
Generating Reproducible and Replayable Bug
Reports from Android Application Crashes

Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-Cárdenas, and Denys Poshyvanyk
Department of Computer Science

College of William and Mary
Williamsburg, Virginia 23187–8795

Email: {mgwhite, mlinarev, pj, cebernal, denys}@cs.wm.edu

Abstract—Manually reproducing bugs is time-consuming and
tedious. Software maintainers routinely try to reproduce uncon-
firmed issues using incomplete or noninformative bug reports.
Consequently, while reproducing an issue, the maintainer must
augment the report with information—such as a reliable sequence
of descriptive steps to reproduce the bug—to aid developers with
diagnosing the issue. This process encumbers issue resolution
from the time the bug is entered in the issue tracking system
until it is reproduced. This paper presents CRASHDROID, an
approach for automating the process of reproducing a bug by
translating the call stack from a crash report into expressive
steps to reproduce the bug and a kernel event trace that can
be replayed on-demand. CRASHDROID manages traceability links
between scenarios’ natural language descriptions, method call
traces, and kernel event traces. We evaluated CRASHDROID on
several open-source Android applications infected with errors.
Given call stacks from crash reports, CRASHDROID was able to
generate expressive steps to reproduce the bugs and automatically
replay the crashes. Moreover, users were able to confirm the
crashes faster with CRASHDROID than manually reproducing the
bugs or using a stress-testing tool.

Keywords—Android, crash and bug reports, reproducibility

I. INTRODUCTION

The burgeoning mobile device and application (app) market
is fueled by performant hardware and evolving platforms,
which support increasingly complex functionality. Many of the
mobile apps have practically the same features as their desktop
variants. Furthermore, mobile platforms such as Android and
iOS enable user interaction via a touchscreen and a diverse
set of sensors (e.g., accelerometer, ambient temperature, gy-
roscope, and light) that present new challenges for software
testing and maintenance. Despite these new platform-specific
challenges, the development and maintenance processes for
desktop and mobile apps are quite similar with a few no-
table exceptions [1]–[4]. Nonetheless, high-quality bug reports
are equally important for maintaining desktop and mobile
apps [5]–[7]. Ideally, bug reports should contain a detailed
description of a failure and occasionally hint at the location of
the fault in the code in the form of patches or stack traces [8],
[9]. However, the quality of bug reports (and user reviews) for
Android apps in the wild varies considerably as they are often
incomplete or noninformative [10]. Finding and fixing issues
in modern mobile apps is difficult; verifying the solution,
without being able to reproduce the bug using the bug report,
compounds this complexity.

The adverse impact of noninformative bug reports on
maintaining mobile apps is aggravated when the issue con-
cerns bugs that require gestures (e.g., swiping, zooming, and

pinching the touchscreen) or interactions that use sensors.
Equivalently, precise locations of the gesture and temporal
parameters may be required to reproduce the bug. Gestures,
sensors, precise spatial coordinates, and interarrival times
between events/gestures are only some of the challenges that
may prevent a maintainer from reproducing an issue even if
she is given a report with a complete sequence of steps to
reproduce the bug. For example, it would be challenging to
unambiguously describe, in natural language terms, a sequence
of steps to reproduce a bug in Google Maps that requires
pinching and zooming the touchscreen and simultaneously uses
input from the sensors to render the map. Thus, it is vital to
provide replayable scripts that can precisely demonstrate how
to reproduce a bug in addition to complete descriptions. These
replayable scripts are critical for cases where issues may be
difficult to manually reproduce because of particular spatial or
temporal requirements like exceedingly fast interarrival times
to trigger a fault when stress-testing a network interface.
Recently, several tools for systematic exploration [11]–[20]
and record and replay [21] have been proposed, but none
of the existing approaches provides a complete solution for
automatically producing natural language bug reports with
replayable scripts for an incoming crash report.

In this paper, we present CRASHDROID, a novel approach
to automatically generating reproducible bug reports given the
call stack from an incoming crash report, and these bug reports
can be replayed on-demand to demonstrate the crash. Our
solution relies on the fact that stakeholders of the application
under test (AUT) can compose application usage scenarios in
natural language terms that use different features of the app.
Afterward, kernel event traces (i.e., live dumps of kernel input
events) of the scenarios are recorded while executing those
scenarios, with minimal overhead (approximately 1%) using
an engine based in part on RERAN [21]. Thus, recording
these scenarios is no different from typical usage. Given
a dataset of natural language descriptions and kernel event
traces, CRASHDROID translates these traces into higher-order
user actions (e.g., click, long click, and swipe) and establishes
traceability links between each sentence in the description and
the corresponding high-order user action. CRASHDROID re-
plays each low-level event trace several times on a physical
test device (a Google Nexus 7 tablet) and collects precise
execution profiles.1 Subsequently, the user actions are aligned
with sequences of methods in execution profiles using time
stamps, indirectly enabling traceability between sentences in

1By execution profile, we mean the sequence of calls to APIs and app-
specific methods during the execution of a scenario.



the descriptions and method sequences in execution profiles.
Afterward, given the call stack from an Android app crash
report, CRASHDROID queries the existing database of execution
profiles to identify matching calling contexts and ranks can-
didate profiles using the longest common subsequence (LCS)
algorithm [22]. If a candidate profile is identified, CRASH-
DROID uses traceability links between profiles and scenario
descriptions to generate a bug report using sentences from
the descriptions. Next, CRASHDROID validates each candidate
profile by running a representative event trace on the AUT
to check whether the AUT’s Application PacKage (APK)
file crashes in that context. After the crash is automatically
reproduced and confirmed, CRASHDROID returns the generated
bug report, which includes natural language steps to reproduce
the bug with the crashing stack trace and a replayable script.
We evaluated CRASHDROID with five open-source Android
apps in a study designed to measure the effectiveness and
expressiveness of automatically generated bug reports. We
found that CRASHDROID compared favorably to both human-
written reports and other automated testing tools in terms of
both time and the ability to crash an app.

II. RELATED WORK

CRASHDROID is the only approach, to the best of our
knowledge, that is able to automatically generate natural
language bug reports and reproduce/replay crashes in Android
apps using only a call stack and an APK. However, CRASH-
DROID’s record and replay mechanisms are related to test case
generation approaches, keyword-action approaches, and event-
driven approaches.

A. Approaches for Crashing and Re-crashing Software

It should be noted that all the techniques in this subsection
are not yet available for the Android platform; however, we
discuss them here since they are similar to our work in terms
of their goal, i.e., detecting and reproducing crashes.

One related technique to CRASHDROID is ReCrash [23], an
approach for reproducing software crashes by monitoring and
storing partial copies of method arguments in memory during a
program’s execution and then using this information to create
test cases designed to reproduce the failure after observing
crashes. While CRASHDROID and ReCrash have the same
goal of reproducing crashes, they achieve it in two different
ways. ReCrash is a dynamic monitoring approach that was
designed for Java (ReCrashJ [23]), whereas CRASHDROID is
an approach designed to deal with complex crashes pertinent
to the Android platform. CRASHDROID can handle reproducing
crashes involving gestures, e.g., click, long click, swipe, and
type. CRASHDROID also supports recording and replaying that
ReCrash was not designed to support.

Another set of approaches is represented by JCrasher [24],
Eclat [25], DSDCrasher [26], and Randoop [27]. These are
test-case generation techniques, which exploit random inputs
to find crashes. Compared to CRASHDROID, these techniques
generate test cases that are not necessarily representative
of actual app usage, whereas CRASHDROID is designed to
reproduce real crashes via actual program executions.

Crash reporting systems send stack traces or core dumps
back to developers [28]–[32]. The idea behind these ap-
proaches is similar to an idea behind CRASHDROID insofar

as stack traces are used as input to identify the problem.
ReBucket [32] is designed to cluster crash reports by mea-
suring call stack similarity to aid debugging and facilitate
diagnosis. However, CRASHDROID is solving a problem these
aforementioned approaches are not able to solve—reproducing
crashes with minimal developer effort by generating both bug
reports and replayable scripts.

