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Abstract—Data fusion is the process of integrating multiple 

sources of information such that their combination yields 

better results than if the data sources are used individually.  

This paper applies the idea of data fusion to feature location, 

the process of identifying the source code that implements 

specific functionality in software.  A data fusion model for 

feature location is presented which defines new feature location 

techniques based on combining information from textual, 

dynamic, and web mining analyses applied to software.  A 

novel contribution of the proposed model is the use of 

advanced web mining algorithms to analyze execution 

information during feature location.  The results of an 

extensive evaluation indicate that the new feature location 

techniques based on web mining improve the effectiveness of 

existing approaches by as much as 62%.    

Keywords-feature location; data fusion; information 

retrieval; dynamic analysis; web mining 

I.  INTRODUCTION 

Software systems are constantly changing and evolving 
in order to eliminate defects, improve performance or 
reliability, and add new functionalities.  When the software 
engineers who maintain and evolve a system are unfamiliar 
with it, they must go through the program comprehension 
process.  During this process, they obtain sufficient 
knowledge and understanding of at least the part of the 
system to which a change is to be made.  An important part 
of the program comprehension process is feature or concept 
location [1, 2], which is the practice of identifying the source 
code that implements a functionality, also known as a 
feature

1
.  Before software engineers can make changes to a 

feature, they must first find and understand its 
implementation.     

For software developers who are unfamiliar with a 
system, feature location can be a laborious task if performed 
manually.  In large software systems, there may be hundreds 
of classes and thousands of methods.  Finding even one 
method that implements a feature can be extremely 
challenging and time consuming.  Fortunately for software 
engineers in this situation, there are feature location 
techniques that automate, to a certain extent, the search for a 
feature’s implementation. 

Existing feature location techniques use different tactics 
to find a feature’s source code.  Approaches based on 

                                                           
1
 A feature is sometimes also referred to as a concept or a concern.  In this 

work, the term “feature” is used. 

information retrieval (IR) leverage the fact that identifiers 
and comments embed domain knowledge to locate source 
code that is textually similar to a query describing a feature 
[24].  Dynamic feature location techniques collect and 
analyze execution traces to identify a feature’s source code 
based on set operations [31] or probabilistic ranking [1].  
Static approaches to feature location rely on following or 
analyzing structural program dependencies [6, 27].   

The state of the art in feature location involves 
integrating information from multiple sources.  Researchers 
have recognized that combining more than one approach to 
feature location can produce better results than standalone 
techniques [11, 13, 18, 22, 25, 33].  Generally in these 
combined approaches, information from one source is used 
to filter results from another.  For instance in the SITIR 
(SIngle Trace and Information Retrieval) approach to 
feature location [22], a single execution trace is collected, 
and then IR is used to rank only the methods that appear in 
the trace instead of all of the system’s methods.  Thus, 
dynamic analysis is used as a filter to IR, and filtering is one 
way to combine information from several sources to perform 
feature location.  Instead of using filtering, PROMESIR 
(Probabilistic Ranking of Methods Based on Execution 
Scenarios and Information Retrieval) [25] combines the 
opinions of two “experts” (scenario-based probabilistic 
ranking [1] and IR [24]) using an affine transformation.   

The idea of integrating data from multiple sources is 
known as data fusion.  The sources of data have their 
individual benefits and limitations, but when they are 
combined, their drawbacks can be minimized and better 
results can be achieved.  Data fusion is used heavily in 
sensor networks and geospatial applications to attain better 
results in terms of accuracy, completeness, or dependability.  
For example, the position of an object can be calculated 
using an inertial navigation system (INS) or global 
positioning system (GPS).  An INS continuously calculates 
the position of an object with relatively little noise and 
centimeter-level accuracy, though over time the position data 
will drift and become less accurate.  GPS calculates position 
discretely, has relatively more noise, and meter-level 
accuracy.  However, when data from an INS and GPS are 
used together in the proper proportions, the GPS data can 
correct for the drift in the INS data.  Thus the fusion of INS 
and GPS data produces more accurate and dependable results 
than if they were used separately.     

Inspired by the benefits of using data fusion to integrate 
multiple sources of information, this work applies data 



fusion to feature location.  This paper presents a data fusion 
model for feature location that is based on the idea that 
combining data from several sources in the right proportions 
will be effective at identifying a feature’s source code.  The 
model defines different types of information that can be 
integrated to perform feature location including textual, 
execution, and dependence.  Textual information is analyzed 
by IR, execution information is collected by dynamic 
analysis, and dependencies are analyzed using web mining.  
Applying web mining to feature location is a novel idea, but 
it has been previously used for other program comprehension 
tasks, such as identifying key classes for program 
comprehension [32], ranking components in a software 
repository [19], and recommending related API calls [29].  
Software lends itself well to web mining approaches, 
because like the World Wide Web, software can be 
represented by a graph, and that graph can be mined for 
useful information such as the source code that implements a 
feature. 

This paper makes the following contributions: 

• A data fusion model for feature location is defined 
that integrates different types of information to locate 
features using IR, dynamic analysis, and web mining 
algorithms. 

• An extensive evaluation of the feature location 
techniques defined in the model. 

• Results that show that the new feature location 
techniques have better effectiveness than the state of 
the art in feature location.  Statistical analysis 
indicates that this improvement is significant. 

In addition, all of the data used in the evaluation is made 
freely available online

2
, and other researchers are welcome 

to replicate this work.  Making the data available will help 
facilitate the creation of feature location benchmarks.     

The remainder of this paper is structured as follows.  
Section II introduces the data fusion model for feature 
location.  Section III outlines the evaluation methodology, 
and Section IV discusses the results.  Related work is 
summarized in Section V, and Section VI concludes. 

II. A DATA FUSION MODEL FOR FEATURE LOCATION 

The feature location model presented here defines several 
sources of information, the analyses used to derive the data, 
and how the information can be combined using data fusion.      

