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ABSTRACT
Empirical studies have provided ample evidence that low code
quality is generally associated with lower maintainability. For this
reason, tools have been developed to automatically detect design
flaws (e.g., code smells). However, these tools are not able to prevent
the introduction of design flaws. This means that the code has to
experience a quality decay (with a consequent increase of mainte-
nance/evolution costs) before state-of-the-art tools can be applied
to identify and refactor the design flaws.

Our goal is to develop a new generation of refactoring recom-
menders aimed at preventing, via refactoring operations, the intro-
duction of design flaws rather than fixing them once they already
affect the system. We refer to such a novel perspective on software
refactoring as just-in-time refactoring. In this paper, we make a
first step towards this direction, presenting an approach able to
predict which classes will be affected in the future by code smells.
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1 INTRODUCTION
In the software life-cycle, change is the rule rather than the excep-
tion. A key point for sustainable program evolution is to tackle
software complexity, making sure that the source code exhibits
a high quality thus easing maintenance activities. Indeed, several
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studies provide evidence that low code quality is associated with
lower productivity and more effort for developers [4, 7].

While there is an agreement on the need for software quality,
modern IDEs (Integrated Development Environments) only provide
basic support for developers to fight low code quality. For this rea-
son, tools have been developed in industry and academia to detect
design flaws and, in some cases, to remove them via refactoring
(see [8]). For example, code smell detectors are able to identify spe-
cific types of design flaws hindering code maintainability. While
extensive empirical studies showed the high accuracy of these de-
tectors, they all suffer from a common limitation: they are not able
to prevent the introduction of design flaws, but only able to identify
flaws once they already affect the system. This means that the code
has to experience a quality decay (with a consequent increase of
maintenance/evolution costs) before these tools can be applied to
identify and refactor those design flaws.

Our long term vision is to develop a new generation of refactor-
ing recommendation systems able to prevent the introduction of
design flaws. We refer to such a novel perspective on software refac-
toring as just-in-time refactoring. In this paper, we make a first
step in that direction by presenting COSP (COde Smell Predictor),
an approach to predict classes that are likely to be affected by code
smells in the near future. COSP can be used to prioritize code com-
ponents for refactoring; similarly to how bug prediction techniques
can be used to focus testing activities on code components that are
more likely to be buggy, COSP can point developers to locations
of code that warrant refactoring. COSP takes a change history of a
system with its latest version as an input and classifies all its classes
as becoming smelly or not in the near future, also indicating types
of code smells that will likely affect the classes.

We present a preliminary evaluation of COSP on six systems.
Our results show that predicting classes that will be affected by
code smells is far from trivial. This is due to the fact that out of
hundreds of classes in a system, only one or two will become smelly
in the near future, and the real challenge is to identify them with-
out flooding developers with a high number of false positives. We
deal with this problem by embedding a confidence level in COSP
that provides indications about the probability that a class would
actually become smelly in the future. In this way, the developer can
decide to only receive a warning when COSP has a high confidence
in its recommendation. With the highest confidence, COSP identifies
classes that will become smelly with a precision ∼75%.

https://doi.org/10.1145/3196321.3196365
https://doi.org/10.1145/3196321.3196365
https://doi.org/10.1145/3196321.3196365


ICPC ’18, May 27–28, 2018, Gothenburg, Sweden J. Pantiuchina, G. Bavota, M. Tufano, and D. Poshyvanyk

2 CODE SMELL PREDICTOR
COSP predicts whether a given class will be affected by a specific
type of code smell within t days. The type of code smell to predict as
well as the threshold t can be customized. In our work, we use COSP
to predictGod and Complex Classes. AGod Class has been defined as
a procedural-style design class with many different responsibilities,
which monopolizes the application’s logic of the system. A Complex
Class is characterized by extremely high complexity of its code,
generally assessed using the cyclomatic complexity [5].

COSP exploits a machine learning approach, i.e., the Weka imple-
mentation of Random Forest [1], to identify a series of rules which
would discriminate classes likely to be affected by a specific smell
type (ST ) within t days. The Random Forest builds a collection
of decision trees with the aim of solving classification-type prob-
lems, where the goal is to predict values of a categorical dependent
variable from one or more continuous and/or categorical predictor
variables. When used to classify previously unseen instances, the
Random Forest provides as output the probability that an instance
belongs to each of the possible categories of the dependent variable.

