
FUSION: A Tool for Facilitating and Augmenting Android
Bug Reporting

Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Denys Poshyvanyk
College of William & Mary

Department of Computer Science
Williamsburg, VA 23187-8795, USA

{kpmoran, mlinarev, cebernal, denys}@cs.wm.edu

ABSTRACT
As the popularity of mobile smart devices continues to climb
the complexity of “apps” continues to increase, making the
development and maintenance process challenging. Current
bug tracking systems lack key features to effectively support
construction of reports with actionable information that di-
rectly lead to a bug’s resolution. In this demo we present the
implementation of a novel bug reporting system, called Fu-
sion, that facilitates users including reproduction steps in
bug reports for mobile apps. Fusion links user-provided in-
formation to program artifacts extracted through static and
dynamic analysis performed before testing or release. Re-
sults of preliminary studies demonstrate that Fusion both
effectively facilitates reporting and allows for more reliable
reproduction of bugs from reports compared to traditional
issue tracking systems by presenting more detailed contex-
tual app information. Tool website: www.fusion-android.

com Video url: https://youtu.be/AND9h0ElxRg

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Experimentation, Design

Keywords
Bug reports, android, reproduction steps, auto-completion

1. INTRODUCTION
It is clear that as smart device usage reaches ubiquitous

levels (e.g., 2.7 billion active smartphone users in 2014[20]),
developers need tools to support them in maintaining high-
quality apps. Software maintenance activities are known to
be generally expensive and challenging [24] and one of the
most important maintenance tasks is bug report resolution.
However, current bug tracking systems such as Bugzilla [3],
Mantis [10], the Google Code Issue Tracker [7], the GitHub
Issue Tracker [6], and commercial solutions such as JIRA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’16 May 14-22, 2015, Austin, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

[9] rely mostly on unstructured natural language bug de-
scriptions. While these descriptions can be supplemented
with structured information such as reproduction steps or
stack traces, and files such as screenshots, the inclusion of
such information typically depends on the reporter’s experi-
ence and attitude towards providing these details. Previous
studies have also shown that the information most useful to
developers is often the most difficult for reporters to provide
and that the lack of this information is a major reason be-
hind non-reproducible bug reports [19, 15]. Therefore, the
reporting process can be cumbersome, and the additional
effort means that many users are unlikely to enhance their
reports with extra information [16, 18, 17, 13].

The above issues point to a more prominent problem for
bug tracking systems in general: the lexical gap that nor-
mally exists between bug reporters (e.g., testers, beta users)
and developers. Reporters typically only have functional
knowledge of an app, even if they have development experi-
ence themselves, whereas the developers working on an app
tend to have intimate code level knowledge. When a de-
veloper reads and attempts to comprehend (or reproduce)
a bug report, she has to bridge this gap, reasoning about
the code level problems from the high-level functional de-
scription in the bug report. If the lexical gap is too wide the
developer may not be able to reproduce and/or subsequently
resolve the bug report.

To address this fundamental problem of making bug re-
ports more useful (and reproducible) for developers, this pa-
per presents the implementation of a novel tool, called Fu-
sion, that facilitates reporters creating detailed bug reports
in order to provide more actionable information to develop-
ers. Fusion implements the novel approach that was pre-
sented and evaluated in our previous work [23]. Fusion first
employs fully automated static and dynamic analysis tech-
niques to gather screen-shots and other relevant information
about an app before it is released for testing. Reporters then
interact with the web-based report generator using the auto-
completion features in order to provide the bug reproduction
steps. By linking the information provided by the user with
features extracted through static and dynamic analyses, Fu-
sion presents an augmented bug report to the developer
that contains actionable information with well-defined steps
to reproduce a bug.

2. THE FUSION REPORTING TOOL
Fusion’s current target user base consists of two ma-

jor groups: mobile application developers and beta users or
testers . As such there are two user-facing scenarios for the

1

www.fusion-android.com
www.fusion-android.com
https://youtu.be/AND9h0ElxRg

tool’s operation. From a developer’s perspective the work-
flow is purposefully simple; the only action required is the
submission of an .apk of the latest build of the application
for which they want to enable bug reporting. Once this file
is submitted, Fusion’s automated program analysis tech-
niques extract the information necessary to facilitate process
of creating a bug from the reporters end. Once reports are
filled out, developers can access them through a web por-
tal. From a reporter’s perspective, they construct a report
using a web interface. After selecting the application for
which they would like to report a bug, the reporter enters a
brief description and contextual information about the bug
(e.g. device used, screen orientation). They then use a series
of auto-filled combo boxes to construct reproduction steps,
including screenshots.

