
CrashScope: A Practical Tool for Automated
Testing of Android Applications

Kevin Moran1, Mario Linares-Vásquez2, Carlos Bernal-Cárdenas1, Christopher Vendome1, and Denys Poshyvanyk1
1College of William & Mary, Williamsburg, VA, USA

2Universidad de los Andes, Bogotá, Colombia
kpmoran@cs.wm.edu, m.linaresv@uniandes.edu.co, {cebernal, cvendome, denys}@cs.wm.edu

Abstract—Unique challenges arise when testing mobile appli-
cations due to their prevailing event-driven nature and com-
plex contextual features (e.g. sensors, notifications). Current
automated input generation approaches for Android apps are
typically not practical for developers to use due to required
instrumentation or platform dependence and generally do not
effectively exercise contextual features. To better support de-
velopers in mobile testing tasks, in this demo we present a
novel, automated tool called CRASHSCOPE. This tool explores a
given Android app using systematic input generation, according
to several strategies informed by static and dynamic analyses,
with the intrinsic goal of triggering crashes. When a crash is
detected, CRASHSCOPE generates an augmented crash report
containing screenshots, detailed crash reproduction steps, the
captured exception stack trace, and a fully replayable script
that automatically reproduces the crash on a target device(s).
Results of preliminary studies show that CRASHSCOPE is able to
uncover about as many crashes as other state of the art tools,
while providing detailed useful crash reports and test scripts
to developers. Website: www.android-dev-tools.com/crashscope-
home Video url: https://youtu.be/ii6S1JF6xDw

Index Terms—Android; automated testing; crash reports

I. INTRODUCTION

Proliferation in the mobile hardware and application market-
place is increasingly driven by a user base who prefers to carry
out computing tasks in the convenient setting of a smartphone
or tablet. However, the gesture-driven nature of mobile apps
has given rise to new challenges encountered by programmers
during development and maintenance, specifically with regard
to testing and debugging [6]. One of the most difficult [3] and
important maintenance tasks is the creation and resolution of
bug reports [5]. Reports concerning application crashes are of
particular importance to developers, because crashes represent
a severe fault that is directly user facing and immediately
impacts an app’s usability. If an app is not behaving as
expected due to crashes, missing features, or other bugs, nearly
half of users will likely to abandon the app for a competitor
[2] in a marketplace such as Google Play. Therefore, to ensure
their app’s success, developers need automated support to
uncover, reproduce, and fix crashes.

While significant progress has been made in the area of
testing and automatically generating inputs for mobile appli-
cations, the available tools generally exhibit some noteworthy
limitations: (i) previous approaches lack the ability to provide
detailed, easy-to-understand testing results for faults discov-
ered during automatic input generation, leaving the developer

to sort through and comprehend stack traces, log files, and
non-expressive event sequences [4]; (ii) most approaches for
automated input generation are not practical for developers,
typically due to instrumentation or difficult setup procedures.
This is affirmed by the fact developers typically prefer manual
over automated testing approaches [7]; (iii) no approach com-
bines different GUI-exploration strategies, targeted testing of
contextual features, and multiple policies for user text input in
a single holistic approach. These shortcomings contribute to
the low adoption rate of automated testing approaches and the
preference of manual and scripting based testing techniques.

Motivated by these current issues developers face in adopt-
ing automated testing tools in their workflow, we designed and
implemented CRASHSCOPE, a practical system that automat-
ically discovers, reports, and reproduces crashes for Android
applications. CRASHSCOPE explores a given app according
to a set of several input generation strategies and produces
expressive crash reports with explicit steps for reproduction
in an easily readable natural language format. This approach
requires only an .apk file (and optionally source code) and
an Android emulator or device to operate and does not rely
on instrumentation of the subject apps or the Android OS.
The entirety of the CRASHSCOPE workflow is automated,
requiring no developer intervention, other than reading pro-
duced reports. The differing exploration strategies supported
by our tool are aimed at eliciting crashes from Android apps
and include automatic text generation capabilities based on
the context of allowable characters for text entry fields, and
targeted testing of contextual features, such as the orientation
of the device, network interfaces, and sensors. We specifically
tailored these features to test the common causes of app
crashes as identified by previous studies [8], [11]. During exe-
cution, CRASHSCOPE captures detailed information about the
subject app, such as the inputs, screenshots, GUI information,
exceptions, and crashes. This information is then translated
into detailed crash reports and replayable scripts, drastically
reducing the burden on developers attempting to fix faults.

