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Abstract 
 

 The software lexicon is an important source of 
information during program comprehension activities 
and it has been in the focus of several recent case 
studies. Identifiers and comments, which constitute a 
lexicon in software, encode domain concepts and 
design decisions made by programmers. 

The paper presents an exploratory study that 
investigates regularities in the software lexicons of 
open-source projects by analyzing distributions of 
tokens in diverse software artifacts. The study 
examined source code of 142 systems from different 
domains, written in 12 different programming 
languages, as well as bug reports and external 
documentation. We discover that distributions of 
lexical tokens in studied artifacts follow the Zipf-
Mandelbrot law, which is an empirical law in 
statistical natural language processing. Furthermore, 
the study reveals that the Zipf-Mandelbrot law is not 
confined to program lexicons in object-oriented 
languages, as shown in the previous studies, but also 
emerges in source code written using procedural, 
functional and markup languages, as well as other 
software artifacts. 

Our study also indicates that a previously devised 
software science equation does not hold for describing 
the program vocabulary–length relationship and more 
studies are necessary. 

1. Introduction 

Identifiers and comments, which constitute the 
software lexicon, play an important role in program 
comprehension as they encode domain concepts and 
design decisions made by programmers [1, 7].   The 
recent studies of software lexicons focused on various 
aspects of structure [5, 9, 12], quality [11, 13] and 
evolution [2] of identifiers and comments.  On the 
macro-level, the software structures and lexicons have 
also been studied and shown to obey regularities, such 
as power laws [3, 4, 14, 18].     

These findings have important practical 
applications. Knowing that software lexicons form 
structures with predictable characteristics allows us to 
explain earlier empirical findings in program 
comprehension research. These structures can also be 
used in current practice and can outline directions for 
future research.  One such application was presented in 
the study done by Zhang [18], who observed that the 
distribution of token occurrences in Java programs 
follow Zipf’s law.  Given these findings, they refined 
Halstead’s software science length equation [8] to 
model the relationship between the length of Java 
programs and their vocabulary.  However, to the best 
of our knowledge, no previous study attempted to 
investigate the lexicons of software written in different 
programming languages (PL) as well as other artifacts, 
such as software documentation and bug reports (see 
Table 1).  It also remains untested whether the revised 
software science length equation holds for software 
written in different languages.  In quest for the 
answers, we formulated the following research 
questions: 

RQ1: Are there any regularities guiding 
distributions of lexical tokens in software artifacts? 
Do these distributions differ for software written in 
different PLs? 

RQ2: Does the revised software science length 
equation hold for software systems written in PLs 
other than Java? 

We address these two research questions by 
analyzing the lexicons in source code of 142 software 
systems and 8 other software artifacts, such as bug 
reports (e.g., Eclipse, gcc) and external documentation 
(e.g., Java SE documentation). 

2. Powers Laws in Software 

The concept of power laws has been around for 
more than a century dating back to Vilfredo Federico 
Pareto, who described a power law distribution in the 
19th century [16].  Twenty years later, Undy Yule 



observed a power law distribution in his study of the 
creation of biological species [17].  About ten years 
later, George Kingsley Zipf, the linguist from Harvard, 
discovered an empirical law on word frequencies in 
natural language speech and texts, which states that 
while only a few words are used very often, many or 
most are used rarely [10].        

Zipf’s law revealed that if each unique word in a 
body of text is tallied and ranked (from most frequent 
to least frequent), each word’s frequency will be 
inversely related to that word’s rank. The law was 
generalized with the additions made by Benoit 
Mandelbrot [15], resulting in the following equation: 
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where freq is the frequency of the word, rank is the 
position of the word in the sorted list of words, and α, 
β, and C are constants. Zipf’s law is a special case of 

the Zipf-Mandelbrot law where β = 0. 
In terms of mathematics, we are certainly aware of 

how changing the constants will affect the resulting 
distribution.  What is relatively unknown about these 
constants (α in particular) is what they mean in terms 
of the data being analyzed.  In attempt to answer this 
question, a study was performed that compared the 
Zipf distributions of texts written in English, Spanish, 
and Russian [6].  The authors found that the constant α 
was smallest for Russian, was a bit bigger for Spanish, 
and largest for English, synching up with their 
respective degrees of inflection, with Russian being 
most inflective and English being the least inflective. 
Since the alpha constants seem to have meaning in 
natural language texts, it is possible that the constants 
could reflect intrinsic qualities of the source code they 
are describing.                                                        

