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Abstract—Detecting similar applications is a challenging prob-
lem, since it implies that similar high-level features and their low-
level implementations can be detected and matched automatically.
We propose an approach for automatically detecting Closely
reLated applications in ANdroid (CLANdroid) by relying on
advanced Information Retrieval techniques and five semantic
anchors: identifiers, Android APIs, intents, permissions, and sen-
sors. To evaluate CLANdroid we created a benchmark consisting
of 14,450 apps along with information on similar apps provided
by Google Play. We also compared effectiveness of different
semantic anchors for detecting similar apps as perceived by
27 users. The results show that using Android-specific semantic
anchors are useful for detecting similar Android apps across
different categories. We also measured the impact of third-party
libraries and obfuscated code when identifying similar Android
apps, and our results suggest that there is significant difference
in the accuracy when third-party libraries are excluded.

I. INTRODUCTION

End-users and developers take advantage of search engines
in online markets or repositories for browsing and searching
software systems that are relevant to their needs. On one hand,
end-users frequently search for applications that support their
daily activities or substitute apps (i.e., less buggy app from
another vendor). On the other hand, mobile app developers use
code search engines and markets for opportunistic reuse [1]-
[3], prototyping [4], market analysis [5]-[9], or finding similar
applications to a system under development [10].

Identifying similarities between mobile apps plays an im-
portant role when understanding salient features in successful
apps [11], for discovering plagiarism and clones across mar-
kets [10], [12]-[17], and for learning how to use APIs (in
the case of new Android developers or new API releases).
Moreover, the complexity of those tasks is increasing because
of the staggering amount of apps that are available in markets
and repositories (e.g., 1.5M+ Android apps available at Google
Play). Therefore, searching for similar apps is becoming
especially relevant due to the popularity of mobile devices
and the distribution of mobile applications via online markets.

However, detecting similar applications is a notoriously
difficult problem, since it means automatically detecting high-
level requirements for these applications that match semanti-
cally [18, pages 74,80] [19]. This situation is aggravated by
several major factors: (i) many application repositories are
polluted with poorly functioning projects [20]; (ii) a match
between words in requirement documents with words in the
descriptions or in the source code of applications does not
guarantee that these applications are relevant to the require-
ments; (iii) applications may be highly-similar to one another
in terms of low-level implementations of some functions even

if they do not perform the same high-level functionality [21],
and (iv) market-specific search engines identify similar apps
by relying on textual descriptions only.

Inspired by the previous work for detecting similar desk-
top applications [22], we devised an approach, named as
CLANdroid, for detecting similar Android apps in free app
markets or open source repositories. In addition to previously
used semantic anchors, such as identifiers and API calls [22],
CLANdroid relies on Android specific anchors: (i) explicit and
implicit intents used in the apps, (ii) user permissions declared
in the manifest files, and (iii) sensors used by the apps.
Furthermore, we analyzed the impact of (not) using third-party
libraries and obfuscated apps when detecting similar apps by
relying on the guidelines from our previous work [3].

The results demonstrate that Android-specific semantic an-
chors are useful when detecting similar apps across different
domain categories. In particular, even though previous studies
suggest that Android apps are highly dependent on the Android
SDK and in particular on a subset of APIs that must be always
used [1], [2], [6], our results demonstrate that API calls in
Android apps are still useful for identifying variabilities and
similarities across different apps. Also, we found that third-
party libraries and obfuscated code significantly impact the
accuracy of detecting similar Android apps.

In summary, this paper makes the following contributions:

e An approach for detecting similar Android applications,
CLANdroid, which is useful for developers and users
when browsing and searching apps. CLANdroid is able
to work even when source code is not available;

o A user study with 27 participants aimed at evaluating the
capability of CLANdroid for detecting similar Android
applications from Google Play;

o A large scale study on 14,450 Android apps to eval-
uate differences of CLANdroid and Google Play when
detecting similar applications. Our study also analyzes
the impact of third-party libraries and obfuscated code
when detecting similar Android applications distributed
as APK (Android PacKage) files;

e An online version of CLANdroid that can be used for
detecting similar Android apps using different options
(i.e., including third-party libraries and obfuscated apps,
excluding third-party libraries or obfuscated apps), and
different semantic anchors (i.e., identifiers, API calls,
intents, sensors, and user permissions). CLANdroid is
available at http://www.semeru.info/clandroid.



II. OUR APPROACH FOR FINDING CLOSELY RELATED
ANDROID APPLICATIONS

CLANdroid is based on the three key ideas behind CLAN
[22]: (i) similar apps share some semantic anchors (e.g., API
calls), (ii) requirements are implemented by a combination of
different semantic anchors, and (iii) some semantic anchors are
more expressive in terms of describing salient features (i.e.,
weighted contribution). While CLAN uses APIs as semantic
anchors for desktop Java applications, Android apps rely
on unique programming concepts such as intents, permis-
sions, and sensors to implement underlying features. There-
fore, CLANDroid extends the concept of semantic anchors
to Android-specific elements that might be used to identify
similar applications. For instance, if a set of applications
use an intent such as ACTION_DIAL (which displays the
phone dialer with a provided number filled in and is more
common in all the Android apps), this intent would have
a lower weight as compared to a perhaps rarer intent like
ACTION_CREATE_DOCUMENT (which allows the user to
create a document). Also, similarly to how combinations of
API calls fulfill requirements as opposed to a single API
call, combinations of intents are used to provide an Android
application with all of its functionality, not just a single intent.