2.1 FUSION Architecture
Fusion’s architecture can be seen in Figure 1. First, Fu-

sion collects information related to the GUI components
and event flow of an app using the Static Application An-
alyzer and the Dynamic Analysis Engine. Then the tool
leverages the information collected during the analysis to
facilitate a reporter constructing a detailed bug report with
reproduction steps, and screenshots. The static and dy-
namic analyses must be performed before each version of
an app is released for testing or before it is published to
end users. Both program analysis components store their
extracted data in the Fusion database (Fig. 1 - 3).

2.1.1 Static Analysis
The goal of the Static App Analyzer (Fig. 1 - 1) is to

extract all of the GUI components and associated informa-
tion from the app source code. For each GUI component,
the Primer extracts: (i) possible actions on that component,
(ii) type of the component (e.g., Button, Spinner), (iii) ac-
tivities the component is contained within, and (iv) class
files where the component is instantiated. Thus, this results
in a universe of possible components within the domain of
the application, and establishes traceability links connect-
ing GUI-components to code specific information such as
the class or activity where they are located.

The Static App Analyzer utilizes several tools to extract
the information outlined above. First it uses the dex2jar[4]
and jd-cmd [8] tools for decompilation; then, it converts
the source files to an XML-based representation using sr-

cML [11]. We also use apktool [2] to extract the resource
files from the app’s APK. The ids and types of GUI compo-
nents were extracted from the xml files located in the app’s
resource folders (i.e., /res/layout and /res/menu of the
decompiled application or src). Using the srcML represen-
tation of the source code, we are able to parse and link the
GUI-component information to extracted app source files.

2.1.2 Dynamic Analysis
The Dynamic Analysis Engine (Fig. 1 - 2) is used to

glean dynamic contextual information and enhance the data-
base with both run-time GUI and application event-flow in-
formation. The goal of the Engine is to explore an app in
a systematic manner, ripping and extracting run-time in-
formation related to the GUI components during execution
including: (i) the text associated with different GUI com-
ponents (e.g., the “Send” text on a button to send an email
message), (ii) whether the GUI component triggers a tran-

Static
Application
Analyzer

Dynamic
Analysis
Engine

Physical Device or Emulator

Reporting
Interface

Report
Viewing
Interface

FUSION
Database

1 2
6

3

Auto-
Completion

Engine

4
5

Figure 1: Fusion Architecture

sition to a different activity, (iii) the action performed on
the GUI component during systematic execution, (iv) full
screen-shots before and after each action is performed, (v)
the location of the GUI component object on the test de-
vice’s screen, (vi) the current activity and window of each
step, (vii) screen-shots of the specific GUI component, and
(viii) the object index of the GUI component (to allow for
differentiation between different instantiations of the same
GUI component on one screen).

The Engine performs this systematic exploration of the
app using the UIAutomator [1] framework included in the
Android SDK. This systematic execution of the app is sim-
ilar to existing approaches in GUI ripping [12, 14, 22, 21].
Using the UIAutomator framework allows us to capture cases
that are not captured in previous tools such as pop-up menus
that exist within menus, internal windows, and the onscreen
keyboard. To effectively explore the application we imple-
mented our own version of a systematic depth-first search
(DFS) algorithm for application traversal that performs click
events on all the clickable components in the GUI hierarchy
reachable using the DFS heuristic.

2.2 Reporting Bugs with FUSION
During the Report Generation Phase, Fusion aids the re-

porter in constructing the steps needed to recreate a bug by
making suggestions based upon the “potential” GUI state
reached by the declared steps. This means for each step s,
Fusion infers — online — the GUI state GUIs in which
the target app should be by taking into account the history
of steps. For each step, Fusion verifies that the suggestion
made to the reporter is correct by presenting the reporter
with contextually relevant screen-shots, where the reporter
selects the screen-shot corresponding to the current action
she wants to describe.

2.2.1 Report Generator User Interface
After first selecting the app to report an issue for, a re-

porter interacts with Fusion by filling in some identifying
information (i.e., name, device, title) and a brief textual de-
scription of the bug in the top half of the UI. Next, the
reporter inputs the steps to reproduce the bug using the
auto-completion boxes in a step-wise manner, starting from
the initial screen of a cold app launch1, and proceeds until
the list of steps to reproduce the bug is exhausted. Accord-

1Cold-start means the first step is executed on the first win-
dow and screen displayed directly after the app is launched.

2

Figure 2: Fusion Reporting Interface

ing to the various fields in Figure 2, the reporter would first
fill in their (i) name (Field 1), (ii) device (Field 2), (iii)
screen orientation (Field 3), (iv) a bug report title (Field 4),
and (v) a brief description of the bug (Field 5).