A. Textual Informaion from Information Retrieval 

Textual information in source code, represented by 
identifier names and internal comments, embeds domain 
knowledge about a software system.  This information can 
be leveraged to locate a feature’s implementation through the 
use of IR.  Information retrieval is the methodology of 
searching for textual artifacts or for relevant information 
within artifacts.  IR works by comparing a set of artifacts to a 
query and ranking these artifacts by their relevance to the 
query.  There are many IR techniques that have been applied 
in the context of program comprehension tasks such as the 
Vector Space Model (VSM) [28], Latent Semantic Indexing 
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(LSI) [10], and Latent Dirichlet Allocation (LDA) [4].  This 
work focuses on evaluating LSI for feature location, and the 
notation IRLSI is used to denote that LSI is the IR method 
used to instantiate information retrieval analysis in the 
model.  IRLSI follows five main steps [24]: creating a corpus, 
preprocessing, indexing, querying, and generating results.  

Corpus creation.  To begin the IR process, a document 
granularity needs to be chosen so a corpus can be formed.  A 
document lists all the text found in a contiguous section of 
source code such as a method, class, or package.  A corpus 
consists of a set of documents.  For instance in this work, a 
corpus contains method-level granularity documents that 
include the text of each method in a software system. 

Preprocessing.  Once the corpus is created, it is 
preprocessed.  Preprocessing involves normalizing the text of 
the documents.  For source code, operators and programming 
language keywords are removed.  Additionally, identifiers 
and other compound words are split (e.g., “featureLocation” 
becomes “feature” and “location”).  Finally, stemming is 
performed to reduce words to their root forms (e.g., 
“stemmed” becomes “stem”).     

Index the corpus.  The corpus is used to create a term-
by-document matrix.  The matrix’s rows correspond to the 
terms in the corpus, and the columns represent documents 
(i.e., source code methods).  A cell mi,j in the matrix holds a 
measure of the weight or relevance of the i

th 
term in the j

th 

document.  The weight can be expressed as a simple count of 
the number of times the term appears in the document or as a 
more complex measure such as term frequency-inverse-
document frequency.  Singular Value Decomposition (SVD) 
[28] is then used to reduce the dimensionality of the matrix 
by exploiting the co-occurrence of related terms.   

Issue a query.  A user formulates a natural language 
query consisting of words or phrases that describe the feature 
to be located (e.g., “print file to PDF format”). 

Generate the results.  In the SVD model, each 
document corresponds to a vector.  The query is also 
converted to a vector, and then the cosine of the angle 
between the two vectors is used as a measure of the 
similarity of the document to the query.  The closer the 
cosine is to one, the more similar the document is to the 
query.  A cosine similarity value is computed between the 
query and each document, and then the documents are sorted 
by their similarity values.  The user inspects the ranked list, 
generally only reviewing the top results to decide if they are 
relevant to the feature. 

B. Execution Information from Dynamic Analysis 

Execution information is gathered via dynamic analysis, 
which is commonly used in program comprehension [9] and 
involves executing a software system under specific 
conditions.  For feature location, these conditions involve 
running a test case or scenario that invokes a feature in order 
to collect an execution trace.  For example, if the feature of 
interest in a text editor is printing, the test case or scenario 
would involve printing a file.  Invoking the desired feature 
during runtime generates a feature-specific execution trace. 

Most existing feature location techniques that employ 
dynamic analysis use it to explicitly locate a feature’s 



implementation by analyzing patterns in traces post-mortem 
[1, 13, 25].  The model presented in this work takes a 
different approach to applying dynamic analysis for feature 
location.  Information collected from execution traces is 
combined with other data sources instead of being analyzed 
itself.  Execution information is integrated with other 
information by using it as a filter, as in the SITIR approach 
[22] where methods not executed in a feature-specific 
scenario are pruned from the ranked list produced by IRLSI.                                                                                 

The model in this work takes a similar approach to using 
execution information (denoted as “Dyn”) as a filter.  By 
extracting information from a single trace, the sequence of 
method calls can be used to create a graph where nodes 
represent methods and edges indicate method calls.  This 
graph is a subgraph of a static call graph that only contains 
methods that were executed.  The edges in the graph can be 
weighted or weightless.  When weights are used, they can be 
derived from execution frequency information captured by a 
trace.  For instance, Figure 1 shows a portion of an execution 
trace where method x calls method y two times and calls 
method z three times.  This trace is represented by a graph 
where the weight of the edge from x to y is 2/5, and the 
weight of the edge from x to z is 3/5.  Alternatively, instead 
of normalizing the edge weights, the values on the edge from 
x to y can be 2, and the weight of the edge from x to z can be 
3.  When dynamic execution information is used in either of 
these ways, it is denoted with the “freq” subscript, referring 
to the fact that execution frequency information is used.  If 
no weights are placed on the edges of a graph, this is denoted 
with the “bin” subscript, referring to the fact that only binary 
information about a method’s execution is used.         

C. Dependence Information from Web Mining 

Web mining is a branch of data mining that concentrates 
on analyzing the structure of the World Wide Web (WWW) 
[8].  The structure of the WWW can be used to extract useful 
information.  For instance, search engines use web mining to 
rank web pages by their relevance to a user’s query.  Web 
mining algorithms view the WWW as a graph.  The graph is 
constructed of nodes, which represent web pages, and edges, 
which represent hyperlinks between pages.  

Software can also be represented as a graph – a call 
graph.  Nodes represent methods, and edges correspond to 
relationships or dependencies among methods.  Therefore, 
web mining algorithms can be naturally applied to software 
to discover useful information from its structure, such as key 

classes for program comprehension [32], component ranks in 
software repositories [19], and statements that can be refined 
from concept bindings [21].  This work explores whether web 
mining can also be applied to feature location, either as a 
standalone technique or used as a filter to an existing approach 
to feature location.  Two web mining algorithms are discussed 
below.     