Other studies confirmed that distributions of lexical 
tokens and program structures (see Table 1) in source 
code follow similar patterns as words in natural 
language documents [18].  More than that, these 
discovered regularities of lexical tokens in source code 
led to revising a software science equation for 
estimating the length of programs (in terms of the total 
number of tokens) based on their vocabularies (the 
number of unique tokens).  The new software science 
equation for estimating program length was derived 
using the Zipf-Mandelbrot law as the following [18]: 

  

  
Figure 1. The distributions of token frequencies in four software systems and two software artifacts: 

impresscms (PHP), nnet (Matlab), jEdit (Java), AForms (Haskell), Eclipse (bug reports), and the Java SE 
Documentation.  The distribution of the tokens in impresscms indicates the best Zipf-Mandelbrot law fit 

and nnet indicates the worst fit from our dataset. 

Table 1. Studies of Power Laws in Software 
 Analysis Statistics Findings 

Study Text 
Struc- 
ture 

# of 
Langs 

# of 
Systs 

Power 
Laws 

Our study yes no 12 142 Zipf 

Zhang [18] yes no Java 12 Zipf 

Concas et al. [4] no yes 3 3 Pareto 

Baxter et al. [3] no yes Java 56 General 

Louridas et al. [7, 14] no yes 6 19 General 
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where N^ is the estimated program length, n is the 
vocabulary length, and α, β, and C are the constants 
from the best fit Zipf-Mandelbrot curve for that 
program.   

The power laws can be observed not only in 
software, but also in everyday life.  For example, in the 
Pareto principle (the law of the vital few), the 80% of 
the effects come from 20% of the causes.  

3. The Exploratory Study 

In this exploratory study we investigate if the 
statistical regularity exhibited by Zipf’s law exists in 
software systems written in various PLs (RQ1) as well 
testing if revised software science length equation 
holds for software written in PLs other than Java 
(RQ2). 

We define a lexical token to be a piece of text in 
source code that still retains meaning in either spoken 
language or program understanding. So a token could 
be an entire camel-case identifier, a word in an 
underscore separated identifier, or just a semicolon.  

We treat a lexical token to be a word in a program 
and the vocabulary of a program to be the set of 
unique words in it. We gather statistics on each token 
frequency (i.e., the number of occurrences) for each 
file in each project.  For instance, the keyword public 
occurs 327 times on average in C++ programs and 
only 277 times on average in programs written in 
OCaml.  Then, we sort the tokens in each project 

according to their frequencies and send them to 
Matlab, convert the data to a log-log scale and fit the 
Zipf-Mandelbrot equation to the data.  Examples of 
plotted token frequencies against ranks on a log-log 
scale are presented in Figure 1. 

In order to estimate the goodness of data fit (or 
accuracy of estimation) into the models described by 
Zipf’s law we use Mean Magnitude of Relative Error 
(MMRE).  Using this measure allows us to compare 
the results of our study with previous findings [18].  
We illustrate the process of computing MMRE values 
for the impresscms project (see Figure 1).  The 
constants generated by fitting the Zipf curve on 
impresscms are α=1.38, β=3 and C=476,889.87. Using 
the constants, we plug them into the Zipf-Mandelbrot 
equation to predict the token frequencies.  For 
instance, consider the most frequent token, “−”, which 
occurs 73,216 times in impresscms’ source files.  An 
MRE of this data point would be the difference 
between the observed value (73,216) and its predicted 
value (70,079), divided by the observed value, which 
in this case results in about 0.044.  This number 
represents the percentage of the observed value that the 
predicted value is off by, so our predicted value is off 
by 4.4% of our observed value. After all the token 
MREs are averaged in the project, the MMRE for each 
project is computed.  We report average MMRE values 
for all the projects written in the same PL in the Table 
2.  In addition, we provide a set of descriptive 
statistical values for MMRE values: the maximum 
(max), inter-quartile ranges (25% and 75%), median 
(med), minimum (min), mean () and standard 

Table 2. The project statistics, the descriptive statistics on MMRE values for fitting software lexicons to 
Zipf-Mandelbrot’s Law and testing the revised software science equation 

 Project statistics Zipf-Mandelbrot’s Law Fit MMREs Revised soft. science equation MMREs 

Lang/ 
Artifact 

Paradigm 
# of 
Proj 

_LOC_ 
_Voc_ 
Size 

  min max 25% Med 75%  . min max 25% Med 75% 

C++ OOP 41 63K  11,825 0.17 0.04 0.13 0.32 0.15 0.16 0.19 0.80 1.98 0.01 11.35 0.08 0.19 0.37 

Java OOP 10 176K   17,672 0.18 0.03 0.14 0.23 0.17 0.18 0.19 2.23 2.21 0.13 6.57 0.45 1.55 3.24 

