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Abstract—In this paper, we present the results of a controlled
experiment conducted to assess whether the presence of unreach-
able methods in source code affects source code comprehensibility
and modifiability. A total of 47 undergraduate students at the
University of Basilicata participated in this experiment. We
divided the participants in two groups. The participants in the
first group were asked to comprehend code base containing
unreachable methods and implement five change requests in that
code base. The participants in the second group were asked
to accomplish exactly the same tasks as the participants in
the first group, however, the source code provided to them did
not contain any unreachable methods. The results of the study
indicate that code comprehensibility is significantly higher when
source code does not contain unreachable methods. However,
we did not observe a statistically significant difference for
code modifiability. From these results, we distill lessons and
implications for practitioners as well as possible avenues for
further research.

I. INTRODUCTION

In software engineering, the problem with unreachable code
(also named dead code, unused code, or unnecessary code) is
that after awhile it starts to “smell” [1]. The older it is, the
stronger and more sour the odor becomes. Unreachable code
may not be completely updated when software designs change.
This implies that keeping unreachable code around could be
harmful. Although it seems important to deal with unreachable
code, surprisingly this kind of smell has received very little
research attention [2], [3], [4], [5].

The main question arises: is unreachable source code ac-
tually harmful as Martin [1] asserts? Indeed, Mäntylä [6]
also states that such code hinders software comprehension
and makes its structure less obvious. That is, a software
engineer may spend time maintaining and documenting parts
of the system that are unreachable and thus never used. In
such a scenario, unreachable code would adversely impact
a practitioner, since the practitioner would be wasting time
maintaining and documenting these regions of code. It is
also possible that a developer intentionally makes source
code (i.e., methods or classes) unreachable in anticipation of
future changes to the software system. Predicting the future
can be difficult and often this could just add unnecessary
complexity to software [6]. Although it is important to study
the effect of unreachable code on program comprehension
and modifiability, there have been no empirical studies with
developers aimed at understanding whether unreachable code
is harmful or not for developers.

In this paper, we present a controlled experiment conducted
to assess whether the presence of unreachable methods is
harmful with respect to source code comprehensibility and
modifiability. A total of 47 undergraduate students at the Uni-
versity of Basilicata took part in our experiment. We divided
the participants into two groups. The students in the first group
accomplished tasks on source code with unreachable methods,
while those in the second group carried out the tasks on source
code deprived of unreachable methods. Each group of students
had to perform the same two tasks. First, they had to perform
a source code comprehension task and then a task modifying
the system. To assess comprehension, we used a questionnaire
based on the recommendations by Sillito et al. [7]. Conversely,
the modification task consisted of implementing five change
requests. The system on which participants accomplished the
modification tasks was the same system that they used in the
comprehension task. Thus, the participants had a chance to
acquire knowledge of the application before we asked them to
implement the change requests.

Paper Structure. In Section II, we outline motivations,
background, and related work, while the design of the exper-
iment is presented in Section III. Possible threats to validity
are highlighted in Section IV, while we present results and
their discussion in Section V. In Section V, we also discuss
possible implications for obtained results from the practitioner
and researcher perspectives. Final remarks conclude the paper.

II. BACKGROUND

The first book on bad smells (shortly “smells”) in object-
oriented software was written by Webster in 1995 [8]. The
author discussed the problems related to conceptual, political,
coding, and quality-assurance issues related to bad smells.
On the other hand, Riel [9] proposed heuristics to charac-
terize good software and to possibly improve its design and
implementation. Later, Fowler [10] defined 22 (source code)
bad smells. He also suggested how refactoring operations
should be executed to remove smells. Also, Brown et al. [11],
Mäntylä [6], Wake [12], and Martin [1] suggested some bad
smells. While Fowler [10] did not mention a smell for dead
code, Brown et al. [11] defined this kind of smell as code
frozen in an ever–changing design. Brown et al. referred to
dead code as lava flow bad smell. Mäntylä [6] defined dead
code as code that has been used in the past, but not used in
the current version of the application. Mäntylä asserted that if



the number of references to a method or a class is zero, then
this code is likely to be such a smell. Wake [12] focused on
variables, parameters, fields, methods, and classes. They are
dead or unnecessary if they are not used anywhere (perhaps
other than tests). On the other hand, Martin [1] focused on
dead code and dead functions. Dead code is code that is
not executed (e.g., the body of an if statement that checks
for a condition that cannot happen), while a dead function
is a method that is never called. Although there are some
differences in the definitions of this smell, it seems that dead
code is the code that is never executed. That is, there is no
execution that reaches this code.

In the programming language field, dead code is well known
and indicates source code that never gets used [13]. For
example, a statement where a local variable is initialized and
never used is considered dead even if it belongs to an execution
trace. Almost any compiler tries to detect this kind of code to
optimize generated object code and to minimize its size. As
for dead methods, they are removed from byte-code, and not
from source code, only for performance reasons [14]. When
working on source code, optimization approaches may make
source code hard to understand for software engineers. This
could be unavoidable when optimizing software and it is, in
a nutshell, why unreachable methods are different in software
maintenance and optimization. In software maintenance, code
is modified for clarity, flexibility, maintainability, and read-
ability reasons.

