
Towards Automating Code Review Activities
Rosalia Tufano∗, Luca Pascarella∗, Michele Tufano†, Denys Poshyvanyk‡, Gabriele Bavota∗

∗SEART @ Software Institute, Università della Svizzera italiana (USI), Switzerland
†Microsoft, USA

‡SEMERU @ Computer Science Department, William and Mary, USA

Abstract—Code reviews are popular in both industrial and
open source projects. The benefits of code reviews are widely
recognized and include better code quality and lower likelihood
of introducing bugs. However, since code review is a manual
activity it comes at the cost of spending developers’ time on
reviewing their teammates’ code.

Our goal is to make the first step towards partially automating
the code review process, thus, possibly reducing the manual
costs associated with it. We focus on both the contributor and
the reviewer sides of the process, by training two different
Deep Learning architectures. The first one learns code changes
performed by developers during real code review activities, thus
providing the contributor with a revised version of her code
implementing code transformations usually recommended during
code review before the code is even submitted for review. The
second one automatically provides the reviewer commenting on a
submitted code with the revised code implementing her comments
expressed in natural language.

The empirical evaluation of the two models shows that, on the
contributor side, the trained model succeeds in replicating the
code transformations applied during code reviews in up to 16%
of cases. On the reviewer side, the model can correctly implement
a comment provided in natural language in up to 31% of cases.
While these results are encouraging, more research is needed to
make these models usable by developers.

Index Terms—Code Review, Empirical Software Engineering,
Deep Learning

I. INTRODUCTION

Code Review is the process of analyzing source code written
by a teammate to judge whether it is of sufficient quality
to be integrated into the main code trunk. Recent studies
provided evidence that reviewed code has lower chances of
being buggy [1]–[3] and exhibit higher internal quality [3],
likely being easier to comprehend and maintain. Given these
benefits, code reviews are widely adopted both in industrial
and open source projects with the goal of finding defects,
improving code quality, and identifying alternative solutions.

The benefits brought by code reviews do not come for
free. Indeed, code reviews add additional expenses to the
standard development costs due to the allocation of one or
more reviewers having the responsibility of verifying the
correctness, quality, and soundness of newly developed code.
Bosu and Carver report that developers spend, on average,
more than six hours per week reviewing code [4]. This is
not surprising considering the high number of code changes
reviewed in some projects: Rigby and Bird [5] show that indus-
trial projects, such as Microsoft Bing, can undergo thousands
of code reviews per month (∼3k in the case of Bing). Also, as
highlighted by Czerwonka et al. [6], the effort spent in code

review does not only represent a cost in terms of time, but
also pushes developers to switch context from their tasks.

Our long-term goal is to reduce the cost of code review-
ing by (partially) automating this time-consuming process.
Indeed, we believe that several code review activities can be
automated, such as, catching bugs, improving adherence to
the project’s coding style, and refactoring suboptimal design
decisions. The final goal is not to replace developers during
code reviews but work with them in tandem by automatically
solving (or suggesting) code quality issues that developers
would manually catch and fix in their final checks. A complete
automation, besides likely not being realistic, would also
dismiss one of the benefits of code review: the sharing of
knowledge among developers.

In this paper, we make a first step in this direction by using
Deep Learning (DL) models to partially automate specific code
review tasks. First, from the perspective of the contributor
(i.e., the developer submitting the code for review), we train
a transformer model [7] to “translate” the code submitted
for review into a version implementing code changes that a
reviewer is likely to suggest. In other words, we learn code
changes recommended by reviewers during review activities
and we try to automatically implement them on the code
submitted for review. This could give a fast and preliminary
feedback to the contributor as soon as she submits the code.
This model has been trained on 17,194 code pairs of Cs → Cr

where Cs is the code submitted for review and Cr is the code
implementing a specific comment provided by the reviewer.

Once trained, the model can take as input a previously
unseen code and recommend code changes as a reviewer
would do. The used architecture is a classic encoder-decoder
model with one encoder taking the submitted code as input
and one decoder generating the revised source code.

Second, from the perspective of the reviewer, given the code
under review (Cs) we want to provide the ability to automat-
ically generate the code Cr implementing on Cs a specific
recommendation expressed in natural language (Rnl) by the
reviewer. This would allow (i) the reviewer to automatically
attach to her natural language comment a preview of how the
code would look like by implementing her recommendation,
and (ii) the contributor to have a better understanding of what
the reviewer is recommending. For such a task, we adapt the
previous architecture to use two encoders and one decoder.

The two encoders take as input Cs and Rnl, respectively,
while the decoder is still in charge of generating Cr. The
model has been trained with 17,194 triplets 〈Cs, Rnl〉 → Cr.

Note that the two tackled problems are two sides of the
same coin: In the first scenario, Cr is generated without any
input provided by the reviewer, thus allowing the usage of
the model even before submitting the code for review. In the
second scenario, Cr is generated with the specific goal of
implementing a comment provided by the reviewer, thus when
the code review process has already started.

We quantitatively and qualitatively evaluate the predictions
provided by the two approaches. For the quantitative analysis,
we assessed the ability of the models in modifying the code
submitted for review exactly as done by developers during
real code review activities. This means that we compare,
for the same code submitted for review, the output of the
manual code review process and of the models (both in the
scenario where a natural language comment is provided or
not as input). The qualitative analysis focuses instead on
characterizing successful and unsuccessful predictions made
by the two models, to better understand their limitations.

