
Using Data Fusion and Web Mining to Support Feature Location in Software

Meghan Revelle, Bogdan Dit, and Denys Poshyvanyk

Department of Computer Science

The College of William and Mary

Williamsburg, Virginia, USA

{meghan, bdit, denys}@cs.wm.edu

Abstract—Data fusion is the process of integrating multiple

sources of information such that their combination yields

better results than if the data sources are used individually.

This paper applies the idea of data fusion to feature location,

the process of identifying the source code that implements

specific functionality in software. A data fusion model for

feature location is presented which defines new feature location

techniques based on combining information from textual,

dynamic, and web mining analyses applied to software. A

novel contribution of the proposed model is the use of

advanced web mining algorithms to analyze execution

information during feature location. The results of an

extensive evaluation indicate that the new feature location

techniques based on web mining improve the effectiveness of

existing approaches by as much as 62%.

Keywords-feature location; data fusion; information

retrieval; dynamic analysis; web mining

I. INTRODUCTION

Software systems are constantly changing and evolving
in order to eliminate defects, improve performance or
reliability, and add new functionalities. When the software
engineers who maintain and evolve a system are unfamiliar
with it, they must go through the program comprehension
process. During this process, they obtain sufficient
knowledge and understanding of at least the part of the
system to which a change is to be made. An important part
of the program comprehension process is feature or concept
location [1, 2], which is the practice of identifying the source
code that implements a functionality, also known as a
feature

1
. Before software engineers can make changes to a

feature, they must first find and understand its
implementation.

For software developers who are unfamiliar with a
system, feature location can be a laborious task if performed
manually. In large software systems, there may be hundreds
of classes and thousands of methods. Finding even one
method that implements a feature can be extremely
challenging and time consuming. Fortunately for software
engineers in this situation, there are feature location
techniques that automate, to a certain extent, the search for a
feature’s implementation.

Existing feature location techniques use different tactics
to find a feature’s source code. Approaches based on

1
 A feature is sometimes also referred to as a concept or a concern. In this

work, the term “feature” is used.

information retrieval (IR) leverage the fact that identifiers
and comments embed domain knowledge to locate source
code that is textually similar to a query describing a feature
[24]. Dynamic feature location techniques collect and
analyze execution traces to identify a feature’s source code
based on set operations [31] or probabilistic ranking [1].
Static approaches to feature location rely on following or
analyzing structural program dependencies [6, 27].

The state of the art in feature location involves
integrating information from multiple sources. Researchers
have recognized that combining more than one approach to
feature location can produce better results than standalone
techniques [11, 13, 18, 22, 25, 33]. Generally in these
combined approaches, information from one source is used
to filter results from another. For instance in the SITIR
(SIngle Trace and Information Retrieval) approach to
feature location [22], a single execution trace is collected,
and then IR is used to rank only the methods that appear in
the trace instead of all of the system’s methods. Thus,
dynamic analysis is used as a filter to IR, and filtering is one
way to combine information from several sources to perform
feature location. Instead of using filtering, PROMESIR
(Probabilistic Ranking of Methods Based on Execution
Scenarios and Information Retrieval) [25] combines the
opinions of two “experts” (scenario-based probabilistic
ranking [1] and IR [24]) using an affine transformation.

The idea of integrating data from multiple sources is
known as data fusion. The sources of data have their
individual benefits and limitations, but when they are
combined, their drawbacks can be minimized and better
results can be achieved. Data fusion is used heavily in
sensor networks and geospatial applications to attain better
results in terms of accuracy, completeness, or dependability.
For example, the position of an object can be calculated
using an inertial navigation system (INS) or global
positioning system (GPS). An INS continuously calculates
the position of an object with relatively little noise and
centimeter-level accuracy, though over time the position data
will drift and become less accurate. GPS calculates position
discretely, has relatively more noise, and meter-level
accuracy. However, when data from an INS and GPS are
used together in the proper proportions, the GPS data can
correct for the drift in the INS data. Thus the fusion of INS
and GPS data produces more accurate and dependable results
than if they were used separately.

Inspired by the benefits of using data fusion to integrate
multiple sources of information, this work applies data

fusion to feature location. This paper presents a data fusion
model for feature location that is based on the idea that
combining data from several sources in the right proportions
will be effective at identifying a feature’s source code. The
model defines different types of information that can be
integrated to perform feature location including textual,
execution, and dependence. Textual information is analyzed
by IR, execution information is collected by dynamic
analysis, and dependencies are analyzed using web mining.
Applying web mining to feature location is a novel idea, but
it has been previously used for other program comprehension
tasks, such as identifying key classes for program
comprehension [32], ranking components in a software
repository [19], and recommending related API calls [29].
Software lends itself well to web mining approaches,
because like the World Wide Web, software can be
represented by a graph, and that graph can be mined for
useful information such as the source code that implements a
feature.

This paper makes the following contributions:

• A data fusion model for feature location is defined
that integrates different types of information to locate
features using IR, dynamic analysis, and web mining
algorithms.

• An extensive evaluation of the feature location
techniques defined in the model.

• Results that show that the new feature location
techniques have better effectiveness than the state of
the art in feature location. Statistical analysis
indicates that this improvement is significant.

In addition, all of the data used in the evaluation is made
freely available online

2
, and other researchers are welcome

to replicate this work. Making the data available will help
facilitate the creation of feature location benchmarks.

The remainder of this paper is structured as follows.
Section II introduces the data fusion model for feature
location. Section III outlines the evaluation methodology,
and Section IV discusses the results. Related work is
summarized in Section V, and Section VI concludes.

II. A DATA FUSION MODEL FOR FEATURE LOCATION

The feature location model presented here defines several
sources of information, the analyses used to derive the data,
and how the information can be combined using data fusion.

A. Textual Informaion from Information Retrieval

Textual information in source code, represented by
identifier names and internal comments, embeds domain
knowledge about a software system. This information can
be leveraged to locate a feature’s implementation through the
use of IR. Information retrieval is the methodology of
searching for textual artifacts or for relevant information
within artifacts. IR works by comparing a set of artifacts to a
query and ranking these artifacts by their relevance to the
query. There are many IR techniques that have been applied
in the context of program comprehension tasks such as the
Vector Space Model (VSM) [28], Latent Semantic Indexing

2 http://www.cs.wm.edu/semeru/data/icpc10-data-fusion/

(LSI) [10], and Latent Dirichlet Allocation (LDA) [4]. This
work focuses on evaluating LSI for feature location, and the
notation IRLSI is used to denote that LSI is the IR method
used to instantiate information retrieval analysis in the
model. IRLSI follows five main steps [24]: creating a corpus,
preprocessing, indexing, querying, and generating results.