Table 1: Class quality metrics used by COSP
Metric Description
CBO Coupling Between Object classes: measures the dependencies a class has [2]
DIT Depth of Inheritance Tree: the length of the path from a class to its farthest ancestor

in the inheritance tree [2]
NOC Number Of Children (direct subclasses) of a class
NOF Number Of Fields declared in a class
NOPF Number Of Public Fields declared in a class
NOSF Number Of Static Fields declared in a class
NOM Number Of Methods in a class
NOPM Number Of Public Methods in a class
NOSM Number Of Static Methods in a class
NOSI Number Of Static Invocations of a class
WMC Weighted Methods per Class: Sums the cyclom. comp. of methods in a class [2]
RFC Response For a Class: The number of methods in a class plus the number of remote

methods that are called recursively through the entire call tree [2]
ELOC Effective Lines Of Code: The lines of code excluding blank lines and comments
LCOM Lack of Cohesion Of Methods: A class cohesion metric based on the sharing of local

instance variables by the methods of the class [2]

2.1 Predictor Variables
We use the metrics described in Table 1 as predictor variables.

Given dp the date in which the developer wants to use COSP to
predict which classes in her system are likely to be affected by ST
within t days, we use the 14 metrics to characterize the quality of
each class C from three different perspectives:

Current code quality. The value of the 14 metrics measured on C
at the prediction date dp .

Historical code quality trend. As observed by Tufano et al. [9],
smelly classes exhibit metric trends over time that are substantially
different as compared to clean classes. For example, the cohesion
of classes that will become God Classes generally decreases over
100 times faster than the cohesion of classes that will preserve their
high quality [9]. For this reason, we compute the value of the 14
quality metrics on C in all commits performed until dp in which C
has been added or modified. Then, for each metricM , we compute
the regression slope line fitting the M’s values for C across the
identified commits. The slope of a line describes its steepness and,
in our case, can highlight, for example, a continuing degradation
of some quality aspects (e.g., a high positive slope for the WMC
metrics indicates a strong increase in complexity for C over time).

Recent code quality trend. For each metricM we also compute for
C its recent code quality trend, meaning the slope of the regression

line fitting the M’s values for C when only focusing on the last l
changes thatC has been subject to. We consider l = 10 (i.e., at most
the last ten changes impactingC). IfC has been subject to p changes
before dp and p < l , then we set l = p when computing the recent
slopes for C . The idea behind using the recent slopes is that a class
could have had a very long change history, mostly characterized by
high quality code, but with recent worrying trends of some quality
metrics. The 14 recent slopes lead to the total 42 features (14+14+14)
used by the Random Forest algorithm to identify classes that would
potentially become smelly.

2.2 Training the Classifier

dp

t daysrecent slope
historical slope

Figure 1: Building the training set with historical data

Fig. 1 depicts how data from a versioning system can be used to
build the COSP’s training set. In particular, Fig. 1 represents changes
(commits) performed over the history of a software system and
impacting (i.e., adding or modifying) a specific class C , that will be
used as a data entry for the training set. We start by checking out
the system’s snapshot at date dp , making sure that this date is at
least t days foregoing the last commit available in the repository. In
fact, while the past history of C (i.e., the time period preceding dp )
is needed to compute the 42 predictor variables, knowing its future
(i.e., the time period following dp ) is needed to verify whether the
C has been affected by ST within t days. For each class C , which is
used to build the COSP’s training set, we need to provide:

(1) The values of 42 predictor variables. In the example depicted
in Fig. 1 this would include: (i) the value for the 14 quality metrics
measured for C on dp ; (ii) the historical slope for each metric com-
puted by considering all the commits impacting C and performed
before dp (blue time period); and (iii) the recent slopes obtained
when only considering the last l commits impacting C (green).

(2) Its classification (affected or not by ST within t days). The
training set must report whether C will be affected by ST within t
days, meaning between dp and d0 + t . To classify a class as affected
or not by ST , it is possible to use one of the smell detectors proposed
in the literature (e.g., [6]), or manually annotated datasets.

Note that, given the versioning system of software project, the
training set can be built by computing the above information for all
its classes and across several different commits (i.e., different dp ).
The only constraints to keep in mind are: (i) if the classC is already
affected by ST at date dp , C cannot be included in the training
set, since COSP should learn to predict classes that will be affected
by ST in the future (and not the classes that already represent a
maintainability problem); (ii) for the reason previously explained,
dp date must be at least t days foregoing the last commit available
in the repository; (iii) at least two commits must have impacted
the C class before dp , otherwise it is not possible to compute the
predictor variables exploiting the regression lines slopes.

Also, for each smell type ST one is interested in predicting, a
different training set is needed since the categorical dependent
variable changes. While it should be possible to build a classifier
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considering different types of code smells at once (e.g., predicting
if within the next t days the C class will (i) remain clean, (ii) be
affected by God Class, or (iii) be affected by Complex Class), we
preferred to start tackling the problem in its simplest formulation
(i.e., smell-specialized models, predicting if within the next t days
the C class will be affected by a specific type of smell ST or not).

