
GEMMA: Multi-objective Optimization of Energy
Consumption of GUIs in Android Apps

Mario Linares-Vásquez1, Carlos Bernal-Cárdenas2, Gabriele Bavota3
Rocco Oliveto4, Massimiliano Di Penta5, Denys Poshyvanyk2

1Universidad de los Andes, Bogotá, Colombia
2The College of William and Mary, Williamsburg, VA, USA

3Università della Svizzera italiana, Lugano, Switzerland
4University of Molise, Pesche (IS), Italy
5University of Sannio, Benevento, Italy

Abstract—This tool demonstration describes GEMMA, a tool
aimed at optimizing the colors used by Android apps, with
the goal of reducing the energy consumption on (AM)OLED
displays while keeping the user interface visually attractive
for end-users. GEMMA has been developed as a distributed
architecture to ensure scalability. It is composed of a Web-based
client and processing nodes that are capable of analyzing multiple
requests (apps) concurrently. The underlying approach makes
use of power models, color theory, and multi-objective genetic
algorithms. The empirical evaluation of GEMMA indicated its
ability to reduce energy consumption while producing color
combinations pleasant enough for the users. Also, a qualitative
analysis conducted with app developers highlighted the potential
applicability of the tool in an industrial context.
VIDEO: https://www.youtube.com/watch?v=k-5ReMVwK0c

I. INTRODUCTION

Mobile applications are playing a crucial role in everyday
peoples’ life, and, because of the features they offer, they
are becoming more demanding in terms of required com-
putational resources and, ultimately, energy. Reducing apps’
energy consumption is important to improve the mobile device
battery duration, and avoid undesirable “running out of battery”
situations when the device is needed. In recent and past years,
researchers have investigated the major causes for energy
consumption, including energy bugs [1]–[4] energy greedy
APIs [5], [6], and other aspects such as the impact of code
obfuscation [7], adds [8], and HTTP requests [9].

Moreover, some hardware components play a major role in
the energy consumption such as the GPS, WiFi, phone module,
and the device’s display. Concerning the latter, there are two
categories of displays, the Liquid-Crystal Display (LCD) ones,
for which the energy consumption is almost constant and it
does not depend on the colors displayed on the screen, and
the Organic Light-Emitting Diode (OLED) or Active-Matrix
OLED (AMOLED) displays, for which darker colors ensure
lower energy consumption. In recent years, some authors have
proposed approaches to optimize color palettes for both Web
apps [10], and mobile apps in general [11], [12], when running
on OLED displays. While such approaches produce solutions
successfully reducing energy consumption, the color palettes
might not be as appealing as the original one, and in general,
might deviate from the developers’ original choices. Also, the

optimization does not take into account the amount of time
different screens are being shown during the app’s usage and
the resulting designs are not consistent across several GUIs in
the same app.

In this paper we describe the architecture, implementa-
tion, and usage of GEMMA(Gui Energy Multi-objective
optiMization for Android apps), a novel tool for generating
color compositions for Android apps that reduce energy
consumption and are also visually attractive. GEMMA is
based on power models, pixel-based engineering, color theory,
dynamic analysis, and multi-objective optimization, to produce
a Pareto-optimal set of design solutions (i.e., GUI color
compositions) across three different objectives: (i) reducing
energy consumption, (ii) increasing contrast, and (iii) improving
the attractiveness of the chosen colors by keeping the palette
close to the original one. Further details about the approach
behind GEMMA can be found in a previously published
technical paper [13].

In our original research paper [13] the approach was imple-
mented as a command line-based pipeline of Java programs
and scripts, that worked in a single thread mode. Hereby, we
describe the implementation of GEMMA as a distributed,
cloud-based architecture, composed of (i) Web clients from
which the user can upload an app with screens that need to be
optimized, (ii) processing nodes in which the APK is analyzed,
the apps are executed over a pool of emulators using systematic
exploration, and in which screens are optimized using the
GEMMA’s approach; and (iii) a NoSQL engine supporting
asynchronous communication between clients and processing
nodes. Noticeably, GEMMA’s architecture is designed to
achieve horizontal scalability with the possibility of replicating
processing nodes.