Corpus creation. To begin the IR process, a document
granularity needs to be chosen so a corpus can be formed. A
document lists all the text found in a contiguous section of
source code such as a method, class, or package. A corpus
consists of a set of documents. For instance in this work, a
corpus contains method-level granularity documents that
include the text of each method in a software system.

Preprocessing. Once the corpus is created, it is
preprocessed. Preprocessing involves normalizing the text of
the documents. For source code, operators and programming
language keywords are removed. Additionally, identifiers
and other compound words are split (e.g., “featureLocation”
becomes “feature” and “location”). Finally, stemming is
performed to reduce words to their root forms (e.g.,
“stemmed” becomes “stem”).

Index the corpus. The corpus is used to create a term-
by-document matrix. The matrix’s rows correspond to the
terms in the corpus, and the columns represent documents
(i.e., source code methods). A cell mi,j in the matrix holds a
measure of the weight or relevance of the i

th
term in the j

th

document. The weight can be expressed as a simple count of
the number of times the term appears in the document or as a
more complex measure such as term frequency-inverse-
document frequency. Singular Value Decomposition (SVD)
[28] is then used to reduce the dimensionality of the matrix
by exploiting the co-occurrence of related terms.

Issue a query. A user formulates a natural language
query consisting of words or phrases that describe the feature
to be located (e.g., “print file to PDF format”).

Generate the results. In the SVD model, each
document corresponds to a vector. The query is also
converted to a vector, and then the cosine of the angle
between the two vectors is used as a measure of the
similarity of the document to the query. The closer the
cosine is to one, the more similar the document is to the
query. A cosine similarity value is computed between the
query and each document, and then the documents are sorted
by their similarity values. The user inspects the ranked list,
generally only reviewing the top results to decide if they are
relevant to the feature.

B. Execution Information from Dynamic Analysis

Execution information is gathered via dynamic analysis,
which is commonly used in program comprehension [9] and
involves executing a software system under specific
conditions. For feature location, these conditions involve
running a test case or scenario that invokes a feature in order
to collect an execution trace. For example, if the feature of
interest in a text editor is printing, the test case or scenario
would involve printing a file. Invoking the desired feature
during runtime generates a feature-specific execution trace.

Most existing feature location techniques that employ
dynamic analysis use it to explicitly locate a feature’s

implementation by analyzing patterns in traces post-mortem
[1, 13, 25]. The model presented in this work takes a
different approach to applying dynamic analysis for feature
location. Information collected from execution traces is
combined with other data sources instead of being analyzed
itself. Execution information is integrated with other
information by using it as a filter, as in the SITIR approach
[22] where methods not executed in a feature-specific
scenario are pruned from the ranked list produced by IRLSI.

The model in this work takes a similar approach to using
execution information (denoted as “Dyn”) as a filter. By
extracting information from a single trace, the sequence of
method calls can be used to create a graph where nodes
represent methods and edges indicate method calls. This
graph is a subgraph of a static call graph that only contains
methods that were executed. The edges in the graph can be
weighted or weightless. When weights are used, they can be
derived from execution frequency information captured by a
trace. For instance, Figure 1 shows a portion of an execution
trace where method x calls method y two times and calls
method z three times. This trace is represented by a graph
where the weight of the edge from x to y is 2/5, and the
weight of the edge from x to z is 3/5. Alternatively, instead
of normalizing the edge weights, the values on the edge from
x to y can be 2, and the weight of the edge from x to z can be
3. When dynamic execution information is used in either of
these ways, it is denoted with the “freq” subscript, referring
to the fact that execution frequency information is used. If
no weights are placed on the edges of a graph, this is denoted
with the “bin” subscript, referring to the fact that only binary
information about a method’s execution is used.

C. Dependence Information from Web Mining

Web mining is a branch of data mining that concentrates
on analyzing the structure of the World Wide Web (WWW)
[8]. The structure of the WWW can be used to extract useful
information. For instance, search engines use web mining to
rank web pages by their relevance to a user’s query. Web
mining algorithms view the WWW as a graph. The graph is
constructed of nodes, which represent web pages, and edges,
which represent hyperlinks between pages.

Software can also be represented as a graph – a call
graph. Nodes represent methods, and edges correspond to
relationships or dependencies among methods. Therefore,
web mining algorithms can be naturally applied to software
to discover useful information from its structure, such as key

classes for program comprehension [32], component ranks in
software repositories [19], and statements that can be refined
from concept bindings [21]. This work explores whether web
mining can also be applied to feature location, either as a
standalone technique or used as a filter to an existing approach
to feature location. Two web mining algorithms are discussed
below.

1) HITS
The Hyperlinked-Induced Topic Search (HITS) [20]

algorithm identifies hubs and authorities from a graph
representing the WWW. Hubs are pages that have links to
many other pages that contain relevant information on a
topic. These pages with pertinent information are known as
authorities. Good hubs point to many good authorities, and
good authorities are pointed to by many hubs. Thus, hubs
and authority are defined in a mutually recursive way. Let hp

stand for the hub value of page p and ap represent the
authority value of p. The hub and authority values of p are
defined in Equation 1, where i is a page connected to p, and
n is the total number of pages connected to p.

1

n

i

p ih a
=

=∑ and

1

n

i

p ia h
=

=∑ (1)

To start, HITS initializes all hub and authority values to
one. Then, the algorithm is run for a given number of
iterations (or until the values converge), during which the
hub and authority values are updated according to Equation
1. The values are normalized after each iteration.

A slight variation of the HITS algorithm allows weights
to be added to the links between pages. Weighted links
denote relative importance. Let wi→p represent the weight of
the link between i and p. The formulas for hubs and
authorities now become:

1

n

pip i

i

h w a→

=

= ⋅∑ and

1

n

i pp i

i

a w h→

=

= ⋅∑ . (2)

When using software to construct a graph instead of the
WWW, the nodes and edges can be determined from a static
call graph or dynamic execution trace. This work
concentrates on constructing graphs from execution traces
and leaves the exploration of statically-constructed graphs
for future work. Nodes in the graph correspond to methods,
and edges represent dependencies (calls) between methods.
If weights are placed on the graph edges, dynamic execution
frequency can be used

3
. Otherwise, if no weights are used,

binary dynamic information is used.
Using either frequency or binary dynamic information to

construct a method call graph, the HITS algorithm can
potentially be used for feature location in two ways. First,
the methods in a graph can be ranked by extending the
concepts of hubs and authorities to source code. Hub
methods are those that call upon many other methods, while
authority methods are called by a large number of other
methods. Intuitively, hubs do not perform much
functionality themselves but delegate to others, and
authorities actually perform specific functionalities. Ranking

3 The HITS algorithm does not require edge weights to be normalized, so

the execution frequency values are used without normalization.