To avoid confusion, we prefer to use the term unreachable
code (e.g., method or class) with respect to dead code in the
rest of the paper. Although there are slight differences in the
definition of this kind of smell, there is a consensus on the fact
that unreachable code is harmful [1], [6], [11], [12]. However,
there is a lack of empirical evidence regarding the potential
impact (harm) of this smell. To bridge this gap, we conducted
the controlled experiment described in this paper.

A. Related Work

Olbrich et al. [15] analyzed the historical data of two large
open source software systems: Lucene and Xerces. The study
investigates two smells, god class and shotgun surgery, by con-
sidering several years of development. The results suggested
that god classes and classes subjected to shotgun surgery have
a higher change frequency than other classes. In addition,
the authors observed the presence of different phases in the
evolution of smells during the system development and that
smell-infected components exhibit a different change behavior.
This information could be considered useful to identify risky
areas of a software system that need refactoring operations.

Chatzigeorgiou and Manakos [16] studied the evolution of
four kinds of smells (i.e., long method, feature envy, state
checking, and god class) throughout successive versions of
two open source systems (JFlex and JFreeChart). The authors
found that these smells persist in systems and that their
removal is often a side effect of adaptive maintenance rather
than refactoring activities. The findings also suggested that,
in most cases, the design problems persist up to the latest

examined version accumulating as the project matures. They
also performed a survival analysis on the four kinds of smells
studied. The results showed that smells live for a large number
of versions. This suggests that smells are a permanent problem
once introduced in a software system. On the other side,
Tufano et al. [17] presented the results of a large empirical
study on 200 open source projects from different software
ecosystems. The results contradict common wisdom stating
that smells are being introduced during evolutionary tasks.

Khomh et al. [18] studied the impact of classes with smells
on change-proneness and the particular impact of certain
smells. In particular, they analyzed ArgoUML, Eclipse, Mylyn,
and Rhino and detected 13 smells in 54 releases of these
systems. The results indicated that in almost all releases of
the four systems, classes with smells are more fault-prone
than others. Finally, structural changes affect more classes with
smells than others.

Previous work raised the awareness of the community to-
wards the impact of smells on software development. In these
studies, the detection of smells during the evolution of the
systems was performed by the application of automated tools.
Surprisingly, unreachable code has never been studied. We can
speculate that this is due to the lack of well-established tools
for detecting unreachable code. Recently, Romano et al. [3]
proposed a static approach to detect unreachable methods.
Since this kind of smell is difficult to statically identify due
to late binding, multithreading, and reflection, the authors
partially dealt with these issues by simulating late binding and
multithreading. The approach also allowed the authors to over-
come the issues related to the application of dynamic detection
of unreachable methods; it is practically impossible to execute
all the usage scenarios to detect unreachable methods [6].

In the last decade, several catalogues (e.g., [1], [6], [10],
[11], [12]) have been proposed to characterize bad smells.
Additionally, methods and tools have been suggested to detect
and/or remove smells. There is an ongoing debate regarding
the extent to which developers perceive bad smells as design
problems. Yamashita and Moonen [19] performed an ex-
ploratory survey aimed at investigating developers’ knowledge
about smells. Their results indicate that 32% of professional
developers do not know (or know little) about smells, and
those developers, who were aware about bad smells, asserted
that in many cases their removal is not a priority due to time
constraints or lack of adequate tool support. Successively,
Palomba et al. [20] conducted an empirical study aimed at
providing empirical evidence on how developers perceive bad
smells in which participants were asked to indicate whether
the code contained a potential design problem, and if any, the
nature and severity of that problem. The results provide useful
insights into characteristics of bad smells.

Deligiannis et al. [21] proposed the first quantitative study
on the impact of smells on software development and main-
tenance activities. The authors set out to better understand
to what extent a god class contributes to the quality of
designs developed. The experiment was conducted with 20
undergraduate students as participants. The results of their



study suggested that god classes affect the evolution of design
structures and the subjects’ use of inheritance. However, the
study did not assess the impact of this kind of smell on
the ease of participants to understand the software nor the
participants’ ability to execute successful comprehension tasks
on this software.

Du Bois et al. [22] conducted a controlled experiment with
63 students to study the effect of decomposing god classes into
several collaborating classes on source code comprehensibility.
Collaborating classes were obtained by applying well-known
refactoring operations. The participants were asked to perform
tasks on god classes and their decompositions. The results
suggested that students had more difficulty understanding the
original god class than certain decompositions.

Abbes et al. [23] designed and conducted three controlled
experiments, which each had 24 participants. In each exper-
iment, participants were divided into three groups and asked
to accomplish two basic tasks related to code comprehen-
sion. The level of comprehension was assessed through a
questionnaire. Depending on the group, the participants were
provided with source code containing an occurrence of god
class, one occurrence of spaghetti code, and two occurrences
of both smells. The authors gathered data regarding the NASA
task load index, time to accomplish comprehension tasks, and
percentage of correct answers given to the questions of the
comprehension questionnaire. The results suggested that the
occurrence of one of the considered types of bad smells did
not significantly affect source code comprehensibility, while
the combination of both types of bad smells had a significant
(negative) impact on code comprehension.