The next important step of debugging a crash report is
to identify faulty functions, which is usually a challenging
and labor-intensive task. A number of techniques for fault-
localization based on crash reports have been proposed [33]–
[43]. However, a detailed comparison and discussion of these
approaches is beyond the scope of this paper since our work is
concerned with generating reproducible and replayable crash
reports to be used as a reliable starting point for developers
rather than identifying exact root causes of crashes.

B. Approaches for GUI-based Testing of Android Apps

The closest work to ours is RERAN [21] since CRASH-
DROID uses RERAN as an underlying engine. The key dif-
ference between CRASHDROID and RERAN is the fact that
CRASHDROID not only records/replays kernel event traces but
also captures execution profiles and links them to natural
language descriptions and the steps in those descriptions.
CRASHDROID uses an incoming call stack as an input and
matches it against a set of existing profile traces. If it finds
a match for a given calling context, CRASHDROID generates
a bug report with expressive steps to reproduce and a replay
script. Moreover, before presenting the bug report to the user,
CRASHDROID validates it by replaying the script and checking
the validated crash context against the incoming call stack.

Keyword-action tools for the Android platform include
MonkeyRunner [13], Robotium [15], and GUITAR [16]. No-
tably, keyword-action tools depend on the availability of the
app’s layout to identify GUI components and handle IDs.
The key difference between our approach, which relies on
RERAN, and these tools is that CRASHDROID is agnostic
to the layout and availability of user-defined GUI elements.
Additionally, keyword-action tools do not support non-trivial
touchscreen gestures nor other input sensors. In our experi-
ence with using MonkeyRunner, it is quite tedious to design
scripts that include long touches, and the support for swiping,
zooming, and pinching is limited. Another widely used tool
for testing Android apps is the Android GUI Monkey [14].
With Monkey, developers/testers generate random actions (e.g.,
touches, swipes, and other system events) inside the app.

Another related approach is Dynodroid [12], an event-
driven technique that enables Android app testing by observing
not only GUI-based events but also system events. The main
idea behind Dynodroid is explained by an observe-select-
execute cycle [12] in which Dynodroid first observes which
events are related to the app before selecting relevant ones
and executing them. While the GUI-based aspect has been
captured in other tools, Dynodroid extends it by handling
system events such as an incoming message or a low bat-
tery [12]. But Dynodroid does not handle multi-touch gestures
nor input from a wide range of sensors, which are vital for
reproducing/replaying intricate bugs pertinent to mobile apps.



Finally, examples of approaches and tools relying on sys-
tematic GUI-based testing strategies are the work by Takala et
al. [44], and the tools VanarSena [45], AndroidRipper [46],
ORBIT [19], A3E [47], and SwiftHand [18]. Examples of
approaches aimed at GUI-based testing using event sequences
are Collider [48], EvoDroid [17], and MobiGUITAR [49].
However, unlike CRASHDROID, none of these tools/approaches
are aimed at automtically generating natural language bug
reports and replaying crashes in Android apps.

III. SYSTEM ARCHITECTURE

CRASHDROID relies on two phases, an offline workflow
and an online dataflow, that provide a database of artifacts
and traceability links between scenarios’ descriptions and
kernel input events (workflow) and reproducible/replayable
bug reports for target crashes (dataflow). Fig. 1 depicts the
CRASHDROID architecture. The first part (Fig. 1-a) describes
the offline workflow where CRASHDROID links scenarios’
natural language descriptions, replay scripts, and app execution
profiles. The offline workflow is a precondition for the online
dataflow. The second part (Fig. 1-b) describes the online
dataflow, where CRASHDROID automatically transforms call
stacks from incoming crash reports into sets of expressive bug
reports and replay scripts for a software maintainer.

A. Offline CrashDroid Workflow

Alg. 1 specifies the offline CRASHDROID workflow, which
receives a set of scenario descriptions D representing app
usages provided by the stakeholders and produces parallel
corpora comprising replay scripts S and app execution profiles
P . The workflow’s guiding design principle is to manage
transparent traceability links among narratives in descriptions,
event streams, and profiles.

1) Collecting Natural Language Descriptions: The first
stage in the offline phase is to collect descriptions of well-
formed natural language sentences for app features from
developers, testers, beta-users, or even ordinary users (Fig. 1
as (1)). There is no requirement on expertise to build a
description. These descriptions should simply specify scenarios
that use one or more features, but CRASHDROID places a few
practical constraints on the content. For instance, the scenario
is required to start from the app’s main activity. Additionally,
each sentence in the description is required to contain a subject
and a verb and may contain components as well as any number
of adjectives, adverbs, prepositional phrases, and participial
phrases describing the verb or component. The subject may
simply be the first-person singular pronoun “I.” The verb is the
action, which is limited to “touched,” “longtouched,” “swiped,”
and “typed.” Currently, CRASHDROID does not support the
gestures “zoomed” and “pinched.” However, it is possible to
add these actions to CRASHDROID since the system is based
in part on RERAN, which supports recording and replaying
these gestures, and CRASHDROID can use the kernel’s multi-
touch protocol to parse the event traces into actions.

The swiped action is coupled with a direction, either “up,”
“down,” “left,” or “right,” and the typed action is coupled
with a string literal constrained to one or more lowercase
letters, digits, or spaces. The typed action is essentially a
macro that expands one sentence in the description into a

Algorithm 1: Offline CRASHDROID Workflow
Input: D
Output: S, P

1 begin
2 S = P = ∅;
3 foreach d ∈ D do /* collect */
4 repeat
5 g ← record getevent log for d;
6 until num sentences(d) == num actions(g);
7 s← translate g;
8 S ← S ∪ s;
9 foreach s ∈ S do /* capture */

10 p← profile s;
11 P ← P ∪ p;
12 foreach p ∈ P do /* munge */
13 filter Dalvik virtual machine calls from p;
14 serialize the method calls in p;
15 filter unique elements of p;

sequence of sentences where the number of sentences in the
macro expansion is equal to the number of characters in the
string literal, but the sentence that precedes the typed action
must describe how the user brought focus to the component.
For example, consider the following description: I touched the
“Search” text field at the top of the touchscreen. I typed “crash
droid” in the “Search” text field. I touched the “CrashDroid”
list item. The first sentence (i.e., I touched. . . touchscreen.) is
necessary because it describes how the user brought focus
to the text field. The second sentence (i.e., I typed. . . text
field.) would be expanded into a sequence of several (11 in
the example) sentences, one sentence for each character in
the string literal “crash droid” since the user enters input by
touching keys on the keypad and every touch is a user action.

CRASHDROID limits descriptions to the following set of
components: list item, grid item, button, text field, checkbox,
radio button, toggle button, spinner, picker, seek bar, and
image. Each component in this list is a valid View object in
the Android programming model [50]. The adjectives, adverbs,
prepositional phrases, and participial phrases qualify verbs or
components, e.g., the location on the touchscreen where the
action was performed, the color of the component, or any text
on the component. Finally, the descriptions are stored in the
CRASHDROID database.

2) Compiling Replay Scripts for Descriptions: The next
stage in the offline phase, represented in Alg. 1 lines 3–8 and
Fig. 1 as (2), is to generate a replay script for a description.
The user passes the description as a command line argument
to CRASHDROID which begins recording kernel input events
as the stakeholder performs, in a mobile device, steps from
the description. CRASHDROID uses the Getevent tool [51], like
RERAN, to read device files and write a log of streaming
events on the device. RERAN is a tool that facilitates recording
and replaying Android hardware events. It replays the events
with timing that is faithful to the recording, so an event trace is
virtually indistinguishable from a real user interacting with the
device—from the kernel’s perspective. We forked the project
and implemented several necessary updates [52]. Specifically,



Scenario
descriptions

Record engine
(Linux getevent)

RERAN
(replay engine)

ADB profiler

Android Devices

Trace
translator

CrashDroid
coordinator

getevent 
log

Replay
 script

CrashDroid
traces aligner

Execution
profile

CrashDroid
matching 

engine (LCS)

CrashDroid
oracle

Scenario
description

CrashDroid
bug reports 
generator

Logcat
trace

a) CrashDroid testing artifacts collection (offline phase) b) CrashDroid bug reports generation (online phase)

Scenario
descriptions

CrashDroid traces

Relevant
CrashDroid 

traces

Event
traces

Replay
script

RERAN
(replay engine)

ADB logcat

Android Device

Replay
script

CrashDroid
inspector

Logcat
trace

Relevant
CrashDroid 

trace

Crash?