Figure 1. An example of an execution trace translated into a graph with

execution frequency weights on the edges. Xe is the entry to method X, and

Xr is the return from method X.

Execution trace: Xe Ye Yr Ze Zr Xr Xe Ze Zr Ye Yr Ze Zr Xr

methods in a software system by either their hub or authority
values is a novel feature location technique. The notation
WMHITS(h,freq), WMHITS(h,bin), WMHITS(a,freq), WMHITS(a,bin) is
used, where WM refers to web mining, HITS(h) and HITS(a)
stand for hub and authority scores respectively, and the
“freq” and “bin” subscripts denote how dynamic information
is used to weight the graph’s edges.

The second way in which the HITS algorithm can be used
for feature location is as a filter. Instead of directly using the
hub and authority values to rank methods, those rankings can
be combined with other information. The intuition is that the
methods with high hub values will be methods that are more
general purpose in nature and not specific to a feature, i.e.,
methods in “god” classes. Conversely, methods with high
authority values may be highly relevant to a feature.
Therefore, top-ranked hub methods and bottom-ranked
authority methods can be filtered from the results of other
techniques such as IRLSIDynbin. The “top” superscript is used
to represent when the top-ranked methods are filtered, and
“bottom” superscript

stands for the case when the bottom-

ranked methods are filtered. The evaluation investigates the
best method of filtering by hub and authority values.

2) PageRank
PageRank [5] is a web mining algorithm that estimates

the relative importance of web pages. It is based on the
random surfer model which states that a web surfer on any
given page p will follow one of p’s links with a probability
of β and will jump to a random page with a probability of (1-
β). Generally, β = 0.85. Given a graph representing the
WWW, let N be the total number of pages or nodes in the
graph. Let I(p) be the set of pages that link to p, and O(p) be
the pages that p links to. PageRank is defined by the equation

()

1 ()
()

| () |j I p

PR j
PR p

N O j

β
β

∈

−
= + ∑ . (3)

PageRank’s definition is recursive and must be iteratively
evaluated until it converges.

Like HITS, PageRank can be applied to software if a
system is represented by a graph where nodes are methods
executed in a trace and edges are method calls. In the
PageRank algorithm, edges always have weights. When
binary execution information is used, the weight of all the
outgoing edges from a node is equally distributed among
those edges (e.g., if x has three outgoing edges, their weight
will each be 1/3). Otherwise, execution frequency
information can be used for the edge weights. PageRank
requires normalized values, so the execution frequency
values are normalized, as in the example in Figure 1.

Like HITS, PageRank can be used to directly rank and

locate a feature’s relevant methods or as a filter to other
sources of information. When used directly as a feature
location technique, it is denoted as WMPR(freq) or WMPR(bin),
referring to the use of frequency or binary execution
information to create a graph. PageRank, applied to
software, is an estimate of the global importance of a method
within a system. Therefore, methods that have global
significance within a system will be ranked highly. Methods
relevant to a specific feature are unlikely to have high global
importance, so they may be ranked lower in the list. The
evaluation examines PageRank as a feature location technique.

Since PageRank identifies methods of global importance,
instead of using it as a standalone feature location technique, it
can be used as a filter to be combined with other sources of
information. Pruning the top-ranked PageRank methods from
consideration may produce better feature location results. The
“top” and “bottom” superscripts denote that the top and bottom
results returned by PageRank are filtered. The evaluation
explores the best way to use PageRank as a filter.

D. Fusions

Data fusion combines information from multiple sources
to achieve potentially more accurate results. For feature
location, this model has defined three information sources
derived from three types of analysis: information retrieval,
execution tracing, and web mining. This subsection outlines
the feature location techniques instantiated within the model
that are evaluated. Table I lists all of the techniques.

Information Retrieval via LSI. This feature location
technique, introduced in [24], ranks all methods in a software
system based on their relevance to a query. Only one source
of information is used, so no data fusion is performed. This
approach is referred to as IRLSI.

Information Retrieval and Execution Information.
The idea of fusing IR with dynamic analysis is used by the
SITIR approach and is the state of the art of feature location
techniques that rank program elements (e.g., methods) by
their relevance to a feature. A single feature-specific
execution trace is collected. Then, LSI ranks all the methods
in the trace instead of all the methods in the system. Thus
dynamic information is used as a filter to eliminate methods
that were not executed and therefore are less likely to be
relevant to the feature. In this work, this technique is
abbreviated IRLSIDynbin and represents the baseline for
comparison. Note that the IRLSIDynfreq approach is not
evaluated. It filters the same methods as IRLSIDynbin because
it only matters whether a method was executed or not.

Web Mining. The HITS and PageRank algorithms can
be used as feature location techniques that rank all methods

TABLE I. THE FEATURE LOCATION TECHNIQUES EVALUATED.

IR & Dynamic

Analysis
Web Mining IR, Dyn, & HITS*

IR, Dyn, &

PageRank*

IRLSI WMHITS(h,bin) WMHITS(h,freq) IRLSIWMHITS(h, bin)
top IRLSIWMHITS(h, bin)

bottom IRLSIWMPR(bin)
top

IRLSIDynbin WMHITS(a,bin) WMHITS(a,freq) IRLSIWMHITS(h, freq)
top IRLSIWMHITS(h, freq)

bottom IRLSIWMPR(bin)
bottom

 WMPR(bin) WMPR(freq) IRLSIWMHITS(a, bin)
top IRLSIWMHITS(a, bin)

bottom IRLSIWMPR(freq)
top

 IRLSIWMHITS(a, freq)
top IRLSIWMHITS(a, freq)

bottom IRLSIWMPR(freq)
bottom

* “Dyn” is left out of the names of these techniques for brevity, but they are based on using web mining to filter IRLSIDynbin’s results.

in an execution trace using either binary or frequency
information. Web mining has not been applied to feature
location before; therefore all of the approaches involving
web mining are novel. Table I lists all the feature location
techniques based on web mining.