II. GEMMA’S IMPLEMENTATION

This section describes GEMMA’s underlying approach,
architecture and implementation details.

A. Architecture
GEMMA’s architecture is outlined in Fig. 1. GEMMA is

composed of three main components: (i) the user interface im-
plemented as a Web client, (ii) the Execution Engine (EE) that



Dispatcher

Worker

Task

Emulator/
Thread
token

Task, Emulator/
Thread token

Task status,
response

Task status

SEMERU Framework: 
- APK Analyzer 
- Data Collector 
- Emu-Droid 
- GEMMA optimizer

<<invokes>>GEMMA Web 
Client

CouchDB 
node (Bus)

Local DB

JSF/JSP, JQuery, 
Bootstrap, AJAX

Servlet, Backing Beans, 
POJOs

Data Access (JPA, 
POJOS, Couch DB 

Broker)

Request 
(i.e., new Task)

Public Web folder Public images, 
files, etc.Public images, 

files, etc.

Response (i.e., 
Task results 
and status)

Execution Engine (EE)

EE Settings

Emulator 
Threads pool

Background 
Threads pool

Fig. 1. Architecture of the GEMMA Web Client and the Execution Engine.

executes the requests for GUI optimizations, and (iii) a NoSQL
database enacting asynchronous communication between the
Web client and the EE. The GEMMA’s architecture has been
designed with the following design drivers in mind:

• Asynchronous and decoupled communication between the
clients and the processing nodes. This is in particular
important because some GEMMA tasks (e.g., genetic
algorithm execution) might be lengthy and computationally
intensive;

• Hybrid storage strategy: NoSQL document-oriented stor-
age for the requests and EE tasks, and independent
relational databases for the client. Images and files
generated by the EE, that are rendered/painted in the
client afterwards, are stored in a public Web folder;

• Potential horizontal-scalability, by clustering/sharding at
the DB level (provided by the DB engine), and potential
load balancing at the EE level. Both design decisions will
allow scalability of the EE;

• Vertical scalability, achieved by pools of background
threads and emulator threads, and queues of tasks. The
latter is used to keep the tasks requests from the clients;

• Data privacy: The EE should not store any information
of the tasks or the proposed solution after completing the
optimization.

We decided to use a “Message Bus" architectural style—
without relying on a bus implementation such as OpenESB [14]
or a message broker like RabbitMQ [15]—to achieve loose
coupling and asynchronous calling between clients and the
EE while keeping the possibility of horizontal scalability. In
particular, we used a NoSQL database management system,
namely CouchDB [16], as the “bus”, which contains a queue
of requests to be executed by the EE, and a collection of
tasks with all their attributes and corresponding statuses. The
Message Bus style allows for easy addition of new clients
and EEs to the whole infrastructure. Also, CouchDB: (i)
provides us with a REST-based interface that allows for easy
connection/invocation from any type of client (i.e., it is not
coupled to specific languages or drivers), (ii) stores documents
in JSON format, which promotes data-model freedom when
extending the execution engine to support more processing
tasks, (iii) provides replication/clustering features for horizontal
scalability, and (iv) is easy to deploy on any operating system.

B. The GEMMA Web Client

Android developers and GUI designers can access
GEMMA’s features by means of a Web client. The goal
of the Web client is to provide users with an easy way to:
(i) request the execution of GEMMA tasks in the EE for
optimizing the energy consumption of the GUIs in target apps,
(ii) explore the Pareto front of solutions generated by GEMMA,
and (iii) visualize the differences of the proposed solutions in
terms of energy savings, contrast improvement, distance from
the original design, and color palettes. A request is a set of
attributes describing the optimization task, e.g., APK to analyze,
task name, number of GUIs to analyze. Therefore, the requests
for optimizations are saved by the Web client in the CouchDB
engine as JSON documents. The APKs of each request are
stored in the CouchDB engine by using its “attachments"
feature [17]. Then, when the request is dispatched by the EE to
an internal worker (more details later), the request is removed
from the CouchDB engine, and a document is created for the
task with all the information generated during the processing
(e.g., status, solutions, energy improvements). The Web client
checks on demand for updates of the tasks running on the
EE, and locally updates the status of the non-finished tasks.
When tasks are complete, all task info is synchronized locally
(i.e., copied to the local DB) and removed from the CouchDB
engine.