Once the training set is built, it can be used to train the classifier.
Since some of the features we considered are likely to correlate
(e.g., recent and historical slopes for the same metric), we perform
a correlation-based feature selection process [3] implemented in
the CfsSubsetEval Weka class. Also, when training the model
we check the distribution of training set samples across the two
categories (i.e., will become smelly or not). Since the number of
classes that will become smelly in the near future is much smaller
than those that remain clean [9], we apply a spread sub-sample
re-balancing technique, meaning that given x , the number of classes
that will become smelly present in the training set, we randomly
select x classes that will remain clean to balance the training set.

The output of the training stage is a Random Forest classifier,
represented by a collection of decision trees composed by yes/no
questions that split the training sample into gradually smaller par-
titions that group together cohesive sets of data (i.e., those having
the same value for the dependent variable).

2.3 Using COSP to Predict Code Smells
Once the classifier is built, COSP can automatically predict in a given
set of classes (e.g., an entire system) those classes that are likely
of being affected by ST within the next t days. To do that, COSP
starts by computing the value of the 42 predictor variables for each
given class. Then, the Random Forest classifier is used to categorize
each class. Important to highlight here is that the Random Forest
not only assigns each class to one of the two possible categories
(i.e., 0: affected or 1: not by ST within t days), but it also provides
the probability that the class belongs to the predicted category. For
example, it can predict that the class will become smelly with a
probability of 0.9. We exploit this indication as a confidence level
for COSP. In particular, given a scenario in which the developer
uses COSP to prioritize classes for refactoring, she can start by only
inspecting the ones predicted by COSP as becoming smelly with a
confidence level (probability) of 1.0. The same applies in a scenario
in which a project manager wants to be alerted when the quality
of some classes is likely to become noticeably worse in the near
future, without receiving too many false alarms, however.

3 PRELIMINARY EVALUATION
Table 2: The six systems used in our evaluation

System KLOC #Commits #Testing Become Become
Commits Complex Class God Class

bazel 46 14,660 2,596 1,030 942
druid 34 5,702 827 105 149
fast json 50 2,684 493 3 22
guava 13 4,650 1,079 115 415
picasso 13 1,002 107 14 23
realm 128 7,868 395 145 230
overall 284 36,566 5,497 1,412 1,781

3.1 Study Design
The goal is to assess the performance of COSP in identifying classes
that could become smelly in the near future. We instantiate COSP

to predict two types of smells (Complex Class and God Class) and
we set t = 90. Future work will investigate different values of t .

The context is represented by the history of the six systems listed
in Table 2. These systems are all hosted on GitHub and have been
randomly selected from the list of most popular repositories. The
only filtering criterion we used was to exclude repositories having
less than one thousand commits in their change history.

Assuming D to be the length of the change history of a system
S , we split it into three parts. Commits falling in the first 25% of
D were skipped and used as the history needed to compute the
predictor variables based on slopes. Commits from the 25% to the
75% of D are used to build the training set for S . This means that
for each commit c falling in this time period we:

(1) Checkout c and compute the 14 quality metrics for all classes.
(2) Analyze the history preceding c to compute the 28 slope-

based variables for each class. Having skipped the first 25% of D
ensures that we have enough change history for most of classes.

(3) Check whether each class in c will become a Complex Class
(or a God Class) within t days from c . To do that, we run an imple-
mentation of the DECOR smell detector based on the original rules
defined by Moha et al. [6]. The choice of using DECOR is driven
by the fact that it is a state-of-the-art smell detector having a high
accuracy in detecting smells [6].

Note that if a class is already affected by the considered code
smell type in c , it is not included in the training set.

Finally, the remaining 25% of commits (excluding those per-
formed in the last t days) are used for testing. In particular, we
simulate the scenario in which the developer runs COSP on a given
system snapshot (commit) and wants to predict which classes will
become smelly within t days. Note that with this experimental
design we are training a different model for each system by using
part of its history for training and part for testing. Future work will
be devoted to experiment with cross-project prediction.

Table 2 shows for each system the number of commits used for
testing and the total number of classes in the testing commits that
will become smelly after t = 90 days. For example, let us assume
to only have one system with two testing commits c1 and c2 and
that, of all classes in c1, two become smelly after t days while of all
those in c2 none becomes smelly after t days. The total number of
classes that become smelly in the testing commits will be two.

