study. The benchmark consists of a set of
change requests that has the following information for each
request: a natural language query (request summary) and a
gold set of developers that addressed each change request.

The benchmark was established by a manual inspection
of the change requests, source code, and their historical
changes recorded in version-control repositories. Subversion
(SVN) repository commit logs were used to aid this process.
For example, keywords such as Bug Id in the commit mes-
sages/logs were used as starting points to examine if the
commits were in fact associated with the change request in
the issue tracking system that was indicated with these key-
words. The author and commit messages in those commits,
which can be readily obtained from SVN, were processed
to identify the developers that contributed changes to the
change requests, i.e., gold set, which forms our actual devel-
oper set for evaluation. A vast majority of change requests
are handled by a single developer (i.e., commit contributors).
In cases where we found the committer to be different from
the maintainer who contributed the change, the maintainer
was considered to be the one who resolved the bug. The
change requests in the benchmark include bug fixes, feature
requests, and feature enhancements.

Our technique operates at the change request level, so we
also need input queries to test. These queries were con-
structed by concatenating the titles and the (short) descrip-
tions of the change requests referenced from the SVN logs.

3.4 Metrics and Statistical Analyses
We evaluated the accuracy of each one of the approaches,

for all the reports in our testing set, using the recall metrics
used in previous work [1, 17, 31]. For a b number of bugs in
the benchmark of a system and a k number of recommended
developers, the formula for the recall@k is given below:

recall@k =
1

b

b∑
i=1

| RD(bi) ∩AD(bi) |

| AD(bi) |
(6)

where RD(bi) and AD(bi) are the recommended developer
by the approach and the actual developer who resolved the
issue for the bug bi.

These metrics were computed for recommendation lists of
developers with different sizes, i.e., k = 1, k = 5, and k = 10
developers. The reason for not using another popular metric
precision is that a change request (or bug fix) typically has
one developer implementing it, i.e., |AD(bi)| = 1. Therefore,
for k = 1 to 10, there is typically only one correct answer
and others are incorrect. Therefore, the best precision values
would range from 1.0 to 0.1.

We applied the One Way ANOVA test to validate whether
there was a statistically significant difference with α = 0.05
between the results. We used this non-parametric test be-
cause we did not assume normality in the distributions of
recall results. This test assesses whether all the observa-
tions in two samples are independent of each other [17]. The
other purpose of the test is to assess whether the distribu-
tion of one of the two samples is stochastically greater than

the other. Therefore, we defined the following null hypothe-
ses for our study (the alternative hypotheses could be easily
derived from the respective null hypotheses):

• H-1: There is no statistically significant difference be-
tween the recall@k values of iMacPro and iA.

• H-2: There is no statistically significant difference be-
tween the recall@k values of iMacPro and iAcPro.

3.5 Results
For each change request of each subject system in the

benchmark, we parametrized our iMacPro approach to rec-
ommend top one, top five, and top ten developers. We con-
sidered top five relevant files from the LSI-based approach.
The source code snapshots used for extracting authors were
taken from when or before the bugs were reported. The
source code commits used for the change proneness measure-
ment and extracting maintainers were from the instances
before the issues were resolved. That is, there was no in-
stance where authors and maintainers were extracted after
the given issue was already resolved (which would have been
a fault in the experiment design). These recommendations
were compared with the actual developer who resolved the
considered change request to compute the recall value. The
recall@1, recall@5, and recall@10 values for each system
were calculated (see Equation 6). Similarly, the recall@1,
recall@5, and recall@10 values for each system were calcu-
lated for the two competing approaches iA and iAcPro.

Table 5 shows the recall@k values for all the three ap-
proaches. As expected, the recall value generally increases
with the increase in the k value for each approach. For exam-
ple, the recall@1, recall@5, and recall@10 values of iMacPro
on ArgoUML are 0.15, 0.54, and 0.58 respectively. That
is, iMacPro was able to recommend the correct developer
for 15%, 54%, and 58% of change requests in the ArgoUML
benchmark by recommending one, five, and ten developers.
Table 5 suggests that the recall values were about to plateau
at k = 10 for all three approaches. Therefore, it was not nec-
essary to go beyond k = 10. The Recall@k column in Table
5 shows recall values of the three approaches.