There are several differences between our controlled exper-
iment and those introduced before: we studied a kind of smell
considered relevant [1], [6], [11], [12], but not adequately
studied, and we analyzed the effect of unreachable methods
on the modifiability of source code by asking the participants
to effectively implement changes.

B. Unreachable Methods

It has been observed that the presence of unreachable
methods is common in object-oriented software [3]. The
identification of this kind of smell in source code might
be problematic, because object-oriented languages (e.g., Java,
C++, and C#) have sophisticated rules for late binding and
class loading. Also, the presence of methods with simi-
lar names or parameters (i.e., overloading) could make the
identification of unreachable methods difficult especially for
humans. The use of reflection, development frameworks, and
libraries can make the identification of unreachable methods
even worse. Therefore, the identification of this kind of smell
requires a deep knowledge of programming language rules
and the knowledge of the source code of the software at
hand. The larger the software, the harder the identification
and management of unreachable methods is. Unreachable
methods are likely to hinder code comprehension and make
the structure of the code less obvious [6]. To demonstrate how
difficult it is to deal with unreachable methods and how the

public class GeneralDepository {
...
public void removeSmallBags(Beverages bevs, int num){
switch(bevs){
case COFFEE:
coffee = coffee - num;
break;

case TEA:
tea = tea - num;
break;

case CAMOMILE:
camomile = camomile - num;
break;

} }
}
public class Depository extends GeneralDepository{
...
public void removeSmallBags(Beverages bevs, int num){
try {
PreparedStatement stmt = conn.
prepareStatement("UPDATE DEPOSITORY SET QUANTITY =

? WHERE PRODUCT = ? ");
int tot = numberOfSmallBagsDB(bevs) - num;
stmt.setInt(1, tot);
stmt.setString(2, bevs.toString());
stmt.executeUpdate();
stmt.close();

} catch (SQLException ex) {
ex.printStackTrace();

} }
}
public class Purchase {
...
private GeneralDepository depository;
public void setDepository(GeneralDepository d){
this.depository = d;

}
public void purchaseVisitor(Beverages bevs, int num) {
if (depository.areThereSmallBags(bevs, num)) {
Euro amount = smallBagsPrice.multiply(num);
cash.addMoney(amount);
depository.removeSmallBags(bevs, num);
System.out.println("done");

} else {
System.out.println("error");

} }
}
public class Main {
...
public void purchase() {
...
purchase.setDepository(new Depository());
...
purchase.purchaseVisitor(beverages, num);

}
}

Fig. 1. Source code sample

presence of such a smell could affect code comprehensibility
and modifiability, we report a fragment of Java code with an
unreachable method in Figure 1 and discuss here a few related
concerns to comprehensibility and modifiability.

Figure 1 shows four classes: GeneralDepository,
its subclass Depository, Purchase, and Main. The
class GeneralDepository represents a depository that
contains small bags of beverages. It declares a method
removeSmallBags() that removes small bags from the
depository without updating the database. The class in
charge of updating the database is Depository. Its
method removeSmallBags() removes small bags in
a persistent way. The class Purchase has a property
depository and a method purchaseVisitor() that
calls removeSmallBags(). It is worth mentioning that
the implementation of removeSmallBags() called dur-
ing the execution of the software depends on the dy-



namic type of the property depository. If we do not
observe the class Main, it is not possible to identify
which implementation of the method removeSmallBags()
will be executed. This implies that some knowledge of
the application is needed to identify unreachable methods.
The class Main uses an object of type Depository
(i.e., dynamic type) to set the property depository of
Purchase, then it uses this object to call the method
purchaseVisitor() of Purchase. By applying the
rules of late binding, the method removeSmallBags() of
Depository is reachable whereas removeSmallBags()
of GeneralDepository is unreachable. The presence of
this unreachable method could lead to potential problems com-
prehending this source code. The developer could wrongly as-
sume that the method purchaseVisitor() of Purchase
calls removeSmallBags() of GeneralDepository.
Thus, the operation of removing small bags from the
depository does not update database when actually the
database is updated. The developer driven by inaccurate
comprehension of the code could also modify the method
removeSmallBags() of GeneralDepository in order
to implement a given change request. Since the method
is unreachable, each modification in its body does not
have any effect on the application behavior (unless some-
one makes this method reachable). The programmer could
build a test case to exercise removeSmallBags() of
GeneralDepository. Although the implementation of the
change request was correct, the behavior of the software
during the execution would remain the same. Without this
unreachable method the code would be more obvious, and
the developer would spend less time trying to understand and
modify this code.

III. EXPERIMENT

We carried out our experiment by following recommenda-
tions provided by Juristo and Moreno [24], Kitchenham et
al. [25], and Wohlin et al. [26]. We reported experimental
design according to the guidelines suggested by Jedlitschka et
al. [27]. For replication purposes, we made the experimental
material (e.g., raw data) publicly available1.