To implement the three key ideas mentioned before, we
rely on an Information Retrieval (IR) technique called Latent
Semantic Indexing (LSI) that reduces the dimensionality of the
similarity space while simultaneously revealing latent concepts
that are implemented in the underlying corpus of documents
[23]. In LSI, terms are elevated to an abstract space, and
terms that are used in similar contexts are considered similar
even if they are spelled differently. LSI automatically makes
embedded concepts explicit using Singular Value Decompo-
sition (SVD), which is a form of factor analysis used to
reduce dimensionality of the space to capture most essential
semantic information. Therefore, each semantic anchor and
its frequencies are represented as a separate Term-Document-
Matrix (TDM) at app level (i.e., semantic anchors are terms
and app are the documents), and then LSI is applied on each
matrix to extract latent concepts for each semantic anchor.
After applying LSI on each TDM for each semantic anchor, a
similarity index can be computed by measuring the distance
(e.g., cosine distance) between two different apps for each
semantic anchor (e.g., cosine similarities among apps can be
computed based on API calls, intents, sensors, etc).

A. The CLANdroid Architecture

The CLANdroid architecture and workflow is depicted in
Fig. 1. The mobile apps are downloaded from a marketplace in
APK format or from open source repositories such as GitHub
or Google Code (1). Then, the semantic anchors are extracted
from the apps statically (2). Once all the semantic anchors
are extracted, Term-Document Matrices (TDM) are generated
for each type of semantic anchor (3): API-Application Ma-
trix (TDMapr), Sensors-Application Matrix (TDMg), Intents-
Application Matrix (TDM;), Permissions-Application Matrix
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Fig. 1. CLANdroid architecture and workflow. *The details of the Data
Extractor are depicted in Figure 2.
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Fig. 2. Data extraction process.

(TDMp), and Identifiers-Application Matrix (TDM;p). CLAN-
droid applies the LSI algorithm to each of these five TDM
matrices and computes the cosine similarity between each pair
of apps in a similar manner to CLAN (4). Finally, a practitioner
can select a target app and semantic anchor (e.g., sensors)
in the search engine (5), and CLANdroid retrieves the most
similar apps according to the similarity index.

B. Extracting Semantic Anchors From Android Apps

CLANdroid downloads the APKs directly from Google Play
and then decompiles the APKs to extract source code identi-
fiers, sensors, API calls, and intents, and Android permissions
with the infrastructure depicted in Fig. 2. The general process
is as the following: (i) the APK files are unziped by using the
apktool' tool, which reveals the compiled Android app code
file (note that an APK is just a set of zipped DEX files); then
(ii) the DEX files are translated to JAR files using the dex2jar’
tool; then (iii) CLANdroid extracts the .class files from the
JAR files by using the 7zip? tool; and finally (iv) CLANdroid
decompiles the .class files to . java files by using the
JAD* decompiler tool (Fig. 2). Once each APK is decompiled
into JAR files and source code, CLANdroid extracts semantic
anchors from different artifacts: identifiers and intents from
source code, APIs and sensors from JAR files, and permissions
from the AndroidManifest.xml files.

CLANdroid is able to operate even in situations where
the source code is not available; in that case the APK files

Uhttp://code.google.com/p/android-apktool/
Zhttp://code.google.com/p/dex2jar/
3http://www.7-zip.org/
“http://www.varaneckas.com/jad/



need to be decompiled to extract the different semantic an-
chors. Once each app is decompiled into source code, we
ran scripts to extract various data: identifiers, APIs, sensors,
and intents from the source code, and permissions from the
AndroidManifest.xml files. All the details of the data
acquisition and extraction are outlined in Section III.

C. Search Engine

Once all the metadata is extracted, the TDM matrices are
generated for each type of semantic anchor. Therefore, the
Term-Document Matrix (TDM) Builder takes app metadata as
its input, and it uses this metadata to produce five TDMs:
Class-Application Matrix (TDM¢), Sensors-Application Ma-
trix (TDMs), Intents-Application Matrix (TDM;), Permissions-
Application Matrix (TDMp ), and Identifiers-Application Matrix
(TDM;:p). We applied the LSI algorithm to each of these five
TDM matrices and computed the cosine similarity between
each application in an identical manner to CLAN. The final
result is a set of five similarity matrices LS, (one for each
semantic anchor x). A Similarity Matrix, S, is a square matrix
whose rows and columns designate applications. For any two
applications A; and A;, each element of S,, S;[i,j] is the
similarity score between these applications when using z as
the semantic anchor that is defined as follows:

. cosine(LST(A;), LSI(A;)) ifi #j
Sm[w]Z{l il

When the user enters a query (i.e., target app and semantic
anchor) it is passed to the Search Engine that retrieves relevant
applications with ranks in the descending order using S, .

III. EMPIRICAL STUDY: FINDING CLOSELY RELATED
ANDROID APPLICATIONS

We conducted an empirical study to determine how effective
CLANDroid is for finding similar Android apps. This study
was driven by the following goals: (i) to evaluate which
semantic anchors are more effective for detecting similar apps;
and (ii) to analyze the impact of third-party libraries and
obfuscated code when detecting similar apps, since these two
factors have been shown to have significant impact on reuse in
Android apps and experiments using APKs [3]. The context
of the study is comprised of 14,450 free Android apps that
were downloaded from Google Play. The perspective is of
researchers interested in designing an approach for detecting
similar Android apps. The quality focus is the goldset of
similar apps provided by Google Play’ and the similarity of
the apps as perceived by users.