To answer the research question RQ1, our approach
iMacPro reported recall values ranging from 0.15 to 0.69 on
three open source projects. Therefore, we posit that it can
perform well when subjected to real world open source sys-
tems. To answer the research question RQ2, we compared
the recall values of iMacPro and iA for k = 1, k = 5, and
k = 10. That is, we computed the recall gain of iMacPro
over iA, which is computed using the formula:

gain@kiMacPro−iA =
recall@kiMacPro − recall@kiA

recall@kiA
× 100

(7)
The iMacPro gain over iA % column in Table 5 shows

the recall gains of iMacPro over iA for the different k val-
ues. As can be seen, iMacPro clearly outperforms iA in
the cases of jEdit and JabRef for all the k values. The
gains in these two systems range from 33% to 75%. There
was a mixed report from ArgoUML: iA performed better
than iMacPro for k = 1 (a negative gain of 23%), whereas,
iMacPro performed better than iA for k = 5 and k = 10
(positive gains of 27% and 30%). In summary, the over-
all results suggest that iMacPro would generally

Table 5: Recall@1, 5, and 10 of the approaches iA, iAcPro, and iMacPro measured on the ArgoUML, jEdit
and JabRef benchmarks.

System/Benchmark Top k Recall@k iMacPro gain over iA % iMacPro gain over iAcPro %
iA iAcPro iMacPro

ArgoUML 1 0.19 0.18 0.15 -23.09 -13.37
82 5 0.39 0.39 0.54 28.27 39.41

Change Requests 10 0.40 0.40 0.58 30.62 44.13

jEdit 1 0.04 0.08 0.15 74.90 99.48
52 5 0.31 0.35 0.46 33.33 33.30

Change Requests 10 0.35 0.35 0.54 35.71 55.55

JabRef 1 0.17 0.14 0.39 57.14 179.99
36 5 0.31 0.31 0.69 55.99 127.23

Change Requests 10 0.31 0.31 0.69 55.99 127.23

perform better than iA in terms of recall. Aug-
menting the authorship-based approach with the
change-proneness and maintainer information typ-
ically leads to improvements in accuracy.

To answer the research question RQ3, we compared the
recall values of iMacPro and iAcPro for k = 1, k = 5, and
k = 10. That is, we computed the recall gain of iMacPro
over iAcPro, which is computed using the formula:

gain@kiMacPro−iAcPro =
recall@kiMacPro − recall@kiAcPro

recall@kiAcPro
×100

(8)
The iMacPro gain over iAcPro % column in Table 5

shows the recall gains of iMacPro over iAcPro for the differ-
ent k values. As can be seen, iMacPro clearly outperforms
iAcPro in the cases of jEdit and JabRef for all the k values.
The gains in these two systems range from 33% to 180%.
There was a mixed report from ArgoUML: iAcPro performed
better than iMacProfor k = 1 (a negative gain of 13%),
whereas, iMacPro performed better than iAcProfor k = 5
and k = 10 (positive gains of 39% and 44%). In summary,
the overall results suggest that iMacPro would gen-
erally perform better than iAcPro in terms of recall.
The maintainer component is a substantial contrib-
utor to the effectiveness (accuracy) of iMacPro.

To test the hypothesis H1, we applied the One Way
ANOVA test on the recall values of iMacPro and iA for
each of the change request in the benchmark of each sub-
ject system. The iMacPro-iA column in Table 6 shows
the p-values for k = 1, k = 5, and k = 10 for each subject
system. In the cases of jEdit and JabRef , the p-values are
≤0.05, so we can reject the null hypothesis H1. In the case
of ArgoUML, the p-values are ≤0.05 for k = 5 and k = 10,
so we can reject the null hypothesis H1. Note that in these
cases, the reported gains were positive in Table 5. In case
of ArgoUML, the p-value is >0.05 for k = 1, so we cannot
reject the null hypothesis H1. Revisiting the corresponding
recall@1 for this case in Table 5, iA performed better than
iMacPro; however, this observation is not statistically sig-
nificant. The only case in which iMacPro seemed to have
a disadvantage over iA is not statistically valid. One of the
reasons that could be attributed for k = 1 is that iA was
able to recommend only the resolutions performed by one
developer correctly, whereas, iMacPro was able to do so for
multiple developers. That is, iA performed much better for
the issues in the benchmark for this one specific developer
than iMacPro; however iMacPro had an advantage for is-