II. THE CRASHSCOPE AUTOMATED TESTING TOOL
CRASHSCOPE addresses the general limitations of existing

tools in several ways that illustrate the novelty of the approach:
(i) CRASHSCOPE is able to automatically generate expressive
bug reports (and replayable scripts) for exceptions or crashes
uncovered; (ii) the approach is practical requiring only an



CrashScope 
Database

Static Analysis
(Contextual 

Feature 
Extraction)

GUI-Ripping 
Engine

Pool of Physical Devices or Virtual Android Devices

.apk app 
srcor

Upload
Android App

& Specify Strategies

Report 
Generation

Crash Execution 
Script Generator

Crash-Execution 
Script Replayer

1

Web Application Back-End (Execution Engine)

Detailed Crash 
Report

2

4

5

3

6

7

Java Web App Java Web App

CouchDB
(Message Bus)

P
o

lli
n
g

 f
o

r 
Ta

sk
s

Json

E
xe

c
u
tio

n
 R

e
su

lts

Js
o

n

Js
o

n

Json

adb 
script

Fig. 1. CRASHSCOPE Design

.apk file to operate; (iii) the exploration strategies enable
targeted testing of contextual features and adaptive text input
generation; and (iv) the tool is app-crash-resilient; it can detect
a crash and continue testing the unvisited components and
states of the GUI after handling the crash. CRASHSCOPE’S tar-
get user base is mobile application developers and testers who
wish to incorporate a practical automated testing tool into
their workflow. To make the tool easy to use and to allow
for efficient integration into a typical developer’s workflow
we have developed a could-based Java Web application which
encapsulates the CRASHSCOPE tool. This web application
includes an Execution Engine back-end, which performs the
static and dynamic analyses required for testing, and a user-
friendly front-end making it easy to submit apps for testing.
This architecture ensures the flexibility, scalability, and exten-
sibility of CRASHSCOPE as a web-based tool.

A. CrashScope Design

The overall architecture of CRASHSCOPE is illustrated in
Figure 1. The first step in the workflow of the tool is to submit
an application for testing by using the New Task form of the
web application to upload an app .apk file (and optionally src
code) and choose the configuration of strategies that CRASH-
SCOPE will use to explore the app. Once the task has been
initiated by the developer the progress can then be viewed in
the Testing-Dashboard (Figure 2). On the Testing-Dashboard
page a developer can view submitted tasks and execution
progress of those currently running (e.g. bottom portion of
Fig. 2). Additionally, statistics, including the running time,
app information and # of crashes discovered, for completed
tasks can be viewed (e.g. top portion of Fig. 2). After a
task is initiated, the web app sends the task information,
including the .apk file, to an instantiation of CouchDB
(acting as a message queue) through a json document. The

Fig. 2. CRASHSCOPE Web App Experiments Dashboard

backend Execution Engine periodically polls for new tasks
on the queue, initiating the testing process when a message
is received. The first step the Execution Engine performs in
the testing process is static analysis of the submitted app
to identify contextual features (Figure 1- 1 ). To do this it
either utilizes the user-uploaded source code of the app, if
it was provided, or attempts to decompile the app using a
combination of tools1. It then detects Activities (e.g. screens)
that are related to contextual features in order to target the
testing of such features. In other words, CRASHSCOPE will
only test contextual app features (e.g., network on/off) if it
identifies feature instances in app code (Sec. II-B).