A. Research Questions
In the context of this study we formulated the following
research questions (RQs):

o RQ1: What semantic anchors used in CLANdroid pro-
duce better results when compared to the others? The

SIn addition to the metadata and application store reviews, for a specific
app, Google Play provides a list of similar apps in the same category.

purpose of this RQ is to explore semantic anchors that
are specific to Android apps such as user permissions
declared in the manifest files, sensors used by the apps,
and Android intents. Specifically, we evaluated whether
these Android-specific semantic anchors outperform API
calls, which were previously used by CLAN for detecting
similar desktop Java systems.

e RQs: How orthogonal are the apps detected by CLAN-
droid as compared to Google Play? The purpose of
this research question is to compare the apps detected
by CLANdroid to the set of similar apps detected by
Google Play’s search engine.

e RQs: Do third-party libraries and obfuscated apps im-
pact the accuracy of CLANdroid? Previous studies found
that using APK files in empirical studies could introduce
threats to validity of the results because of the impact
of third-party libraries and obfuscated code [3]. In this
study we used APK files to extract API calls, identifiers,
user permissions, sensors, and intents. Thus, it is possible
that third-party libraries embedded in the APKs and
obfuscated code can impact the detection of similar apps.

B. Study Design

To answer R(Q);, we designed a survey aimed at assess-
ing similar apps detected by CLANdroid. We asked partic-
ipants to rank the similarity between a target app and a
set of potentially similar apps generated by an instance of
CLANdroid from the following six choices: CLANdroid sp;
(API calls), CLANdroidy,; (intents), CLANdroidpe,y, (per-
missions), CLANdroidg.,s (sensors), CLANdroidyje,; (Iden-
tifiers); and a Combined approach that combines API calls
and identifiers. The participants evaluated 12 apps belonging
to different domain categories, and their top-3 similar apps
(in the same domain category) retrieved by each one of the
CLANdroid instances, which accounts for a total of 48 apps
that had to be inspected by the participants. The similar apps
were never displayed with the ranking (e.g., top-1) to avoid
any type of bias of the participants. In the survey we provided
links to the apps’ websites at Google Play, and we asked the
participants to make their judgments based on the following
information available on Google Play: apps’ descriptions,
permissions list, screenshots, and the “what’s new” section.
Our decision for 12 apps and 3 similar apps was made to
reduce early drop-out rate and to avoid invalid answers from
participants trying to finish the survey quickly. Our assumption
was that inspecting one app website will take a participant one
minute on average, thus, a question will be answered in five
minutes, which in total is 60 minutes to complete the survey.
The similarity was evaluated by the survey participants using
the Likert scale:

1) Completely dissimilar: the participant is highly confi-

dent that the app is dissimilar to the source app.

2) Mostly dissimilar: it is unclear if the app is similar to

the source app.

3) Mostly similar: there are some similarities between the

app and the source app.



4) Highly similar: the participant is highly confident that
the app is similar to the source app.

The 12 target apps were selected randomly from our dataset
of 14,450 free Android. The list of apps and links to Google
Play are provided with our online appendix [24].

Concerning the distribution protocol, we designed six ver-
sions of the survey using the Qualtrics [25] tool. The six
versions reflect a cross-validation design in which an instance
of the survey evaluated 12 apps but the top-3 similar of each
two apps were detected using an instance of CLANdroid.
Therefore, each participant evaluated results obtained with six
different instances of CLANdroid (i.e., CLANdroid op;, CLAN-
droidy,:, CLANdroid poyy,, CLANdroid ge,,s, CLANdroidgen:,
and Combined). It should be noted that the six versions of the
survey assure that the results from six CLANdroid instances for
the 12 apps were evaluated. We recruited participants via email
and provided the details of the survey (without mentioning that
the similar apps were detected by CLANdroid).

In addition to the survey, in order to identify the features
of CLANdroid when compared to Google Play (RQs), we
used 14,450 free Android apps, and a goldset of similar apps
listed by Google Play. Thus, given an app a; € A, and A the
context of our study, we used the six CLANdroid instances to
detect similar apps to all the a; € A. The similar apps were
detected in the complement set of each a; (i.e., A — a;). We
used the Google Play’s Goldset as a reference for evaluating
the accuracy of the approaches. Our decision is motivated by
the fact that manually annotating a set of 14,450 apps is a time-
consuming and expensive task, and the goldset availability
provided us with a ground truth for evaluating the approaches
automatically. Therefore, after detecting similar apps for each
a; we looked for the ranking of the apps belonging to a;
goldset in the list of similar apps retrieved by each CLANdroid
instance, then, we evaluated the rankings using two metrics:
the top rank (T'OPg) of any application in the goldset for a;,
and the average rank (AV G,.) of all the apps in the goldset
for a;. Given an app «a;, and a; € Goldset(a;), TOPg(a;)
and AV G, (a;) are computed as in Eq. 1 and 2.

TOP,(a;) = min[rank(a;)] (1)

|Goldset(a;)|

>

Jj=1

1

AVEAai) = (G dset(an)]

rank(a;) (2

For instance, given an app ag with apps as, a1, and agg in
its goldset, we will check each of the six CLANdroid instances
to compute the top rank (i.e., position closer to 1) of the apps
as, ag, and agg. Thus, app agg may be detected at rank 10
for CLANdroid sp;, app ajp may be detected at rank 5 for
CLANdroidy4ent, etc. For the average rank, we computed the
average of the rankings for each app in the goldset (e.g.,
average of rank(as), rank(aig), and rank(asp)) when using
each CLANdroid instance.

Finally, for R()s we computed the top rank and average
rank of the goldset as in R(Q)>. However, we considered only
project-specific classes (i.e., excluding third-party libraries),

and we removed obfuscated apps. For considering only the
project-specific code and removing obfuscated apps, we fol-
lowed the guidelines from prior work [3]. Note that the results
from CLANdroidp.,, are not impacted by third-party libraries
because user permissions are extracted from manifest files.