sues resolved by other developers. Therefore, there is no
clear winner for k = 1 statistically in ArgoUML. Eventually,
the diversity of recommended developers by iMacPro was
advantages over iA, which can also be seen in the results for
k = 5, and k = 10. In summary, we reject the null
hypothesis H1 in favor of iMacPro over iA.

To test the hypothesis H2, we applied the One Way
ANOVA test on the recall values of iMacPro and iAcPro
for each of the change request in the benchmark of each
subject system. The iMacPro-iAcPro column in Table 6
shows the p-values for k = 1, k = 5, and k = 10 for each sub-
ject system. Similar to the iMacPro-iA comparison, the
p-values support rejection of the null hypothesis H2 in all
but two cases. These two cases are for k = 1 for ArgoUML
and jEdit . In these two cases, neither iMacPro nor iAcPro
has an advantage over the other. One of the reasons that
could be attributed for this observation is that both authors
and maintainers were the same developers. Therefore, nei-
ther of these approaches offered a specific competitive edge.
In summary, we reject the null hypothesis H2 in fa-
vor of iMacPro over iAcPro.

Now, we provide representative bugs from the subject
systems detailing iMacPro’s performance compared to the
two other approaches. For example, iMacPro recommends
the correct developer (coezbek) in the 1st position for
bug#1548875 in jEdit , whereas, iA and iAcPro failed to
recommend the correct developer at all. In jEdit sys-
tem for bug#2946041 iMacPro was able to find the cor-
rect developer (kpouer) in the 1st position, whereas, iA and
iAcPro found him in the the 2nd position. In ArgoUML, iA
and iAcPro recommended the correct developer (tfmorris)
for bug#4720 in the 5ith and 3rd positions respectively,
whereas, iMacPro found it in the 1st position.

4. THREATS TO VALIDITY
We identified threats to validity that could influence the

results of our study and limit their generalization.

4.1 Construct Validity
We discuss threats to construct validity that concern the

means that are used in our method and its accuracy assess-
ment as a depiction of reality. In other words, do the accu-
racy measures and their operational computation represent
correctness of developer recommendations?

Accuracy measures and correctness of developer recom-
mendations: We used two widely used metrics recall and
recall gain in our study. We considered a gold-set to be

Table 6: p-values from applying One Way ANOVA
on recall@k values for each subject system.

System Top k p-value
iMacPro-iA iMacPro- iAcPro

ArgoUML 1 ≤0.54 ≤0.68
5 ≤0.05 ≤0.05
10 ≤0.03 ≤0.03

jEdit 1 ≤0.05 ≤0.11
5 ≤0.03 ≤0.04
10 ≤0.01 ≤0.01

JabRef 1 ≤0.04 ≤0.02
5 ≡0.00 ≡0.00
10 ≡0.00 ≡0.00

developers who contributed source code changes to address
change requests. Of course, it is possible that other team
members are also equally qualified to handle these change
requests; however, such a gold-set would be very difficult
to ascertain in practice without involving the project stake-
holders, for example. Moreover, these project stakeholders
would need to remember exactly who were good alternative
developers at that time. Thus, we hypothesize that building
such datasets by interviewing project managers could be an
error-prone activity with substantial bias. Nonetheless, our
undertaken benchmark provides careful accuracy values yet
perhaps conservative bounds.

LSI-based matching of change requests to relevant files:
The IR-based concept location tool based on LSI does not
always return the classes (files) that are found in the com-
mits related to the bug fixes or change request implemen-
tations in all the cases. However, based on our prior work
we observed that the files that were recommended as tex-
tually similar were either relevant (but not involved in the
change that resolved the issue) or conceptually related (i.e.,
developers were also knowledgeable in these parts).