A. Goal

Considering the Goal Question Metric (GQM) paradigm by
Basili et al. [28], the goal of our experiment can be defined
as follows: Analyze the presence of unreachable methods
in source code for the purpose of evaluating their effect
with respect to comprehensibility of unknown source code
and with respect to modifiability of familiar source code
from the point of view of researchers and practitioners in
the context of novice developers/students and object-oriented
software implemented in Java.

The use of GQM ensured that important aspects of our
experiment were defined before the planning and the execution
of the experiment took place [26]. According to our goal, we
have defined and investigated the following research questions:

1www2.unibas.it/sromano/UM.html

RQ1: Does the presence of unreachable methods penalize
correctness of understanding source code if software
engineers are not familiar with source code?

RQ2: Does the presence of unreachable methods penalize
the effort to comprehend source code if software
engineers are not familiar with source code?

RQ3: Does the presence of unreachable methods penalize
correctness of modifying source code if software
engineers are familiar with source code?

RQ4: Does the presence of unreachable methods penalize
the effort to maintain source code if software engi-
neers are familiar with source code?

B. Context Selection

We used LaTazza application as an experimental object. It
is a coffee maker support application to manage the sales and
supply of small-bags of beverages. The application supports
two kinds of clients: visitors or employees. Employees can
purchase beverages by paying cash or credit, while visitors
can only pay by cash. The secretary can sell small-bags to
clients, buy boxes of beverages, manage credit and debt of
employees, check the inventory, and check the cash account.
LaTazza was implemented in Java and its domain can be con-
sidered a good compromise between generality and industrial
application. LaTazza was not implemented by the authors of
this paper and was used in a number of empirical studies as
experimental object (e.g., [29], [30], [31]). The original version
of this application contained 18 Java classes with a total of
1,291 Lines of Code (LOCs). Comments were removed before
computing LOCs. The number of methods is 116.

The original version of LaTazza contained both reachable
and unreachable methods. The first author of this paper
identified unreachable methods and then removed them in
order to create a new version of LaTazza without this kind
of smell. To detect unreachable methods, this author used the
DUM tool [32]. After having applied this tool, the LaTazza
source code was analyzed (by both inspecting and executing
it) to determine whether the methods detected as unreach-
able were actually unreachable and to identify unreachable
methods the tool was not able to detect. The inspection of
the results revealed that all the methods that DUM recovered
were actually unreachable. However, this tool was not able to
identify four unreachable methods (e.g., never used methods
in the class hierarchy). We performed refactoring operations to
remove unreachable methods from the code [1]. To verify that
refactorings did not modify LaTazza behavior and did not in-
troduce syntactic errors, we removed one unreachable method
at a time. We performed regression testing each time. The test
cases were obtained from the original version of LaTazza [29].
The execution of these refactoring operations produced a new
version of LaTazza without unreachable methods containing
18 Java classes, 1,078 LOCs, and 72 methods. The number of
unreachable methods seems to confirm that this smell is quite
common in code base [3].

The participants in our experiment (subsequently referred to
as UniBas) were 3rd-year undergraduate students in Computer

http://www2.unibas.it/sromano/UM.html


Science from a course on the design and implementation of
information systems. The experiment was conducted as an
optional exercise of this course. Participants had passed all the
exams related to the following courses: Procedural Program-
ming, Object-Oriented Programming I, and Databases. In these
courses, participants gained significant experience with C/C++
and Java. The participants had sufficient level of technical
maturity and knowledge of software design, development, and
refactoring. To get demographic information, we asked the
participants to fill out a questionnaire. Because of space lim-
itations, further details on this questionnaire and on gathered
data are not provided. The students were informed that their
grade in the course in which the experiment was conducted
would not be affected by their performance in UniBas.

C. Variable Selection

The control group comprised participants who were given
the source code of LaTazza with only reachable methods,
while treatment group included the participants who were
given source code with both reachable and unreachable meth-
ods. Thus, “method” is the main factor (also named manip-
ulated factor) in our experiment. It is a nominal variable
and assumes values: UM (source code with reachable and
unreachable methods) and NoUM (source code deprived of
unreachable methods).

To quantify the construct “correctness of understanding,”
we defined a comprehension questionnaire. To assess the
correctness of the answers given to this questionnaire, we
used two approaches. The first was based on the information
retrieval theory [33]. We called: As as the set of string items
provided as answer to the questions in the comprehension
questionnaire by the participant s and C as the correct set
of items expected for the questions in the comprehension
questionnaire (i.e., the oracle). We computed precision and
recall as follows:

precision(s) =
|As ∩ C|
|As|

recall(s) =
|As ∩ C|
|C|

(1)

Precision (i.e., the fraction of items in the answers that are
correct) and recall (i.e., the fraction of correct items in the
answers) measure accuracy and completeness of the answers to
the comprehension questionnaire, respectively. To get a trade-
off between accuracy and completeness, we used a balanced
harmonic mean of precision and recall:

F1(s) =
2 · precision(s) · recall(s)
precision(s) + recall(s)

(2)

This (ratio) metric takes values in between 0 and 1 and
estimates the correctness of understanding construct. A value
close to 1 means that the participant achieved a correct
comprehension because s/he answered rather well to all the
questions in the comprehension questionnaire. Conversely, a
value close to 0 means that source code comprehension was
bad. The measures that were utilized have been largely adopted
in software engineering (e.g., [34]).