1) HITS 
The Hyperlinked-Induced Topic Search (HITS) [20] 

algorithm identifies hubs and authorities from a graph 
representing the WWW.  Hubs are pages that have links to 
many other pages that contain relevant information on a 
topic.  These pages with pertinent information are known as 
authorities.  Good hubs point to many good authorities, and 
good authorities are pointed to by many hubs.  Thus, hubs 
and authority are defined in a mutually recursive way.  Let hp 

stand for the hub value of page p and ap represent the 
authority value of p.  The hub and authority values of p are 
defined in Equation 1, where i is a page connected to p, and 
n is the total number of pages connected to p. 

1

n

i

p ih a
=

=∑  and 

1

n

i

p ia h
=

=∑  (1) 

To start, HITS initializes all hub and authority values to 
one.  Then, the algorithm is run for a given number of 
iterations (or until the values converge), during which the 
hub and authority values are updated according to Equation 
1.  The values are normalized after each iteration.   

A slight variation of the HITS algorithm allows weights 
to be added to the links between pages.  Weighted links 
denote relative importance.  Let wi→p represent the weight of 
the link between i and p.  The formulas for hubs and 
authorities now become:         

1

n

pip i

i

h w a→

=

= ⋅∑  and 

1

n

i pp i

i

a w h→

=

= ⋅∑ . (2) 

When using software to construct a graph instead of the 
WWW, the nodes and edges can be determined from a static 
call graph or dynamic execution trace.  This work 
concentrates on constructing graphs from execution traces 
and leaves the exploration of statically-constructed graphs 
for future work.  Nodes in the graph correspond to methods, 
and edges represent dependencies (calls) between methods.  
If weights are placed on the graph edges, dynamic execution 
frequency can be used

3
.  Otherwise, if no weights are used, 

binary dynamic information is used.   
Using either frequency or binary dynamic information to 

construct a method call graph, the HITS algorithm can 
potentially be used for feature location in two ways.  First, 
the methods in a graph can be ranked by extending the 
concepts of hubs and authorities to source code.  Hub 
methods are those that call upon many other methods, while 
authority methods are called by a large number of other 
methods.  Intuitively, hubs do not perform much 
functionality themselves but delegate to others, and 
authorities actually perform specific functionalities.  Ranking 
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the execution frequency values are used without normalization. 

                                               
                         
 

 
Figure 1.  An example of an execution trace translated into a graph with 

execution frequency weights on the edges.  Xe is the entry to method X, and 

Xr is the return from method X.    

Execution trace: Xe  Ye  Yr  Ze  Zr  Xr  Xe  Ze  Zr  Ye  Yr  Ze  Zr  Xr 



methods in a software system by either their hub or authority 
values is a novel feature location technique.  The notation 
WMHITS(h,freq), WMHITS(h,bin), WMHITS(a,freq), WMHITS(a,bin) is 
used, where WM refers to web mining, HITS(h) and HITS(a) 
stand for hub and authority scores respectively, and the 
“freq” and “bin” subscripts denote how dynamic information 
is used to weight the graph’s edges. 

The second way in which the HITS algorithm can be used 
for feature location is as a filter.  Instead of directly using the 
hub and authority values to rank methods, those rankings can 
be combined with other information.  The intuition is that the 
methods with high hub values will be methods that are more 
general purpose in nature and not specific to a feature, i.e., 
methods in “god” classes.  Conversely, methods with high 
authority values may be highly relevant to a feature.  
Therefore, top-ranked hub methods and bottom-ranked 
authority methods can be filtered from the results of other 
techniques such as IRLSIDynbin.  The “top” superscript is used 
to represent when the top-ranked methods are filtered, and 
“bottom” superscript

 
stands for the case when the bottom-

ranked methods are filtered.  The evaluation investigates the 
best method of filtering by hub and authority values.        

2) PageRank 
PageRank [5] is a web mining algorithm that estimates 

the relative importance of web pages.  It is based on the 
random surfer model which states that a web surfer on any 
given page p will follow one of p’s links with a probability 
of β and will jump to a random page with a probability of (1-
β).  Generally, β = 0.85.  Given a graph representing the 
WWW, let N be the total number of pages or nodes in the 
graph.  Let I(p) be the set of pages that link to p, and O(p) be 
the pages that p links to.  PageRank is defined by the equation 

( )

1 ( )
( )

| ( ) |j I p

PR j
PR p

N O j

β
β

∈

−
= + ∑ . (3) 

PageRank’s definition is recursive and must be iteratively 
evaluated until it converges. 

Like HITS, PageRank can be applied to software if a 
system is represented by a graph where nodes are methods 
executed in a trace and edges are method calls.  In the 
PageRank algorithm, edges always have weights.  When 
binary execution information is used, the weight of all the 
outgoing edges from a node is equally distributed among 
those edges (e.g., if x has three outgoing edges, their weight 
will each be 1/3).  Otherwise, execution frequency 
information can be used for the edge weights.  PageRank 
requires normalized values, so the execution frequency 
values are normalized, as in the example in Figure 1.    

Like HITS, PageRank can be used to directly rank and 

locate a feature’s relevant methods or as a filter to other 
sources of information.  When used directly as a feature 
location technique, it is denoted as WMPR(freq) or WMPR(bin), 
referring to the use of frequency or binary execution 
information to create a graph.  PageRank, applied to 
software, is an estimate of the global importance of a method 
within a system.  Therefore, methods that have global 
significance within a system will be ranked highly.  Methods 
relevant to a specific feature are unlikely to have high global 
importance, so they may be ranked lower in the list.  The 
evaluation examines PageRank as a feature location technique.     