CrashDroid 
bug report

(description +
replay script + 
logcat trace)

1

2

3

4

5

6

7 8

9

Yes

6

No

Replay
 script

Developers/Testers
Replay script 

+ getevent log 

Logcat
trace

Actions

getevent 
log

Fig. 1. CRASHDROID comprises an offline workflow and an online dataflow. In the workflow, developers, testers, or users build scenario descriptions and
record replay scripts for the descriptions. CRASHDROID consumes the replay scripts and produces execution profiles for the scripts. In the dataflow, given a
crash report, CRASHDROID will compute similar profiles using the LCS algorithm. Given these “similar” profiles, CRASHDROID will query the corresponding
descriptions and replay scripts to automatically generate bug reports. Finally, CRASHDROID will automatically verify its list of candidate bug reports (sorted by
similarity) to verify that its suggestions crash the app, before presenting its reproducible/replayable bug reports to the user.

we fixed a bug that prevented longer event traces from being
replayed, and we updated the tool to be compatible with
Android APIs newer than Gingerbread.

Kernel input events are represented as a 5-tuple with the
following fields: time, device, type, code, and value. When
users interact with an app, hardware components write events
to component-specific device files, which serve as an interface
to the kernel. RERAN records these event streams stemming
from hardware components using the Getevent tool via an An-
droid Debug Bridge (adb) shell [53]. These logs are translated
into an intermediate representation to be interpreted by a replay
agent running on the device in its own process. Essentially,
the replay agent writes the recorded events to device files with
microsecond accuracy. In addition to the replay agent’s highly
precise timing, another one of its salient features is “time
warping.” The replay agent enables fast forwarding execution
by decreasing the time delays between consecutive events.

When the stakeholder has exhausted all the steps in the
description, she signals CRASHDROID to indicate the recording
is finished. The system’s signal handler pipes the Getevent log
to a CRASHDROID utility that translates the entire event stream
into a sequence of user actions, e.g., touches, long touches, and
swipes. Then CRASHDROID validates the number of actions
in the Getevent log equals the number of sentences in the
description: Each sentence maps to one and only one action.
Thus, CRASHDROID can represent a natural language sentence
as a kernel event stream, or it can describe sequences of events
as natural language sentences. If the number of kernel events
equals the sentences in the description, CRASHDROID uses a
compiler, packaged with the RERAN archive, to translate the
Getevent log into a replay script that can be replayed on the
device via the RERAN replay interpreter. CRASHDROID tags
this replay script to maintain a traceability link with the natural
language description and saves the file to disk (Fig. 1 as (3)).
Incidentally, if the number of sentences is not equal to the num-

ber of events, then CRASHDROID notifies the user. The user can
choose to record a new Getevent log, or CRASHDROID can run
the replay script, so the user can observe discrepancies between
the recorded scenario and the sentences in the description.

3) Capturing App Execution Profiles of Replay Scripts:
The Android SDK includes a profiler for capturing execu-
tion traces, and these traces contain information about the
execution time for each method, including methods in AUT
classes and API calls, methods’ nesting levels, etc. Linares-
Vásquez et al. [54] used the profiler to capture execution
traces while measuring the energy consumption of Android
apps. CRASHDROID uses it to profile a running replay script
and log scenarios’ dynamic method invocations (Alg. 1 lines
9–11). First, CRASHDROID pushes the replay script from the
host to the device using adb [53] (Fig. 1 as (4)). CRASH-
DROID uses adb am [53], the adb activity manager utility, to
launch the AUT on the device and start the profiler. With
the profiler running in the background, CRASHDROID uses
the replay interpreter on the device to run the replay script
automatically while the profiler logs the execution profile.
When the scenario finishes, CRASHDROID stops the profiler,
closes the AUT, pulls the execution profile from the device,
and pipes it to dmtracedump [55], another Android SDK
tool, to translate the binary format of the execution profile
into human readable format. Then CRASHDROID queries the
event traces database for the corresponding Getevent log and
translates the kernel input events into actions as it did when it
validated the log. However, this time it notes the duration of
each action. CRASHDROID takes this sequence of actions with
their durations and superimposes this “paned window” on the
execution profile to cluster the calls in the profile. This enables
CRASHDROID to label every time slice in the profile with the
corresponding action in the Getevent log and—transitively—
a sentence in the description. Thus, CRASHDROID specifies
a traceability link between sentences in the description and
a set of complementary subsequences of method calls from



the execution profile. This alignment process is represented in
Fig. 1 as (5). Finally, CRASHDROID tags the profile to main-
tain traceability with the replay script and the corresponding
description.

4) Munging App Execution Profiles: Ultimately, CRASH-
DROID is designed to take information (e.g., the call stack
in a crash report) and automatically produce natural language
descriptions and replay scripts for a software maintainer. To
this end, the last stage in the offline workflow (Alg. 1 lines 12–
15) is to scrub the profiles in the CRASHDROID database to rec-
oncile the lexemes in the execution profiles with the expected
format of incoming call stacks. CRASHDROID filters the API
calls from the execution profile to produce a streamlined log of
AUT class method calls. For instance, for a generic calcula-
tor app with main package com.android.calculator,
CRASHDROID would select only the method calls in the
com.android.calculator namespace.

The time resolution of the CRASHDROID profiling mech-
anism is limited to milliseconds, which is relatively course-
grained. Consequently, there may be multiple methods ex-
ecuted in a time slice, which necessitates transforming the
profile into a proper sequence of method calls. In cases where
there are multiple calls in a time slice, CRASHDROID uses a
sliding window (three time slices wide) to attempt to reliably
sequence the calls. Suppose (x1, x2, x3) is a 3-tuple indicating
the number of calls in each time slice in a particular window.
(1, 1, 1) windows are literal translations, since the profiler
logged one and only one call in each time slice. For (1, 2, 1)
and (1, 3, 1) windows, where the window straddles a time slice
with more than one call, CRASHDROID uses the endpoints,
i.e., the calls in the first and third time slices, to serialize
the multiple calls in the middle. For example, for (1, 2, 1)
windows, each call in the second time slice will be matched
to an endpoint (if possible) to determine their serial order.
Additionally, there may be more than three methods in a time
slice or multiple methods in consecutive time slices. CRASH-
DROID randomly sequences the methods in these rare cases:
This heuristic would not be needed if the profiler could log
methods with a higher sampling rate. Care was taken to build
a highly modular design, so the profiling mechanism can easily
be replaced without impacting any of the other components in
the architecture. Finally, CRASHDROID produces a sanitized
execution profile with unique methods.

B. Online CrashDroid Dataflow

Alg. 2 specifies the online CRASHDROID dataflow, an
online process for taking the call stack σ from an incoming
crash report (and an optional threshold τ ) and producing a set
B of natural language descriptions for reproducing the bug
as well as a set R of replay scripts to automatically replay
the bug. The online dataflow requires a database of scenario
descriptions, event logs, and execution profiles, all derived
from the offline workflow.