In the second approach, to assess correctness of understand-
ing, we computed the number of correct answers divided by

the number of questions in the comprehension questionnaire
(also “Avg”) [23]. Since questions in the comprehension
questionnaire could admit more than one string items, we
consider an answer as correct if and only if all the correct
items are given for that question. For example, the questions
“What are the kinds of users that can buy small-bags of
beverages?” admitted as correct string items: visitors and
employees. Therefore, the answer is correct if and only if
a participant provides exactly both these string items. The
answer is incorrect otherwise. Also in this case, the used metric
is a ratio metric that assumes values in the interval [0, 1], where
1 indicates the best value possible. This is the second metric
used to assess the construct correctness of understanding.

To quantify the construct “correctness of modification,” we
provided five change requests to the participants. Implemented
modifications were assessed with respect to a balance between
the accuracy and completeness of implemented change re-
quests. To this end, we used:

precision(s) =
|Ms ∩ CM |
|Ms|

recall(s) =
|Ms ∩ CM |
|CM |

(3)

where Ms is the set of modifications the participant s
implemented; CM is the correct set of implementations.
|Ms ∩ CM | indicates the number of correctly implemented
change request. A change request was considered correctly
implemented if and only if all the test cases in the associated
suite passed. Before the experiment took place, we defined
a test suite for each defined change request. This suite has
been only used to evaluate the modifications the participants
implemented. To get a trade-off between precision and recall
(Equation 3), we used a balanced harmonic mean as that shown
in Equation 2. The used metric is a ratio metric that assumes
values in the interval [0, 1]. The ideal value is 1, whereas the
worst value is 0. For example, the value of 1 indicates that the
participant implemented all five change requests correctly.

To determine the “effort” to accomplish comprehension and
modification tasks (“understanding effort” and “modification
effort” constructs, respectively), we used the overall time
(expressed in minutes) to accomplish each of these tasks.
The higher the value, the higher the effort to accomplish
the comprehension tasks. We consider the time as an ap-
proximation for effort. This means that aspects related to the
effort (e.g., cognitive effort of participants) were not measured.
This is customary in the literature and it is compliant with
the ISO/IEC 25000 standard [35] definition that effort is the
productive time associated with a specific project task.

D. Experiment Design
We used one factor with two treatments design [26]. This

is a simple experiment design for comparing two treatment
means. The design setup uses the same experimental object
(i.e., LaTazza) for both treatments (i.e., UM vs. NoUM). Each
participant used only one treatment on one object. We used
a completed randomized variant, where each participant was
randomly assigned to each group. At the end, groups were not
balanced since we assigned 20 participants to NoUM and 27
to UM, respectively.



E. Hypotheses

We have defined and tested the following null hypotheses:
Hn0: The mean value of the correctness of understanding

(assessed by applying F1 and Avg) for NoUM is
the same as the mean value of the correctness of
understanding for UM.

Hn1: The mean value of the effort to accomplish a com-
prehension task when using NoUM is the same as
that when using UM.

Hn2: The mean value of the correctness of modifications
for NoUM is the same as the mean value of the
correctness of modifications for UM.

Hn3: The mean value of the effort to accomplish a modi-
fication task when using NoUM is the same as that
when using UM.

When a null hypothesis (i.e., µ1 = µ2) is rejected, it
is possible to accept the alternative ones that can be easily
derived (µ1 < µ2 or µ1 > µ2), namely mean values of a
dependent variable for UM an NoUM are not the same. It is
worth mentioning that Hn0 will be tested by using both of
the previously defined metrics. The use of two metrics for the
same construct allows reducing construct validity threats.

F. Experiment Tasks

We asked the participants to perform the following tasks:
• Comprehension task. Independently from the treatment,

the comprehension questionnaire was composed of five
open questions. These questions were chosen on the
basis of the recommendations by Sillito et al. [7]. Some
questions focused on expanding points in the source
code viewed to be relevant and related to software
comprehension, often by exploring relationships among
entities (e.g., classes and method). Other questions were
concerned with understanding concepts in the source code
that involved multiple relationships and software entities.
Answering these questions required understanding the
overall structure of a subgraph.2 All the five questions
in the questionnaire were formulated using a similar for-
m/schema. Once the comprehension task was completed,
we asked the participants to return all the materials and
answer a post-experiment survey. This questionnaire had
to be filled out online; we used Google forms to create it.
The goal of this questionnaire was to get feedback about
participants’ perceptions of the experiment execution.
There were also questions on how participants dealt with
the comprehension task (e.g., used regular expressions).