Measuring change-proneness of source code files: Al-
though we understand that it is possible to use other metrics
for measuring change proneness, we decided to use issue fix-
ing commits as a measure of the source-code file change affin-
ity. Our rationale is based on the fact that it is a common
practice in the open source development to include explicit
issues IDs in the commit messages, which can be captured
and counted effectively using a very lightweight approach.

4.2 Internal Validity
We discuss threats to internal validity that concern factors

that could have influenced our results.
Missing Traceability. We only considered commits with

the explicit documentation of maintenance activities, which
were determined from keyword matching. It should be noted
that it is a common approach used in a number of previous
approaches and studies. Nonetheless, we do not claim that
our approach is exhaustive in extracting all the issue-fixing
commits for all the change requests. Bachmann et al. [3]
identified the missing traceability between bug reports and
commits in Apache. Wu et al. [30] proposed a machine-
learning approach to identify such missing links. In the fu-
ture, we plan to incorporate this element in iMacPro.

Merging of developers from authors and maintainers.
When authors and maintainers are combined in iMacPro
to obtain the final list of combined developers, maintainers
are picked first. Although our empirical study shows that

this choice worked very well, it is possible that a different
selection scheme (e.g., authors first) could produce a differ-
ent (perhaps better) performance. We plan to investigate
this topic in future studies.

Ranking of source code files based on change-proneness
alone. We ranked the relevant source code units to the given
change request based on their change proneness alone; how-
ever, it is possible that another ranking mechanism could
have impact on the performance. We plan to examine the
impact of a ranking mechanism based on a combination of
the textual similarity and change-proneness measures.

Developer identity mismatch. Although we carefully ex-
amined all the available sources of information to match
different identities of the same developer, it is possible that
we missed or mismatched a few cases.

Impact of other factors: We demonstrated a positive rela-
tionship between the developers recommended with iMacPro
and the developers who fixed them (i.e., our constructed
benchmark). It is possible that other factors, such as sched-
ule, work habits, technology fade or expertise, and project
policy/roles may also influence the triaging results. A defini-
tive answer to this question would require another set of
studies, which we believe is beyond the scope of this work.

4.3 External Validity
We discuss threats to external validity that concern fac-

tors that are associated with generalizing the validity of our
results to datasets other than considered in our study.

Assessed systems are not representative: We evaluated
three open source systems, which we believe are good repre-
sentatives of large-scale, collaboratively developed software
systems. However, we cannot claim that these results would
equally hold on other systems (e.g., closed source).

Sampled sets of change requests are not sufficient: The
size of the evaluation sample and the number of systems
remains a difficult issue, as there is no accepted “gold stan-
dard” for the developer recommendation problem. The ap-
proach of “the more, the better” may not necessarily yield
a rigorous evaluation, as there are known issues of bug du-
plication [35, 40] and other noisy information in bug/issue
databases [4, 5]. Not accounting for such issues may lead to
biased results positively or negatively or both. The consid-
ered sample sizes in our evaluation, however, is not uncom-
mon, for example, Anvik et al. [1] also considered 22 bug
reports from Firefox in their evaluation. Nonetheless, this
topic remains an important part of our future work.

4.4 Reliability
We discuss threats that could impact replication of our

evaluation study.
Dataset not available: One of the main difficulties in con-

ducting empirical studies is the access (or lack of it) to the
dataset of interest. We used open source datasets that are
publicly available. The details of the bug and accuracy data
for ArgoUML, JabRef , and jEdit are available at our online
appendix http://serl.cs.wichita.edu/svn/projects/

dev-rec-authors/trunk/Paper/icpc2014-appendix/.
Evaluation protocol not available: A concern could be that

the lack of sufficient information on the evaluation procedure
and protocol may limit the reproducibility of the study. We
believe that our accuracy measures along with the evaluation
procedure are sufficiently documented to enable replication
on the same or even on different datasets.

http://serl.cs.wichita.edu/svn/projects/dev-rec-authors/trunk/Paper/icpc2014-appendix/
http://serl.cs.wichita.edu/svn/projects/dev-rec-authors/trunk/Paper/icpc2014-appendix/

5. RELATED WORK
McDonald and Ackerman [20] designed a tool coined as

Expertise Recommender (ER) to locate developers with the
desired expertise. The tool uses a heuristic that considers
the most recent modification date when developers modi-
fied a specific module. ER uses vector based similarity to
identify technical support. Three query vectors (symptoms,
customers, and modules) are constructed for each request.
Subsequently, the vectors are compared to developer profiles.
This approach has been designed for specific organizations
and not tested on open source projects.

