
ChangeScribe: A Tool for Automatically Generating
Commit Messages

Mario Linares-Vásquez1,Luis Fernando Cortés-Coy2, Jairo Aponte2, Denys Poshyvanyk1
1The College of William and Mary, Williamsburg, VA, USA

2 Universidad Nacional de Colombia, Bogotá, Colombia
mlinarev@cs.wm.edu, lfcortesco@unal.edu.co, jhapontem@unal.edu.co, denys@cs.wm.edu

Abstract—During software maintenances tasks, commit mes-
sages are an important source of information, knowledge, and
documentation that developers rely upon. However, the number
and nature of daily activities and interruptions can influence the
quality of resulting commit messages. This formal demonstration
paper presents ChangeScribe, a tool for automatically generating
commit messages. ChangeScribe is available at http://www.cs.wm.
edu/semeru/changescribe (Eclipse plugin, instructions, demos and
the source code).

Index Terms—Commit message, summarization, code changes

I. INTRODUCTION

During software development process, changes to software
artifacts are hosted in control version systems (CVS), and
those changes can be partially documented by using commit
messages (a.k.a., commit notes or commit comments). The
intended purpose behind commit messages is to describe the
changes and help encoding rationale behind those changes.
These descriptions can be used later by developers to un-
derstand and validate changes, locate and re(assign) bug re-
ports, and trace changes to other artifacts. In general, commit
messages are an important source of information, knowledge,
and documentation that developers rely upon while addressing
software maintenance tasks [9], [4], [8].

However, mostly because of the number and nature of
daily activities by software developers [12], [16], [4], commit
messages can be non-informative (e.g., "initial commit", "last
commit before lunch") or practically empty. Another possible
explanation for the lack of descriptive/useful commit messages
is the consideration that details about the changes and changed
code units generated with line-based differencing tools are
enough for understanding the change. According to Buse and
Weimer [1], raw diffs are not always enough as a summary
for some of the what questions about the change, because
raw diffs only report textual differences between two versions
of the files, which is often long and confusing, and does not
provide developers with answers to many high-level questions.
Therefore, line-based diffs do not provide enough context to
understand the why behind the changes.

In this paper we present ChangeScribe, a tool aimed at as-
sisting developers when committing changes, by automatically
generating commit messages. ChangeScribe implements the
summarization-based approach, which was presented and eval-
uated by developers in our previous work [3]. ChangeScribe
extracts and analyzes the differences between two versions of
the source code, and also performs a commit characterization
based on the stereotypes of methods modified, added and

removed. The outcome is a commit message that provides
an overview of the changes and classifies and describes in
detail each of the changes; the message describes the what
of a change and provides context about the why using natural
language. ChangeScribe also allows to control the length of
the message by using an elegant impact set-based heuristic.

II. RELATED WORK

ChangeScribe is mainly related to tools for augmenting the
context of source code changes. Those tools are described as
in the following.

Semantic Diff [11] detects differences between two versions
of a procedure, and then summarizes the semantic differences
by using program analysis techniques. Other approaches that
improve line-based differencing tools are LDiff [2] and iDiff
[17]. Parnin et al. [18] proposed an approach for analyzing
differences between program versions at bytecode statement
level; for describing the changes, type information and fully
qualified source code locations of the changes (in the source
entity and the entities impacted by the change) are presented.
ChangeScribe also relies on line-based differencing, however
it augments the context of the changes with a natural lan-
guage description that includes the commit stereotype, change
descriptions, and impact set.

DeltaDoc [1] automatically generates textual descriptions of
source code changes using symbolic execution and summariza-
tion. However, when the change-set is very large (i.e. many
files or methods), it describes each method separately ignoring
possible dependencies of those methods. Rastkar and Murphy
[19] proposed a multi-document summarization technique for
describing the motivation behind a change. As compared to
the approaches above, the commit messages generated by
ChangeScribe contain more information on the what about
the changes including information on dependencies and do
not require using artifacts of multiple types.

The closest tool to ChangeScribe is ARENA [13]. It gen-
erates a textual description of the changes generated be-
tween two releases of a system. The purpose of ARENA is
to generate detailed release notes that include information
such as fixed/open bugs, licensing changes, and changes in
the dependencies. Both ChangeScribe and ARENA use code
summarization techniques, however the target audiences are
different. Therefore, the information and the structure of the
description are different in both cases. Meanwhile ARENA’s
purpose is to generate release notes, which can be long and

very detailed, ChangeScribe’s is to include in the message
more context of the changes by using commit stereotypes,
impact sets, and specific templates.

The code context of source code changes can be also
augmented using visualizing tools. For instance, Commit 2.0
[4] augments commit logs with a visual context of the changes.
Commit 2.0 provides a visualization of the changes at different
granularity levels, and allows developers to annotate the visu-
alization. ChangeScribe only generates a textual description,
however, a visualization like the one in Commit 2.0 can be
integrated into our tool.