The first drop down list (see Figure 2 - Field 6) corre-
sponds to the possible actions a user can perform at a given
point in app execution. For example, let’s say the reporter
selects click as the first action in the sequence of steps as
shown in Figure 2. The possible actions considered in Fu-
sion are click(tap), long-click(long-touch), type, and swipe.
The type action corresponds to a user entering information
from the device keyboard. When the reporter selects the
type option, we also present them with a text box to collect
the information she typed in the Android app.

The second dropdown list (see Figure 2 - outlined in blue)
corresponds to the component associated with the action in
the step. Fusion presents the following information, which
can also be seen in Figure 2: (i) Component Type: this is the
type of component that is being operated upon, (e.g. but-
ton, spinner, checkbox), (ii) Component Text : the text asso-
ciated with or located on the component, (iii) Relative Lo-
cation: the relative location of the component on the screen
according to the parameters in Figure 3, and (iv) Compo-
nent Image: an in-situ (i.e., embedded in the dropdown list)
image of the instance of the component. The relative lo-
cation is displayed here to make it easier for reporters to
reason about the on-screen location, rather than reasoning
about pixel values. In the example from Figure 2 above,
Fusion will populate the component dropdown list with all
of the clickable components in the main Activity since this
is the first step and the selected action was click.

Fusion uses two techniques to handle instances of seem-
ingly identical GUI-components appearing on the same screen.

Figure 3: Relative Location Enumeration and Ex-
ample Augmented Screenshot

First, it differentiates each duplicate component in the list
through specifying text “Option #”. Second Fusion at-
tempts to confirm the component entered by the reporter at
each step by fetching screen-shots from the Fusion database
representing the entire device screen (e.g., Figure 3).

After the reporter makes selections from the drop-down
lists, they have an opportunity to enter additional informa-
tion for each step (e.g., a button had an unexpected behav-
ior) in a natural language text entry field. For instance, the
reporter might indicate that after pressing the “OK” button
the pop-up window took longer than expected to disappear.

2.2.2 Report Generator Auto-Completion Engine
The Auto-Completion Engine of the web-based report gen-

erator (Figure 1- 4) uses the information collected up-front
during the Analysis Phase. When Fusion suggests comple-
tions for the drop-down menus, it queries the database for
the corresponding state of the app event flow and suggests
information based on the past steps that the reporter has en-
tered. Since we always assume a“cold”application start, the
Auto-Completion Engine starts the reproduction steps entry
process from the app’s main Activity. We then track the re-
porter’s progress through the app using predictive measures
based on past steps.

Fusion presents components to the reporter at the gran-
ularity of activities, or application screens. During the
suggestion process, Fusion looks back through the history
of reported user interactions and looks for possible transi-
tions from the previous steps to future steps depending on
the history of the components interacted with. If Fusion is
unable to capture the last few steps from the reporter due to
the incomplete application execution model mentioned ear-
lier, then Fusion presents the possibilities from all known
screens of the application. Due to the limited nature of the
DFS heuristic used by the Dynamic Analysis Engine, there
may be action-Gui-Component pairs that are not available
in the auto-filled combo boxes. To handle these cases grace-
fully, we allow the reporter to select a special option when
they cannot find a component in the auto-completed combo
box. When picking this option, the reporter would manually
fill in (i) the type of the component, (ii) any text associated
with the GUI-component and (iii) the relative location of
the GUI-component as denoted in Figure 3.

2.2.3 Viewing FUSION Reports
The Auto Completion Engine saves each step to the database

as reporters complete bug reports. Once a reporter finishes
filling out the steps and completes the data entry process,
a screen containing the final report, with an automatically
assigned unique ID, is presented to the reporter and saved

3

Figure 4: Example Fusion Bug Report

to the database for a developer to view later (see Figure 4
for an example report).

The Report presents information to developers in three
major sections: First, preliminary information including the
report title, device, and short description (shown in Figure
4 in blue). Second, a list of the Steps with the following
information regarding each step is displayed (highlighted in
blue in Figure 4): (i) The action for each step, (ii) the type
of a component, (iii) the relative location of the component,
(iv) the activity Java class where the component is instan-
tiated in the source code, and (v) the component specific
screenshot. Third, a list of full screen-shots corresponding
to each step is presented at the bottom of the page so the de-
veloper can trace the steps through each application screen
(this section is highlighted in green in Figure 4).