First, CRASHDROID filters the API calls from the incoming
call stack and extracts the top m methods from this filtered call
stack. Then CRASHDROID queries the profiles in its database
that contain the most recent AUT class method pushed onto the
crash call stack, i.e., peek(σ′), and at least n relevant methods;
this collection of profiles is denoted by P ′ in Alg. 2. For each

Algorithm 2: Online CRASHDROID Dataflow
Input: D,S, P, σ, n,m, τ
Output: B,R

1 begin
2 B = R = T = ∅;
3 filter API calls from σ;
4 σ′ ← extract top m methods from σ;
5 P ′ ← {π ∈ P : peek(σ′) ∈ {π}∧ |{π}∩{σ′}| ≥ n};
6 foreach π ∈ P ′ do
7 ρ← len(LCS(π, σ′))÷ span(LCS(π, σ′));
8 if ρ ≥ τ then
9 T ← T ∪ π;

10 B,R← query d ∈ D, s ∈ S linked to π ∈ T ;
11 verify B,R;

profile that meets these criteria, CRASHDROID computes the
length of the LCS containing relevant methods and normalizes
the length by dividing by span(LCS(π, σ′)), which is the
number of calls in the profile between the first and last method
of the LCS (Fig. 1 as (6)). Naturally, there may be multiple
“longest” subsequences. In this case, CRASHDROID optimisti-
cally chooses the ones with the shortest span to score the
profile. While measuring the similarity of profiles to the call
stack, CRASHDROID accumulates the best candidate profiles
in a collection T . “Best” depends on an empirically-tuned
threshold τ on the profiles’ scores that is tuned to optimize the
trade-off between the true positive rate and the false positive
rate; each description either reproduces a bug or it does not
reproduce a bug. The scoring function—like the profiling
mechanism—we use to rank profiles is decoupled from the
rest of the system, so it is trivial to swap in a new scoring
engine for measuring the similarity between information in
crash reports and artifacts in the database.

Since CRASHDROID manages traceability links between
profiles and descriptions, CRASHDROID can use the ranked
list of profiles to build a ranked list of descriptions, which
serve as recommended descriptions to reproduce the issue.
CRASHDROID traverses the list of recommended descriptions
(Fig. 1 as (7)), running each replay script automatically (Fig. 1
as (8)) to verify the replay script generates a crash. The
resulting call stack is compared to the given call stack σ to
confirm the particular crash. CRASHDROID filters the recom-
mendations that do not reproduce the bug before presenting
the recommendations to the user (Fig. 1 as (9)). Again, one
of the replay agent’s salient features is its ability to fast-
forward execution. When CRASHDROID automatically replays
the script, it can exploit this feature by rushing execution to the
bug to confirm the issue. The sentences from the descriptions
linked to the events in the script, the replay script, and the stack
trace are presented as a reproducible/replayable bug report.

IV. EMPIRICAL STUDY DESIGN

The goal of the study was to evaluate the effectiveness and
expressiveness of bug reports generated by CRASHDROID with
the purpose of providing better tools and automated tech-
niques to aid software maintenance and evolution. The context
consisted of Android devices, six open-source Android apps,
natural language descriptions defined by study participants,



TABLE I. STATISTICS ON THE AUTS FOR THE USER STUDY

AUT Version Category LOC # Classes # Methods User Actions # Scenarios # Contributors

Calculator 3.4.2 Office 3,940 79 427 touch, swipe 36 7
Frex 1.2.2 Science and Education 2,544 105 426 touch, swipe 11 5
GameMaster Dice 0.1.5 Games 598 19 85 touch, longtouch, swipe 14 6
Simple Deadlines 3.1.2 Productivity 985 36 84 touch, longtouch, swipe 15 3
Stickeroid 1.1.2 Productivity 841 13 82 touch, longtouch, swipe 12 2
Units Converter 1.0.0 Tools 3,793 66 419 touch, swipe 14 3

and Getevent logs from executing the scenarios. We used four
unlocked and rooted Google Nexus 7 tablets, each equipped
with a quad-core Qualcomm Snapdragon S4 Pro processor
running Android 4.4.2 (kernel version 3.4.0.gac9222c). We
chose the Android platform for two notable reasons. First,
the open-source AUTs can be freely downloaded enabling
the reproducibility of our experiments. Second, Android SDK
tools enable the remote execution of apps from a host con-
nected to a device for debugging, replaying event traces,
and profiling. The quality focus of the study concerned the
generation of natural language descriptions and replay scripts
for reproducing/replaying bugs.

A. Research Questions

Our study sought to empirically determine whether bug
reports generated by CRASHDROID are effective and expressive
for reproducing crashes in Android apps. We examined the
following research questions:

RQ1 Is CrashDroid an effective approach for identifying
scenarios that are relevant to a sequence of methods
describing crashes in Android apps?

RQ2 How do CrashDroid bug reports compare to human-
written bug reports in terms of readability, concise-
ness, and reproducibility?

The independent variable for the research questions was
BugID, representing bugs manually injected into the apps’
source code to crash the apps. RQ2 also considered whether the
bug report was human-written or generated by CRASHDROID.
The dependent variables for RQ1 were the total number of
scenarios replayed to reach a bug and the total time to repro-
duce a bug. The dependent variables for RQ2 were the time
it took participants to reproduce crashes, when using human-
written reports and CRASHDROID reports, and the readability,
conciseness, and reproducibility of the reports. Readability,
conciseness, and reproducibility were each measured with a
five-point Likert item.

B. Methodology and Data Collection

The AUTs, listed in Tab. I, were downloaded from the F-
Droid market [56]. We selected these apps based on several
specific criteria. Notably, we sought apps that did not require
authentication and used several different types of View ob-
jects [57]. To simulate the offline CRASHDROID workflow, we
enlisted eight graduate students from the College of William
and Mary. First, we asked them to become familiar with the
AUTs on an emulator or device. We wanted the students
to use the AUTs and transcribe their scenario descriptions
offline, so their event traces for the study were “natural”
rather than introducing unnatural delays to record their actions.

We provided participants with some guidance on composing
descriptions to build a well-formed corpus (Sec. III-A1). After
gaining some familiarity with the AUTs, we provided them
with a pre-configured Google Nexus 7 tablet. They were
instructed to set the device on a flat surface (to minimize
input from auxiliary sensors) and start recording their scenarios
from the AUT’s main activity. They were required to perform
each scenario at least three times on the devices, and we
also asked the participants to clear the app’s cache/data before
executing each scenario. In response, participants provided us
with a set of descriptions, each coupled to multiple Getevent
logs. Each archive submitted by a participant was thoroughly
validated before it was pushed to the CRASHDROID repository,
a database of descriptions and Getevent logs, used to obtain
the execution profiles of replay scripts.

Afterward, one of the authors injected five crashes into
each one of the AUTs and built one “tainted” APK for each
bug. By design, this author was neither involved in collecting
descriptions nor compiling replay scripts. Tab. II lists the bugs
injected into the AUTs. The crashes were introduced using
the statement throw new AssertionError(...). We
used errors instead of exceptions to avoid the handling process
by try-catch blocks. Thus, the errors can be seen by the
tester/developer, and the applications stop when the errors are
thrown. Then, for each crash, we collected the logcat traces
and executed the CRASHDROID online phase, using the logcat
traces and the tainted APKs to generate a list of bug reports
to be validated.

In order to collect human-written bug reports (RQ2) for
the injected crashes, we asked two graduate students (outside
the College of William and Mary) with experience as real
developers, to generate bug reports for 15 of the injected
bugs from Tab. II. We provided them with only logcat traces
representative of the crashes and the apps’ tainted source code
exhibiting the crash (one different version per crash). The two
participants were never involved in the data collection for the
CRASHDROID offline phase, and never read the guidelines for
the natural language descriptions (Sec. III-A1). This design
decision was based on the fact that we wanted to have bug
reports as close as possible to descriptions in the wild. We
also asked them to measure the time it took them to reproduce
a crash and write steps to reproduce each bug.