Next, the GUI Ripping Engine (Figure 1- 2 ) systematically
executes the app using the user-specified combination of
strategies (Section II-E), including enabling and disabling the
contextual features (if run on an emulator) at the pertinent
screens identified by static analysis. If during the execution,
uncaught exceptions are thrown, or the app crashes, dynamic
execution information is saved to CRASHSCOPE’s database
(Figure 1- 3 ), including detailed information regarding each
event (e.g. touch-event, text entry, sensor value change) per-
formed during the systematic exploration. This execution can
be carried out on a large number of concurrently running
physical devices or Android Virtual Devices (AVDs) which
are instantiated using android-x86 images and VirtualBox.

After the execution data has been saved to the CRASH-
SCOPE database, the Natural Language Report Generator
(Figure 1- 4 , Section II-F) parses the database and processes
the information for each event of all execution sequences that
ended in a crash, and sends this information via json back to
CouchDB. Then the Java web app generates an HTML based
natural language crash report with expressive reproduction
steps (Figure 1- 6 ) for the user. In addition, the Crash Script
Generator (Figure 1- 5 , Section II-G) parses the database and
extracts the relevant information for each step in a crashing
execution in order to create a replayable script containing adb
input commands and markers for contextual state changes.
The Script Replayer (Figure 1- 7 , Section II-G) is a small
Java program that is able to replay these scripts.

B. Extracting Activity and App-Level Contextual Features

CRASHSCOPE uses Abstract Syntax Tree (AST) based
analysis to extract the API-call chains that are involved in

1apktool, dex2jar and jd-cmd



invocations of contextual features. In particular, it detects
Android API calls related to network connectivity and sensors
(i.e., Accelerometer, Magnetometer, Temperature Sensor, and
GPS). Because the API calls might not be executed directly
by the code associated with a class implementing an Activity
(which comprises a screen in Android), CRASHSCOPE per-
forms a call-graph analysis to extract paths ending in a method
invoking a contextual API. Because certain API calls may
not be traceable through a back-propagated call-chain (e.g.,
sensors or network connectivity implemented as a service),
CRASHSCOPE employs two granularities for testing contextual
features: activity (screen-) level and app-level. If the API
analysis idicates that an app implements a certain contextual
feature, but this feature is not able to be linked back to
a particular screen by call-chain analysis, then the feature
is tested at the “app-level” or at each screen of the app.
Rotatable screens are located through analysis of an app’s
AndroidManifest.xml file.

C. Exploration of Apps & Crash Detection

To explore an app, CRASHSCOPE dynamically extracts the
GUI hierarchy of each app screen as it is visited during ex-
ploration (using uiautomator) and identifies the clickable
and long-clickable components to execute, as well as available
components for text inputs (e.g., EditText boxes). The (long-)
clickable components and are added to a dynamic component-
stack as they are observed on each screen, and executed
according to the order of the stack. Currently, the Ripping
Engine supports the tap, long-tap, and type events. If text entry
fields are available in a particular app screen, then each text
box is filled in before each (long-) clickable component on
the screen is exercised. Additionally, each transition from one
unique activity to another is recorded in a transition graph
along with the events that led to transition. The component
and transition graph allow CRASHSCOPE to build an accurate
real time model of the app during execution.

Text entry from the user is a major part of functionality in
many Android apps, therefore, CRASHSCOPE’s GUI Ripping
Engine employs a unique text input generation mechanism.
CRASHSCOPE detects the type of text expected (e.g., phone
#, email address) by a text field, by querying the keyboard
type associated with the text field [1] using the adb shell
dumpsys input_method command. Once the type of ex-
pected input is detected, CRASHSCOPE employs two hueristics
to generate text inputs: expected and unexpected. The ex-
pected hueristic generates a string within keyboard parameters
without any punctuation or special characters, whereas the
unexpected heuristic generates random strings with all of the
allowable special characters for a given keyboard type.