As far as technologies used and implementation details are
concerned, the GEMMA’s client is a Java Web application
relying on Java Server Faces, Bootstrap, and JQuery for the
presentation layer. The Web client uses a local MySQL database
to store the information of the tasks once they are processed by
the Execution Engine. The data access layer is realized using
the EclipseLink implementation of JPA. The communication
between presentation and data access layers is done with a
Servlet, backing beans (JSF), and POJOs.

C. The GEMMA Execution Engine

The Execution Engine (EE) is the heart of GEMMA. The EE
is in charge of executing the optimization tasks. In particular,
the EE: (i) automatically executes the APK on a virtual device
by using systematic exploration similarly to what has been
done in previous work [18], [19]; (ii) selects the GUIs to
optimize according to the number of GUIs requested by the
user and an execution time-based heuristic (i.e., the GUIs are
ranked according to the number of visits during the systematic
exploration)1; (iii) analyzes the selected snapshots (i.e., GUI
screenshot and GUI hierarchy tree) to identify GUI components,
containers, and salient colors on the components; (iv) builds
the data structures required for the Genetic Algorithm (GA)
execution [13]; (v) executes the multi-objective GA; and
finally (vi) saves the results to the CouchDB client and copies
screenshots illustrating the suggested color compositions into
a folder that can be accessed by the Web client.

1Note that conversely to our original approach [13] in which users selected
manually the GUIs to analyze, GEMMA Web automatically detects the salient
GUIs.



The EE runs as a Java daemon that queries the requests in the
“bus”, and then dispatches the requests to workers (i.e., the units
in charge of running GEMMA’s tasks) following a FIFO policy.
During the dispatching process, the EE verifies the availability
of free Emulators and background threads. If no emulators or
threads are available in the EE, the dispatcher keeps the tasks on
queue. Otherwise, the task is assigned to a worker that requires
one background thread and one emulator. Once a worker is
dispatched with a task, an emulator, and a thread, start to run
(asynchronously) the GEMMA tasks listed before. During
the execution, the workers update the status of the assigned
tasks directly to the “bus”, and after completion, the generated
artifacts (i.e., solutions) are updated in the task document (in
the CouchDB engine), and the solution screenshots are copied
into a public Web folder. Note that, because there are no
synchronous messages between the workers and the Web client
notifying when a task is finished, the clients should query
the “bus” and synchronize their local databases to reflect the
responses/results generated with each task. The workers rely
on components (i.e., APK-Analyzer, Data-collector, Emu-droid,
and the GEMMA’s optimizer) previously developed by the
authors for static and dynamic analysis of Android apps and
used in previous work [13], [18], [19].

The GEMMA’s optimizer, thoroughly described in our
previous paper [13]—is based on a multi-objective GA,
and namely a Non-Dominated Sorting Genetic Algorithm-
II (NSGA-II) [20], implemented in the jMetal library [21].
The GA generates Pareto-fronts of solutions while optimizing
the following objectives: (i) energy consumption, estimated
through regression models, (ii) contrast between adjacent
component (a minimum contrast value is also added as
problem constraint), and (iii) color distance with respect to the
original color composition. The algorithm produces solutions
considering, as available colors, the original ones, black, white,
and sets of colors achieving equidistant harmony. Noticeably,
the fitness function weights the energy consumption of each
app screenshot based on the estimated proportion of time it
is being displayed during an usage scenario. Also, colors are
changed consistently (e.g., all yellow components are painted
blue) to ensure a pleasant and consistent result across the GUIs
in a target app.