3. EVALUATION
To evaluate Fusion (see full details in [23]) we investi-

gated its ease of use, as well as the reproducibility of the
Fusion reports compared to reports created using Google
Code Issue Tracker (GCIT). First, in a bug-creation study we
recruited eight students (four undergraduate or non-experts
and four graduate or experts) to construct bug reports us-
ing Fusion and GCIT — as a representative of traditional
bug tracking systems— for 15 real-world world bugs for 14
open-source apps from F-Droid [5]. We collected survey re-
sponses from these participants regarding the ease of use and
user preferences of each tool. Next, in a bug-reproduction
study we evaluated the reproducibility of the Fusion and
GCIT reports generated by the first group of participants.
These reports (120 for each type) and the original bug re-
ports extracted from the respective app issue trackers were
evaluated by a new set of 20 graduate student participants
through attempted bug reproduction on physical devices.
The results of this study indicate that developers
using Fusion reports are able to reproduce more re-
ports compared to traditional bug tracking systems
such as the GCIT.

4. DEMO REMARKS AND FUTURE WORK
In this demo, we presented Fusion, a novel implementa-

tion of an enhanced bug reporting system for Android ap-
plications. Fusion facilitates reporters crafting detailed re-
ports containing reproduction steps, screenshots, and trace-
ability links to code artifacts, by informing the reporting
process with data gleaned from static and dynamic program
analyses. As future work, we plan to (i) investigate more so-
phisticated methods of modeling program behavior, such as
using statistical language models, (ii) to improve our DFS
engine through supporting more gestures, (iii) and to use
FUSION as a tool for reporting feature requests.

5. REFERENCES
[1] Android uiautomator http://developer.android.com/

tools/help/uiautomator/index.html.
[2] apktool https://code.google.com/p/android-apktool/.

[3] Bugzilla issue tracker https://bugzilla.mozilla.org.

[4] dex2jar https://code.google.com/p/dex2jar/.
[5] F-droid. https://f-droid.org/.

[6] Github issue tracker https://github.com/features.

[7] Google code issue tracker
https://code.google.com/p/support/wiki/IssueTracker.

[8] jd-cmd decompiler https://github.com/kwart/jd-cmd.
[9] Jira bug reporting system

https://www.atlassian.com/software/jira.
[10] Mantis bug reporting system https://www.mantisbt.org.

[11] srcml http://www.srcml.org.

[12] D. Amalfitano, A. R. Fasolino, P. Tramontana,
S. De Carmine, and A. M. Memon. Using gui ripping for
automated testing of android applications. ASE’12, pages
258–261.

[13] J. Aranda and G. Venolia. The secret life of bugs: Going
past the errors and omissions in software repositories. pages
298–308, May 2009.

[14] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of android apps.
OOPSLA ’13, pages 641–660. ACM, 2013.

[15] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann. What makes a good bug report?
SIGSOFT ’08/FSE-16, pages 308–318.

[16] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim.
Extracting structural information from bug reports.
MSR’08.

[17] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim.
Duplicate bug reports considered harmful... really? pages
337–345, Sept 2008.

[18] S. Davies and M. Roper. What’s in a bug report? ESEM
’14, pages 26:1–26:10.

[19] M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah.
Works for me! characterizing non-reproducible bug reports.
MSR 2014, pages 62–71.

[20] Ericsson. Ericsson mobility report.
http://www.ericsson.com/res/docs/2014/ericsson-mobility-
report-november-2014.pdf.

[21] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas,
K. Moran, and D. Poshyvanyk. Mining android app usages
for generating actionable gui-based execution scenarios. In
12th Working Conference on Mining Software Repositories
(MSR’15), to appear, 2015.

[22] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An
input generation system for android apps. ESEC/FSE’13,
pages 224–234.

[23] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and
D. Poshyvanyk. Auto-completing bug reports for android
applications. ESEC/FSE’15, pages 673–686. ACM.

[24] G. Tassey. The economic impacts of inadequate
infrastructure for software testing. Technical report,
National Institute of Standards and Technology, 2002.

4

http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/uiautomator/index.html
https://code.google.com/p/android-apktool/
https://bugzilla.mozilla.org
https://code.google.com/p/dex2jar/
https://f-droid.org/
https://github.com/features
https://code.google.com/p/support/wiki/IssueTracker
https://github.com/kwart/jd-cmd
https://www.atlassian.com/software/jira
https://www.mantisbt.org
http://www.srcml.org

	Introduction
	The FUSION Reporting Tool
	FUSION Architecture
	Static Analysis
	Dynamic Analysis

	Reporting Bugs with FUSION
	Report Generator User Interface
	Report Generator Auto-Completion Engine
	Viewing FUSION Reports

	Evaluation
	Demo Remarks and Future Work
	References