Since PageRank identifies methods of global importance, 
instead of using it as a standalone feature location technique, it 
can be used as a filter to be combined with other sources of 
information.  Pruning the top-ranked PageRank methods from 
consideration may produce better feature location results.  The 
“top” and “bottom” superscripts denote that the top and bottom 
results returned by PageRank are filtered.  The evaluation 
explores the best way to use PageRank as a filter. 

D. Fusions 

Data fusion combines information from multiple sources 
to achieve potentially more accurate results.  For feature 
location, this model has defined three information sources 
derived from three types of analysis: information retrieval, 
execution tracing, and web mining.  This subsection outlines 
the feature location techniques instantiated within the model 
that are evaluated.  Table I lists all of the techniques.   

Information Retrieval via LSI.  This feature location 
technique, introduced in [24], ranks all methods in a software 
system based on their relevance to a query.  Only one source 
of information is used, so no data fusion is performed.  This 
approach is referred to as IRLSI. 

Information Retrieval and Execution Information.  
The idea of fusing IR with dynamic analysis is used by the 
SITIR approach and is the state of the art of feature location 
techniques that rank program elements (e.g., methods) by 
their relevance to a feature.  A single feature-specific 
execution trace is collected.  Then, LSI ranks all the methods 
in the trace instead of all the methods in the system.  Thus 
dynamic information is used as a filter to eliminate methods 
that were not executed and therefore are less likely to be 
relevant to the feature.  In this work, this technique is 
abbreviated IRLSIDynbin and represents the baseline for 
comparison.  Note that the IRLSIDynfreq approach is not 
evaluated. It filters the same methods as IRLSIDynbin because 
it only matters whether a method was executed or not. 

Web Mining.  The HITS and PageRank algorithms can 
be used as feature location techniques that rank all methods 

TABLE I.  THE FEATURE LOCATION TECHNIQUES EVALUATED.   

IR & Dynamic 

Analysis 
Web Mining IR, Dyn, & HITS* 

IR, Dyn, & 

PageRank* 

IRLSI WMHITS(h,bin) WMHITS(h,freq) IRLSIWMHITS(h, bin)
top IRLSIWMHITS(h, bin)

bottom IRLSIWMPR(bin)
top 

IRLSIDynbin WMHITS(a,bin) WMHITS(a,freq) IRLSIWMHITS(h, freq)
top IRLSIWMHITS(h, freq)

bottom IRLSIWMPR(bin)
bottom 

 WMPR(bin) WMPR(freq) IRLSIWMHITS(a, bin)
top IRLSIWMHITS(a, bin)

bottom IRLSIWMPR(freq)
top 

   IRLSIWMHITS(a, freq)
top IRLSIWMHITS(a, freq)

bottom IRLSIWMPR(freq)
bottom 

* “Dyn” is left out of the names of these techniques for brevity, but they are based on using web mining to filter IRLSIDynbin’s results. 



in an execution trace using either binary or frequency 
information.  Web mining has not been applied to feature 
location before; therefore all of the approaches involving 
web mining are novel.  Table I lists all the feature location 
techniques based on web mining.      

Information Retrieval, Execution Information, and 
Web Mining.  Applying data fusion, IR, execution tracing, 
and web mining can be combined to perform feature 
location.  This work proposes the use of web mining as a 
filter to IRLSIDynbin’s results in order to eliminate methods 
that are irrelevant.  Each web mining algorithm can be 
applied to binary or execution frequency information.  If the 
results returned by a standalone web mining technique rank 
methods that are relevant to a feature at the top of the list, 
then methods at the bottom of the list can be filtered from 
consideration.  However, since the standalone web mining 
techniques are based on dynamically-constructed call graphs, 
the resulting rankings could be similar across many different 
features, meaning the top-ranked results are not relevant to 
the feature.  In this case, those top-ranked results are 
eliminated from consideration.  For example, IRLSIWMHITS(h, 

bin)
top

 is a feature location technique that uses IR to rank all of 
the executed methods by their relevance to a query.  A graph 
is constructed using binary execution information from a 
trace, and the methods in the graph are ranked according to 
their HITS hub values.  Finally, the top methods from the 
HITS hub rankings are pruned from IRLSIDynbin’s results.  In 
this technique, methods with high HITS hub values are 
filtered. Table I lists all of the feature location techniques 
that filter IRLSIDynbin’s results using HITS or PageRank.                               

III. EXPERIMENTAL EVALUATION 

This section describes the design of a case study to assess 
the feature location techniques defined by the data fusion 
model.  The evaluation seeks to answer the following 
research questions: 

 
RQ1   Does combining a web mining algorithm with an 

existing approach to feature location improve its 
effectiveness? 

RQ2  Which web-mining algorithm, HITS or PageRank, 
produces better results? 

 
The answers to these research questions will help reveal the 
best instantiation of the data fusion model. 

A. Systems and Benchmarks 

The evaluation was conducted on two open source Java 
software systems: Eclipse and Rhino.  Eclipse

4
 is an 

integrated development environment.  Version 3.0 has 
approximately 10K classes, 120K methods, and 1.6 million 
lines of code.  Forty-five features from Eclipse were studied.  
The features are represented by bug reports submitted to 
Eclipse’s online issue tracking system

5
.  The bug reports are 

change requests that pertain to faulty features.  The bug 
reports provide steps to reproduce the problem, and these 
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steps were used as scenarios to collect execution traces.  
Table II lists information about the size of the collected 
traces.  The short descriptions in the bug reports were used as 
the queries for IR.  The bug reports also have submitted 
patches that detail the code that was changed to fix the bug.  
The modified methods are considered to be the “gold set” of 
methods that implement the feature.  Since their code had to 
be altered to correct a problem with the feature, they are 
likely to be relevant to the feature.  These gold set methods 
are used as the benchmark to evaluate the feature location 
techniques.  This way of determining a feature’s relevant 
methods from patches has also been used by other 
researchers [22, 23, 25]. 