C. Validating CrashDroid

We designed two experiments to answer the research
questions. In the first experiment, we measured effectiveness
(RQ1) by analyzing the amount of time to recommend a natural
language description with a replay script and the number
of scenarios replayed by CRASHDROID. CRASHDROID uses a
heuristic designed to tease the bug producing replay scripts



from the false alarms in a particular context. This rule-of-
thumb, the normalized length of the LCS, scores the candidate
bug reports in the document database, so the bug producers rise
to the top of the list. However, it is possible for multiple reports
to have the same similarity score according to the heuristic, yet
the replay scripts for these reports may have different execution
times. For instance, if there are five reports with a score of one,
then CRASHDROID can place any one of these five reports at
the top of the ranked list of candidates, yet the replay scripts’
execution times for each of these reports may be very different.
To reliably measure the amount of time to recommend a
natural language description with a replay script using the
ranked list of profiles, we designed a Monte Carlo simulation
to randomly sort the subsequences of the ranked list where
there were profiles with the same score. While CRASHDROID is
configured to examine each and every scenario in its document
database, the purpose here is to reduce the amount of time it
takes CRASHDROID to sweep down its internal list of candidate
scenarios verifying its proposals before presenting a final list of
recommendations to the user. This amounts to optimizing the
trade-off between the sensitivity and the specificity. However,
from the user’s perspective, the precision is always 100%.
CrashDroid will never recommend a scenario that it did not
verify.

For the first experiment, we also compared the effectiveness
of CRASHDROID to Monkey in terms of time and the number
of trials and events required to crash each app version. Monkey
was used for validation in previous studies [12]. In this study,
it served as a baseline. Monkey generates pseudo-random user
and system events according to a set of user-defined argu-
ments. In our case, we executed Monkey with 1,000 events,
interleaving delays of 10 milliseconds. This design decision
was aimed at validating whether CRASHDROID’s effectiveness
outperformed a random sequence of events.

Our second experiment was designed to measure the ex-
pressiveness (RQ2) of bug reports in terms of readability,
conciseness, and reproducibility. We conducted a user study
involving ten computer science graduate students from the
College of William and Mary to simulate an issue reproduction
process, using bug reports generated by CRASHDROID and
bug reports written by humans. None of the students in this
study were involved in the offline workflow to build the
descriptions nor were they familiar with CRASHDROID. Each
participant received a package of 15 bug reports, including
CRASHDROID reports and human-written reports for 15 differ-
ent crashes. We provided each participant with different bug
reports in such a way that the CRASHDROID bug report and
the two human-written bug reports for a particular crash were
evaluated by (at least) one different participant. Specifically, we
implemented a simple linear program to maximize redundancy
in the assignments of participants to bug instances.

We provided anonymized bug reports, so the participants
did not know whether they belonged to the CRASHDROID set or
the human-written set, with call stacks and a device with the
corresponding apps. Then we asked participants to measure
how much time it took them to reproduce bugs using a
particular bug report. The participants also rated the readability,
conciseness, and reproducibility of the reports using a five-
point Likert item. Consequently, for RQ2 we determined
whether there was a statistically significant difference between

TABLE II. CRASHES MANUALLY INJECTED INTO THE AUTS

AUT Bug Location

Calculator

· Calculator.java (Touch = button)
· Calculator.java (Touch advanced menu)
· CalculatorEditable.java (Touch dot button)
· EventListener.java (Touch +row button)
· MatrixModule.java (Transpose matrix)

Frex

· FrexActivity.java (Touch zoom)
· SettingsActivity.java (Touch settings option)
· FrexActivity.java (Touch fractal-type spinner)
· ManagerActivity.java (Delete fractal)
· SeekBarConfigurer.java (Modify using seek bar)

GameMaster Dice

· NumberPicker.java (Touch die’s sides picker)
· GameMasterDice.java (Touch about app in menu)
· GameMasterDice.java (Touch more option)
· NumberPickerButton.java (Touch modifier picker)
· DiceSet.java (Roll die with modifiers)

Simple Deadlines

· Settings.java (Touch settings button)
· DeadLineListFragment.java (Delete deadline)
· DeadLineAdapter.java (Touch deadline checkbox)
· EditorDialogFragment.java (Create deadline)
· DayCounterView.java (Modify day)

Stickeroid

· CreateCollection.java (Create collection)
· EditCollection.java (Touch filter option)
· Main.java (Back up with no data)
· Utils.java (Show toast)
· Main.java (Touch about app in menu)

Units Converter

· Product.java (Operation with products)
· Units.java (Clean fields)
· Value.java (Convert invalid units)
· Units.java (Longtouch backspace)
· ValueGui.java (Transform any unit)

the two sets of results, for each measure, using the Mann-
Whitney U test [58]. In every test, we looked for statistical
significance at α = 0.05 (two-tailed). We also computed the
effect size (Cliff’s δ) [59] to measure the magnitude of the
difference in each test. We followed practical guidelines [59]
to interpret effect sizes: “negligible” for |δ| < 0.147, “small”
for 0.147 ≤ |δ| < 0.330, “medium” for 0.330 ≤ |δ| < 0.474,
and “large” for |δ| ≥ 0.474. We chose these nonparametric
methods, because we did not assume population normality nor
homoscedasticity.

D. Empirical Study Reproducibility Package

All the experimental material used in our study is publicly
available in our online appendix [60]. In particular, we provide
the original APKs and source code, tainted APKs and source
code, descriptions and artifacts used for the user study, logcat
traces for the injected bugs, human-written bug reports and
CRASHDROID reports, and the results of our experiments.

V. EMPIRICAL RESULTS

CRASHDROID is designed to automatically verify its recom-
mendations, a set of expressive bug reports, before presenting
them to the user by running the generated replay scripts
on the device. Reliably classifying execution profiles in the
CRASHDROID database is critically important to this end. The
LCS-based heuristic is designed to push a scenario producing
the crash to the top of the list of candidates. In this context,
the key concern is to reduce the amount of time it takes to
recommend a set of valid suggestions to the user by minimiz-
ing the number of scenarios to run before finding at least one



Specificity (%)

S
e

n
s
it
iv

it
y
 (

%
)

0
2

0
4

0
6

0
8

0
1

0
0

100 80 60 40 20 0

●

0.0 (82.8%, 96.4%)

Specificity (%)

S
e

n
s
it
iv

it
y
 (

%
)

0
2

0
4

0
6

0
8

0
1

0
0

100 80 60 40 20 0

●

0.0 (46.6%, 84.6%)

GameMaster Dice

Calculator

Fig. 2. Given a call stack from a crash report, CRASHDROID computes
the similarity of the call stack to each profile in its database (Sec. III-B).
Accordingly, the profiles can be sorted and passed to a binary classifier to
label each scenario (using a user-defined threshold) as either a bug-producing
scenario or not. The performance of this binary classifier can be measured with
a ROC curve, depicting the true positive rate (or “sensitivity”) versus the true
negative rate (or “specificity”). High sensitivity suggests a low Type II error
rate, and high specificity suggests a low Type I error rate. The classifier’s “lift”
measures its effectiveness relative to randomly labeling the scenarios. The
LCS-based heuristic provides virtually no lift for Calculator, but it provides
some lift for GameMaster Dice.

scenario that reproduces the issue. It is also important for the
valid suggestions to be readable, concise, and unambiguous
to ensure reproducibility. Examples of the CRASHDROID bug
reports are in Table III and our online appendix [60].