Minto and Murphy [21] developed a tool called Emergent
Expertise Locator (EEL), which is based on the framework
of Cataldo et al. [8] to compute coordination requirements
between documents. EEL mines the history to determine
how files were changed together and who committed those
changes. Using this data, EEL suggests developers who can
assist with a given problem. Another tool to identify devel-
opers with the desired expertise is Expertise Browser (ExB)
[22]. The fundamental unit of experience is the Experience
Atom (EA). The number of these EAs in a specific domain
measures the developer experience. A code change that has
been made on a specific file is the smallest EA.

Anvik and Murphy [2] conducted an empirical evaluation
of two techniques for identifying expert developers. Devel-
opers acquire expertise as they work on specific parts of a
system. They term this expertise as implementation exper-
tise. Both techniques considered in the empirical evaluation
are based on mining code and bug repositories. The first
technique analyzes the check-in logs for modules that con-
tain fixed source files. Developers who recently performed
a change are selected and filtered. In the second technique,
the bug reports from bug repositories are analyzed. The
developers are identified from the CC lists, comments, and
bug fixes. Their study concludes that both techniques have
relative strengths in different ways. In the first technique,
the most recent activity date is used to select developers.
Tamrawi et al. [28] used fuzzy-sets to the model bug- fixing
expertise of developers based on the hypothesis that devel-
opers who recently fixed bugs are likely to fix them in the
near future. Hence, only recent reports were considered to
build the fuzzy-sets representing the membership of develop-
ers to technical terms in the reports. For incoming reports,
developers are recommend by comparing their membership
to the terms included in the new report.

An approach uses a machine learning technique to auto-
matically assign a bug report to a developer [1]. The re-
sulting classifier analyzes the textual contents of a given
report and recommends a list of developers with relevant
expertise. ExpertiseNet also uses a text-based approach to
build a graph model for expertise modeling [27]. Another ap-
proach to facilitate bug triaging uses a graph model based
on Markov chains, which captures the bug reassignment his-
tory [15]. Matter et al. [19] used the similarity of textual
terms between a given bug report of interest and source code
changes (i.e., word frequencies of the diff given changes from
source code repositories).

There are a number of works on using MSR techniques
to study and analyze developer contributions. Rahman and
Devanbu [25] study the impact of authorship on code quality.
They conclude that authors with specialized experience for
a file is more important than general expertise. Bird et al.
[6] perform a study on large commercial software systems

to examine the relationship between code ownership and
software quality. Their findings indicate that high levels of
ownership are associated with fewer defects. A description
of characteristics of the development team of PostgreSQL
appears in a report by German [14]. His findings indicated
that in the last years of PostgreSQL only two persons were
responsible for most of the source code. Bird et al. [5] ana-
lyzed the communication and co-ordination activities of the
participants by mining email archives. Del Rosso [11] built
a social network of knowledge-intensive software developers
based on collaborations and interaction. Ma et al. [18] pro-
posed a technique that uses implementation expertise (i.e.,
developers usage of API methods) to identify developers.
Weissgerber et al. [29] depicts the relationship between the
lifetime of the project and the number of files and the num-
ber of files each author updates by analyzing and visualizing
the check-in information for open source projects. German
[13] provided a visualization to show which developers tend
to modify certain files by studying the modification records
(MRs) of CVS logs. Fischer et al. [12] analyzed and related
bug report data for tracking features in software. Bortis
et al. [7] introduced PorchLight a tag-based interface and
customized query expression to offer triagers the ability to
explore, work with, and assign bugs in groups. Shokripour
et al. [26] proposed an approach for bug report assignment
based on predicted location (source code) of the bug and
showed advantages of this approach over activity based ap-
proach. Corley et al. [9] built ohm tool that used a combi-
nation of software repository mining and topic modeling for
measuring the ownership of linguistic topics in source code.
Begel et al. [4] conducted a survey of inter-team coordina-
tion needs and presented a flexible Codebook framework that
can address most of those needs.