• Modification task. We defined five change requests (the
same for both UM and NoUM) and asked the participants
to implement them. An example of a change request is:
“Change the cost of the box of small-bags of beverages.
The new cost must be 28 e.” Once a modification task
was accomplished, participants had to return experimental

2Sillito et al. [7] saw a code base as a graph of entities (classes, methods,
and fields, for example) and relationships between those entities (references
and calls, for example).

materials (i.e., printed textual descriptions of change
requests, where start and stop time needed to be reported)
and the source code of LaTazza (i.e., the version modified
by the students) to the experiment supervisors. Similar
to the comprehension task, we asked participants to fill
out a post-experiment survey online. The goal of this
questionnaire was to obtain feedback about participants’
perceptions of the experiment execution and used tools.

To accomplish comprehension and modification tasks, we
did not impose any rules on the participants. For exam-
ple, a participant could start answering a question from the
comprehension questionnaire and then he/she could pass to
another question and finally he/she could return back to the
prior question. It is worth mentioning that because of space
limitations we do not provide the details on the mentioned
post-experiment questionnaires.

G. Experiment Procedure

Before the experiment, all the participants had to fill out
a pre-questionnaire. The gathered information allowed us
to better characterize the experimental context. Just before
the experiment, the experiment supervisors (the first and the
third authors) highlighted the study goal without providing
details on its hypotheses. The experimental tasks were carried
out under controlled conditions in two subsequent laboratory
sessions. A break of 10 minutes was allowed between the
comprehension and modification tasks to reduce fatigue effect
in the second task. We monitored participants to prevent their
communication with each other both in the laboratory sessions
and in the 10-minute break. Experiment supervisors were the
same in each session. No training session on tasks similar
to the ones in the experiment was carried out because of the
following reasons: (i) they should have adequate experience in
performing maintenance operations on source code written by
others, (ii) they performed homework3 on legacy code written
in Java before the experiment, and (iii) time and logistical
constraints made the execution of a training session infeasible.

We asked all the participants to use Eclipse and the follow-
ing steps (experimental procedure) for the comprehension task:
(i) writing down their name and start-time; (ii) answering the
questions in the comprehension questionnaire executing or not
source code; and (iii) writing down the end-time. The steps
(i) and (iii) were the same for the modification task, while
the step (ii) was different. In particular, in the step (ii) the
participants had to implement five change requests mentioned
before. It is worth mentioning we did not provide participants
with any Eclipse plug-in to detect unreachable methods.

We allowed all the participants to use the Internet to accom-
plish the tasks because actual developers usually exploit this
medium as support for their daily work activities. We clearly
forbid the participants to use of the Internet to communicate

3The lecturer asked them to add some functionality using the Test-Driven-
Development approach to real software they did not know before the home-
work. Thus, participants acquired familiarity with bad smells, refactoring, and
source code written by others.



with each another. In addition, participants needed the Internet
to fill out post-experiment tasks.

H. Analysis Procedure

To perform data analysis, we used the R environment
(www.r-project.org) with the following steps:

1) We computed descriptive statistics of the dependent
variables;

2) To test null hypotheses, we applied an unpaired (or
independent samples) t-test when data were normally
distributed. We used the Shapiro-Wilk W test [36]
(Shapiro test, in the following) to perform the normality
analysis of the data. If the normality assumption did
not hold, we applied the Wilcoxon rank-sum test [37]
(also known as the Mann-Whitney U test). This is a
non-parametric test alternative to the unpaired t-test;

3) We studied the magnitude of differences between two
groups. In the context of parametric analyses, we opted
for the Cohen’s d [38] effect size, while for the Cliff’s
d [39] in the context of non-parametric analyses;

4) We also took into account statistical power. We deter-
mined statistical power post-hoc [40]. In this case, if a
null hypothesis is rejected statistical power represents
the probability that a statistical test rejects a null hy-
pothesis when it is actually false. The highest value
is 1, while 0 is the lowest. The higher the statistical
power value, the higher the probability to reject a null
hypothesis when it is actually false. The statistical power
is computed as 1 minus the Type-II-Error, also named β-
value. This type of error indicates that a null hypothesis
is false, but the statistical test erroneously fails to reject
it. We use β-value when a statistical test was unable
to reject a null hypothesis. The higher the β-value, the
better it is. A standard value for adequacy for both
statistical power and β-value is 0.80 [41].

5) To summarize and analyze raw data and to support their
discussion, we relied on boxplots [26].

In all performed statistical tests, we decided (as it is
customary) to accept a probability of 5% (i.e., α value) of
committing Type-I-error [26].

IV. THREATS TO VALIDITY

To better understand the strengths and limitations of our
experiment, we present and discuss threats that could affect the
results and their generalization. Despite our efforts to mitigate
as many threats as possible, some of them are unavoidable. We
discuss the threats using the guidelines by Wohlin et al. [26].

A. Internal Validity

• Maturation. The adopted experimental design avoided the
presence of carry-over effects [26] in the execution of the
comprehension task.

• Diffusion or imitation of treatments. This threat concerns
information exchanged among the participants within
each experiment. Experiment supervisors monitored the

participants to prevent their communication to each an-
other. As an additional measure to prevent diffusion of
material, we asked participants to return back material at
the end of each task.

• Selection. The effect of letting volunteers take part in the
experiment may influence the results, since volunteers are
generally more motivated.