A. RQ1 Evaluating CrashDroid’s Effectiveness

In many cases, the normalized length of the LCS did not
effectively prioritize the profiles in the CRASHDROID database
such that the profiles’ scores were strictly decreasing. The
similarity measure’s performance is best illustrated with a
receiver operating characteristic (ROC) curve. Fig. 2 represents
the trade-off between the true positive rate and the true negative
rate for two apps, Calculator and GameMaster Dice. Given
the call stack from a crash report, there were typically several
profiles with the same score. Thus, if 10 profiles score a 1.0,
any one of the 10 corresponding scenarios could be the first
to be placed in the ranked list of candidate profiles. The ROC
curve represents a run of profiles with the same score (and
different bug-producing classifications) as a line segment with
a positive slope. Clearly, the normalized length of the LCS
does not provide any lift for Calculator bugs. In other words,
the probability that a randomly chosen positive instance will
be ranked ahead of a randomly chosen negative instance is 0.5.
The slope of the plot in the bottom left-hand corner suggests
that the top profiles all have the same score, yet there is
entropy in the target. Indeed, in this particular case, several
profiles have one and only one method in common with the

TABLE III. EXAMPLES OF STEPS TO REPRODUCE A CRASH

Calculator Bug 1

Human 1:
1. User inserts a number using numeric keypad;
2. User selects a mathematical operator;
3. User inserts another number using numeric keypad;
4. User presses the equal sign;
5. System crashes without showing the result
Human 2:
1 - Add a correctly formed mathematical expression to be evaluated by
the calculator. If the expression is not correctly formed the bug won’t
be reproduced and the calculator will produce an ‘Error’ message
which is the correct behavior.
2 - Press the ‘=’ key.
CRASHDROID:
1. I touched the 6 button on the touchscreen.
2. I touched the * button on the touchscreen.
3. I touched the 7 button on the touchscreen.
4. I touched the + button on the touchscreen.
5. I touched the 7 button on the touchscreen.
6. I touched the = button on the touchscreen.

GameMaster Dice Bug 1

Human 1:
1. User long-presses one of the dice-button;
2. System shows the options available;
3. User selects the “More. . . ” option;
4. System shows a window where the user can config. the dice;
5. User presses “+” button in order to customize the dice;
6. System crashes without showing the result
Human 2:
1 - Open the ‘Configure Dice’ menu via one of the following options:
Long press (for about half a second) any dice button, choose ‘More’
in the popup dialog,
Tap the ‘more’ button (last one on the right side), choose ‘More’ in
the popup dialog.
2 - Tap the increment button for the second value (the plus sign on
the top-right position). The app should crash.
CRASHDROID:
1. I touched the “. . . ” button at the bottom of the touchscreen.
2. I touched the “More. . . ” list view item in the window that appears.
3. I touched the plus button on the left side of the touchscreen.

call stack, yielding a score of 1.0. This means the heuristic
is no better than randomly sampling from these “top” profiles
without replacement until the AUT crashes, which discounts
the normalized length of the LCS as an effective classifier for
identifying bug-producing profiles.

Naturally, while these profiles may have the same score,
they likely take different amounts of time to replay. For five
of the six apps listed in Tab. I, we timed each replay script
in the CRASHDROID database and linked these times to the
corresponding profile. To measure the amount of time for
CRASHDROID to crash the AUT, we designed a Monte Carlo
simulation to measure the expected time for CRASHDROID to
produce a bug report that affirmatively crashed the app. The
purpose of the simulation was to shuffle the order of profiles
with the same score to measure CRASHDROID’s expected
performance—running 100 trials for each bug and counting the
number of seconds to crash the AUT and the number of scenar-
ios replayed. Tab. IV summarizes the results for RQ1. Column
(3) lists the median number of replay scripts that were played
by CRASHDROID to crash the AUT. This column highlights the
poor lift for Calculator bugs as opposed to GameMaster Dice
bugs. Column (4) lists the median number of kernel events
fired by CRASHDROID before the AUT crashed. Columns (5)–



TABLE IV. RQ1 RESULTS IN TERMS OF TIME/EVENTS REQUIRED BY CRASHROID, HUMAN PARTICIPANTS, AND MONKEY TO CRASH AN APP

CrashDroid Humans Monkey

(3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
AUT BugID Scripts Events Min Q1 Q2 Q3 Max µ H1 H2 Time Events Crashes

1 1 66 1.1 3.5 7.8 11.2 65.1 9.6 480 360 N/A N/A 0
2 27 124 48.9 159.9 343.3 511.8 1,214.3 387.2 1,680 480 37.4 614 1

Calculator 3 2 28 19.5 19.5 19.5 19.5 19.5 19.5 120 - 31.5 478 3
4 17 61 7.9 104.6 231.4 519.8 1233.9 332.2 180 480 N/A N/A 0
5 9 263 7.4 47.7 96.3 198.9 365.3 127.4 420 720 N/A N/A 0

1 1 32 2.3 2.3 5.8 10.8 16.7 6.8 300 780 25.9 375 1
2 2 16 1.3 4.4 13.4 40.7 89.2 24.1 300 180 30.1 564 2

GameMaster Dice 3 2 30 0.3 2.1 11.4 32.1 154.4 22.0 300 420 11.2 196 2
4 1 32 2.3 2.3 3.3 10.8 11.9 5.3 780 420 N/A N/A 0
5 1 44 5.4 5.4 5.4 5.4 5.4 5.4 480 300 15.4 238 3

1 1 16 0.8 0.9 1.2 1.5 26.3 2.8 - - 54.3 766 4
2 43 N/A 799.9 799.9 799.9 799.9 799.9 799.9 - - N/A N/A 0

Simple Deadlines 3 1 160 12.3 12.3 17.4 17.9 17.9 15.8 - - N/A N/A 0
4 1 163 7.7 12.8 16.2 22.2 45.0 18.1 - - N/A N/A 0
5 1 8 0.3 0.3 0.3 0.3 0.3 0.3 - - 12.4 170 3

1 1 92 6.7 7.2 9.0 10.2 19.1 9.8 - - 55.1 823 3
2 1 189 13.6 13.6 15.5 17.3 17.3 15.5 - - N/A N/A 0

Stickeroid 3 15 N/A 344.1 344.1 344.1 344.1 344.1 344.1 - - N/A N/A 0
4 37 79 510.6 510.6 510.6 510.6 510.6 510.6 - - N/A N/A 0
5 11 214 25.0 97.2 160.1 251.9 527.4 185.9 - - N/A N/A 0

1 37 N/A 659.8 659.8 659.8 659.8 659.8 659.8 - - N/A N/A 0
2 4 180 23.2 61.7 83.0 112.3 192.4 87.9 - - 24.6 278 1

Units Converter 3 37 N/A 659.0 659.0 659.0 659.0 659.0 659.0 - - 2.7 23 1
4 37 N/A 658.7 658.7 658.7 658.7 658.7 658.7 - - N/A N/A 0
5 4 180 23.2 61.0 72.6 102.3 194.0 83.9 - - N/A N/A 0

(10) list descriptive statistics for the amount of time, measured
in seconds, for CRASHDROID to crash the AUT. Columns (11)–
(12) list the amount of time, measured in seconds, for the
two participants (outside the College of William and Mary) to
reproduce the issue and compose a bug report. Column (13)
lists the median number of seconds for Monkey to crash the
AUT. Column (14) lists the median number of events fired
by Monkey for the trials where the AUT crashed; otherwise,
it lists “N/A” when the app did not crash before a timeout.
Qualitatively, the CRASHDROID statistics suggest the system
is reasonably effective, in this context, compared to humans
and Monkey. Note that the time required for Monkey includes
short delays of 10 ms interleaved between events. On the
other hand, we did not use fast forwarding to speed up
CRASHDROID’s execution. This mechanism may drastically
reduce the execution time of replay scripts [21]. Moreover,
CRASHDROID was able to reproduce the bugs in every case,
whereas Monkey could not reproduce 14 of the 25 bugs.

B. RQ2 Evaluating CrashDroid’s Bug Reports

Readability: How readable is the bug report? The second
quartiles of human-written reports Qh

2 and CRASHDROID re-
ports Qc

2 were 4.5 and 5.0, respectively (Tab. V). We ran
a Mann-Whitney U test to evaluate the difference in the
responses to a five-level Likert item. We did not find a
statistically significant difference at α = 0.05 (two-tailed).
This is a positive result since CRASHDROID’s bug reports are
as readable as those produced by developers.

Conciseness: How concise is the bug report? The second
quartiles of human-written reports Qh

2 and CRASHDROID re-
ports Qc

2 were 4.5 and 4.0, respectively (Tab. V). The Mann-

Whitney U test aimed at evaluating the difference in the re-
sponses for conciseness did not report a statistically significant
difference at α = 0.05 (two-tailed). This is another positive
result since CRASHDROID’s bug reports are as concise as those
produced by developers.