Smalltalk OOP 7 3K 1,531 0.17 0.03 0.14 0.22 0.15 0.17 0.18 0.15 0.14 0.03 0.39 0.06 0.11 0.22 

C Proc 10 72K 12,624 0.17 0.03 0.15 0.24 0.15 0.16 0.18 0.16 0.18 0.03 0.64 0.05 0.12 0.19 

Matlab Proc 10 7K 2,251 0.18 0.06 0.12 0.34 0.14 0.16 0.17 1.25 3.48 0.03 11.16 0.05 0.13 0.19 

PHP Proc 10 106K  27,815 0.17 0.05 0.11 0.28 0.15 0.16 0.18 0.95 2.00 0.06 6.57 0.17 0.25 0.36 

HTML Markup 10 0.9K 1,578 0.21 0.05 0.16 0.30 0.17 0.19 0.25 0.22 0.20 0.01 0.68 0.09 0.14 0.25 

TeX Markup 9 2K 2,027 0.15 0.02 0.12 0.19 0.14 0.15 0.17 0.18 0.25 0.01 0.79 0.02 0.09 0.20 

XML Markup 9 23K 16,093 0.19 0.05 0.13 0.26 0.15 0.20 0.21 0.38 0.21 0.14 0.77 0.23 0.28 0.54 

Haskell Func 9 28K 7,083 0.16 0.03 0.13 0.25 0.15 0.15 0.17 0.46 0.56 0.00 1.72 0.09 0.29 0.59 

OCaml Func 8 32K 7,735 0.17 0.04 0.13 0.24 0.15 0.15 0.17 0.95 1.58 0.02 4.31 0.10 0.19 0.80 

Scheme Func 8 35K 6,356 0.16 0.02 0.12 0.18 0.15 0.16 0.17 0.24 0.18 0.01 0.46 0.05 0.29 0.36 

Bugs NL 4 n/a 77,008 0.23 0.08 0.13 0.30 0.19 0.24 0.28 n/a n/a n/a n/a n/a n/a n/a 

Docs  NL 5 n/a   68,539 0.21 0.06 0.16 0.30 0.18 0.18 0.24 n/a n/a n/a n/a n/a n/a n/a 



deviation ().  The data is used to provide the overall 
picture of the differences and similarities among all the 
MMRE values across projects written in different PLs 
and paradigms.  We provide a sampling of the projects 
we analyzed in our study in Table 3.  The complete 
data and analysis results for our study are available as 
an online appendix1. 

3.1 RQ1: Zipf-Mandelbrot Law Evaluation 

A commonly acceptable criterion for accurate 
estimation is MMRE ≤ 0.25 [18]; the lower the MMRE 
the better. The analysis of source code reveals that 
lexical token frequency distributions in 132 out of 142 
projects can be modeled using the Zipf-Mandelbrot 
law.  Only 10 projects (3 in HTML, 2 each in XML 
and C++, and 1 each in Matlab, PHP, and Haskell) had 
MMRE values greater than 0.25.  

As we can see in Table 2, in terms of PLs, TeX 
projects were described best with an MMRE of 0.15, 
while the worst were HTML systems with MMRE of 
0.21.  The projects in most languages had an MMRE 
between 0.16 and 0.18. The results of our study 
confirm previous findings in [18] that Java projects are 
described well by the Zipf-Mandelbrot law with an 
MMRE of 0.18.  On the level of programming 
paradigms, functional languages were best described 
by the generalized Zipf’s law while markup languages 
were worst.   

Another conjecture that we expected to observe in 
the data is that the Zipf-Mandelbrot law can be used to 
model external documentation and bug reports well, 
given that these artifacts are mainly comprised of 
natural language.  While the MMRE values for bug 
reports (i.e., 0.23) and documentation (i.e., 0.21) do 

                                                           
1 http://www.cs.wm.edu/~dpierret/zipf-appendix.html 

fall into the criteria for good fit, it should be noted that 
most of the projects in miscellaneous PLs under this 
study resulted in lower (i.e., better) MMRE values. 
This is a result that we did not expect and answering 
the why question remains our future work. 