III. CHANGESCRIBE

ChangeScribe is an Eclipse plugin that analyzes two ver-
sions of a system, and generates a textual description of the
changes. In particular, ChangeScribe is integrated with the
commit action of Eclipse, in such a way that automatically
generates a commit message. The purpose of ChangeScribe
is not to replace developers when writing commit messages,
the purpose is to help developers to write descriptive commit
messages. Therefore, the messages generated by ChangeScribe
can be edited by developer before committing the code, and
the length of the message can be tailored by using an impact
set-based heuristic. In the following, we describe the features
provided by ChangeScribe and plans for the future work.

A. Describing Source-Code Changes

ChangeScribe is integrated into the Eclipse IDE, and its
functionality can be invoked via contextual menu or the
menu bar. Current version of ChangeScribe only supports Java
projects hosted in Git repositories. For the Git-based push and
push-and-commit operations, and for extracting the change-
set between two adjacent version (i.e., HEAD version of the
system in the Git repository and current version in the local
workspace), ChangeScribe uses the JGit1 Java Library. For
each element of the change set, ChangeScribe identifies the
change type (i.e., addition, deletion or modification) and the
renamed files. If a .java file is updated, ChangeScribe uses the
Change distiller tool [7] to identify fine-grained code changes.

Both, changes types from the change-set and fine-grained
changes, are used to generate the two parts of the commit
message: general description, and detailed description. The
former characterizes the change-set with a general overview of
the commit. It has (i) a phrase describing whether it is an initial
commit, (ii) a phrase describing commit’s intent, (iii) a phrase
indicating class renaming operations, (iv) a sentence listing the
new modules, (v) a sentence indicating whether the commit
includes changes to properties or internationalization files.
Sentences (i) and (iii)-(v) are generated with ChangeScribe
templates, and the commit’s intent in sentence (ii) is based
on the commit stereotypes proposed by Dragan et al. [5].
Because the commit stereotype identification relies on method
stereotypes [6], ChangeScribe uses the JStereoCode tool [14].

1Implementation of Git SCM in Java. http://wiki.eclipse.org/JGit/

The second part of the message describes the changes
made to each Java file, and the changes are organized ac-
cording to packages. Based on the change type, if it was
an addition or deletion, ChangeScribe describes the class’
goal and its relationships with other objects. Moreover, if
an existing file is modified, ChangeScribe describes the
changes for each inserted, modified and deleted code snippet.
ChangeScribe generates descriptive phrases for all changes at
class/method/statement level. For instance for added/removed
classes, ChangeScribe describes the class responsibility based
on the approach by Hill et al. [10], and for describing classes
signature our tool uses the class stereotypes defined by Moreno
et al. [15]. For modified classes, ChangeScribe generates
descriptions with the information provided by Change Distiller
and the sentence templates proposed in our previous work [3].
For more information about the templates and commit message
generation we refer the interested reader to [3].

When the commit message is generated it is displayed in the
main window as presented in Figure 1-b. The main window
includes: an editable text field with the commit message
1 ; the commit stereotype signature 2 , which depicts the

distribution of method stereotypes in the commit2; an iconized-
button group 3 for showing the online help, refreshing the
commit message, and (un)selecting all the files in the commit
4 ; the list of modified files 4 allows for individual selection

and has a file name-based filtering; and finally, a button
group 5 for committing-and-pushing/committing the code,
and closing the window. The following snippet shows part
of a message generated for a commit (http://goo.gl/IV6aWm)
of Apache Solar at GitHub:

This is a state update modifier commit: this change set
is composed only of mutator methods, and these methods
provide changes related to updates of an object’s state.
This change set is mainly composed of:
1. Changes to package org.apache.solr.common.cloud:
1.1. Modifications to ClusterState.java:
1.1.1. Remove an unused functionality to get shard

Although the real commit message is "SOLR-2592:
realtime-get support", ChangeScribe’s is more descriptive and
provided augmented information that helps to understand the
rationale behind the change (i.e., the getShard method at
ClusterState.java was removed because the method
was dead code).

Because stereotypes and their semantic (e.g., state update
modifier) may be unknown for developers, ChangeScribe’s
main window includes an online help that describes both
method and commit stereotypes (Figure 1-c).

