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ABSTRACT

A goal of performance testing is to find situations when appli-
cations unexpectedly exhibit worsened characteristics for certain
combinations of input values. A fundamental question of perfor-
mance testing is how to select a manageable subset of the input data
faster to find performance problems in applications automatically.

We present a novel tool, FOREPOST, for finding performance
problems in applications automatically using black-box software
testing. In this paper, we demonstrate how FOREPOST extracts
rules from execution traces of applications by using machine learn-
ing algorithms, and then uses these rules to select test input data
automatically to steer applications towards computationally inten-
sive paths and to find performance problems. FOREPOST is avail-
able in our online appendix (http://www.cs.wm.edu/semeru/data/
ICSE16-FOREPOST), which contains the tool, source code and
demo video.

CCS Concepts

eSoftware and its engineering — Software performance; Soft-
ware testing and debugging;
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1. INTRODUCTION

A goal of performance testing is to find performance problems,
when an application under test (AUT) unexpectedly exhibits wors-
ened characteristics for a specific workload [16, 18]. For example,
effective test cases for load testing, which is a variant of perfor-
mance testing, find situations where an AUT suffers from unex-
pectedly high response time or low throughput [4, 13]. Test en-
gineers construct performance test cases, and these cases include
actions (e.g., interacting with GUI objects or invoking methods of
exposed interfaces) as well as input test data for the parameters of
these methods or GUI objects [12]. It is difficult to construct effec-
tive performance test cases that can find performance problems in
a short period of time, since it requires test engineers to test many
combinations of actions and data for nontrivial applications.
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Depending on input values, an application can exhibit differen-
t behaviors with respect to resource consumption. Some of these
behaviors involve intensive computations that are characteristic of
performance problems [17, 21]. Naturally, testers want to summa-
rize the behavior of an AUT concisely in terms of its inputs, so that
they can select input data that will lead to significantly increased re-
source consumption thereby revealing performance problems. Un-
fortunately, finding proper rules that collectively describe proper-
ties of such input data is a highly creative process that involves
deep understanding of input domains [3, page 152].

Descriptive rules for selecting test input data play a significan-
t role in software testing [5], where these rules approximate the
functionality of an AUT. For example, a rule for an insurance ap-
plication is that some customers will pose a high insurance risk if
these customers have one or more prior insurance fraud convictions
and deadbolt locks are not installed on their premises. Computing
insurance premium may consume more resources for a customer
with a high-risk insurance record that matches this rule versus a
customer with an impeccable record, since processing this high-
risk customer record involves executing multiple computational-
ly expensive transactions against a database. Of course, we use
this example of an oversimplified rule to illustrate the idea. Even
though real-world systems exhibit much more complex behaviors,
useful descriptive rules often enable testers to build effective per-
formance fault revealing test cases.

Rules may provide insight into the behavior of the AUT. For ex-
ample, a rule may specify that the method checkFraud is always
invoked when test cases are good for exposing performance bottle-
necks and the values of the attribute SecurityDeposit of the ta-
ble Finances are frequently retrieved from the back-end database.
This information helps performance testers to create a holistic view
of testing, and to select test input data appropriately thereby reduc-
ing the number of tests, and thus these rules can be used to select
better test cases automatically.

We demonstrate our tool, FOREPOST, for finding performance
problems automatically by learning and using rules that describe
classes of input data that lead to intensive computations. FORE-
POST implements the feedback-driven performance software test-
ing approach proposed and evaluated on four subject applications,
Renters, JPetStore, Dell DVD Store and Agilefnat, in our pervious
works [8, 15]. FOREPOST learns rules from AUT execution traces
and uses these learned rules to select test input data automatically
to find more performance problems in applications as compared to
random performance testing. FOREPOST uses runtime monitor-
ing for a short duration of testing together with machine learning
techniques and automates test scripts to reduce large amounts of
performance-related information collected during AUT runs. It-
s goal is to select a small number of descriptive rules that provide



insights into properties of test input data that lead to increased com-
putational loads of applications.

In the current version of FOREPOST, it supports the perfor-
mance testing on Java applications. It takes the binary code and the
test input data of the AUTs as inputs, and outputs a set of rules that
describe input data to steer AUT towards computationally intensive
paths and a ranked list of methods likely to be performance bottle-
necks. FOREPOST, its running requirements and the experimental
results are publicly available [14]. We also provide a demo video
to show how FOREPOST works on one of our subject applications,
Agilefant, in our online appendix [14].