C. Analysis Method

For R, we analyzed the survey responses using descrip-
tive statistics; in order to validate whether there are significant
differences between the similarity rankings (using the Likert
scale) of each CLANdroid instance we used the Kruskal-Wallis
test [26] with post-hoc test procedure for pairwise comparisons
(i.e., Mann-Whitney with Bonferroni correction).

For the goldset-based analysis (R()2), we also compared
the TOP, and AV G, series of the CLANdroid instances with
the Kruskal-Wallis test with post-hoc procedure. For RQ)3, we
only used pairwise comparisons using Mann-Whitney between
the values of (i) TOP, and AV G, with and without third
party libraries, and (ii) TOP, and AV G, with and without
obfuscated code. For example, to measure if there is an im-
pact of third-party libraries when using CLANdroidapr, we
compared the TOP, values when using CLANdroidpy to
the TO P, values when using C LANdroid 4p; but excluding
third-party libraries from the context.

In all the tests we evaluated statistical significance at an
alpha level = 0.05 and applied a Bonferroni Correction to the
p-values when required. We also computed the Cliff’s delta d
effect size [27] to measure the magnitude of the difference in
all the tests. We followed the guidelines in [27] to interpret
the effect size values: negligible for |d| < 0.147, small for
0.147 < |d| < 0.33, medium for 0.33 < |d| < 0.474 and
large for |d| > 0.474.). We are assuming neither population
normality nor homogeneous variances, therefore, we choose
non-parametric methods (Kruskal-Wallis test, Mann-Whitney
test, and Cliff’s delta).

D. Replication Package

The data set used in our study is publicly available at
http://www.cs.wm.edu/semeru/data/clandroid. Specifically, we
provide: (i) the list (and URLs) of the studied 14,450 free
Android applications; (ii) the questions used for the survey;
and (iii) the list of similar apps detected by CLANdroid.
We also provide an online version of CLANdroid, which is
available at http://www.semeru.info/clandroid

E. Threats to Validity

In this section, we discuss threats to validity of the experi-
mental design for CLANdroid and how we address them.

1) Internal Validity: Goldsets. It is important to note that
similarity between apps in the goldsets for CLANdroid are
not symmetrical. Thus, if an app a; is found in the goldset
for an app a;, this does not mean that the app a; will be in
the goldset for the app a;. Because we reduce the goldset so
that it only contains apps we have in our dataset (for practical
reasons we cannot continuously download goldset apps), this
means that the app B may have no apps in our dataset that



are also in its goldset. However, although the app a; may not
have relevant goldset apps to be ranked, we cannot discard a;
from the dataset since all apps that reside along with a; in
the same dataset will then suffer, e.g., remove the only app in
their own goldset, will turn them into an “outlier” app like a;.

We also assumed that the goldsets provided by Google
Play are always correct. That is, each app listed on Google
Play as similar should be in the “definitely similar” category.
However, the quality of the similar app suggestions by Google
Play varies depending on the context and we do not know the
underlying mechanism used by it to detect similar apps.

App Categories. Regarding our similarity rankings based
on the category of the app used as a query, note that the
similarity score is already affected by the other apps in the
dataset even if they are from a different category. That is,
even if we only rank apps that are of the same category as the
queried app, due to the way TF-IDF is computed, the TDM
for LSI is affected, and thus the similarity scores are changed.
However, if we decided to run LSI for each app only using the
apps from each category, we would have to run both the TDM
Builder and LSI computations 155 times (five times regardless
of category for the different ranking methods, and 150 times
for those five times for each category).

Main Package Extraction. When we extracted the main
package from the manifests of each app in order to compute
similarities between the apps without including any informa-
tion from third-party libraries (TPLs), we found that some
apps did not specify a main package in their manifest. In
these cases, we chose to use the name of the app’s package as
the main package, as the majority of the apps in our dataset
followed this design. However, we also detected 649 apps that
specified a main package in their manifest that did not exist in
the decompiled source code. For instance, the app Race, Stunt,
Fight, Lite! [28] had the package named ac.lite, thus, the
non-TPL information should be decompiled to /ac/lite/ ,
but this directory does not exist within this app.

We investigated this by examining the first activity
to be launched in the manifest (the first class to be
executed), which we detected by searching for the
Launcher Android intent also within the manifest.
For this app, we found that the first class to be executed was
com.unity3d.player.UnityPlayerProxyActivity.
Unity3D [29] is a game engine that can be used to generate
cross-platform applications, thus we know that this app
used this game engine to generate some of the code for
this application. However, due to the use of a third-party
engine such as Unity3D, we are unable to distinguish parts of
classes or even entire classes that were created solely by the
developers. Some of the other 649 applications use various
libraries and engines, such as MonoGame [30] or even
the developers own library used for multiple applications.
However, because these classes and code were not written
specifically for a single application, we opted to exclude this
code to prevent high similarities between apps simply because
they relied on the same library or engine. Thus, we were
unable to extract any information from the source code of

these 649 applications since it was not possible to distinguish
what code did and did not belong to a TPL because the
specified main package did not exist.

2) External Validity: Survey Participants Application
Dataset. Although the apps in our dataset are representative of
all the Google Play categories, we cannot guarantee that these
results would hold for the entirety of Google Play (including
paid apps). Also, the evaluation of similarities reported by the
survey participants might not be representative of the opinions
of all the users of Android apps. In the future, we are also
planning on computing Android-specific diversity metrics to
quantify generalizability of our datasets [31].

IV. EMPIRICAL RESULTS

In this section we present the empirical results aimed at
answering the RQs. In addition, we include the cases that we
manually inspected to support our quantitative findings.