6. CONCLUSIONS AND FUTURE WORK
We presented the iMacPro approach to recommend de-

velopers who are most likely to implement incoming change
requests. iMacPro determines and integrates, authors and
maintainers of relevant source code files, which are change
prone, to a given change request. Such a combined approach
to recommend developers was not investigated and reported
in the literature previously. Moreover, an empirical study on
three open source systems showed that iMacPro can outper-
form a previous approach with statistically significant recall
gains. The results also justify the accuracy benefit of includ-
ing source-code maintainers in the functioning of iMacPro.

In the future, we plan to conduct additional empirical
studies to further validate iMacPro. Furthermore, we will
investigate other sources of information that could further
improve its effectiveness. These sources include different
measures for change proneness, ranking of relevant source
code, and merging schemes for authors and developers.

7. ACKNOWLEDGMENTS
We would like to thank Bogdan Dit from the College of

William and Mary for his help in verifying the data and
obtaining IR-based results. This work is supported in part
by the NSF CCF-1156401 and NSF CCF-1016868 grants.
Any opinions, findings and conclusions expressed herein are
those of the authors and do not necessarily reflect those of
the sponsors.

8. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix

this bug? In Proceedings of the 28th ACM
International Conference on Software Engineering,
ICSE ’06, pages 361–370, New York, NY, USA, 2006.

[2] J. Anvik and G. Murphy. Determining implementation
expertise from bug reports. In Fourth International
Workshop on Mining Software Repositories (MSR),
2007 ICSE Workshops MSR ’07, pages 2–2, 2007.

[3] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and
A. Bernstein. The missing links: Bugs and bug-fix
commits. In Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’10, pages 97–106, New
York, NY, USA, 2010. ACM.

[4] A. Begel, Y. P. Khoo, and T. Zimmermann.
Codebook: Discovering and exploiting relationships in
software repositories. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 125–134,
New York, NY, USA, 2010. ACM.

[5] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
Proceedings of the 2006 International Workshop on
Mining Software Repositories, MSR ’06, pages
137–143, New York, NY, USA, 2006. ACM.

[6] C. Bird, N. Nagappan, B. Murphy, H. Gall, and
P. Devanbu. Don’t touch my code!: Examining the
effects of ownership on software quality. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 4–14, New York,
NY, USA, 2011. ACM.

[7] G. Bortis and A. v. d. Hoek. Porchlight: A tag-based
approach to bug triaging. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 342–351, Piscataway, NJ, USA, 2013.
IEEE Press.

[8] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and
K. M. Carley. Identification of coordination
requirements: Implications for the design of
collaboration and awareness tools. In Proceedings of
the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work, CSCW ’06, pages
353–362, New York, NY, USA, 2006. ACM.

[9] C. S. Corley, E. A. Kammer, and N. A. Kraft.
Modeling the ownership of source code topics. In
D. Beyer, A. van Deursen, and M. W. Godfrey,
editors, ICPC, pages 173–182, 2012.

[10] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. JOURNAL OF THE AMERICAN
SOCIETY FOR INFORMATION SCIENCE,
41(6):391–407, 1990.

[11] C. Del Rosso. Comprehend and analyze knowledge
networks to improve software evolution. J. Softw.
Maint. Evol., 21(3):189–215, May 2009.

[12] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In Software Maintenance, 2003.
ICSM 2003. Proceedings. International Conference on,
pages 23–32, 2003.

[13] D. German. An empirical study of fine-grained
software modifications. In Software Maintenance,
2004. Proceedings. 20th IEEE International
Conference on, pages 316–325, 2004.