III. GEMMA ON ACTION

After logging, a user can (i) request for a new GEMMA task,
(ii) check the status of her requests/tasks, or (iii) check the so-
lutions generated for a finished GEMMA task. GEMMA web
client has a form for submitting a new request that includes (i)
the name of the “request”, (ii) the name of the app, (iii) the
APK to analyze, and (iv) the number of GUIs to analyze in
the APK. After a request is submitted, the user can check the
status of the execution on the GEMMA EE. Fig. 2 depicts the
window in GEMMA for listing the requests, which groups
finished and unfinished tasks. For example, the list of requests in
Fig. 2 shows that the user “Carlos Bernal” has three unfinished
requests for the apps Diabetes Plus, Walmart, and Fit Brains
Trainer, and one finished task for Learn Music Notes. For

Fig. 2. User requests (i.e., GEMMA tasks) in the GEMMA web client.

Fig. 3. Dashboard of GEMMA’s solutions for the Learn Music Notes app.

the unfinished requests, the web client shows that one is still
waiting for dispatching (i.e., “Waiting for thread”), another is
in execution mode and running the “Systematic Exploration",
and the last one is on “Running: Genetic Algorithm”. If
errors/exceptions occur during processing, the status of the
request is set to “Error” with a link to the complete description
of the error. The list of requests is updated on-demand,
whenever the user refreshes the window.

For finished tasks, GEMMA has a link to the name of the
corresponding app, which leads to the details of the generated
solutions (dashboard). The GEMMA dashboard, depicted in
Fig. 3, includes the following visual artifacts: (i) A 3D Pareto
front chart (navigable) with the optimized solutions; (ii) color
palettes of the original design and a specific solution selected on
the Pareto front; (iii) an image of the visual appearance of the
selected solution; and (iv) a gauge-style visualization comparing
a solution to the original design of the three optimization
objectives (i.e., energy, total contrast of the GUI components,
and distance to the original design). The Pareto front (Fig. 4)
uses a 3D space to plot the energy consumption of the solutions
in the x-axis, the contrast in the y-axis, and the distance to
original design in the z-axis. The Pareto front also shows the
original design using a sun marker. For example, Fig. 4 depicts
the results of a real execution of GEMMA for the Learn Music
Notes app, in which 20 solutions were generated.

When a user moves the mouse pointer over a solution in the
Pareto front, GEMMA displays a contextual window (Fig. 4)
listing the values of the solution for energy consumption,
contrast, and distance from the original design. In addition,
when clicking on a solution, GEMMA updates the other visual
artifacts in the dashboard, to plot the information corresponding
to the selected solution. The Pareto front can be downloaded
as an image. Further details of GEMMA on action can be



Fig. 4. Pareto Front (top) and gauge style visualizations (bottom) in
GEMMA for solutions of the Learn Music Notes app.

seen in the video accompanying this paper.

IV. EVALUATION SUMMARY

We empirically evaluated the energy savings that could be
achieved by running Android apps when adopting the GUI color
design recommended by GEMMA (RQ1), the colorfulness
of the GUIs that GEMMA produces as assessed by mobile
apps users (RQ2), and GEMMA’s suitability in an industrial
context, when applied to minimize GUI energy consumption
of existing commercial apps (RQ3).

RQ1. We applied GEMMA on 25 apps and we measured the
energy consumption, the contrast ratio, and the distance from
the original design of the solutions it generated. On average,
the solutions having the lowest consumption resulted in a mean
energy saving of 66% while also improving the contrast ratio
of the original design (+16% on average).

RQ2. We involved 85 app users asking for their opinion
about the look and feel of the original GUIs and of the GUIs
generated by GEMMA for the same set of 25 previously
mentioned apps. Users expressed a slight preference toward
the original design. While this result was quite expected (i.e.,
minimizing energy does have a cost in terms of visual aesthetics
as perceived by users), the solutions generated by GEMMA and
representing a compromise between the three objectives (e.g.,
the solutions having the median value for energy consumption
among the generated ones) were quite appreciated by the users.

RQ3. We conducted semi-structured interviews with the
project managers of the three software companies. We ran
GEMMA on five apps developed by the three companies
and asked for their feedback about the solutions generated by
GEMMA. The interviews indicated that the three managers are
ready to account for GEMMA’s recommendations in future
app releases.

Further details about the GEMMA’s evaluation are available
in our previous research paper [13].