A. RQ:: Accuracy of CLANdroid semantic anchors

27 people accepted to participate in the online survey. It is
worth noting that our target was to evaluate similarity from the
viewpoint of users, therefore, we invited not only developers,
but also end users. Each participant evaluated 48 apps in 12
questions presenting a target app and three potentially similar
apps.

Fig. 3 depicts the similarities reported by the survey par-
ticipants and Table I reports the comparisons that have statis-
tically significant difference. On average, when considering
the results for the Top-3 apps (Fig. 3-a) detected by each
instance of C'LANdroid, the survey participants reported that
CLANdroidapy is the instance providing the most similar
apps with mean similarity of 2.54 (median = 3), which sug-
gests that the apps detected by CLANdroidap; are mostly
similar. CLANdroid 4p; was also the instance with the most
number of apps rated as highly similar. The distribution of
answers for CLANdroid 4py are: 38 (completely dissimilar),
41 (mostly dissimilar), 40 (mostly similar), and 43 (highly
similar). In terms of average/median results, the next two
instances with the best results are CLANdroidygen: with
mean similarity of 2.51 (median = 3) and CLANdroidpe,m
with average similarity of 2.49 (median = 3). CLANdroidy,;
is the fourth instance in terms of results (mean similarity
= 2.32, median = 2); and the combination of APIs and
identifiers (i.e., Combined) neither improves the results of
CLANdroidap;r nor CLANdroidygey;. Finally, the worst
results were achieved by CLANdroidge,s with mean sim-
ilarity of 1.90 (median =2) and the following distribution:
68 (completely dissimilar), 54 (mostly dissimilar), 27 (mostly
similar), and 13 (highly similar). There is a clear and signifi-
cant difference between CLANdroidsens and the rest of the
instances, which can be observed not only in the boxplots,
but also confirmed with the p-values of the Mann-Withney
tests and the effect sizes (i.e., Cliff’s d). All the comparisons
using CLANdroidgens as the treatment group (Table I) are
the only cases with p-values less than the targeted alpha (after



a) Similarity of Top—3 Similar Apps
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b) Similarity of Top-1 Similar App
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Fig. 3. Similarity (reported by survey participants) of a) Top-3 similar apps,
and b) Top-1 similar app, detected by each CLANdroid instance. The values in
the x-axis are based in the discrete values of the similarity scale: 1 (completely
dissimilar), 2 (mostly dissimilar), 3 (mostly similar), and 4 (highly similar).

TABLE I
PAIRWISE COMPARISONS WITH STATISTICALLY SIGNIFICANT
DIFFERENCES FOR THE SIMILARITY VALUES REPORTED BY THE
PARTICIPANTS (TOP-3 SIMILAR APPS). P-VALUES AND CLIFF’S d ARE
REPORTED. THE ALPHA VALUE AFTER BONFERRONI CORRECTION IS
a = 0.0033 (1.E., 0.05 /15 COMPARISSONS)

Control Treatment p-value ClLiff’s [d]
CLANdroidap;  CLANdroidgens 2.72e-07 031790
CLANdroidigens ~CLANdroidgens 7.46e-07  0.30571
Combined CLANdroidgens 0.00076  0.20694
CLANdroidn: CLANdroidsens  0.00064  0.20995
CLANdroidpery, CLANdroidgens 9.79e-07  0.30251

Bonferoni correction), and the comparisons report medium
effect sizes.

We also investigated the case of the Top-1 similar apps.
Fig. 3-b depicts the distribution of the similarity values re-
ported by the survey participants for the Top-1 similar apps
detected by each instance of CLANdroid. All the instances
(except for CLANdroidgens) had a median similarity of
3, and the average values are in the range (2.5, 3), which
suggest that the participants reported the top-1 apps detected
by almost all the instances of CLAN are highly similar.
However, the Mann-Whitney tests report only one significant
difference between CLANdroidap; and CLANdroidgens
with p-value=0.004, and medium effect size |d| =0.306.

To understand the performance of the CLANdroid in-
stances based on Android-specific attributes we manually
checked the apps detected as similar. Sensors are not widely
used in our dataset, and there are only 13 types of sensors
than can be used by Android apps [32]. CLANdroid ranks
applications with the exact same similarity values at the same
rank, therefore, the sensors attributes may not be as useful
for detecting similar apps. For instance, if an app ao has
three applications in its goldset (applications ai, as, and as),
and apps ajand ay both utilize the exact same sensors as the
application ag, then they will both have a similarity value of
1.0 when compared to ag. Thus, both applications will be

ranked at position 1, and an app a3 will be ranked at position
3, as it is the third-most similar application to application ay.
Due to the low number of unique sensors used in our dataset
(10), it can be common for apps to use the same combination
of sensors, especially if the application only uses one or two
sensors. This also means that all applications that do not use
any phone sensors have a perfect similarity value as well.
11,385 of the applications in our dataset make no use of any
of the sensors, and thus all of these applications are deemed
similar when ranked by sensors alone. However, while the
sensors ranking method alone may not be the most effective, it
might be combined with other ranking methods to help detect
similar applications more accurately.

Permissions are a unique way of detecting similar apps
due to its wide variance in ranking apps. Although there
is a list of 145 official Android permissions [33], we
detected over 10 times this amount of unique permissions in
our dataset. This is possibly due to applications being
able to create custom permissions. Thus, the more
permissions an app has, the more likely that the top
ranked apps by CLANdroid are to be functionally similar.
The opposite also holds true: if an app has a single
permission such as android.permission.INTERNET,
then every app, which has only this permission, will
be marked with a perfect similarity. One example that
demonstrates the ineffectiveness of permissions is when
considering the app Slots Royale - Slot Machines [34].
This app has four Android standard permissions:
READ_PHONE_STATE, ACCESS_COARSE_LOCATION,
ACCESS_NETWORK_STATE, and INTERNET. The app
Tennis Score [35] has these exact same permissions, and thus
is marked as a perfectly similar app in CLANdroidperm
(and because it is perfectly similar, it must be at rank 1).
However, the app Slots Free (5 Slot Machines) [36] is a
similar app part of the Google Play goldset, and while it
contains the four permissions that Slots Royale has, it also has
five additional permissions. Simply adding these additional
permissions pushes the similarity ranking of this app down
from the highest similarity level (rank 1) to rank 1,550.