Information Retrieval, Execution Information, and
Web Mining. Applying data fusion, IR, execution tracing,
and web mining can be combined to perform feature
location. This work proposes the use of web mining as a
filter to IRLSIDynbin’s results in order to eliminate methods
that are irrelevant. Each web mining algorithm can be
applied to binary or execution frequency information. If the
results returned by a standalone web mining technique rank
methods that are relevant to a feature at the top of the list,
then methods at the bottom of the list can be filtered from
consideration. However, since the standalone web mining
techniques are based on dynamically-constructed call graphs,
the resulting rankings could be similar across many different
features, meaning the top-ranked results are not relevant to
the feature. In this case, those top-ranked results are
eliminated from consideration. For example, IRLSIWMHITS(h,

bin)
top

 is a feature location technique that uses IR to rank all of
the executed methods by their relevance to a query. A graph
is constructed using binary execution information from a
trace, and the methods in the graph are ranked according to
their HITS hub values. Finally, the top methods from the
HITS hub rankings are pruned from IRLSIDynbin’s results. In
this technique, methods with high HITS hub values are
filtered. Table I lists all of the feature location techniques
that filter IRLSIDynbin’s results using HITS or PageRank.

III. EXPERIMENTAL EVALUATION

This section describes the design of a case study to assess
the feature location techniques defined by the data fusion
model. The evaluation seeks to answer the following
research questions:

RQ1 Does combining a web mining algorithm with an

existing approach to feature location improve its
effectiveness?

RQ2 Which web-mining algorithm, HITS or PageRank,
produces better results?

The answers to these research questions will help reveal the
best instantiation of the data fusion model.

A. Systems and Benchmarks

The evaluation was conducted on two open source Java
software systems: Eclipse and Rhino. Eclipse

4
 is an

integrated development environment. Version 3.0 has
approximately 10K classes, 120K methods, and 1.6 million
lines of code. Forty-five features from Eclipse were studied.
The features are represented by bug reports submitted to
Eclipse’s online issue tracking system

5
. The bug reports are

change requests that pertain to faulty features. The bug
reports provide steps to reproduce the problem, and these

4
 http://www.eclipse.org/

5
 https://bugs.eclipse.org/

steps were used as scenarios to collect execution traces.
Table II lists information about the size of the collected
traces. The short descriptions in the bug reports were used as
the queries for IR. The bug reports also have submitted
patches that detail the code that was changed to fix the bug.
The modified methods are considered to be the “gold set” of
methods that implement the feature. Since their code had to
be altered to correct a problem with the feature, they are
likely to be relevant to the feature. These gold set methods
are used as the benchmark to evaluate the feature location
techniques. This way of determining a feature’s relevant
methods from patches has also been used by other
researchers [22, 23, 25].

The other system evaluated is Rhino, a Java
implementation of JavaScript. Rhino

6
 version 1.5 consists of

138 classes, 1,870 methods, and 32,134 lines of code. Rhino
implements the ECMAScript specification

7
. The Rhino

distribution comes with a test suite, and individual test cases
in the suite are labeled with the section of the specification
they test. Therefore, these test cases were used to collect
execution traces for 241 features. The text from the
corresponding section of the specification was used to
formulate IR queries. For the gold set benchmarks for each
feature, the mappings of source code to features made
available by Eaddy et al. [12] were used. They considered
the sections of the ECMAScript documentation to be
features and associated code with each following the prune
dependency rule [12] which states: “A program element is
relevant to a [feature] if it should be removed, or otherwise
altered, when the [feature] is pruned.” Their mappings are
made available online

8
 and have been used in several other

research evaluations [11, 12].
The position of the first relevant method from the gold

set was used to evaluate the feature location techniques and
is referred to as the effectiveness measure [25]. Techniques
that rank relevant methods near the top of the list are more
effective because they reduce the number of false positives a
developer has to consider. The effectiveness measure is an
accepted metric to evaluate feature location techniques. It is

6
 http://www.mozilla.org/rhino/

7
 http://www.ecmascript.org/

8
 http://www.cs.columbia.edu/~eaddy/concerntagger/

TABLE II. DESCRIPTIVE INFORMATION ON THE EXECUTION TRACES.
THE COLUMNS REPRESENT THE MINUMUM, MAXIMUM, LOWER QUARTILE,
MEDIAN, UPPER QUARTILE, MEAN, AND STANDARD DEVIATION. FOURTY-

FIVE TRACES WERE COLLECTED FOR ECLIPSE, AND 241 FOR RHINO.

 Min Max 25% Med 75% σ µ

Methods 88K 1.5MM 312K 525K 1MM 666K 406K

Unique

Methods
1.9K 9.3K 3.9K 5K 6.3K 5.1K 2K

Size-MB 9.5 290 55 98 202 124 83

Nesting* 22 178 37 54 71 59 32

E
cl

ip
se

Threads 1 26 7 10 12 10 5

Methods 160K 12MM 612K 909K 1.8MM 1.8MM 2.3MM

Unique

Methods
777 1.1K 870 917 943 912 54

Size-MB 18 1,668 71 104 214 210 273

Nesting* 25 37 28 27 28 28 1

R
hi

no

Threads 1 1 1 1 1 1 0

* Nesting is based on the average nesting level per feature.

used here instead of precision and recall to be consistent with
previous approaches [22, 25] and because feature location
techniques have been shown to be better at finding one
relevant method for a feature as opposed to many [26].

B. Hypotheses

Several null hypotheses were formed to test whether the
performance of the baseline feature location technique
improves with the use of web mining. The testing of the
hypotheses is based on the effectiveness measure. Two null
hypotheses are presented here; the other hypotheses can be
derived analogously.

()0, PR binWMH There is no significant difference between

the effectiveness of WMPR(bin) and the
baseline (IRLSIDynbin).

()0,
top

LSI PR binIR WMH There is no significant difference between

the effectiveness of IRLSIWMPR(bin)
top

 and
the baseline (IRLSIDynbin).

If a null hypothesis can be rejected with high confidence,

an alternative hypothesis that states that a technique has a
positive effect on the ranking of the first relevant method can
be supported. The corresponding alternative hypotheses to
the null hypotheses above are given. The remaining
alternative hypotheses are formulated in a similar manner.

(), PR binA WMH The effectiveness of WMPR(bin) is

significantly better than the baseline.

(),
top

LSI PR binA IR WMH The effectiveness of IRLSIWMPR(bin)
top

 is

significantly better than the baseline.

C. Data Collection and Analysis

The primary data collected in the evaluation is the
effectiveness measure. For each feature location technique,
there are 45 data points for Eclipse and 241 for Rhino, one
for each feature. Descriptive statistics of the effectiveness
measure for each system are reported that summarize the
data in terms of mean, median, minimum, maximum, lower
quartile, and upper quartile.