We report precision and recall achieved by our approach both
overall and when considering classifications having five different
confidence levels going from 1 to 0.6 at steps of 0.1. We do not
consider classifications with a confidence lower than 0.6 since a
probability close to 0.5, with only two possible categories is basi-
cally random guessing. Also, we are particularly interested in the
precision and recall when predicting a class as becoming smelly,
since these would be the alerts given to the developers to priori-
tize refactoring operations. We compare the performance of our
approach with two baselines built on top of the ELOC (size) and
the WMC (complexity) quality metrics. Given the set of n classes
identified as becoming smelly in the future by COSP when run on a
given commit c , we descendingly sort the classes in c based on their
ELOC (first baseline) and WMC (second). Then, we select the top
n classes in the two ranked lists and we assume that those, being
the largest and most complex in the system, are the ones going
to become smelly in the future. In other words, we compare the
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recall and precision of COSP with that of the two baselines when
providing the developer with a list of classes of the same size n
candidate to become smelly (thus, the same effort is required by
the developer for their analysis). Complete data about our study is
available at https://github.com/ICPC2018/COSP.
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Figure 2: Results achieved with different confidence levels.

3.2 Discussion of the Results
We present the precision and recall of COSP when categorizing
classes as becoming smelly (from now on, BS) or not (NS). Perfor-
mance is good when considering the NS class (precision ranging
across systems between .98 and 1.00, recall between .84 and .97), the
accuracy of COSP strongly drops in the BS class, where it achieves
a good recall (from .74 to 1.00) but with a lower precision (from .08
to .48). As previously said, the precision in the BS class is what we
are really interested in, since we envision COSP as a way to point
out to developer where to focus her refactoring attentions.

For this reason, we now focus our attention on the BS to see what
happens when COSP reports classes as becoming smelly. The red
line in Fig. 2 shows the precision and recall achieved by COSP in the
BS class when only considering classifications having a confidence
level higher or equal than λ, with λ going from 1.0 to 0.6 at steps of
0.1. The results in Fig. 2 summarize the overall performance of COSP
when considering the six systems as a single dataset. As previously
explained, we also compare the results achieved by COSP with two
baselines based on the LOC (blue line) and theWMC (black) metrics.
Fig. 2 shows that: (i) COSP substantially outperforms the baselines;
(ii) when the confidence level decreases, the COSP precision strongly
goes downhill, making it less useful in a real scenario; (iii) with the
maximum confidence level (1.0), the precision is ∼.75, highlighting
as three out of four classes indicated as becoming smelly, will actu-
ally become smelly within t days. However, there is a high price
to pay in terms of recall, not going over ∼.13. Table 3 reports the
results achieved on each system with the maximum confidence
level (no classes were classified as becoming God Class in fast json).

Table 3: Results when confidence equals 1.0
System COSP ELOC baseline WMC baseline

Prec. Rec. Prec. Rec. Prec. Rec.
Complex Class
bazel 0.78 0.09 0.68 0.08 0.46 0.06
druid 0.59 0.34 0.29 0.16 0.26 0.15
fast json 1.00 0.33 0.00 0.00 1.00 1.33
guava 0.75 0.10 0.81 0.11 0.56 0.08
picasso 1.00 0.07 1.00 0.07 1.00 0.07
realm 1.00 0.19 1.00 0.19 0.64 0.12
overall 0.76 0.12 0.62 0.10 0.44 0.07
God Class
bazel 0.65 0.06 0.62 0.06 0.45 0.04
druid 0.70 0.29 0.56 0.29 0.66 0.27
fast json - 0.00 - 0.00 - 0.00
guava 0.70 0.15 0.63 0.14 0.59 0.13
picasso 0.61 0.61 0.61 0.61 0.61 0.61
realm 0.97 0.30 0.90 0.28 0.92 0.27
overall 0.75 0.13 0.67 0.12 0.63 0.11

COSP only represents the very first solution paving the way to
more research in the field of predicting classes that, in future, will
hinder code maintainability. Indeed, the achieved results clearly
show that, while the COSP’s precision is acceptable in the high-
est confidence scenario, much more research is needed to create
techniques able to match this level of precision with a good recall.

3.3 Threats to Validity
Constructs validity. We relied on DECOR rules to detect smells. We
are aware that our results can be affected by the presence of false
positives/negatives. We never mixed training and testing, and we
only balanced the training set, without modifying the testing data.

External validity. We only experimented with COSP on six sys-
tems, however, this still accounted for 5,497 testing commits. Also,
cross-project prediction was not considered.

4 RELATEDWORK
The most relevant works are those proposing techniques to verify-
ing whether the current version of a code component is affected by
code smells. We refer the interested reader to the recent survey by
Sharma and Spinellis et al. [8] overviewing these techniques. COSP
clearly tackles a related, but different, problem, being complemen-
tary to those techniques. Indeed, a developer could use a code smell
detector to identify refactoring opportunities and remove the code
smells currently affecting the system. Then, she could start using
COSP to prevent the future introduction of new smell instances.

5 CONCLUSION
We presented COSP, the first approach available to predict classes
that will become smelly in future, thus providing the developers
with information useful to prevent their introduction. While COSP
represents a tangible step towards just-in-time refactoring recom-
menders, much more work is needed in experimental domain as
well as efforts to overcome its limitations.
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