Summary for RQ;. The evaluation of the results collected
with our survey suggest that CLANdroid is an effective
tool for detecting similar apps, in particular when using
APIs, identifiers, permissions, and intents as semantic anchors.
Using sensors for detecting similar apps appears to be in-
effective, because the set of sensors used by Android apps
is reduced, and the detection based only on sensors results
in too many false positives. Moreover, although, there is no
statistically significant difference between using APIs and the
other semantic anchors, the CLANdroid instance based on
APIs provided the highest number of apps rated as “highly
similar”.

B. RQy: CLANDroid vs. Google Play

As mentioned in Section III, Google Play provides, for a
target app, a list of “similar apps”. We also used that list
of similar apps to evaluate the performance of CLANdroid
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Fig. 4. CLANdroid instances and goldset behavior described by a) top ranked
app, and b) average ranking in goldset.

instances when ranking the apps in the Google Play goldset.
We used the CLANdroid instances with the complete dataset
of apps to consider also similar apps belonging to different
categories (it is worth noting that for the survey we used apps
detected as similar in the same category of the target app).

The results of the goldset-based analysis are summarized
in Fig. 4. The figure depicts the distribution of the rankings
provided by CLANdroid to the apps reported as similar by
Google Play (i.e., Google Play goldset). On average, using
APIs and Intents deliver the worst rankings for the goldset,
when analyzing T'OP, (Fig. 4-a). The mean values in Fig. 4-
a ordered by best rankings are: 858.2 for CLANdroidgens
(median = 1), 1,996 for CLANdroidjgen: (median = 974.5),
2,143 for CLANdroidpery, (median = 940), 2,183 for Com-
bined (median = 1,128), 2524 for CLANdroidr,; (me-
dian = 1,404), and 2,638 for CLANdroidspr (median =
1,763). This result is also reflected in the case of AV G,
(Fig. 4-b). From best AVG, to worst, based on the av-
erage value in the boxplot, we obtain: CLANdroidgens
(mean=3,424, median=2,531), CLANdroidigeni(mean =
4,844, median=4,733), CLANdroidpe,., (mean =4,948, me-
dian = 4,747), Combined (mean=5,165, median = 5,075),
CLANdroidy,; (mean = 5,597, median = 5,467), and finally
CLANdroidapr (mean = 5,837, median = 5,818).

The post-hoc procedures with the Mann-Whitney
tests show statistically significant differences in all the
cases for AVG, and TOP,, except for the comparison
between CLANdroidgen: and CLANdroidperm, and
CLANdroid;,; and Combined. However, when looking
into the magnitude of the differences, (i.e., Cliff’s delta)
in most of the comparisons, the differences are negligible
(i.e., |d| < 0.147) and small (i.e., 0.147 < |d| < 0.33). The
magnitudes are only medium and large when comparing
the results of using sensors as semantic anchors against
the others; this case is confirmed with the boxplots, which

shows that the best rankings for the goldsets are provided
when using sensors (CLANdroidgens). Without considering
CLANdroidgens, the best ranking of the goldset apps is
achieved when using only identifiers (CLANdroidrgent)-
Ranking by permissions is the second best, outperforming
both APIs and intents.

On average, rankings of the Google Play’s Goldset apps
are far from the top-positions in all the approaches. When
using T'O P, there were only 471 apps in our dataset that had
an app in their goldset ranked at position 1 for any ranking
method (e.g., an app a; may have an app from its goldset
ranked at position 1 for CLANdroidrgent, while an app a;
may have an app from its goldset ranked at position 1 for
CLANdroid — Sens). When using TOP, but only taking
into consideration apps from our dataset that are of the same
category as the queried application, this number increases to
1,134. This shows that at least 663 apps have an app from
a different category being ranked higher than an app in the
queried app’s goldset for any ranking method.

We found evidence of apps ranked by CLANdroid in top
positions, which do not belong to the goldset, but are still
closely related. For example, when we checked the rankings
for the popular game app Angry Birds [37], the top ranked app
for each approach was Angry Birds Space [38]. The second
ranked app by intents was Hamster: Attack! [39] (by Backflip
Studios), an app in the Casual category. The third ranked app
by APIs and identifiers is The Sims FreePlay [40]. The apps
in the goldset (e.g., Angry Monkey [41] and NinJump [42]) do
not appear to be functionally similar to Angry Birds and this
suggests that Google Play might use textual similarity between
the apps descriptions and names to detect similar apps.

Summary for RQ,.C' LANdroid is able to retrieve similar
apps belonging to different categories, while Google Play lists
as similar only apps in the same category. Our results suggest
that Google Play’s detection mechanism is likely to be based
not only on textual similarities of descriptions, but also on
sensors. The latter observation is supported by the fact that
the best rankings for the goldset apps were obtained using
the CLANdroidgens. However, as explained in Section IV-A,
using sensors as the only source of information results in a
higher rate of false positives for detecting similar apps.