2. DEMONSTRATING THE FOREPOST

FOREPOST is a tool of performance testing, which automati-
cally learns rules that describe the AUT behaviors in terms of input
data and uses these rules to select inputs and detect performance
problems. FOREPOST is built on two key ideas: 1) extracting
rules from execution traces that describe relationships between the
input data and the performance of the tests that are executed with
this data and 2) identifying bottlenecks using these rules. FORE-
POST only requires the binary code and the test input data of the
AUTSs, thus, no source code is needed for performance testing vi-
a FOREPOST. A ranked list of methods is obtained finally. The
top methods are likely to be performance bottlenecks, which needs
to be further confirmed by test engineers. Currently, FOREPOST
supports performance testing of Java applications due to the imple-
mentation of the underlying profiler (i.e., TPTP [2]). However, it
is straightforward to extend FOREPOST to programs in different
programming languages by using different profiling tools. The ar-
chitecture of FOREPOST is shown in Figure 1. In this section, we
introduce our tool and its architecture in details.

2.1 Obtaining Rules

As part of the first key idea, the instrumented AUT is initially run
using a small number of selected test input data (see step 1 in Fig-
ure 1). In our implementation, test engineers write the test scripts
to randomly select combinations of test input data and send the se-
lected inputs to the AUT automatically. The input test data comes
from existing repositories or databases; it is a common practice
in industry as we confirmed it with different performance testing
professionals. For example, Renters has a database that contains
approximately 78 million customer profiles, which are used as the
test input data for different applications including Renters itself.
For web-based applications, we wrote the test scripts that contains
all URL requests with different parameters, and used JMeter [1] to
simulate users sending URL requests to execute applications. In
the test scripts, we defined a set of URL requests that comes from
one user as a transaction, and used JMeter to send five transactions
concurrently. While initial test input data is selected randomly in
the current implementation of FOREPOST, in practice, test engi-
neers can also supply input data that likely reveal bottlenecks or
any input data that they prefer to start with.

Once the test script starts executing the application, its execution
traces are collected by the profiler, and these traces are forwarded
to the execution trace analyzer, which produces the trace statistic-
s (steps 2-3 in Figure 1). We implemented the profiler using the
TPTP framework [2], which can inject probes into binary code for
collecting running time information, such as the system time, the
size of parameters, and the amount of transferred data between the
AUTs and databases. Based on collected profiles, trace statistics
of each trace is obtained, such as the number of invoked meth-
ods, the elapsed time to complete the end-to-end application run,
and the number of invocations. Figure 2 (a) shows the results of
trace statistics in FOREPOST, where the elapsed time of each trace
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Figure 1: The Architecture of FOREPOST.

is shown in the second column (see (1) in Figure 2). Currently,
FOREPOST supports to use elapsed execution time for evaluating
the performance behaviors of each trace. We chose elapsed exe-
cution time as the performance metric since it is one of the most
widely used metrics. Of course, FOREPOST can consider other
different types of performance metrics by changing the settings of
the profiler. We leave it as the future work.

The trace statistics is supplied to the trace clustering, which clus-
ters collected traces into two different groups that collectively de-
scribe different performance of the AUTSs. For example, there can
be as few as two groups that correspond to good and bad perfor-
mance test cases (steps 4-8 in Figure 1). The good traces make the
AUT consume more resources and time, which are “good” to reveal
performance bottlenecks. Conversely, the bad traces utilize few re-
sources or take less time as compared to the good traces, which are
“bad” to expose performance bottlenecks. FOREPOST uses the
average elapsed execution time to cluster traces. The traces with
longer elapsed execution times than the average value are consid-
ered as good traces. The rationale here is that the traces with longer
elapsed time would lead to intensive computations and increased
workloads, likely to reveal performance bottlenecks. Otherwise,
the traces would be assigned as bad ones. As Figure 2 (b) shows, all
collected traces are clustered into different groups. Test engineers
can review these traces and modify the assignment, like changing
“good” to “bad” (see (2) in Figure 2), if necessary.