The other system evaluated is Rhino, a Java 
implementation of JavaScript.  Rhino

6
 version 1.5 consists of 

138 classes, 1,870 methods, and 32,134 lines of code.  Rhino 
implements the ECMAScript specification

7
.  The Rhino 

distribution comes with a test suite, and individual test cases 
in the suite are labeled with the section of the specification 
they test.  Therefore, these test cases were used to collect 
execution traces for 241 features.  The text from the 
corresponding section of the specification was used to 
formulate IR queries.  For the gold set benchmarks for each 
feature, the mappings of source code to features made 
available by Eaddy et al. [12] were used.  They considered 
the sections of the ECMAScript documentation to be 
features and associated code with each following the prune 
dependency rule [12] which states: “A program element is 
relevant to a [feature] if it should be removed, or otherwise 
altered, when the [feature] is pruned.”  Their mappings are 
made available online

8
 and have been used in several other 

research evaluations [11, 12].     
The position of the first relevant method from the gold 

set was used to evaluate the feature location techniques and 
is referred to as the effectiveness measure [25].  Techniques 
that rank relevant methods near the top of the list are more 
effective because they reduce the number of false positives a 
developer has to consider.  The effectiveness measure is an 
accepted metric to evaluate feature location techniques. It is 
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TABLE II.  DESCRIPTIVE INFORMATION ON THE EXECUTION TRACES.  
THE COLUMNS REPRESENT THE MINUMUM, MAXIMUM, LOWER QUARTILE, 
MEDIAN, UPPER QUARTILE, MEAN, AND STANDARD DEVIATION.  FOURTY-

FIVE TRACES WERE COLLECTED FOR ECLIPSE, AND 241 FOR RHINO.       

  Min Max 25% Med 75% σ µ 

Methods 88K 1.5MM 312K 525K 1MM 666K 406K 

Unique 

Methods 
1.9K 9.3K 3.9K 5K 6.3K 5.1K 2K 

Size-MB 9.5 290 55 98 202 124 83 

Nesting* 22 178 37 54 71 59 32 

E
cl

ip
se

  

Threads 1 26 7 10 12 10 5 

Methods 160K 12MM 612K 909K 1.8MM 1.8MM 2.3MM 

Unique 

Methods 
777 1.1K 870 917 943 912 54 

Size-MB 18 1,668 71 104 214 210 273 

Nesting* 25 37 28 27 28 28 1 

R
hi

no
 

Threads 1 1 1 1 1 1 0 

* Nesting is based on the average nesting level per feature. 



used here instead of precision and recall to be consistent with 
previous approaches [22, 25] and because feature location 
techniques have been shown to be better at finding one 
relevant method for a feature as opposed to many [26].  

B. Hypotheses 

Several null hypotheses were formed to test whether the 
performance of the baseline feature location technique 
improves with the use of web mining.  The testing of the 
hypotheses is based on the effectiveness measure.  Two null 
hypotheses are presented here; the other hypotheses can be 
derived analogously. 

 

( )0, PR binWMH   There is no significant difference between 

the effectiveness of WMPR(bin) and the 
baseline (IRLSIDynbin). 

( )0,
top

LSI PR binIR WMH There is no significant difference between 

the effectiveness of IRLSIWMPR(bin)
top

 and 
the baseline (IRLSIDynbin). 

 
If a null hypothesis can be rejected with high confidence, 

an alternative hypothesis that states that a technique has a 
positive effect on the ranking of the first relevant method can 
be supported.  The corresponding alternative hypotheses to 
the null hypotheses above are given.  The remaining 
alternative hypotheses are formulated in a similar manner. 

 

( ), PR binA WMH   The effectiveness of WMPR(bin) is 

significantly better than the baseline. 

( ),
top

LSI PR binA IR WMH The effectiveness of IRLSIWMPR(bin)
top

 is 

significantly better than the baseline. 

C. Data Collection and Analysis 

The primary data collected in the evaluation is the 
effectiveness measure.  For each feature location technique, 
there are 45 data points for Eclipse and 241 for Rhino, one 
for each feature.  Descriptive statistics of the effectiveness 
measure for each system are reported that summarize the 
data in terms of mean, median, minimum, maximum, lower 
quartile, and upper quartile.   

The feature location techniques can also be evaluated by 
how many features they can return at least one relevant 

result.  Many of the techniques in the model filter methods 
from consideration, and some of those methods may belong 
to the gold set.  It is possible for a technique to filter out all 
of a feature’s gold set methods and return no relevant results.  
Therefore, the percentage of features for which a technique 
can locate at least one relevant method is reported.    

If a feature location technique ranks one of a feature’s 
relevant methods closer to the top of the list than another 
technique, then the first approach is more effective.  Every 
feature location technique can be compared to every other 
technique in this manner, and the percentage of times the first 
technique is more effective is reported.     

Data on whether one technique is more effective than 
another is not enough.  Statistical analysis must be performed 
to determine if the difference between the effectiveness of two 
techniques is significant.  The Wilcoxon Rank Sum test [7] is 
used to test if the difference between the effectiveness 
measures of two feature location techniques is statistically 
significant.  Essentially, the test determines if the decrease in 
the number of false positives reported by one technique as 
compared to another is significant.  The Wilcoxon test is a non-
parametric test that accepts paired data.  Since a technique may 
not rank any of a feature’s gold set methods, it would have no 
data to be paired with the data from another feature location 
technique.  Therefore, only cases where both techniques rank a 
method are input to the test.  In this evaluation, the significance 
level of the Wilcoxon Rank Sum test is α = 0.05. 