In addition to the text input generation strategies, CRASH-
SCOPE can generate touch inputs according one of several
GUI-exploration strategies. Currently, the tool traverses the
GUI hierarchy in a depth-first-like manner either from the
bottom of the hierarchy up or from the top of the hierarchy
down (controlled by the order components are placed on the
component stack). The rationale for having two such strategies

is to generally mimic what a user would do (i.e., executing
GUI events without a predefined order). However, CRASH-
SCOPE is extensible to other types of exploration approaches
including random-based or biased-random approaches. To
detect and capture exceptions, CRASHSCOPE filters the logcat
for uncaught exceptions related only to the app being tested.
To detect crashes, CRASHSCOPE checks for the appearance of
the standard Android crash dialog. If a crash is encountered,
the execution information is logged to the database. However,
because the GUI-Ripping Engine maintains a transition graph
and stack of unvisited components, the execution can continue
towards remaining program paths.
D. Testing Apps in Different Contextual States

When GUI-Ripping begins, CRASHSCOPE first checks for
app-level contextual features that should be tested according
to the exploration strategy. As each activity is visited, the
GUI-Ripping Engine checks if contextual features should be
enabled/disabled and sets feature values according to the
current strategy. The testing of contextual features works only
on emulators or AVDs using telnet commands. While the
telnet commands do support turning on/off the network for an
emulator, they do not support the enabling/disabling of sensors
(Accelerometer, Magnetometer, GPS, Temperature Sensor),
but it is possible to mock values for these sensors. Therefore,
to test for sensor related features in adverse conditions, the
network connection is disabled, and unexpected (e.g. highly
infeasible) values are set for the other sensors such as the
GPS and Gyroscope.
E. Multiple Execution Strategies

One of CRASHSCOPE’S most powerful features is its ability
to explore an app according to several different strategies
through combinations of its various supported testing features.
These strategies stem from three major feature heuristics:
1) the GUI-traversal strategy (e.g. dfs-top-down, dfs-bottom-
up, or random-based), 2) the method by which inputs are
generated for user text entry fields (no text, expected text, un-
expected text), and finally, 3) enabling or disabling the testing
of adverse contextual states (e.g., if an activity is found to have
utilized the network, should it be turned on or off?). Different
combinations of these strategies have the potential to uncover
different types of app crashes. By running an app through
all combinations of these three feature heuristics in different
strategies, CRASHSCOPE can effectively test for different types
of commonly inducible crashes. These strategies can also
be parallelized by running several combinations for an app
concurrently on a group or a cloud of emulator instances (e.g.
using the Execution Engine) further reducing testing overhead.
F. Generating Expressive, Natural Language Crash Reports

CRASHSCOPE generates a Crash Report (Figure 1- 6 ) that
contains four major types of information: 1) general infor-
mation including the app name and version, the version of
the Android OS, a legend of icons that indicates the current
contextual state of the app in the reproduction steps, the
device, and the screen orientation and resolution when the
crash occurred; 2) natural language sentences that describe the



Fig. 3. Example CRASHSCOPE Report

steps to reproduce a crash using detailed information about the
GUI events and contextual states for each step (Figure 3); 3) an
app’s screen flow that highlights the component interacted with
on each screen in the execution scenario for a particular crash;
(4) a pruned stack trace containing only the app exceptions that
occurred during execution. Once the execution engine reports
that all strategies for a submitted task are completed, it sends
a message to CouchDB via json. The message is retrieved
by the Java Web App and the results and crash reports for the
current task are made viewable in the crash-report page.

G. Generating & Replaying Reproduction Scripts
The Crash Script Generator (Figure 1- 5 ), parses the saved

execution information from the CRASHSCOPE database and
generates replayable scripts containing adb input com-
mands for touch and text inputs and markers for changes
in contextual states. The scripts are generated by parsing the
database for all of the GUI events associated with each step in
a particular execution. Then, the coordinates of each compo-
nent that were recorded during the systematic exploration of
the app are parsed and the center coordinates are extrapolated
based on each component’s size. These coordinates are used
to generate adb input commands to reproduce the GUI
event. This approach relies on our previous work in replaying
events of test sequences in Android apps [9]. The scripts can
be replayed by the Script Replayer (Fig. 1- 7 ), a small java
program that takes the recorded script as input, and replays the
adb commands and state change markers (e.g. “WiFi off”).