C. RQs3: The impact of third-party libs and obfuscated apps

Fig. 5 depicts the distribution of the rankings provided by
the CLANdroid to the apps in the Google Play’s goldset
when excluding the third-party libraries from the analysis. A
complete list with the results of the statistical tests is provided
with our online appendix. We did not include the results of
CLANdroidpe,,n, because user permissions were extracted
from manifest files, therefore, excluding third-party libraries
from the analysis does not change the results.

In terms of AV G,., CLANdroidygen; is the best approach
and CLANdroidapr is the worst: CLANdroidgens (mean
= 1,058, median = 1 ), CLANdroidrgen: (mean = 4,350 ,
median = 3,991), CLANdroidr,; (mean = 4,740, median =
4,860), CLANdroid sp; (mean = 5,253, median = 5,040); in
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Fig. 5. CLANdroid instances and goldset behavior described by a) top ranked
app, and b) average ranking in goldset, when excluding third-party libraries.

terms of T'O P, the results also hold: CLANdroidge,s (mean
= 120.4, median = 1 ), CLANdroidrgen: (mean = 1,569,
median = 430.5), CLANdroidr,; (mean = 1,775, median
= 11), CLANdroidap; (mean = 2,044, median = 830.5).
There are significant differences between the values of TOP,
and AV G, produced by the CLANdroid approaches when
including/excluding third-party libraries. In fact, the rankings
are improved, in all the cases, after excluding third-party
libraries from the analysis. The magnitude of the differences
reported by the Cliff’s d effect size are medium-large.

An example that illustrates the impact of third-party libraries
is the following. The app Night Vision Cam [43] experiences
a large increase in its average and top goldset rankings when
removing third-party libraries from the data. One application
in the goldset for Night Vision Cam is LiveKey Camera [44].
When using the whole dataset including third-party libraries,
the similarity rankings of Night Vision Cam were 4,928 for
CLANdroidpy and 6,852 for CLANdroidyen:. However,
when excluding third-party libraries, these rankings improved
drastically to positions 50 and 266 respectively, with the other
attributes also reflecting this change. Upon further investiga-
tion, we found that while LiveKey Camera contained only app-
specific code (i.e., no third-party libraries), Night Vision Cam
utilized Google Ads. We observed that Night Vision Cam had
only 21 classes in its main package, whereas the Google Ads
library had 156 classes. This example demonstrates the large
impact that TPLs can have when detecting similar applications,
particularly in cases such as this where the TPL “outweighs”
the application’s code due to size and the number of classes.

Concerning the results when excluding obfuscated code,
there are significant differences in all the cases when compar-
ing to rankings of apps including obfuscated code. However,
the magnitude of the differences is negligible, in most of the
cases, according to the Cliff’s d effect size. The negligible
values, in terms of effect size, could be explained by the

fact that only 1,458 obfuscated apps were identified in our
dataset. There are improvements in the average rating (i.e.,
AV G,) of the goldset apps. This is not a surprising result
because removing the obfuscated apps reduces the size of
the dataset, and obfuscated apps ranked in top positions are
removed from the ranking list. Therefore, AV G,. results after
removing obfuscated apps suggest that CLANdroid is able to
find similar apps even including obfuscated apps because API
calls, sensors, user permissions, and intents are part of the
Android SDK (i.e., their calls/declarations in Android apps
can not be obfuscated).

However, the behavior of T'OP. is different. The top ranked
apps from the goldset, on average, lost positions in the ranking
list when removing obfuscated code. This behavior is not
evident when analyzing the AV G,, and is opposite to the
improvement of AV G,.. Upon manual inspection of the apps,
we found a possible explanation for the case of TOF, when
excluding obfuscated applications. For instance, in our dataset
we have four goldset applications for the Smart AppLock
(App Protector) application [45]. However, when we removed
obfuscated applications there were only two goldset applica-
tions remaining as the other two were marked as obfuscated
applications. We noticed that in CLANdroidygen: for Smart
AppLock, an obfuscated application (AppLock [46]) is ranked
at the top position of 134, while the next highest ranked goldset
application known as App Lock (Smart App Protector) [47] is
at the position 7,220. However, after removing obfuscated apps
from the dataset, App Lock (Smart App Protector) becomes the
top-ranked app with its position changing to 4,460.

We noticed a similar case when detecting similar applica-
tions for Infinite Racing [48]. We found four applications in
our dataset which are in the goldset, and when we removed
the obfuscated applications we had two goldset applications
remaining (i.e., there were two obfuscated applications and
two non-obfuscated applications in the original goldset for this
application). Similarly to the previous example, the ranking
of the two non-obfuscated applications improved after the
removal of the obfuscated apps. However, the new rankings of
the non-obfuscated applications are not as good as the rankings
of the obfuscated applications.

Summary of RQs. The results demonstrate that the accu-
racy of CLANdroid is significantly (negatively) impacted by
the inclusion of third-party libraries. Excluding third-party
libraries moved the average rankings (AVG,) up by, on
average, a minimum of 490 positions. We found that with-
out including third-party libraries, each CLANdroid instance
improved both its top app rankings (TOP,) and average
rankings significantly. However, while we also found that there
are differences in the rankings when excluding applications
we detected as obfuscated, the magnitude of these differences
is negligible in most cases. We also found that while the
average rankings improved when we removed the obfuscated
applications, the top rankings worsened due to obfuscated
applications occupying the top ranks.



TABLE II
RECENT STUDIES ON DETECTING SIMILAR APPS. WE USE M FOR MOBILE AND D FOR DESKTOP APPS. THE NEXT COLUMN LISTS THE NUMBER OF APPS
IN THE DATASET, AND THE TPL COLUMN MARKS IF THE STUDY CONSIDERED THE IMPACT OF THIRD-PARTY LIBRARIES WITH A YES, NO, OrR NA (NOT
APPLICABLE). FINALLY, THE MARKET CATEGORY STATES WHERE THE APPS WERE ACQUIRED FROM- MM : MULTIPLE MARKETS, NR : NOT REPORTED,
GP : GOOGLE PLAY, FB : FREEBSD, SF : SOURCEFORGE, E: ECLIPSE PLUGINS.