The feature location techniques can also be evaluated by
how many features they can return at least one relevant

result. Many of the techniques in the model filter methods
from consideration, and some of those methods may belong
to the gold set. It is possible for a technique to filter out all
of a feature’s gold set methods and return no relevant results.
Therefore, the percentage of features for which a technique
can locate at least one relevant method is reported.

If a feature location technique ranks one of a feature’s
relevant methods closer to the top of the list than another
technique, then the first approach is more effective. Every
feature location technique can be compared to every other
technique in this manner, and the percentage of times the first
technique is more effective is reported.

Data on whether one technique is more effective than
another is not enough. Statistical analysis must be performed
to determine if the difference between the effectiveness of two
techniques is significant. The Wilcoxon Rank Sum test [7] is
used to test if the difference between the effectiveness
measures of two feature location techniques is statistically
significant. Essentially, the test determines if the decrease in
the number of false positives reported by one technique as
compared to another is significant. The Wilcoxon test is a non-
parametric test that accepts paired data. Since a technique may
not rank any of a feature’s gold set methods, it would have no
data to be paired with the data from another feature location
technique. Therefore, only cases where both techniques rank a
method are input to the test. In this evaluation, the significance
level of the Wilcoxon Rank Sum test is α = 0.05.

IV. RESULTS AND DISCUSSION

This section presents the results of using the feature
location techniques listed in Table I to identify the first
relevant method of 45 features of Eclipse and 241 features of
Rhino. Figure 2 and Figure 3 show box plots representing
the descriptive statistics of the effectiveness measure for
Eclipse and Rhino. The graphs for Eclipse and Rhino have
different scales because Eclipse has more methods. Figure 2
plots the feature location techniques based on IR (T1), IR and
dynamic analysis (T2), and web mining as a standalone
approach (T3 through T8). Figure 3 shows the techniques that
combine IR, dynamic analysis, and web mining (T2 through
T13). IRLSIDynbin is also included in this figure for reference
since it represents the baseline for comparison. In Figure 2
and Figure 3, the diamonds represent the average

87%87%87%

87%

87%87%

87%

100%

T8T7T6T5T4T3T2T1

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

100%

100%

100%
100%

100%

100%

100%

100%

T8T7T6T5T4T3T2T1

0

100

200

300

400

500

600

700

800

 (a) Eclipse (b) Rhino

Figure 2. The effectiveness measure for the feature location techniques applied to 45 features of Eclipse and 241 features of Rhino. The values above the

boxes represent the percentage of features for which the technique was able to locate at least one relevant method.

T1. IRLSI

T2. IRLSIDynbin

T3. WMPR(freq)

T4. WMPR(bin)

T5. WMHITS(a,freq)

T6. WMHITS(a,bin)

T7. WMHITS(h,freq)

T8. WMHITS(h,bin)

effectiveness measure. The dark grey and light grey boxes
stand for the upper and lower quartiles, respectively, and the
line between the boxes represents the median. The whiskers
above and below the boxes denote the maximum and
minimum effectiveness measure. In some cases, the
maximum is beyond the scale of the graphs. The figures also
report for each feature location technique, the percentage of
features for which the technique was able to identify at least
one relevant method.

The box plots in Figure 2 show that using web mining as
a standalone feature location technique produces results that
are comparable to IRLSI even though no query is used.
However, these techniques are less effective than the state of
the art, no matter the web mining algorithm used. The
feature location techniques based on PageRank, HITS hub
values, or HITS authority values are not as effective as
IRLSIDynbin. Overall, there is little difference between the
use of binary and execution frequency information.
PageRank was the least effective, followed by HITS
authorities and HITS hubs. It is surprising that ranking
methods by their hub values is more effective than ranking
them by their authority values. Intuitively, hubs are methods
that delegate functionality to authorities which actually
implement it. Therefore, authorities should be more valuable
for feature location, but this was not observed.

Even though feature location techniques based on
standalone web mining are not more effective than the state
of the art, when web mining is used as a filter to the baseline,
the results significantly improve in some cases. Figure 3
presents box plots of the effectiveness measure of the
techniques that used web mining to filter IRLSIDynbin’s
results. The filters prune either the top or bottom methods
ranked by a web mining algorithm. The threshold for the
percent of methods to filter was selected for each technique
individually such that at least one gold set method remained
in the results for 66% of the features. In Eclipse,
IRLSIWMHITS(h,freq)

bottom
had the best effectiveness measure on

average. In Rhino, IRLSIWMHITS(h,bin)
bottom

was the most

effective technique. In fact, all of the techniques that use web
mining as a filter are more effective than IRLSIDynbin in
Eclipse by 13% to 62% on average. In Rhino, most of the IR
plus web mining techniques have an average effectiveness
1% to 51% better than IRLSIDynbin except for
IRLSIWMHITS(a,freq)

bottom
, IRLSIWMHITS(h,freq)

top
,

IRLSIWMHITS(a,bin)
bottom

, and IRLSIWMHITS(h,bin)
top

. These results
help answer RQ1 because they lend strong support to the fact
that integrating the ranking of methods using web mining
with information retrieval is a very effective way to perform
feature location. In regards to RQ2, the techniques based on
HITS were generally more effective than the PageRank
approaches, so HITS, used either as a standalone technique or
as a filter, seems better suited to the task of feature location.

In addition to measuring the effectiveness of each of the
feature location techniques, the new approaches based on web
mining were directly compared to IRLSI and IRLSIDynbin.
Table III shows for each new technique, the percent of times
its effectiveness measure is better than that of the existing
approaches

9
. The table shows a different view of the data

presented in Figures 2 and 3. It shows on a case-by-case basis,
which feature location technique is more effective. The data
in this table is derived from the subset of methods that are
ranked by both techniques, while Figures 2 and 3 show data
for all methods. In Table III, if one approach ranks a method
and another does not, the method is not included in the
reported data. The table shows that feature location
techniques based solely on web mining never have better
effectiveness than IRLSIDynbin. On the other hand, the
techniques that use web mining as a filter routinely rank
methods closer to the top of the list than IRLSIDynbin. This
finding also helps answer RQ1: combining web mining with
existing approaches improves their effectiveness. RQ2
addresses which of the two web mining algorithms is more
effective. Based on the results in Table III, the techniques

9
 The online appendix includes complete data on the performance of each

feature technique compared to all the others.