III. EVALUATION

To evaluate CrashScope (See full details in [10]), we
performed two empirical studies aimed at investigating both
the crash-finding ability of the tool, as well as the repro-
ducibility and readability of the generated reports. First, in the
Crash Discovery Study, we compared CRASHSCOPE against
4 state-of-the-art automated input generation tools for An-
droid (and the standard Monkey tool) on 61 open source
subject applications by utilizing a subset of subject apps and
tools available in the Androtest testing suite [4]. Second,
in the Crash Report Study we evaluated the reproducibility

and readability of the natural language reports generated by
CRASHSCOPE compared to human written reports found in
online issue trackers. In this study we extracted 8 real-world
crash reports from online issue trackers linked to apps on
the F-Droid open source marketplace, for which CRASH-
SCOPE was able to generate a report. Then 16 graduate student
participants attempted to reproduce a total of 8 bug reports (4
from CRASHSCOPE and 4 from the online issue trackers) and
subsequently answered survey questions about the two types of
anonymized bugs reports. The results of these studies indicate
that (i) CRASHSCOPE is about as effective at uncovering
crashes as other state of the art automated input generation
tools for Android while reducing the number of false positives
due to instrumentation required of other tools and (ii) reports
generated by CRASHSCOPE are as reproducible as human
written reports and are more readable and useful from a
developer’s perspective.

IV. DEMO REMARKS AND FUTURE WORK
In this demo, we presented CRASHSCOPE, a novel im-

plementation of a practical automated testing approach for
Android applications. Our tool overcomes several shortcom-
ings of previous approaches by (i) leveraging static analysis
to locate and test contextual features in a targeted manner;
(ii) exploring an app using several different combinations
of strategies; (iii) generating highly useful crash reports and
replayable test scenario scripts. In the future, we aim to
investigate techniques to trim bug reports to only necessary
steps and improve our systematic exploration strategy by
adapting promising emerging approaches in model-based GUI
testing and static analysis. Additionally, we aim to distribute
CRASHSCOPE to the broader Android development commu-
nity and evaluate its usefulness.

REFERENCES

[1] Android inputtype specifications https://developer.android.com/
reference/android/widget/TextView.html#attr android:inputType.

[2] Mobile apps: What consumers really need and want https://info.
dynatrace.com/rs/compuware/images/Mobile App Survey Report.pdf.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann. What makes a good bug report? SIGSOFT ’08/FSE-16, pages
308–318, New York, NY, USA, 2008. ACM.

[4] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation
for android: Are we there yet? In (ASE 2015), 2015.

[5] Z. Gu, E. Barr, D. Hamilton, and Z. Su. Has the bug really been fixed?
In ICSE’10, volume 1, pages 55–64, May 2010.

[6] M. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile
app development. In ESEM’13, pages 15–24, Oct 2013.

[7] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo.
Understanding the test automation culture of app developers. In ICST’15.

[8] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson,
H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao. Caiipa:
Automated large-scale mobile app testing through contextual fuzzing.
MobiCom ’14, pages 519–530, New York, NY, USA, 2014. ACM.

[9] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and
D. Poshyvanyk. Mining android app usages for generating actionable
gui-based execution scenarios. In MSR’15, page to appear, 2015.

[10] K. Moran, M. Linares-Vsquez, C. Bernal-Crdenas, C. Vendome, and
D. Poshyvanyk. Automatically discovering, reporting and reproducing
android application crashes. In ICST’16, pages 33–44, April 2016.

[11] R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation of
oracles for testing user-interaction features of mobile apps. ICST ’14,
pages 183–192, Washington, DC, USA, 2014. IEEE Computer Society.