B. External Validity

• Interaction of selection and treatment. Relying on stu-
dents as participants may affect the generalizability of the
results with respect to practitioners [42], [43]. However,
the tasks to be performed did not require a high level
of industrial experience, so we believe that relying on
students as participants could be considered appropriate,
as suggested in literature [44]. Working with students
also implies various advantages, such as the fact that the
students’ prior knowledge is rather homogeneous, there
is the possible availability of a large number of partici-
pants [45], and there is the chance to test experimental
design and initial hypotheses [46].

• Interaction of setting and treatment. In our study, the kind
of experimental object (i.e., LaTazza) and its complex-
ity may affect the result validity. Also, the size might
affect external validity. The difference in the size of
the experimental object with and without unreachable
methods might also affect the validity of results. The
use of Eclipse might have impacted the result validity; it
could be possible that a few participants in the experiment
were more familiar with Eclipse than others.

C. Construct Validity

• Interaction of different treatments. To mitigate it, we
adopted one factor with two treatments design [26].

• Confounding constructs and level of construct. We ran-
domly assigned the participants to the treatments.

• Evaluation apprehension. We mitigated this threat be-
cause the participants were not evaluated on the results
they achieved in the tasks. The participants were also un-
aware of the objectives and the experimental hypotheses.

• Experimenters’ expectancies. Experimenters can bias re-
sults both consciously and unintentionally based upon
expectations of an experiment. We mitigated this kind
of threat in several directions. We downloaded the ap-
plication used in the study from the web. Smells in
this application were identified by applying the DUM
tool [32] and manually validated. The researchers who
analyzed participants’ artifacts and analyzed raw data
were different.

• Mono-method bias. We mitigated this kind of threat
because we used different kinds of measures to assess
the same construct.

• Reliability of measures. This threat is related to how
response (dependent) variables were measured. Regarding
task completion time, we asked the participants to write
start and stop times (e.g., [47]).



TABLE I
DESCRIPTIVE STATISTICS

Construct Metric NoUM UM
Mean St. Dev. Mean St.Dev.

Correctness of understanding F1 0.8678 0.0606 0.7586 0.1004
Avg 0.68 0.1196 0.5481 0.1718

Understanding effort Time 35.05 6.9772 33.7 7.9895
“ Correctness of modification F1 0.5447 0.211 0.5424 0.2338
Modification effort Time 52.95 8.153 51.67 12.7189

TABLE II
RESULTS FOR HN0, HN1, HN2, AND HN3 (+ INDICATES THE CASES IN
WHICH WE PERFORMED PARAMETRIC ANALYSES, p− values IN BOLD

INDICATE THAT THE CORRESPONDING NULL HYPOTHESIS WAS REJECTED)

Hypothesis Metric p-value Cohen/Cliff’s d Perc. difference Stat. Power/β-value

Hn0 F1 (+) < 0.0001 large (1.317) 14.395% 0.925
Avg 0.008 medium (0.428) 24.065% 0.835

Hn1 Time (+) 0.542 negligible (0.179) 4.006% 0.946
Hn2 F1 0.956 negligible (0.011) 0.424% 0.955
Hn3 Time 0.575 negligible (0.094) 2.417% 0.937

• Reliability of treatment implementation. A possible threat
concerns the fact that we did not impose any time limit
to perform the tasks.

D. Conclusion Validity

• Low statistical power. The power of a statistical test
concerns its ability to reveal a true pattern in the data.
If the power is low, there is a high risk that an erroneous
conclusion is drawn. We computed post-hoc statistical
power. In addition, the number of participants in our
experiment was large enough.

• Random heterogeneity of participants. We drew a fair
sample and conducted our experiment with participants
belonging to this sample.

• Fishing and the error rate. Our experimental hypotheses
have been rejected considering proper p-values. It is also
worth mentioning that we involved 47 participants.

• Statistical tests. We used a parametric test to verify null
hypotheses only when the assumptions for its application
were verified. We used non-parametric tests otherwise.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our data analysis
following the aforementioned procedure.

A. Descriptive Statistics and Exploratory Data Analysis

In Table I, we report the values of mean and standard
deviation for the used metrics. The distributions of the values
are graphically summarized by the boxplots in Figure 2. The
descriptive statistics and boxplots indicate that there is no
significant difference between NoUM and UM with respect
to the time to accomplish comprehension and modification
tasks in all the experiments. There is also no difference for
correctness of the modification task. On the other hand, there
is a difference between NoUM and UM for correctness of
understanding regardless of the used measure (see Figures 2(a)
and 2(b) for F1 and Avg, respectively).
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Fig. 2. Boxplots for correctness of understanding ((a) and (b)), understanding
effort (c), correctness of modification (d), and understanding effort (e) group-
ing observation by method.