IV. RESULTS AND DISCUSSION 

This section presents the results of using the feature 
location techniques listed in Table I to identify the first 
relevant method of 45 features of Eclipse and 241 features of 
Rhino.  Figure 2 and Figure 3 show box plots representing 
the descriptive statistics of the effectiveness measure for 
Eclipse and Rhino.  The graphs for Eclipse and Rhino have 
different scales because Eclipse has more methods.  Figure 2 
plots the feature location techniques based on IR (T1), IR and 
dynamic analysis (T2), and web mining as a standalone 
approach (T3 through T8).  Figure 3 shows the techniques that 
combine IR, dynamic analysis, and web mining (T2 through 
T13).  IRLSIDynbin is also included in this figure for reference 
since it represents the baseline for comparison.  In Figure 2 
and Figure 3, the diamonds represent the average 
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Figure 2.  The effectiveness measure for the feature location techniques applied to 45 features of Eclipse and 241 features of Rhino.  The values above the 

boxes represent the percentage of features for which the technique was able to locate at least one relevant method. 

T1. IRLSI 

T2. IRLSIDynbin 

T3. WMPR(freq) 

T4. WMPR(bin) 

T5. WMHITS(a,freq) 

T6. WMHITS(a,bin) 

T7. WMHITS(h,freq) 

T8. WMHITS(h,bin) 



effectiveness measure.  The dark grey and light grey boxes 
stand for the upper and lower quartiles, respectively, and the 
line between the boxes represents the median.  The whiskers 
above and below the boxes denote the maximum and 
minimum effectiveness measure.  In some cases, the 
maximum is beyond the scale of the graphs.  The figures also 
report for each feature location technique, the percentage of 
features for which the technique was able to identify at least 
one relevant method.   

The box plots in Figure 2 show that using web mining as 
a standalone feature location technique produces results that 
are comparable to IRLSI even though no query is used.  
However, these techniques are less effective than the state of 
the art, no matter the web mining algorithm used.  The 
feature location techniques based on PageRank, HITS hub 
values, or HITS authority values are not as effective as 
IRLSIDynbin.  Overall, there is little difference between the 
use of binary and execution frequency information.  
PageRank was the least effective, followed by HITS 
authorities and HITS hubs.  It is surprising that ranking 
methods by their hub values is more effective than ranking 
them by their authority values.  Intuitively, hubs are methods 
that delegate functionality to authorities which actually 
implement it.  Therefore, authorities should be more valuable 
for feature location, but this was not observed.  

Even though feature location techniques based on 
standalone web mining are not more effective than the state 
of the art, when web mining is used as a filter to the baseline, 
the results significantly improve in some cases.  Figure 3 
presents box plots of the effectiveness measure of the 
techniques that used web mining to filter IRLSIDynbin’s 
results.  The filters prune either the top or bottom methods 
ranked by a web mining algorithm.  The threshold for the 
percent of methods to filter was selected for each technique 
individually such that at least one gold set method remained 
in the results for 66% of the features.  In Eclipse, 
IRLSIWMHITS(h,freq)

bottom 
had the best effectiveness measure on 

average.  In Rhino, IRLSIWMHITS(h,bin)
bottom 

was the most 

effective technique.  In fact, all of the techniques that use web 
mining as a filter are more effective than IRLSIDynbin in 
Eclipse by 13% to 62% on average.  In Rhino, most of the IR 
plus web mining techniques have an average effectiveness 
1% to 51% better than IRLSIDynbin except for 
IRLSIWMHITS(a,freq)

bottom
, IRLSIWMHITS(h,freq)

top
, 

IRLSIWMHITS(a,bin)
bottom

, and IRLSIWMHITS(h,bin)
top

.  These results 
help answer RQ1 because they lend strong support to the fact 
that integrating the ranking of methods using web mining 
with information retrieval is a very effective way to perform 
feature location.  In regards to RQ2, the techniques based on 
HITS were generally more effective than the PageRank 
approaches, so HITS, used either as a standalone technique or 
as a filter, seems better suited to the task of feature location.         

In addition to measuring the effectiveness of each of the 
feature location techniques, the new approaches based on web 
mining were directly compared to IRLSI and IRLSIDynbin.  
Table III shows for each new technique, the percent of times 
its effectiveness measure is better than that of the existing 
approaches

9
.  The table shows a different view of the data 

presented in Figures 2 and 3.  It shows on a case-by-case basis, 
which feature location technique is more effective.  The data 
in this table is derived from the subset of methods that are 
ranked by both techniques, while Figures 2 and 3 show data 
for all methods.  In Table III, if one approach ranks a method 
and another does not, the method is not included in the 
reported data.  The table shows that feature location 
techniques based solely on web mining never have better 
effectiveness than IRLSIDynbin.  On the other hand, the 
techniques that use web mining as a filter routinely rank 
methods closer to the top of the list than IRLSIDynbin.  This 
finding also helps answer RQ1: combining web mining with 
existing approaches improves their effectiveness. RQ2 
addresses which of the two web mining algorithms is more 
effective.  Based on the results in Table III, the techniques 

                                                           
9
 The online appendix includes complete data on the performance of each 

feature technique compared to all the others. 
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Figure 3.  The effectiveness measure for the feature location techniques that combine information retrieval and web mining.  The top and bottom  

percentages in brackets have two values.  The first value is the percentage used in Eclipse, and the second is the percentage used in Rhino.  The values above 

the boxes represent the percentage of features for which the technique was able to locate at least one relevant method.  
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based on HITS are more effective than the PageRank 
techniques.              