Regarding conciseness of human versus CRASHDROID re-
ports, we obtained further evidence from the participants. For
instance, in the case of Calculator Bug 1, the human-written
report included the sentence “1. Add a correctly formed math-
ematical expression. . . the correct behavior.” One participant
assessed the report as two, on the five-level Likert item, with
the comment that “The report is too wordy (the corrected
behavior sentence in step 1) and does not describe what
happens when = is key.” The CRASHDROID report included
detailed steps ending with a sentence that triggered the crash:
“I touched the ‘6’ button on the touchscreen. . . I touched the
‘=’ button on the touchscreen.”

Reproducibility: How easy was it to reproduce the bug
report? The second quartiles of human-written reports Qh

2 and
CRASHDROID reports Qc

2 were both equal to 5.0 (Tab. V).
Again, the Mann-Whitney U test did not report a statistically
significant difference at α = 0.05 (two-tailed). Additionally,
if the study participant was able to reproduce a bug, we also
asked them to document the number of times it took them to
go through the steps before they could reproduce the crash. It
is worth noting that every CRASHDROID report only required
one pass whereas human-written reports required up to 12
passes in some cases. A qualitative review of study partic-
ipants’ amplifying comments suggested that human-written
reports are prone to ambiguity when describing certain events.
For example, in the case of GameMaster Dice Bug 1, one



participant wrote “. . . the instructions should clarify which of
the three + signs to press to be sure this is one that will surely
crash the app. . . ” when referring to a human-written report.
The human-written report includes the step “5. User presses +
button in order to customize the dice” while the corresponding
step in the CRASHDROID report is “I touched the plus button
on the left side of the touchscreen in the window.” Another
example is GameMaster Dice Bug 5, where a human-written
report was assessed as two, on the five-level Likert item, for
each of the three properties. The participant explained that the
report “. . . needs to explain what a non-zero modifier is. For
step B1, is the second value the sides or the modifier? I created
several zero modifier dice and pressing ok did not crash the
app.” Another participant assessed the same report as three for
each of the three properties and provided a similar argument
around the “non-zero modifier” ambiguity: “The instructions
were terrible, and I guess they assumed that the user would
know how to get a die with a non-zero modifier.” The human-
written report described the steps in terms of a die with a non-
zero modifier whereas the CRASHDROID report had a specific
step that triggered the bug “I touched the 1d6+4 button.”

Human-written reports for Calculator Bug 2 were ranked
less than three in all cases whereas CRASHDROID reports were
ranked greater than three in two cases. The reason is that
human instructions did not include a clear description of how
to show the “Advanced panel” option in the menu, but the
CRASHDROID report included the step (change from the basic
to the Hex panel) that activates the option in the menu: “I
swiped right on the top half of the screen: I touched the “Hex”
button. . . I touched the ‘Advanced panel’ menu option.”

Therefore, the qualitative and quantitative results suggest
that CRASHDROID reports are as effective natural language
descriptions as those produced by developers in this context.

C. Threats to Validity

Threats to construct validity concern the relationship
between theory and observation. For the first study we only
had five crashes for six apps (30 in total). We are aware
that the types of crashes we injected may not necessarily
be representative of real-word crashes. However, we tried to
inject crashes into likely locations. Moreover, crash injections
were done by an author who has significant Android app
development experience and investigated a number of open-
source crash bug reports. For the second study, we asked two
graduate students to manually compose bug reports. While this
could have impacted the results, the two subjects are experi-
enced developers who have significant industrial experience,
including writing and resolving bug reports.

Threats to internal validity concern co-factors that could
influence our results, and they are mainly related to various
measurement settings used in our study. For the second study
we asked participants to time themselves. Obviously, we are
not expecting to get results with second level accuracy since
our comparison between CRASHDROID-generated reports and
human-written reports is rather relative.

Threats to external validity concern generalization of
the obtained results. The main threat is related to recruiting
students for the bug comparison study. While most of these
students have only academic programming experience, most

TABLE V. MANN-WHITNEY U TEST RESULTS FOR RQ2

Measure Qh
2 Qc

2 nh nc U p-value Cliff’s δ

Readability 4.5 5.0 42 42 753.0 0.2501 0.1254
Conciseness 4.5 4.0 42 42 730.5 0.1770 0.1474
Reproducibility 5.0 5.0 42 42 870.5 0.9203 0.0107

of them took a mobile app development class. Finally, we
limited the second study to bug reports from two apps, because
we could provide only a limited number of bug reports that
participants could complete in two hours.

VI. CONCLUSION AND FUTURE WORK

We presented CRASHDROID, a system for automatically
producing expressive bug reports and replay scripts given a
stack trace from a crash report. The system compared favorably
in terms of readability, conciseness, and reproducibility to
human-written reports. It also compared favorably in terms of
time and its ability to crash AUTs to Monkey. Moreover, the
system is designed to achieve 100% precision since it validates
its proposals before presenting any results to the user.

In computational linguistics, statistical machine translation
concerns the automatic translation of text or speech from
one natural language to another using, for instance, the noisy
channel model of sentence pair generation. We plan to examine
how traceability links between natural language sentences,
AUT class method traces, and kernel event streams can lever-
age a translation engine for dynamically constructing ad hoc
scenarios. One purpose of this engine may be to “bootstrap”
both descriptions and replay scripts from existing data. These
new scenarios can be added to the CRASHDROID database to
automatically improve the coverage that descriptions provide
for an app’s functionality.

ACKNOWLEDGMENT

We would like to thank Conner Kasten for his contribution
to early versions of this work that used Dynodroid as an
underlying engine. We would like to acknowledge Santiago
Baldrich and Michele Tufano for writing bug reports for the
tainted APKs. Next, we would like to acknowledge Zhao-
liang Duan, Boyang Li, Qi Luo, Kevin Moran, Du Shen,
Christopher Vendome, and Kyle Wallace for producing feature
descriptions with replay scenarios for the apps used in the
study. Finally, we would like to thank all the students from
the Universidad Nacional de Colombia who helped us with
CRASHDROID debugging, data collection, and the user study.
This work is supported in part by the NSF CCF-1218129 and
NSF-1253837 grants. Any opinions, findings, and conclusions
expressed herein are the authors’ and do not necessarily reflect
those of the sponsors.

REFERENCES

[1] R. Minelli and M. Lanza, “Software analytics for mobile applications–
insights & lessons learned,” in Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering, ser. CSMR
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 144–
153.

[2] I. J. M. Ruiz, “Large-scale empirical studies of mobile apps,” Master’s
thesis, Queen’s University, 2013.



[3] M. D. Syer, M. Nagappan, A. E. Hassan, and B. Adams, “Revisiting
prior empirical findings for mobile apps: An empirical case study on
the 15 most popular open-source Android apps,” in Proceedings of the
2013 Conference of the Center for Advanced Studies on Collaborative
Research, ser. CASCON ’13. Riverton, NJ, USA: IBM Corp., 2013,
pp. 283–297.

[4] C. Roy and A. A. Moamen, “Exploring development practices of
Android mobile apps from different categories,” in 8th International
Workshop on Software Quality and Maintainability, ser. SQM ’14, 2014.

[5] C. Hu and I. Neamtiu, “Automating GUI testing for Android applica-
tions,” in Proceedings of the 6th International Workshop on Automation
of Software Test, ser. AST ’11. New York, NY, USA: ACM, 2011, pp.
77–83.

[6] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An empiri-
cal analysis of bug reports and bug fixing in open source Android apps,”
in Proceedings of the 2013 17th European Conference on Software
Maintenance and Reengineering, ser. CSMR ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 133–143.

[7] J. Kochhar, J. Keng, and T. Biying, “An empirical study on bug reports
of Android 3rd party libraries,” Singapore Management University,
2013.

[8] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting
structural information from bug reports,” in Proceedings of the 2008
International Working Conference on Mining Software Repositories, ser.
MSR ’08. New York, NY, USA: ACM, 2008, pp. 27–30.

[9] A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?” in MSR, 2010, pp. 118–121.