3.2 RQ2: Validating software science equation 

Since our observations lead us to conclude that the 
Zipf-Mandelbrot law is a good model for describing 
token frequency distributions in different PLs we can 
test if the revised software science equation applies in 
case of estimating length of the programs written in 
other PLs as well.  We present the descriptive statistics 
on MMRE values in the Table 2. 

Based on the results we conclude that the revised 
software science equation does not hold for projects 
across different PLs.  The results of our study refute 
the results of the previous studies showing that the 
revised equation can be effectively used for modeling 
“vocabulary-length” relationship in Java programs.  
Nevertheless, our findings indicate that the best 
estimations were made for Smalltalk and C programs 
with MMREs of 0.16 and 0.17 respectively.   

Unexpectedly, the Java projects used in our study  
(notice that we used a different set of Java projects to 
the one used in [18]) resulted in an MMRE of 2.23,  
which landed Java as the least suitable language to be 
estimated by the equation.  These findings provide 
substantial evidence that additional research on the 
relationship between software vocabulary and program 
length is required before it can be formalized.  

 

 

 

   Table 3. A sample of projects analyzed and the information gathered for each project 
Project Description Zipf-Mandelbrot’s Law Fit Project Stats 

Revised soft. 
science equation 

Sourceforge Info 

Proj 
Name 

Lang/ 
Artifact 

Paradigm α _β_ C MMRE
Avg Token 

Length 
LOC Voc Size 

Proj Size 
(Tokens) 

Est Proj  
Size 

Est  
MMRE 

Devel-
opers 

Domain 

aMule C++ OOP 1.31 1.00 589,252.14 0.13 9.82 123,830 27,008 1,064,595 1,439,936 0.35 23 File Sharing

datacrow Java OOP 1.41 -0.79 450,566.37 0.14 10.27 82,663 10,197 620,399 2,054,546 2.31 1 Organizer 

SUnit Smalltalk OOP 1.16 0.00 2,048.54 0.15 7.87 2,417 727.00 7,698.00 8,274 0.07 4 Testing 

ipcop C Proc 1.14 1.00 39,448.52 0.15 7.42 26,463 13,493 200,178 181,268 0.09 38 Network 

gpops Matlab Proc 1.31 0.00 26,627.79 0.12 6.95 5,586 2,573 88,274 78,463 0.11 5 Math 

impresscms PHP Proc 1.38 3.00 476,889.87 0.11 9.25 70,782 13,451 741,400 698,712 0.06 53 Internet 

Wikipedia HTML Markup 1.04 -0.99 1,587.34 0.16 6.85 528 1,612 21,063 18,184 0.14 n/a Website 

CTeX TeX Markup 1.20 2.70 15,070.53 0.12 6.57 5,535 3,521 42,772 43,371 0.01 n/a n/a 

PHPXML XML Markup 1.64 0.80 104,401.43 0.15 7.17 5,983 1,320 80,227 111,023 0.38 n/a n/a 

lslplus Haskell Func 1.17 -0.99 30617.83 0.14 9.26 13467 6892 129,980 354,106 1.72 1 Interpreter 

liquidsoap OCaml Func 1.44 4.80 284,331.09 0.13 8.23 29,589 6,761 233,358 282,452 0.21 11 Multimedia

nazghul Scheme Func 1.46 10.00 724,166.86 0.12 6.93 79,135 11,451 757,828 491,692 0.35 7 Game 



4. Conclusions and Future Work 

In this paper we present the first comprehensive 
study of software lexicons in systems implemented in 
different PLs and paradigms as well as other software 
artifacts.  Using MMRE values to measure a goodness 
of fit, we conclude that the Zipf-Mandelbrot law is 
successful in describing token distributions for all 
languages and paradigms, to varying degrees (RQ1). 
The law is also applicable for describing token 
frequency distributions in external documentation and 
bug reports (RQ1). We also found that the software 
science program length estimation equation [18] does 
not hold for projects written in different PLs (RQ2).  
Our results indicate that further studies are necessary 
to derive reliable software science length equation for 
predicting software size based on its vocabulary. 

In our future work we are planning on expanding 
on the number of projects per language to make the 
findings statistically significant.  We would also like to 
include more PLs per paradigm for similar reasons.  In 
addition, we are planning on analyzing certain types of 
tokens and their positions on Zipf curves in different 
projects.  Such data might include stop words, API 
calls, keywords and identifiers. Lastly, the constants 
used for fitting to the Zipf’s law could possibly reflect 
certain characteristics of the PL or program domains 
[6]. We are interested in investigating and generalizing 
these characteristics in projects from diverse domains 
and implemented in a range of PLs. 
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