After clustering traces, each trace is represented as a vector-
based form Vj,,...,V;, — T, where Vj, is the value of the input
I, and T € {G, B}, with G and B refering good and bad test cases
correspondingly. The format of V;, can be different depends on the
AUT. For example, for a web-based application, it is a vector refer-
ring to a set of URL requests. These vectors are used as inputs to
the learner, which applies a Machine Learning (ML) algorithm to
learn the classification model and output rules (steps 9-11 in Fig-
ure 1). FOREPOST uses the class JRip in Weka [20] to implement
a propositional rule learner, Repeated Incremental Pruning to Pro-
duce Error Reduction (RIPPER) [6]. It combines pre-pruning and
post-pruning into the learning process, following a separate-and-
conquer strategy. The rules have the form [y OV, e L ©Vj, ... @
Iy ©V), — T, where © is one of the relational operators (e.g., >
and =) and e is one of the logical connectors (i.e., A and V). For
instance, as Figure 2 (c) shows, rules describe the relationships be-
tween test input and the performance behavior of the AUT (see (3)
in Figure 2). Similarly, the testers can review these rules and mark
some of them as erroneous if they have sufficient evidence to do so
(step 12 in Figure 1 and (4) in Figure 2). For example, if testers
find one rule is incorrect, they can mark its active status as “false”
instead of “true”.

A feedback loop is formed by supplying these learned rules back
into the test script to automatically guide selection of test inputs
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Figure 2: The four views of FOREPOST: (a) the view showing trace statistics, (b) the view showing automatic clustering, (c) the view
showing learned rules, and (d) the view showing identified performance bottlenecks.

(step 13 in Figure 1). Once the test script receives a new set of rules,
it partitions the input space into blocks according to these rules and
starts selecting test inputs from each block. The profiler collects
traces of these new test runs, and thus the cycle repeats. The new
rules can be relearned at each several passes and the input space is
repartitioned adaptively according to new rules. When no new rules
are learned after some time of testing, the partition of test inputs is
stable with a high probability. At this point instrumentation can be
removed and testing can continue with these selected inputs.

2.2 Identifying Bottlenecks

Our goal is to help testers to identify bottlenecks automatically
as method calls whose execution seriously affects the performance
of the whole AUT. For example, consider a method that is period-
ically executed by a thread to check to see if the content of some
file is modified. While this method may be one bottleneck, it is in-
voked in both good and bad traces, thus its contribution to resource
consumption as the necessary part of the application logic does not
lead to any insight that may resolve a performance problem. Our
second key idea is to consider the most significant methods that oc-
cur in good traces and that are not invoked or have little significance
in bad traces, where the significance of a method is a function of
the resource consumption that its execution triggers. Thus, once
the input space is partitioned into clusters that lead to good and bad
traces, we want to find methods that are specific to good traces and
that are most likely to contribute to bottlenecks.

This task is accomplished in parallel to computing rules, and it
starts when the trace analyzer produces the method statistics used
to construct two matrices || xg || and || X || for bad and good traces
correspondingly (steps 14-16 in Figure 1). While FOREPOST cur-
rently considers the elapsed execution time of each method as it-
s resource consumption, users can easily extend FOREPOST by
measuring the consumptions as a normalized weighted sum of the
times of method’s invocations, the total elapsed time, the number of
attributes accessed in the databases, and the amount of data trans-
ferred between the AUTs and the databases. Once these matrices
are constructed, Independent Component Analysis (ICA) decom-
poses them into the matrices || sp || and || sg || for bad and good
traces correspondingly. FOREPOST uses a Java library FastiCA
to implement the Fast and Robust Fixed-Point Algorithms for I-

CA [11]. Crossreferencing the matrices || sg || and || sg ||, FORE-
POST specifies method weights for high-level requirements for d-
ifferent groups (i.e., good or bad), and does the contrast mining
(see details in our previous work [15]) to assign larger weights to
the methods most significant in good traces but not invoked or have
little significance in bad traces. All methods are ranked based on
their weights, as Figure 2 (d) shows. The advisor can determine
whether the performance testers should look at the top methods to
debug possible performance problems (steps 17-19 in Figure 1).

2.3 The Availability

More information about FOREPOST can be found in our online
appendix, which contains (i) a video demonstrating FOREPOST,
(ii) links for downloading the source code of FOREPOST, (iii) links
for downloading the used tools, such as Weka and TPTP frame-
work, (iv) examples of detected performance bottlenecks, and (v)
the architecture of FOREPOST.