[10] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-miner:
Mining informative reviews for developers from mobile app market-
place,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE ’14. New York, NY, USA: ACM, 2014, pp.
767–778.

[11] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of Android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13. New York,
NY, USA: ACM, 2013, pp. 641–660.

[12] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE ’13. New
York, NY, USA: ACM, 2013, pp. 224–234.

[13] (2014) MonkeyRunner. [Online]. Available: developer.android.com/
tools/help/monkeyrunner concepts.html

[14] (2014) UI/Application exerciser monkey. [Online]. Available: developer.
android.com/tools/help/monkey.html

[15] (2014) Robotium. [Online]. Available: code.google.com/p/robotium

[16] (2014) GUITAR. [Online]. Available: sourceforge.net/projects/guitar

[17] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of Android apps,” in Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, ser. FSE ’14. New York, NY, USA: ACM, 2014, pp. 599–609.

[18] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of Android
apps with minimal restart and approximate learning,” in International
Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA’13), 2013, pp. 623–640.

[19] W. Yang, M. Prasad, and T. Xie, “A grey-box approach for auto-
mated GUI-model generation of mobile applications,” in 16th Interna-
tional Conference on Fundamental Approaches to Software Engineering
(FASE’13), 2013, pp. 250–265.

[20] S. Malek, N. Esfahani, T. Kacem, R. Mahmood, N. Mirzaei, and
A. Stavrou, “A framework for automated security testing of Android
applications on the cloud,” in Proceedings of the 2012 IEEE Sixth Inter-
national Conference on Software Security and Reliability Companion,
ser. SERE-C ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 35–36.

[21] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing-
and touch-sensitive record and replay for Android,” in Proceedings of
the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 72–81.

[22] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. The MIT Press, 2009.

[23] S. Artzi, S. Kim, and M. D. Ernst, “ReCrash: Making software failures
reproducible by preserving object states,” in Proceedings of the 22Nd
European Conference on Object-Oriented Programming, ser. ECOOP
’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 542–565.

[24] C. Csallner and Y. Smaragdakis, “JCrasher: An automatic robustness
tester for Java,” Softw. Pract. Exper., vol. 34, no. 11, pp. 1025–1050,
Sep. 2004.

[25] C. Pacheco and M. D. Ernst, “Eclat: Automatic generation and classifi-
cation of test inputs,” in Proceedings of the 19th European Conference
on Object-Oriented Programming, ser. ECOOP ’05. Berlin, Heidel-
berg: Springer-Verlag, 2005, pp. 504–527.

[26] C. Csallner, Y. Smaragdakis, and T. Xie, “DSD-Crasher: A hybrid
analysis tool for bug finding,” ACM Trans. Softw. Eng. Methodol.,
vol. 17, no. 2, pp. 8:1–8:37, May 2008.

[27] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 75–84.

[28] M. Brodie, S. Ma, G. Lohman, T. Syeda-Mahmood, L. Mignet,
N. Modani, M. Wilding, J. Champlin, and P. Sohn, “Quickly finding
known software problems via automated symptom matching,” in Pro-
ceedings of the 2nd International Conference on Autonomic Computing,
ser. ICAC ’05. Piscataway, NJ, USA: IEEE Press, 2005, pp. 101–110.

[29] (2007) Apple crash reporter. [Online]. Available: developer.apple.com/
technotes/tn2004/tn2123.html

[30] (2007) Online crash analysis. [Online]. Available: oca.microsoft.com/
[31] (2007) Crash reports. [Online]. Available: talkback-public.mozilla.org
[32] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “Rebucket:

A method for clustering duplicate crash reports based on call stack
similarity,” in Proceedings of the 34th International Conference on
Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 1084–1093.

[33] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator: Locating
crashing faults based on crash stacks,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, ser. ISSTA
’14. New York, NY, USA: ACM, 2014, pp. 204–214.

[34] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on
bug reports,” in Proceedings of the 34th International Conference on
Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 14–24.

[35] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, Oct. 2005.

[36] ——, “Isolating cause-effect chains from computer programs,” in Pro-
ceedings of the 10th ACM SIGSOFT Symposium on Foundations of
Software Engineering. New York, NY, USA: ACM, 2002, pp. 1–10.

[37] S. Yoo, M. Harman, and D. Clark, “Fault localization prioritiza-
tion: Comparing information-theoretic and coverage-based approaches,”
ACM Trans. Softw. Eng. Methodol., vol. 22, no. 3, pp. 19:1–19:29, Jul.
2013.

[38] H. Seo and S. Kim, “Predicting recurring crash stacks,” in Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’12. New York, NY, USA: ACM, 2012, pp.
180–189.

[39] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: Sta-
tistical model-based bug localization,” in Proceedings of the 10th
European Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ESEC/FSE ’13. New York, NY, USA: ACM, 2005,
pp. 286–295.

[40] S. Kim, T. Zimmermann, and N. Nagappan, “Crash graphs: An aggre-
gated view of multiple crashes to improve crash triage,” in Dependable
Systems Networks (DSN), 2011 IEEE/IFIP 41st International Confer-
ence on, June 2011, pp. 486–493.

[41] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02. New
York, NY, USA: ACM, 2002, pp. 467–477.



[42] W. Jin and A. Orso, “F3: Fault localization for field failures,” in
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ser. ISSTA ’13. New York, NY, USA: ACM, 2013, pp.
213–223.

[43] ——, “Bugredux: Reproducing field failures for in-house debugging,”
in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 474–484.

[44] T. Takala, M. Katara, and J. Harty, “Experiences of system-level model-
based GUI testing of an Android application,” in Fourth International
Conference on Software Testing, Verification and Validation (ICST’11),
2011, pp. 377–386.

[45] L. Ravindranath, S. nath, J. Padhye, and H. Balakrishnan, “Automatic
and scalable fault detection for mobile applications,” in 12th annual
international conference on Mobile systems, applications, and services
(MobiSys’14), 2014, pp. 190–203.

[46] D. Amalfitano, A. Fasolino, P. Tramontana, S. De Carmine, and
A. Memon, “Using GUI ripping for automated testing of Android
applications,” in International Conference on Automated Software En-
gineering (ASE’12), 258-261, Ed., 2012.

[47] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of Android apps,” in International Conference on
Object Oriented Programming Systems Languages and Applications
(OOPSLA’13), 2013, pp. 641–660.

[48] C. S. Jensen, M. R. Prasad, and A. Moller, “Automated testing with
targeted event sequence generation,” in International Symposium on
Software Testing and Analysis (ISSTA’13), 2013, pp. 67–77.

[49] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. Ta, and A. Memon,
“Mobiguitar – a tool for automated model-based testing of mobile apps,”

IEEE Software, vol. 99, no. PrePrints, p. 1, 2014.

[50] Google. Android developer guide. http://developer.android.com/guide/
topics/ui/index.html.

[51] (2014) Getevent. [Online]. Available: https://source.android.com/
devices/input/getevent.html

[52] RERAN at github. https://github.com/nejstastnejsistene/RERAN/.

[53] (2014) Android debug bridge. [Online]. Available: http://developer.
android.com/tools/help/adb.html

[54] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy API usage
patterns in Android apps: An empirical study,” in Proceedings of the
11th Working Conference on Mining Software Repositories, ser. MSR
’14. New York, NY, USA: ACM, 2014, pp. 2–11.

[55] (2014) dmtracedump. [Online]. Available: http://developer.android.
com/tools/help/dmtracedump.html

[56] F-doid. https://f-droid.org.

[57] Google. Android API reference - view class. http://developer.android.
com/reference/android/view/View.html.

[58] D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 2nd ed. Chapman & Hall/CRC, 2000.

[59] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach, 2nd ed. Lawrence Earlbaum Associates, 2005.

[60] M. White, M. Linares-Vásquez, P. Johnson, C. Bernal-Cárdenas, and
D. Poshyvanyk. Crashdroid - online appendix. http://www.cs.wm.edu/

semeru/data/ICPC15-CrashDroid/.