83%

75%

77%

86%

90%

75%

70%

81%

71%

67%

77%

68%

100%

T13T12T11T10T9T8T7T6T5T4T3T2T1

0

50

100

150

200

250

300

 (a) Eclipse (b) Rhino

Figure 3. The effectiveness measure for the feature location techniques that combine information retrieval and web mining. The top and bottom

percentages in brackets have two values. The first value is the percentage used in Eclipse, and the second is the percentage used in Rhino. The values above

the boxes represent the percentage of features for which the technique was able to locate at least one relevant method.

T1. IRLSIDynbin

T2. IRLSIWMPR(freq)
top [40, 60]%

T3. IRLSIWMPR(freq)
bot [20, 70]%

T4. IRLSIWMPR(bin)
top [40, 60]%

T5. IRLSIWMPR(bin)
bot [10, 70]%

T6. IRLSIWMHITS(a,freq)
top [30, 70]%

T7. IRLSIWMHITS(a,freq)
bot [40, 60]%

T8. IRLSIWMHITS(h,freq)
top [10, 70]%

T9. IRLSIWMHITS(h,freq)
bot [60, 50]%

T10. IRLSIWMHITS(a,bin)
top [20, 70]%

T11. IRLSIWMHITS(a,bin)
bot [40, 40]%

T12. IRLSIWMHITS(h,bin)
top [10, 70]%

T13. IRLSIWMHITS(h,bin)
bot [70, 60]%

73%

73%

73%

71%

80%

69%

71%

67%

73%

76%

67%

69%

87%

T13T12T11T10T9T8T7T6T5T4T3T2T1

0

100

200

300

400

500

600

700

based on HITS are more effective than the PageRank
techniques.

A. Statistical Analysis

The Wilcoxon Rank Sum test was used to test if the
difference between the effectiveness measures of two feature
location techniques is statistically significant. Table IV
shows the results of the test (p-values) for all of the
techniques based on web mining as compared to IRLSIDynbin

and if the null hypotheses can be rejected based on the p-
values. In the table, statistically significant results are
presented in boldface. None of the approaches in which web
mining is used as a standalone technique have statistically
significant results. However in Eclipse, all of the feature
location techniques that employ web mining as a filter have
significantly better effectiveness than IRLSIDynbin. Likewise
in Rhino, most of the approaches that use web mining as a
filter have statistically significant results with a few
exceptions. Therefore, the null hypotheses for these
approaches without significant results for both systems
cannot be rejected. However, for the techniques with
statistically significant results for both Eclipse and Rhino,
their null hypotheses are rejected, and there is evidence to
suggest that the corresponding alternative hypotheses can be
supported. These feature location techniques have
significantly better effectiveness than the baseline technique.

B. Discussion

The findings of the evaluation show that combining web
mining with an existing feature location technique results is a
more effective approach (RQ1). Additionally in the context
of feature location, HITS is a more effective web mining
algorithm than PageRank (RQ2). The most effective
techniques evaluated were IRLSIWMHITS(h,freq)

bottom
 and

IRLSIWMHITS(h,bin)
bottom

. The results indicate that filtering
bottom-ranked hub methods from IRLSIDynbin's results is the
most effective approach. For instance, for one feature in

Eclipse, IRLSI ranked the first relevant method at position
1,696, and for IRLSIDynbin, the best rank of a relevant method
was at position 61. IRLSIWMHITS(h,bin)

bottom
, on the other hand,

ranked the first relevant method to the feature at position 24.
Filtering the bottom HITS hub methods eliminated 37 false
positives from the results obtained by the state of the art
technique. Examining the results in detail reveals why.
Methods with high hub values call many other methods,
while methods that do not make many calls have low hub
values. These bottom-ranked hub methods are generally
getter and setter methods or other methods that do not make
any calls and perform very specific tasks. The
IRLSIWMHITS(h,bin)

bottom
 technique prunes these methods from

the results since they are not relevant to the feature, thus
improving effectiveness.

C. Threats to Validity

There are several threats to validity of the evaluation
presented in this work. Conclusion validity refers to the
relationship between the treatment and the outcome and if it
is statistically significant. Since no assumptions were made
about the distribution of the effectiveness measures, a non-
parametric statistical test was used. The results of the test
showed that the improvement in effectiveness of most of the
web mining based feature location techniques over the state
of the art is significant.

Internal validity refers to if the relationship between the
treatment and the outcome is casual and not due to chance.
The effectiveness measure is based on the position of a
feature’s first relevant method, and the relevant methods are
defined by a gold set. In Eclipse, the gold set was defined by
bug report patches. These patches may contain only a subset
of the methods that implement a feature, and sometimes the
methods were not implemented until a later version. In
Rhino, the gold set methods were defined manually by other
researchers who were not system experts. Thus, relevant
methods could be missing from the gold sets of each system.
This threat is minimized by the fact that the patches were
approved by the module owners and the Rhino data has been
previously used by other researchers [11, 12].

TABLE III. FOR EACH FEATURE LOCATION TECHNIQUE LISTED IN A

ROW, THE PERCENTAGE OF TIMES ITS EFFECTIVENESS MEASURE IS BETTER

THAN THE TECHNIQUE IN THE CORRESPONDING COLUMN IS GIVEN.

 Eclipse Rhino

 IRLSI IRLSIDynbin IRLSI IRLSIDynbin

IRLSIDynbin 97% X 91% X

WMPR(freq) 59% 13% 49% 20%

WMPR (bin) 59% 10% 44% 19%

WMHITS(a,freq) 67% 18% 45% 15%

WMHITS (a,bin) 56% 18% 25% 6%

WMHITS(h,freq) 77% 26% 45% 20%

WMHITS (h,bin) 77% 26% 41% 22%

IRLSI WMPR(freq)
top 97% 90% 85% 72%

IRLSI WMPR (freq)
bottom 100% 83% 83% 63%

IRLSI WMPR(bin)
top 97% 91% 85% 73%

IRLSI WMPR (bin)
bottom 97% 94% 82% 54%

IRLSI WMHITS(a,freq)
top 97% 90% 88% 74%

IRLSI WMHITS(a,freq)
bottom 97% 94% 82% 53%

IRLSI WMHITS(h,freq)
top 97% 94% 72% 40%

IRLSI WMHITS(h,freq)
bottom 97% 97% 93% 88%

IRLSI WMHITS(a,bin)
top 97% 94% 85% 68%

IRLSI WMHITS(a,bin)
bottom 97% 91% 73% 60%

IRLSI WMHITS(h,bin)
top 97% 94% 72% 40%

IRLSI WMHITS(h,bin)
bottom 97% 97% 89% 81%

TABLE IV. THE RESULTS OF THE WILCOXON TEST.