2.4 Usage Examples

FOREPOST was evaluated on one nontrivial application at an
insurance company, Renters, and three open-source applications,
JPetStore, Dell DVD Store and Agilefant. JPetStore and Dell DVD
Store are open-source simulations of e-commerce sites, and Ag-
ilefant is an enterprise-level project management system. All the
subjects are available at our online appendix [14]. The results are
shown in our previous works [8, 15]. In this section, we show some
examples of rules and detected performance bottlenecks.

Obtaining Rules. FOREPOST uses ML algorithm to extract the
rules that describe relationship between test input data and the AUT
behaviors. These rules are used to generate input data that steers
AUT towards computationally intensive execution paths. Here are
four examples of rules for Renters, JPetStore, Dell DVD Store and
Agilefant respectively:
e (childOrAdultCareDetails.numberPersonsCaredForChild > 3)
and (personallnjuryDetails.nationalEntertainerAthlete = Y)
— Good
o (browse_title ACADEMY_AFRICAN_2 >
Cart_5_1 < 0) Bad
e (viewPrdct_K9RTO01
Bad
e (storeStory3 > 100) and (storeProject6 < 25) — Bad

5) and (addTo-

> 5) and (viewltem_EST16 > 5) —



Detecting Performance bottlenecks. FOREPOST provides a rank-
ed list of methods likely to be performance bottlenecks. Testers can
look into the top methods to check whether they are real perfor-
mance bottlenecks. For instance, FOREPOST obtained a ranked
list of methods from Renters, and these methods were reviewed
by the most experienced developers and testers for Renters. After
reviewing the methods and checking source code, they confirmed
around 20 methods were bottlenecks. To illustrate, the identified
method checkWildFireArea was confirmed as a true bottleneck,
where an incorrect invocation of checkWildFireArea occurs due to
the implementation of Visitor pattern. Even though it did not con-
tribute to computing the insurance quote, it took significant compu-
tational resources to execute. Some methods were considered bot-
tlenecks, since they processed too much XML data. In all, FORE-
POST pointed out methods as bottlenecks, but a deeper analysis
was needed. For open-source subjects, we injected artificial bot-
tlenecks to analyze the effectiveness and accuracy of FOREPOST.
The detailed results can be found in our previous works [8, 15].

3. RELATED WORK

Partition testing is a set of strategies that divides the program’s
input domain into subdomains from which test cases can be derived
to cover each subset at least once [3]. Closely related is the work
by Dickinson et al [7], which uses clustering analysis execution
profiles to find failures among the executions induced by a set of
potential test cases. Although we both used clustering techniques,
FOREPOST differs in that it clusters the execution profiles based
on the length of the execution time, and we target the performance
bugs instead of functional errors.

Learning rules helps stakeholders to reconfigure distributed sys-
tems to optimize for dynamically changing workloads [9, 19]. One
work [19] is similar to FOREPOST that uses learning methodology
to learn rules, but it focuses on learning a set of hardware configura-
tions with better performance under current workload. In contrast,
FOREPOST uses feedback-directed adaptive test scripts to locate
most computationally intensive executions and bottlenecks.

A technique automatically classifies execution data, collected in
the field, as coming from either passing or failing program runs
[10]. It attempts to learn a classification model to predict if an ap-
plication run failed using execution data. Conversely, FOREPOST
learns rules to select input test data that steer applications towards
computationally intensive runs to expose performance problems.

In their recent work, Pingyu et al, generate performance test cas-
es using dynamic symbolic execution [21]. Similar to FOREPOST,
they use heuristics to generate test cases by determining paths of
executions to introduce higher workloads. Unlike FOREPOST,
white-box testing approach is used thus requiring access to source
code while FOREPOST is an entirely black-box driven approach. It
is also unclear how white-box approaches will scale up to large in-
dustrial subjects. We view the approach as complementary, where
a hybrid approach may combine the benefits of both approaches in
a grey-box testing. We leave it as the future work.

4. CONCLUSION

In this paper, we demonstrate a novel tool, FOREPOST, which
finds performance problems in applications automatically using
black-box software testing. Our tool is an adaptive, feedback-
directed learning testing system that learns rules from execution
traces of applications and uses these rules to select test input da-
ta for these applications automatically to find more performance
problems when compared with random testing. FOREPOST takes
the binary code and the test input data of the AUTs as inputs, and
outputs a set of rules for steering the AUT towards computation-

ally intensive execution paths and a ranked list of methods likely
to be performance bottlenecks. The evaluation demonstrated that
FOREPOST is effective in finding input data to trigger intensive
computations and in identifying performance bottlenecks.
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