B. Impact Set-Based Filtering

Large commits lead to large descriptions. In fact, findings
in our previous work [3] suggest that some developers find
large commit messages superfluous, because giving a detailed

2The signature includes tooltips over each color bar explaining the corre-
sponding method stereotype

1

2

3

4

5

a. Preferences window b. Main window c. Help window

Figure 1. The three windows in the ChangeScribe Plugin: Preferences window (a) allows developer to set variables such as the impact threshold, and the
author name; Main window (b) is displayed when a developer executes the "Commit" action in the Eclipse GUI; The help window (c) lists stereotypes (method
and commit) and their descriptions.

description for each diff-based change does not contribute to
understanding the rationale of a change-set. One option for
controlling the length of a description is to truncate it by
a number of words or characters; the truncated description
is often augmented with ellipsis "..." at the end to indicate
clipped text. However, truncating descriptions can break the
semantic and syntax of the sentences/paragraphs in the de-
scription, and defining a gold set of the appropriate number
of characters/words/lines is a daunting task.

To deal with the issues of truncating large descriptions,
ChangeScribe uses an elegant heuristic based on impact
analysis. The intuition behind the heuristic is the following:
change-sets have representative classes, and by representative
we mean classes with changes that have high impact on the
change-set; therefore, representative classes contribute more
to the description of the change-set and are more related to
the rationale behind the commit. If change descriptions focus
only on classes with high impact set, detailed descriptions of
non-interesting classes can be removed to reduce description
length. In summary, the idea is to include in the description
only the descriptions of classes with high impact, and the
threshold for deciding between high or low impact is provided
by the code owner, i.e., the developer in charge of the
commit should be able to set the threshold that distinguish
representative and non-representative classes.

The impact of a class Ci in the change-set S is computed
as the relative number of methods in the difference set S−Ci

impacted by any change in Ci. For instance, the impact value
of new class Ci is the number of external methods calling
a method/attribute in Ci over the total of methods in the
change set; if Ci is deleted, the impact value is the number
of methods modified because of Ci deletion, over the total of
methods in S; or if there is any change in Ci that generates
modifications in the rest of classes, the impact value is the
number of methods modified in S−Ci due to changes in Ci.

For each class Ci in the change set S, ChangeScribe
computes the impact value, then, the detailed description of a
class is included in the commit message if its impact-value is
greater than or equal to the impact threshold defined by the

software developer. The threshold is set (by demand) in the
Preferences Window (See Figure 1-a).

C. Availability

More information about ChangeScribe can be found on our
webpage3, which contains (i) videos demonstrating its main
features, (ii) link for downloading the eclipse plugin, (iii) link
for downloading and Eclipse bundle with ChangeScribe and
source code 4, (iv) architecture description, and (v) examples
of commit messages for several open source applications.

D. Usage Example

The underlying approach used by ChangeScribe was evalu-
ated previously [3] by 23 students and developers in an study
with 50 commits of six Open Source projects (Elastic search,
Retrofit, Spring social, JFreeChart, Apache Felix, Apache
Solr). ChangeScribe is able to describe initial commits and
non-initial commits, and generates messages with important
information such as file renames, impact set of a change, new
modules added to the system, removal of unused functionality,
among others. For instance, this is an example for the first
commit (http://goo.gl/5Igx1s) of Spring Social:

Initial commit. This is a degenerate modifier commit: this
change set is composed of empty, incidental, and abstract
methods. These methods indicate that a new feature is
planned. This commit includes changes to internation-
alization, properties or configuration files (.classpath,
.gitignore, .project, ...). The commit includes these new
modules:
- facebook
- twitter [...]

The real message is "initial commit", but ChangeScribe’s
includes the commit stereotype and mentions the modules
included in the initial commit.

Regarding impact sets, ChangeScribe detects when a change
at method level (i.e., method addition) triggers changes in

3http://www.cs.wm.edu/semeru/changescribe
4https://github.com/SEMERU-WM/ChangeScribe

other classes/methods. For instance, ChangeScribe’s mes-
sage for a commit in JFreeChart repo (http://goo.gl/StXeJS)
warns that new method in LineUtitiles.java triggered
changes in the RingPlot class:

This is a small modifier commit that does not change the
system significantly. This change set is mainly composed
of: 1. Changes to package org.jfree.chart:
1.1. Modifications to TestUtilities.java:
1.1.1. Add javadoc at serialised(Object) method
2. Changes to package org.jfree.chart.util:
2.1. Modifications to LineUtilities.java:
2.1.1. Add a functionality to extend line
The added/removed methods triggered changes to Ring-
Plot class

ChangeScribe also describes the purpose of new classes. For
example, ChangeScribe’s message for a commit to Retrofit is
the following (http://goo.gl/mmbxzC):

This is a large modifier commit: this is a commit with
many methods and combines multiple roles. This commit
includes changes to internationalization, properties or
configuration files (pom.xml). This change set is mainly
composed of:
1. Changes to package retrofit.converter:
1.1. Add a Converter implementation for simple XML
converter. It allows to: Instantiate simple XML converter
with serializer; Process simple XML converter simple
XML converter from body; Convert simple XML converter
to body
Referenced by: SimpleXMLConverterTest class

The original message is "Add a SimpleXML converter",
and ChangeScribe’s includes details such as the class purpose
(e.g., It allows to ...), implementation details (the class is an
implementation of the Converter interface), and the classes
referencing the new class (impact set).