 Eclipse Rhino Null Hypothesis

WMPR(freq) 1 1 Not Rejected

WMPR (bin) 1 1 Not Rejected

WMHITS(a,freq) 1 1 Not Rejected

WMHITS (a,bin) 1 1 Not Rejected

WMHITS(h,freq) 1 1 Not Rejected

WMHITS (h,bin) 1 1 Not Rejected

IRLSI WMPR(freq)
top < 0.0001 < 0.0001 Rejected

IRLSI WMPR (freq)
bottom 0.004 0 Rejected

IRLSI WMPR(bin)
top < 0.0001 < 0.0001 Rejected

IRLSI WMPR (bin)
bottom < 0.0001 0.74 Not Rejected

IRLSI WMHITS(a,freq)
top 0 < 0.0001 Rejected

IRLSI WMHITS(a,freq)
bottom < 0.0001 0.99 Not Rejected

IRLSI WMHITS(h,freq)
top 0 1 Not Rejected

IRLSI WMHITS(h,freq)
bottom < 0.0001 < 0.0001 Rejected

IRLSI WMHITS(a,bin)
top < 0.0001 < 0.0001 Rejected

IRLSI WMHITS(a,bin)
bottom < 0.0001 1 Not Rejected

IRLSI WMHITS(h,bin)
top 0 1 Not Rejected

IRLSI WMHITS(h,bin)
bottom < 0.0001 < 0.0001 Rejected

Another threat to internal validity pertains to the
collection of data from IR and dynamic analysis. Information
retrieval requires a query. The queries in this evaluation were
taken directly from bug reports and documentation. It is
possible that the queries used do not accurately reflect the
features being located or that the use of different queries with
vocabularies more inline with the source code would yield
better results. However, using these default queries instead of
queries formulated by the experimenters avoided the
introduction of bias. Similarly, execution traces were
collected for each feature based on either the bug reports or
test cases. The collection of these traces may not have
invoked all of a feature’s relevant methods or may have
inadvertently invoked another feature. This is a threat to
validity common to all approaches that use dynamic analysis.
The use of test cases distributed with the software reduces this
threat since the tests were created by the system’s authors.

External validity concerns whether or not the results of this
evaluation can be generalized beyond the scope of this work.
Two open source systems written in Java were evaluated.
Eclipse is large enough to be comparable to an industrial
software system, but Rhino is only medium-sized. Additional
evaluations on other systems written in other languages are
needed to know if the results of this study hold in general.

V. RELATED WORK

Existing feature location techniques can be broadly

classified by the types of analysis they employ, be it static,

dynamic, textual, or a combination of two or more of these.

Chen and Rajlich [6] proposed the use of Abstract System

Dependence Graphs (ASDG) as a means of static feature

location, whereby users follow system dependencies to find

relevant code. Robillard [27] introduced a more automated

static approach that analyzed the topology of a system’s

dependencies. Harman et al. [17] used hypothesis-based

concept assignment (HB-CA) [15] and program slicing to

create executable concept slices and found these slices can be

used to decompose a system into smaller executable units

corresponding to concepts (features) [3]. In this work, instead

of using static information, textual and dynamic data are used

to get results that are more tailored to a specific feature.
Software reconnaissance [31] is a well-known dynamic

approach to feature location. Two execution traces are
collected: one that invokes the feature of interest and another
that does not. The traces are compared, and methods invoked
only in the feature-specific trace are deemed relevant.
Scenario-based probabilistic ranking (SPR) [1] is another
dynamic feature location technique in which statistical
hypothesis testing is used to rank executed methods. This
work employs dynamic information for feature location, but
uses it as a filter to textual information instead of directly
locating a feature from pure dynamic analysis.

Textual feature location was introduced by Marcus et al.
[24] when they applied LSI to source code. The approach
has been extended to include relevance feedback [14], where
users indicate which results are relevant, and a new query is
automatically formulated from the feedback. Textual
analysis of source code is not limited to LSI. Grant et al.

[16] employ Independent Component Analysis (ICA) for
feature location. ICA is an analysis technique that separates
a set of input signals into statistically independent
components. For each method, the analysis determines its
relevance to each of the signals, which represent features.
This work relies on LSI as opposed to other analyses because
LSI is the de facto standard.

In addition to these techniques based on a single type of
analysis, there are many hybrid approaches. Both SITIR [22]
and PROMESIR [25] combine textual and dynamic analysis.
FLAT

3
 [30] provides tool support for SITIR. Eisenbarth et al.

[13] applied formal concept analysis to execution traces and
combined the results with an approach similar to ASDGs.
Dora [18] and SNIAFL [34] incorporate information from
textual and static analysis. Cerberus [11] is the only hybrid
approach that combines static, dynamic, and textual analyses.

No existing feature location techniques rely on web
mining. However, web mining has been used for other
program comprehension tasks. Zaidman and Demeyer [32,
33] used the HITS algorithm on a dependence graph of a
system weighted with dynamic coupling measures to identify
the classes that are most important for understanding the
software. SPARS-J [19] is a system that analyzes the usage
relations of components in a software repository using a
ranking algorithm that is similar to PageRank. Components
that are generic and frequently reused are ranked highly. Li
[21] also used a variant of PageRank called Vertex Rank
Model (VRM) to refine concept bindings found using HB-
CA. The VRM works on a dependence graph of concept
bindings to identify statements that can be removed from the
concept bindings without losing domain knowledge.

VI. CONCLUSION

This work has introduced a data fusion model for feature
location. The basis of the model is that combining
information from multiple sources is more effective than
using the information individually. Feature location
techniques based on web mining and approaches using web
mining as a filter to information retrieval were instantiated
within the model. A large number of features from two open
source Java systems were studied in order to discover if
feature location based on combining IR and web mining is
more effective than the current state of the art and which of
two web mining algorithms is better suited to feature location.

The results of an extensive evaluation reveal that new
feature location techniques based on using web mining as a
filter are more effective than the state of the art, and that their
improvement in effectiveness is statistically significant. Future
work includes instantiating the model with different IR
techniques and investigating using a static program dependence
graph for web mining. All of the data used to generate the
results presented in this paper is made publically available to
other researchers who wish to replicate these case studies.

ACKNOWLEDGMENT

This work is supported by NSF CCF-0916260 and
United States AFOSR FA9550-07-1-0030 grants. Any
opinions, findings, and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

REFERENCES

[1] Antoniol, G. and Guéhéneuc, Y. G., "Feature Identification: An

Epidemiological Metaphor", IEEE Trans. on Software Engineering, vol.

32, no. 9, Sept. 2006, pp. 627-641.