[14] D. M. German. A study of the contributors of
postgresql. In Proceedings of the 2006 ACM
International Workshop on Mining Software
Repositories, MSR ’06, pages 163–164, New York, NY,
USA, 2006.

[15] G. Jeong, S. Kim, and T. Zimmermann. Improving
bug triage with bug tossing graphs. In Proceedings of
the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, pages 111–120, New
York, NY, USA, 2009. ACM.

[16] H. Kagdi, M. Gethers, D. Poshyvanyk, and
M. Hammad. Assigning change requests to software
developers. Journal of Software: Evolution and
Process, 24(1):3–33, 2012.

[17] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi,
M. Gethers, and D. Poshyvanyk. Triaging incoming
change requests: Bug or commit history, or code
authorship? In Software Maintenance (ICSM), 2012
28th IEEE International Conference on, pages
451–460, 2012.

[18] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito.
Expert recommendation with usage expertise. In
Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, pages 535–538, 2009.

[19] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug
reports using a vocabulary-based expertise model of
developers. In Mining Software Repositories, 2009.
MSR ’09. 6th IEEE International Working Conference
on, pages 131–140, 2009.

[20] D. W. McDonald and M. S. Ackerman. Expertise
recommender: A flexible recommendation system and
architecture. In Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work,
CSCW ’00, pages 231–240, New York, NY, USA,
2000. ACM.

[21] S. Minto and G. Murphy. Recommending emergent
teams. In Mining Software Repositories, 2007. ICSE
Workshops MSR ’07. Fourth International Workshop
on, pages 5–5, 2007.

[22] A. Mockus and J. D. Herbsleb. Expertise browser: A
quantitative approach to identifying expertise. In
Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, pages 503–512, New
York, NY, USA, 2002. ACM.

[23] L. Moonen. Lightweight impact analysis using island
grammars. In In Proceedings of the 10th International
Workshop on Program Comprehension (IWPC 2002).
IEEE Computer, pages 219–228. Society Press, 2002.

[24] D. Poshyvanyk and A. Marcus. Combining formal
concept analysis with information retrieval for concept
location in source code. In Program Comprehension,
2007. ICPC ’07. 15th IEEE International Conference
on, pages 37–48, 2007.

[25] F. Rahman and P. Devanbu. Ownership, experience
and defects: A fine-grained study of authorship. In
Proceedings of the 33rd International Conference on

Software Engineering, ICSE ’11, pages 491–500, New
York, NY, USA, 2011. ACM.

[26] R. Shokripour, J. Anvik, Z. M. Kasirun, and
S. Zamani. Why so complicated? simple term filtering
and weighting for location-based bug report
assignment recommendation. In MSR, pages 2–11,
2013.

[27] X. Song, B. L. Tseng, C. yung Lin, and M. ting Sun.
Expertisenet: Relational and evolutionary expert
modeling. In in User Modeling, 2005, pages 99–108,
2005.

[28] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N.
Nguyen. Fuzzy set and cache-based approach for bug
triaging. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11,
pages 365–375, New York, NY, USA, 2011. ACM.

[29] P. Weissgerber, M. Pohl, and M. Burch. Visual data
mining in software archives to detect how developers
work together. In Mining Software Repositories, 2007.
ICSE Workshops MSR ’07. Fourth International
Workshop on, pages 9–9, 2007.

[30] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink:
Recovering links between bugs and changes. In
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 15–25,
New York, NY, USA, 2011. ACM.

[31] X. Xia, D. Lo, X. Wang, and B. Zhou. Accurate
developer recommendation for bug resolution. In
Reverse Engineering (WCRE), 2013 20th Working
Conference on, pages 72–81, 2013.

	Introduction
	The iMacPro Approach
	Key Terms and Definitions
	Locating Relevant Files with Information Retrieval
	Ranking Source Files with Issue Change Proneness
	Extracting Authors from Source Code
	Extracting Maintainers from Change History
	Fusion of Authors and Maintainers of Change-Prone Source Code to Recommend Developers

	Empirical Study
	iA and iAcPro Approaches
	Subject Software Systems
	Building The Benchmarks
	Metrics and Statistical Analyses
	Results

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