V. CONCLUSION

We presented GEMMA, a Web-based tool for generating
color compositions for Android apps able to reduce the energy

consumption while being visually attractive. GEMMA has
been implemented as a distributed, cloud-based architecture
ensuring high scalability and extensibility.

Results of our evaluation [13] showed GEMMA’s ability
to generate energy-saving color compositions that are also
acceptable from the end users’ perspective. Also, a qualitative
evaluation conducted with three managers of app development
companies, indicated the applicability of GEMMA in a real
development context.

Future work will be mainly devoted to the GEMMA’s
dissemination and extensive evaluation in the Android devel-
opment community.

REFERENCES

[1] A. Pathak, A. Jindal, Y. Hu, and S. P. Midkiff, “What is keeping my
phone awake? characterizing and detecting no-sleep energy bugs in
smartphone apps,” in MobiSys’12, 2012, pp. 267–280.

[2] Y. Liu, C. Xu, and S. C. Cheung, “Where has my battery gone?
finding sensor related energy black holes in smartphone applications,” in
PerCom’13, 2013, pp. 2–10.

[3] J. Zang, A. Musa, and W. Le, “A comparison of energy bugs for
smartphone platforms,” in MOBS’13, 2013.

[4] Y. Liu, C. Xu, S. Cheung, and J. Lu, “GreenDroid: Automated diagnosis
of energy inefficiency for smartphone applications,” IEEE TSE, vol. 40,
no. 9, pp. 911–940, 2014.

[5] A. Pathak, Y. Hu, and M. Zhang, “Where is the energy spent inside my
app? Fine grained energy accounting on smartphones with Eprof,” in
EuroSys’12, 2012, pp. 29–42.

[6] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di
Penta, and D. Poshyvanyk, “Mining energy-greedy API usage patterns
in Android apps: an empirical study,” in MSR’14, 2014, pp. 2–11.

[7] C. Sahin, M. Wan, P. Tornquist, R. McKenna, Z. Pearson, W. G. Halfond,
and J. Clause, “How does code obfuscation impact energy usage?”
Journal of Software: Evolution and Process, vol. 28, no. 7, pp. 565–588,
2016.

[8] J. Gui, D. Li, M. Wan, and W. G. Halfond, “Lightweight measurement
and estimation of mobile ad energy consumption,” in Proceedings of the
International Workshop on Green and Sustainable Software, May 2016.

[9] D. Li, Y. Lyu, J. Gui, and W. G. Halfond, “Automated energy optimization
of http requests for mobile applications,” in Proceedings of the 38th
International Conference on Software Engineering (ICSE), May 2016.

[10] D. Li, A. H. Tran, and W. Halfond, “Making web applications more
energy efficient for OLED smartphones,” in ICSE’14, 2014, pp. 573–538.

[11] M. Dong and L. Zhong, “Power modeling and optimization for OLED
displays,” IEEE TMC, vol. 11, no. 9, pp. 1587–1599, 2012.

[12] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond, “Detecting display energy
hotspots in Android apps,” in ICST’15, 2015.

[13] M. Linares-Vásquez, G. Bavota, C. E. Bernal-Cárdenas, R. Oliveto, M. Di
Penta, and D. Poshyvanyk, “Optimizing energy consumption of GUIs in
Android apps: a multi-objective approach,” in ESEC/FSE’15, 2015.

[14] “Openesb. http://www.open-esb.net.”
[15] “Rabbitmq. https://www.rabbitmq.com.”
[16] “Apache couch db. http://couchdb.apache.org.”
[17] “Couchdb wiki - attachments. https://wiki.apache.org/couchdb/HTTP_

Document_API#Attachments.”
[18] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and

D. Poshyvanyk, “Mining Android app usages for generating actionable
GUI-based execution scenarios,” in MSR’15, 2015, pp. 111–122.

[19] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk,
“Auto-completing bug reports for Android applications,” in ESEC/FSE’15,
2015, pp. 673–686.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective Genetic Algorithm: NSGA-II,” IEEE TEC, vol. 6, no. 2,
pp. 182 – 197, 2002.

[21] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-
objective optimization,” Advances in Engineering Software, vol. 42, pp.
760–771, 2011.