[2] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., "The Concept

Assignment Problem in Program Understanding", in Proc. of the Intl.

Conference on Software Engineering,1994, pp. 482-498.

[3] Binkley, D., Gold, G., Harman, M., Li, Z., and Mahdavi, K., "An

empirical study of the relationship between the concepts expressed in

source code and dependence", The Journal of Systems and Software,

vol. 81, 2008, pp. 2287–2298.

[4] Blei, D. M., Ng, A. Y., and Jordan, M. I., "Latent Dirichlet Allocation",

Journal of Machine Learning Research, vol. 3, 2003, pp. 993-1022.

[5] Brin, S. and Page, L., "The Anatomy of a Large-Scale Hypertextual

Web Search Engine", in Proc. of the Intl. Conference on World Wide

Web, 1998, pp. 107-117.

[6] Chen, K. and Rajlich, V., "Case Study of Feature Location Using

Dependence Graph", in Proc. of the Intl. Workshop on Program

Comprehension, 2000, pp. 241-249.

[7] Conover, W. L., Practical Nonparametric Statistics, Third ed., Wiley, 1998.

[8] Cooley, R., Mobasher, B., and Srivastava, J., "Web mining: Information

and pattern discovery on the world wide web", in Proc. of the Intl.

Conference on Tools with Artificial Intelligence, 1997.

[9] Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., and

Koschke, R., "A Systematic Survey of Program Comprehension

through Dynamic Analysis", IEEE Trans. on Software Engineering, vol.

99, no. 2, Apr. 2009, pp. 684-702.

[10] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and

Harshman, R., "Indexing by Latent Semantic Analysis", Journal of the

American Society for Information Science, vol. 41, no. 6, Jan. 1990, pp.

391-407.

[11] Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, Y. G.,

"CERBERUS: Tracing Requirements to Source Code Using Information

Retrieval, Dynamic Analysis, and Program Analysis", in Proc. of the Intl.

Conference on Program Comprehension, 2008, pp. 53-62.

[12] Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G.,

Nagappan, N., and Aho, A. V., "Do Crosscutting Concerns Cause

Defects?" IEEE Trans. on Software Engineering, vol. 34, no. 4, July-

Aug. 2008, pp. 497-515.

[13] Eisenbarth, T., Koschke, R., and Simon, D., "Locating Features in

Source Code", IEEE Trans. on Software Engineering, vol. 29, no. 3,

March 2003, pp. 210-224.

[14] Gay, G., Haiduc, S., Marcus, A., and Menzies, T., "On the Use of

Relevance Feedback in IR-Based Concept Location", in Proc. of the

Intl. Conference on Software Maintenance, 2009, pp. 351-360.

[15] Gold, N. E. and Bennett, K. H., "Hypothesis-based concept assignment

in software maintenance", IEE Proceedings-Software, vol. 149, no. 4,

2002, pp. 103-110.

[16] Grant, S., Cordy, J. R., and Skillicorn, D. B., "Automated Concept

Location Using Independent Component Analysis ", in Proc. of the

Working Conference on Reverse Engineering, 2008, pp. 138-142.

[17] Harman, M., Gold, N. E., Hierons, R. M., and Binkley, D. W., "Code

Extraction Algorithms which Unify Slicing and Concept Assignment", in

Proc. of the Working Conference on Reverse Engineering, 2002, pp. 11-

21.

[18] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the Neighborhood

with Dora to Expedite Software Maintenance", in Proc. of the Intl.

Conference on Automated Software Engineering, 2007, pp. 14-23.

[19] Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., and

Kusumoto, S., "Ranking significance of software components based on

use relations", IEEE Trans. on Software Engineering, vol. 31, no. 3,

March 2005, pp. 213- 225.

[20] Kleinberg, J. M., "Authoritative sources in a hyperlinked environment",

Journal of the ACM, vol. 46, no. 5, 1999, pp. 604-632.

[21] Li, Z., Identifying High-Level Dependence Structures Using Slice-Based

Dependence Analysis, King's College London, 2009.

[22] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature Location

via Information Retrieval based Filtering of a Single Scenario Execution

Trace", in Proc. of the Intl. Conference on Automated Software

Engineering, 2007, pp. 234-243.

[23] Lukins, S., Kraft, N., and Etzkorn, L., "Source Code Retrieval for Bug

Location Using Latent Dirichlet Allocation", in Proc. of the Working

Conference on Reverse Engineering, 2008, pp. 155-164.

[24] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An Information

Retrieval Approach to Concept Location in Source Code", in Proc. of

the Working Conference on Reverse Engineering, 2004, pp. 214-223.

[25] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and

Rajlich, V., "Feature Location using Probabilistic Ranking of Methods

based on Execution Scenarios and Information Retrieval", IEEE Trans.

on Software Engineering, vol. 33, no. 6, June 2007, pp. 420-432.

[26] Revelle, M. and Poshyvanyk, D., "An Exploratory Study on Assessing

Feature Location Techniques", in Proc. of the Intl. Conference on

Program Comprehension, 2009, pp. 218-222.

[27] Robillard, M. P., "Topology Analysis of Software Dependencies", ACM

Trans. on Software Engineering and Methodology, vol. 17, no. 4, Aug. 2008.

[28] Salton, G. and McGill, M., Introduction to Modern Information

Retrieval, New York, McGraw-Hill, 1986.

[29] Saul, M. Z., Filkov, V., Devanbu, P., and Bird, C., "Recommending

random walks", in Proc. of the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, 2007, pp. 15-24.

[30] Savage, T., Revelle, M., and Poshyvanyk, D., "FLAT3: Feature

Location and Textual Tracing Tool", in Proc. of the Intl. Conference on

Software Engineering, 2010.

[31] Wilde, N. and Scully, M., "Software Reconnaissance: Mapping

Program Features to Code", Software Maintenance: Research and

Practice, vol. 7, no. 1, Jan.-Feb. 1995, pp. 49-62.

[32] Zaidman, A. and Demeyer, S., "Automatic identification of key classes

in a software system using webmining techniques", Journal of Software

Maintenance and Evolution: Research and Practice, vol. 20, no. 6,

2008, pp. 387-417.

[33] Zaidman, A., Du Bois, B., and Demeyer, S., "How Webmining and

Coupling Metrics Improve Early Program Comprehension", in Proc. of

the Intl. Conference on Program Comprehension, 2006, pp. 74-78.

[34] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL: Towards

a Static Non-interactive Approach to Feature Location", ACM Trans. on

Software Engineering and Methodologies vol. 15, no. 2, April 2006, pp.

195-226.