B. Hypotheses Testing

1) Hn0: Correctness of Understanding: The results for Hn0
are summarized in Table II. We rejected the null hypothesis
using both of the metrics (F1 and Avg) exploited to assess the
construct correctness of understanding. That is, for correctness
of understanding, a statistically significant difference was
observed in favor of NoUM. As for F1, we applied parametric
analyses (e.g., an unpaired t-test to test the null hypothesis) as
the results of the Shapiro test suggested (p-value was 0.079
for NoUM and 0.644 for UM). Effect size is large for F1

and medium for Avg. The mean percentage difference values4

indicates that the correctness of understanding is 14.395%
greater for NoUM as compared with UM with respect to F1

and 24.065% greater with respect to Avg. Statistical power is
high in both cases (0.925 and 0.835, respectively).

4It could be difficult to relate the Cohen’s d and Cliff’s d values to a
practical meaning. Therefore, we also used percentage difference as a less
robust though more intuitive and qualitative effect size indicator. In particular,
given two values µNoUM (i.e., mean of values for a given variable for NoUM)
and µUM (i.e., mean of values for UM), the percentage difference is computed
as µNoUM−µUM

µNoUM
%.



2) Hn1: Understanding Effort: The unpaired t-test was not
able to reject this hypothesis (see Table II). We applied this
test because the Shapiro test returned 0.0759 and 0.0678 as
the p-values for NoUM and UM, respectively. The β-value is
high (0.946).

3) Hn2: Correctness of Modification: As for this construct,
we applied nonparametric analyses. The Mann-Whitney U test
did not rejected the null hypothesis (see Table II). The β-value
is high: 0.955.

4) Hn3: Modification Effort: This hypothesis was not re-
jected as shown in Table II. We used Mann-Whitney U test.
The β-value is high (0.937).

C. Discussion

The results indicate that the presence of unreachable meth-
ods in unknown source code significantly affects source code
comprehensibility. Independently from the metric used to
assess comprehension, the participants showed the lowest level
of correctness in comprehension of LaTazza when its source
code contained unreachable methods. Thus, we can positively
answer the RQ1 stating that the presence of unreachable
methods penalizes source code comprehensibility if software
engineers are not familiar with source code.

We observed that the presence of unreachable methods in
source code with respect to not having them at all did not
significantly affect the time to accomplish the comprehension
tasks. Although this outcome did not provide definitive results,
we can speculate that the presence of unreachable methods
in source code does not penalize the effort to accomplish
comprehension tasks (i.e., RQ2).

As for RQ3 and RQ4, we observed that when participants
became familiar with LaTazza’s source code, the presence of
unreachable methods did not seem to affect either correctness
of modifications or time to implement modifications. Although
we did not reject both Hn2 and Hn3, the distributions of the
values are very similar for the metrics used to assess the
constructs: correctness of modification and modification effort
(see Figures 2(d) and 2(e), respectively).

D. Implications

We delineate here the main practical implications for our
experiment from both practitioner and researcher perspectives
and possible future directions related to these implications:

• The results suggest that the execution of refactoring
operations to remove unreachable methods would help to
improve the correctness of understanding of source code.
This implication is especially important from the practi-
tioners’ perspective. Researchers could assist developers
in defining approaches to detect and remove unreachable
methods. Researchers could also be interested in further
assessing the effect of developers’ familiarity with source
code and its correctness of understanding. It could be pos-
sible that the greater the familiarity, the lesser correctness
of understanding is affected. Additionally, researchers
could be also interested in assessing if observed results

scale to larger software systems. Our results pose the
basis for future work.

• Refactoring has a cost due to the detection and the
removal of unreachable methods as well as to execution
of regression testing needed to verify that faults have
not been introduced, which we also had the possibility
to assess while preparing experimental material for our
investigation. It would be crucial to know whether this
cost is adequately paid back by the improved correctness
of understanding. This aspect, not considered in this
paper, is of particular interest for practitioners, and makes
sense thanks to our study (improved comprehension of
source code deprived of unreachable methods).

• Removing unreachable methods could reduce a number
of issues related to well-known software engineering
processes: maintenance, testing, quality assurance, reuse,
and integration [48]. This implication is very relevant for
practitioners.

• The presence of unreachable methods did not signifi-
cantly impact the effort to perform comprehension tasks.
This outcome is of particular interest for researchers, who
could assess if this also holds for larger software.

• Familiarity with source code and modifiability seem to be
related to each another. Researchers could be interested in
assessing the extent to which developers’ familiarity with
source code produces a significant effect on correctness
of modification and effort.

• It seems that unreachable methods are common (e.g., [1],
[3], [6]) and that their presence affects source code com-
prehensibility as our results suggest. Therefore, it could
be reasonable to perform investigations into “when” and
“why” unreachable methods are introduced in software
projects and how developers deal with such smells in
their projects.

VI. CONCLUSION

In this paper, we present a controlled experiment with the
goal of gaining understanding “if” the presence of unreachable
methods has any effect on source code comprehensibility and
modifiability. A total of 47 students participated in this exper-
iment. The results indicate that the presence of unreachable
methods significantly affects source code comprehensibility.
That is, the presence of this kind of smell reduces the partici-
pants’ comprehension on source code. However, modifiability
is not affected if participants have some knowledge of the
source code. As future work, we plan to replicate this work
further to confirm or contradict obtained results and to assess
if code modifiability is affected when participants are not
familiar with source code.
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