E. Future Work

Current implementation of ChangeScribe only works with
Git-based repositories, however, we will extend the plugin to
work also with Subversion. ChangeScribe works as a plugin
running on top of Eclipse, which is useful for developers.
However, automatic generation of messages for large number
of commits, for example when Mining Software repositories
(MSR), can benefit researchers. Therefore, future work will be
devoted to implement (i) a command line version and (ii) Ap-
plication Programming Interface (API), which can be used for
large scale studies related to MSR, program comprehension,
evolution and maintenance. We want to improve the quality
of the detailed descriptions by defining more templates, and
detecting refactorings (the refactoring description will be part
of the general description). Finally, ChangeScribe does not
link automatically commits to issue/bug reports in a tracking
system, thus, a following version will augment the commit
message with information from the bug tracking system(s).

IV. CONCLUSION

We introduced ChangeScribe, a tool that implements the
approach for generating commit messages via summarization
of source changes, presented in our previous work [3]. The
evaluation in [3] indicates that ChangeScribe can be useful
as an online assistant to aid developers in writing commit
messages or to automatically generate commit messages when
they do not exist or their quality is low. Therefore Change-
Scribe can assists developers when committing changes to
a repository, by generating an overview of the changes and
classifying/describing in detail each of the changes made
by a developer in the source code. ChangeScribe can be
also used as a tool for (re)documenting history of a system
between adjacent versions, or between non-adjacent versions;
this scenario is useful for evolution/maintenance tasks when
no documentation is available or the quality of the commit
messages is low.

V. ACKNOWLEDGEMENTS

This work is supported in part by the NSF CCF-1253837
and CCF-1218129 grants. Any opinions, findings, and conclu-
sions expressed herein are the authors’ and do not necessarily
reflect those of the sponsors.

REFERENCES

[1] R. Buse and W. Weimer. Automatically documenting program changes.
In ASE’10, pages 33–42, 2010.

[2] G. Canfora, L. Cerulo, and M. D. Penta. Ldiff: An enhanced line
differencing tool. In ICSE’09, pages 595 –598, 2009.

[3] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk.
On automatically generating commit messages via summarization of
source code changes. In SCAM’14, pages 275–284, 2014.

[4] M. D’Ambros, M. Lanza, and R. Robbes. Commit 2.0. In Workshop on
Web 2.0 for Software Engineering (Web2SE ’10), pages 14–19, 2010.

[5] N. Dragan, M. Collard, M. Hammad, and J. Maletic. Using stereotypes
to help characterize commits. In ICSM’11, pages 520–523, 2011.

[6] N. Dragan, M. Collard, and J. Maletic. Reverse engineering method
stereotypes. In ICSM’06, pages 24–34, 2006.

[7] B. Fluri, M. Wursch, M. Pinzger, and H. Gall. Change distilling:tree
differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):725 –743, 2007.

[8] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers drive
software evolution. In IWPSE 2005, pages 113–122, 2005.

[9] A. Hassan. The road ahead for mining software repositories. In Frontiers
of Software Maintenance (FoSM’08), pages 48–57, 2008.

[10] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically capturing
source code context of nl-queries for software maintenance and reuse.
In ICSE’09, pages 232–242, 2009.

[11] D. Jackson and D. Ladd. Semantic diff: A tool for summarizing the
effects of modifications. In ICSM’94, pages 243–252, 1994.

[12] W. Maalej and H. Happel. From work to word: How do software
developers describe their work? In MSR’09, pages 121–130, 2009.

[13] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and
G. Canfora. Automatic generation of release notes. In FSE’14, 2014.

[14] L. Moreno and A. Marcus. Jstereocode: automatically identifying
method and class stereotypes in java code. In ASE’12, pages 358–361.

[15] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker. Jsummarizer:
An automatic generator of natural language summaries for java classes.
ICPC’13 - formal tool demonstration, pages 230–232, 2013.

[16] G. Murphy. Attacking information overload in software development.
In VL/HCC’09, page 4, 2009.

[17] H. A. Nguyen, T. T. Nguyen, H. V. Nguyen, and T. N. Nguyen. iDiff:
Interaction-based program differencing tool. In ASE’11, pages 575–575.

[18] C. Parnin and C. Gorg. Improving change descriptions with change
contexts. In MSR’08, pages 51–60, 2008.

[19] S. Rastkar and G. C. Murphy. Why did this code change? In ICSE’13,
pages 1193–1196, 2013.