A. Statistical Analysis 

The Wilcoxon Rank Sum test was used to test if the 
difference between the effectiveness measures of two feature 
location techniques is statistically significant.  Table IV 
shows the results of the test (p-values) for all of the 
techniques based on web mining as compared to IRLSIDynbin 

and if the null hypotheses can be rejected based on the p-
values.  In the table, statistically significant results are 
presented in boldface.  None of the approaches in which web 
mining is used as a standalone technique have statistically 
significant results.  However in Eclipse, all of the feature 
location techniques that employ web mining as a filter have 
significantly better effectiveness than IRLSIDynbin.  Likewise 
in Rhino, most of the approaches that use web mining as a 
filter have statistically significant results with a few 
exceptions.  Therefore, the null hypotheses for these 
approaches without significant results for both systems 
cannot be rejected.  However, for the techniques with 
statistically significant results for both Eclipse and Rhino, 
their null hypotheses are rejected, and there is evidence to 
suggest that the corresponding alternative hypotheses can be 
supported.  These feature location techniques have 
significantly better effectiveness than the baseline technique. 

B. Discussion 

The findings of the evaluation show that combining web 
mining with an existing feature location technique results is a 
more effective approach (RQ1).  Additionally in the context 
of feature location, HITS is a more effective web mining 
algorithm than PageRank (RQ2).  The most effective 
techniques evaluated were IRLSIWMHITS(h,freq)

bottom
 and 

IRLSIWMHITS(h,bin)
bottom

.  The results indicate that filtering 
bottom-ranked hub methods from IRLSIDynbin's results is the 
most effective approach.  For instance, for one feature in 

Eclipse, IRLSI ranked the first relevant method at position 
1,696, and for IRLSIDynbin, the best rank of a relevant method 
was at position 61.  IRLSIWMHITS(h,bin)

bottom
, on the other hand, 

ranked the first relevant method to the feature at position 24.  
Filtering the bottom HITS hub methods eliminated 37 false 
positives from the results obtained by the state of the art 
technique.  Examining the results in detail reveals why.  
Methods with high hub values call many other methods, 
while methods that do not make many calls have low hub 
values.  These bottom-ranked hub methods are generally 
getter and setter methods or other methods that do not make 
any calls and perform very specific tasks.  The 
IRLSIWMHITS(h,bin)

bottom
 technique prunes these methods from 

the results since they are not relevant to the feature, thus 
improving effectiveness. 

C. Threats to Validity 

There are several threats to validity of the evaluation 
presented in this work.  Conclusion validity refers to the 
relationship between the treatment and the outcome and if it 
is statistically significant.  Since no assumptions were made 
about the distribution of the effectiveness measures, a non-
parametric statistical test was used.  The results of the test 
showed that the improvement in effectiveness of most of the 
web mining based feature location techniques over the state 
of the art is significant. 

Internal validity refers to if the relationship between the 
treatment and the outcome is casual and not due to chance.  
The effectiveness measure is based on the position of a 
feature’s first relevant method, and the relevant methods are 
defined by a gold set.  In Eclipse, the gold set was defined by 
bug report patches.  These patches may contain only a subset 
of the methods that implement a feature, and sometimes the 
methods were not implemented until a later version.  In 
Rhino, the gold set methods were defined manually by other 
researchers who were not system experts.  Thus, relevant 
methods could be missing from the gold sets of each system.  
This threat is minimized by the fact that the patches were 
approved by the module owners and the Rhino data has been 
previously used by other researchers [11, 12]. 

TABLE III.  FOR EACH FEATURE LOCATION TECHNIQUE LISTED IN A 

ROW, THE PERCENTAGE OF TIMES ITS EFFECTIVENESS MEASURE IS BETTER 

THAN THE TECHNIQUE IN THE CORRESPONDING COLUMN IS GIVEN.   

 Eclipse Rhino 

 IRLSI IRLSIDynbin IRLSI IRLSIDynbin 

IRLSIDynbin 97% X 91% X 

WMPR(freq) 59% 13% 49% 20% 

WMPR (bin) 59% 10% 44% 19% 

WMHITS(a,freq) 67% 18% 45% 15% 

WMHITS (a,bin) 56% 18% 25% 6% 

WMHITS(h,freq) 77% 26% 45% 20% 

WMHITS (h,bin) 77% 26% 41% 22% 

IRLSI WMPR(freq)
top  97% 90% 85% 72% 

IRLSI WMPR (freq)
bottom  100% 83% 83% 63% 

IRLSI WMPR(bin)
top 97% 91% 85% 73% 

IRLSI WMPR (bin)
bottom 97% 94% 82% 54% 

IRLSI WMHITS(a,freq)
top 97% 90% 88% 74% 

IRLSI WMHITS(a,freq)
bottom 97% 94% 82% 53% 

IRLSI WMHITS(h,freq)
top 97% 94% 72% 40% 

IRLSI WMHITS(h,freq)
bottom 97% 97% 93% 88% 

IRLSI WMHITS(a,bin)
top 97% 94% 85% 68% 

IRLSI WMHITS(a,bin)
bottom 97% 91% 73% 60% 

IRLSI WMHITS(h,bin)
top 97% 94% 72% 40% 

IRLSI WMHITS(h,bin)
bottom 97% 97% 89% 81% 

TABLE IV.  THE RESULTS OF THE WILCOXON TEST. 