Study Purpose Information Type — Platform #apps  TPL — Market
Michail and Notkin [T4]  Detecting similar Iibraries Library source code D NA NA NR
Kawaguchi ef al. [49] Automatic Categorization Source code identifiers D 41 NA SF
Crussell et al. [50] Detecting cloned and rebranded apps Java bytecode M  >265K  YES MM
Li et al. [51] Using similarities to address security File directories M >58K NO MM
Bajracharya et al. [52] Source code retrieval API calls from source D 346 NA E
Chen et al. [17] Detecting cloned agps to address security Methods from SMALI code M >I150K YES MM
Cubranic et al. [53] Recommending Software Artifacts Issue-tracking D 1 NA E
Moritz et al. [54] API search engine API methods D 13K NA NR
Gorla et al. [55] Finding unadvertised behavior in apps API invocations from SMALI M >22K  YES GP
Desnos et al. [56] Detection of similar apps Custom method signatures M 2 NO GP
Ye et al. [57] Context-aware Browsing Component reﬁ)ositor D NR NA NR
McMillan et al. [58] Finding relevant functions Function call grap D > 18K NA FB
Thung et al. [59] Detecting similar applications Collaborative tagging D >100K NA SF
Wang et al. [10] Detecting cloned apps API invocations from SMALI M >100K YES MM
Shao et al. [60] Detecting cloned apps Statistical and Structural features M  >169K YES MM

V. RELATED WORK

CLAN(droid is related to previous work on (i) source code
engines, and (ii) approaches for detecting similar desktop and
mobile apps, which are summarized in Table II. However, in
this section we will only describe the approaches for detecting
similar Android apps. For example, the tool AnDarwin by
Crussell ef al. [50] is a scalable approach for detecting similar
Android apps using semantic information. AnDarwin extracts
semantic vectors from source code methods in the apps; the
main idea is that the methods can be combined in semantic
blocks, therefore, if two semantic blocks are code clones, then
the semantic vectors representing these blocks are considered
as similar. The directory structure in mobile apps has been
also used to detect similar apps; for instance, DStruct [51]
decompiles and APK and walks through the directories and
files of the app to construct a tree, which represents the
directory structure. DStruct computes the percent difference
between two trees to represent the similarity between two
applications. Thus, the smaller the percent difference the more
similar the apps are based on their directory structures.

Other approaches have proposed the usage of centroids,
topics, and method signatures to detect similar apps. Chen
et al. [17] detect similar apps by comparing centroids created
from dependency graphs at method level. However, these sim-
ilarity measures are used to draw a boolean value conclusion
on the app’s core functionality cloning. That is, either two
apps are marked as clones or not, which prevents partial sim-
ilarity detection. Chen et al. evaluated their approach across
multiple different Android markets, yet did not use Google
Play. Gorla et al. [55] applies Latent Dirichlet Allocation
on the descriptions of over 32K applications; the k-means
algorithm is then used to cluster the apps (by using the topics
generated with LDA) and, thus, provide the ability to identify
groups of apps with similar descriptions. Desnos [56] used
method signatures to detect similar Android apps, where the
signatures were composed of string literals, API calls, control
flow structures, and exceptions. Wang et al. [10] proposed
a two-phase approach that first removes code of third-party
libraries from the APKs, and then uses fingerprints containing
API calls to detect repackaged/cloned apps across different
markets. Another work on detecting repackaged apps in two-

phases is the one by Shao et al. [60], which clusters the
apps using resources (e.g., strings and images) and statistical
features initially, and then performs a second clustering stage
using structural features. Finally, the work by Thung et al. [59]
is also similar to C'L AN droid, because they used an approach
based on CLAN for detecting similar software systems, but
instead of using API calls the authors used the tags for the
systems in SourceForge [61].

VI. CONCLUSION AND LESSONS LEARNED

In this paper we present an approach for detecting Closely
reLated applications in ANdroid (CLANdroid) that helps users
find similar mobile apps. Our main contribution is a novel
application of Android-specific features as semantic anchors
for detecting similar Android apps. We extracted similar
apps for our dataset from Google Play and evaluated six
instances of CLANdroid based on API calls, identifiers,
sensors, intents, permissions, and the combination of APIs and
identifiers. Evaluations provided by participants in an online
survey suggest that C LANdroid is able to detect similar apps,
except when using detection mechanism based on sensors. In
addition, conversely to Google Play, C LANdroid is able to
detect similar apps that belong to different categories.

These results can be exploited for designing search engines
or recommendation systems. For instance, in the case of
Android apps, high-level features are mostly described by API
calls, identifiers in the code, intents, and by the permissions
registered within the apps. Although sensors also contribute to
defining the functionalities provided by the app, they should
be combined with the other semantic anchors, yet assigning
them lower weights (i.e., sensors) in the ranking functions.
Our future work will be devoted to developing hybrid solutions
for finding high-level similarities (e.g., features) and low-level
implementation similarities (e.g., sensors or APIs).

In this paper, we also explored the impact of third-party
libraries and obfuscated code when finding similar apps using
several instances of CLANdroid. We found that excluding
third-party libraries helps increasing the ranks of similar ap-
plications, thus corroborating previous findings on the impact
of third-party libraries on the results [3]. However, while we
also found that there are differences in the rankings when



excluding apps we detected as obfuscated, the magnitudes of
these differences are negligible in most cases.
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