 Eclipse Rhino Null Hypothesis 

WMPR(freq) 1 1 Not Rejected 

WMPR (bin) 1 1 Not Rejected 

WMHITS(a,freq) 1 1 Not Rejected 

WMHITS (a,bin) 1 1 Not Rejected 

WMHITS(h,freq) 1 1 Not Rejected 

WMHITS (h,bin) 1 1 Not Rejected 

IRLSI WMPR(freq)
top  < 0.0001 < 0.0001 Rejected 

IRLSI WMPR (freq)
bottom  0.004 0 Rejected 

IRLSI WMPR(bin)
top < 0.0001 < 0.0001 Rejected 

IRLSI WMPR (bin)
bottom < 0.0001 0.74 Not Rejected 

IRLSI WMHITS(a,freq)
top 0 < 0.0001 Rejected 

IRLSI WMHITS(a,freq)
bottom < 0.0001 0.99 Not Rejected 

IRLSI WMHITS(h,freq)
top 0 1 Not Rejected 

IRLSI WMHITS(h,freq)
bottom < 0.0001 < 0.0001 Rejected 

IRLSI WMHITS(a,bin)
top < 0.0001 < 0.0001 Rejected 

IRLSI WMHITS(a,bin)
bottom < 0.0001 1 Not Rejected 

IRLSI WMHITS(h,bin)
top 0 1 Not Rejected 

IRLSI WMHITS(h,bin)
bottom < 0.0001 < 0.0001 Rejected 



Another threat to internal validity pertains to the 
collection of data from IR and dynamic analysis.  Information 
retrieval requires a query.  The queries in this evaluation were 
taken directly from bug reports and documentation.  It is 
possible that the queries used do not accurately reflect the 
features being located or that the use of different queries with 
vocabularies more inline with the source code would yield 
better results.  However, using these default queries instead of 
queries formulated by the experimenters avoided the 
introduction of bias.  Similarly, execution traces were 
collected for each feature based on either the bug reports or 
test cases.  The collection of these traces may not have 
invoked all of a feature’s relevant methods or may have 
inadvertently invoked another feature.  This is a threat to 
validity common to all approaches that use dynamic analysis.  
The use of test cases distributed with the software reduces this 
threat since the tests were created by the system’s authors.   

External validity concerns whether or not the results of this 
evaluation can be generalized beyond the scope of this work.  
Two open source systems written in Java were evaluated.  
Eclipse is large enough to be comparable to an industrial 
software system, but Rhino is only medium-sized.  Additional 
evaluations on other systems written in other languages are 
needed to know if the results of this study hold in general.   

V. RELATED WORK 

Existing feature location techniques can be broadly 

classified by the types of analysis they employ, be it static, 

dynamic, textual, or a combination of two or more of these.  

Chen and Rajlich [6] proposed the use of Abstract System 

Dependence Graphs (ASDG) as a means of static feature 

location, whereby users follow system dependencies to find 

relevant code.  Robillard [27] introduced a more automated 

static approach that analyzed the topology of a system’s 

dependencies.  Harman et al. [17] used hypothesis-based 

concept assignment (HB-CA) [15] and program slicing to 

create executable concept slices and found these slices can be 

used to decompose a system into smaller executable units 

corresponding to concepts (features) [3].  In this work, instead 

of using static information, textual and dynamic data are used 

to get results that are more tailored to a specific feature. 
Software reconnaissance [31] is a well-known dynamic 

approach to feature location.  Two execution traces are 
collected: one that invokes the feature of interest and another 
that does not.  The traces are compared, and methods invoked 
only in the feature-specific trace are deemed relevant.  
Scenario-based probabilistic ranking (SPR) [1] is another 
dynamic feature location technique in which statistical 
hypothesis testing is used to rank executed methods.  This 
work employs dynamic information for feature location, but 
uses it as a filter to textual information instead of directly 
locating a feature from pure dynamic analysis. 

Textual feature location was introduced by Marcus et al. 
[24] when they applied LSI to source code.  The approach 
has been extended to include relevance feedback [14], where 
users indicate which results are relevant, and a new query is 
automatically formulated from the feedback.  Textual 
analysis of source code is not limited to LSI.  Grant et al. 

[16] employ Independent Component Analysis (ICA) for 
feature location.  ICA is an analysis technique that separates 
a set of input signals into statistically independent 
components.  For each method, the analysis determines its 
relevance to each of the signals, which represent features.  
This work relies on LSI as opposed to other analyses because 
LSI is the de facto standard.  

In addition to these techniques based on a single type of 
analysis, there are many hybrid approaches.  Both SITIR [22] 
and PROMESIR [25] combine textual and dynamic analysis.  
FLAT

3
 [30] provides tool support for SITIR.  Eisenbarth et al. 

[13] applied formal concept analysis to execution traces and 
combined the results with an approach similar to ASDGs.  
Dora [18] and SNIAFL [34] incorporate information from 
textual and static analysis.  Cerberus [11] is the only hybrid 
approach that combines static, dynamic, and textual analyses.    

No existing feature location techniques rely on web 
mining.  However, web mining has been used for other 
program comprehension tasks.  Zaidman and Demeyer [32, 
33] used the HITS algorithm on a dependence graph of a 
system weighted with dynamic coupling measures to identify 
the classes that are most important for understanding the 
software.  SPARS-J [19] is a system that analyzes the usage 
relations of components in a software repository using a 
ranking algorithm that is similar to PageRank.  Components 
that are generic and frequently reused are ranked highly.  Li 
[21] also used a variant of PageRank called Vertex Rank 
Model (VRM) to refine concept bindings found using HB-
CA.  The VRM works on a dependence graph of concept 
bindings to identify statements that can be removed from the 
concept bindings without losing domain knowledge. 

VI. CONCLUSION 

This work has introduced a data fusion model for feature 
location.  The basis of the model is that combining 
information from multiple sources is more effective than 
using the information individually.  Feature location 
techniques based on web mining and approaches using web 
mining as a filter to information retrieval were instantiated 
within the model.  A large number of features from two open 
source Java systems were studied in order to discover if 
feature location based on combining IR and web mining is 
more effective than the current state of the art and which of 
two web mining algorithms is better suited to feature location. 

The results of an extensive evaluation reveal that new 
feature location techniques based on using web mining as a 
filter are more effective than the state of the art, and that their 
improvement in effectiveness is statistically significant.  Future 
work includes instantiating the model with different IR 
techniques and investigating using a static program dependence 
graph for web mining.  All of the data used to generate the 
results presented in this paper is made publically available to 
other researchers who wish to replicate these case studies. 
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