The achieved results indicate that, in the contributor sce-
nario (1-encoder model), the model can correctly recommend a
change as a reviewer would do in 3% to 16% of cases, depend-
ing on the number of candidate recommendations it is allowed
to generate. When also having available a reviewer comment in
natural language (i.e., reviewer scenario, 2-encoder model), the
performances of the approach are boosted, with the generated
code that correctly implements the reviewer’s comment in 12%
to 31% of cases. These preliminary results can pave the way
to novel research in the area of automating code review.

II. USING TRANSFORMERS TO AUTOMATE CODE REVIEW

Fig. 1 shows the basic steps of our approach. In a nutshell,
we start by mining code reviews from Java projects hosted on
GitHub [8] and/or using Gerrit [9] as code review platform
(Step 1 in Fig. 1). Given a code submitted by a contributor
for review, we parse it to extract the list of methods it
contains. Indeed, in this first work on automating code reviews,
we decided to focus on small and well-defined code units
represented by methods. We identify all submitted methods
ms. Then, we collect reviewer’s comments made on each ms

by exploiting information available in both GitHub and Gerrit
linking a reviewer comment to a specific source code line. We
refer to each of those comments as rnl (i.e., a natural language
recommendation made by a reviewer). In such a phase, a set of
filters is applied to automatically discard comments unlikely
to recommend and results in code changes (e.g., “thank you”,
“well done”, etc.) (2).

If the contributor decides to address (some of) the received
rnl, this will result in a revised version of ms addressing the
received comments. We refer to such a version as mr. Both
ms and mr are abstracted to reduce the vocabulary size and
make them more suitable for DL [10]–[12] (3). To increase
the likelihood that mr actually implements in ms a specific
reviewer’s comment, we only consider ms that received a
single comment in a review round. Thus, if a revised version
of ms is submitted, we can conjecture that it implements a
single comment received by a reviewer (4).

Such a process results in a dataset of Reviewed Commented
Code Triplets (RCCTs) in the form 〈ms, rnl〉 → mr. Such a
dataset is used to train a transformer architecture using two
encoders (one processing ms and one rnl) and one decoder
(generating mr). Such a model is able, given a Java method
(ms) and a reviewer comment about it (rnl) to generate a
revision of ms implementing rnl (i.e., mr) (5).

Starting from this dataset, we also generate a dataset of
code pairs ms → mr obtained by removing rnl from each
of the previous dataset triplets. This dataset has been used to
train a second transformers-based model having one encoder
(processing ms) and one decoder (generating mr). Once
trained, this model can take as input a previously unseen Java
method (ms) and recommend a revised version of it (mr)
that would likely result from a review round. Since no input
is required from the reviewer in this model, it can be used
by the contributor to double check her implementation before
submitting it for review.

Next, we describe the different steps behind our approach.

A. Mining Code Review Data

We built two crawlers for mining from Gerrit and GitHub
code review data. Before moving to the technical details, it
is important to clarify what the goal of this mining process
is. Once a code contribution (i.e., changes impacting a set of
existing code files or resulting in new files) is submitted for
review, it can be a subject to several review rounds. Let us
assume that Cs is the set of code files submitted for review,
since subject to code changes. A set of reviewer comments
{rnl} can be made on Cs and, if some/all of them are
addressed, this will result in a revised version of the code Cr1.
This is what we call a “review round”, and can be represented
by the triplet 〈Cs , {rnl}〉 → Cr1. The completion of a review
round does not imply the end of the review process. Indeed, it
is possible that additional comments are made by the reviewers
on Cr1 and that those comments are addressed. This could
result, for example, in a second triplet 〈Cr1 , {rnl}〉 → Cr2.
The goal of our mining is to collect all triplets output of the
code review rounds performed in Gerrit and in GitHub.

To this aim, we developed two miner tools tailored for
systematically querying Gerrit and GitHub public APIs. The
double implementation is required, because despite the fact
that both platforms provide a similar support for code review,
the public APIs used to retrieve data differ. Gerrit does not
offer an API to retrieve all the review requests for a given
project, but it is possible to retrieve them for an entire Gerrit
installation (i.e., an installation can host several projects, such
as all Android-related projects). Starting from this information,
we collect all “review rounds”, and finally, we reorganized the
retrieved data by associating the own set of reviews to each
project. Overall, we mined six Gerrit installations, for a total
of 6,388 projects.

GitHub instead offers an API to collect a list of ids of all
review requests per project. In this case, we mined a set of
2,566 GitHub Java repositories having at least 50 PRs obtained
by querying the GitHub APIs.

reviews mining abstraction

String
0

get
1

Please add parenthesis in if
statement in getId method

GitHub Gerrit

public class Student {
 int id;
 String name;

 public int getId() {
 if (id > 0)
 return id;
 return 0;
 }

 public String getName() {
 return name;
 }
}

public class Student {
 int id;
 String name;

 public int getId() {
 if (id > 0) {
 return id;
 }
 return 0;
 }

 public String getName() {
 return name;
 }
}

Java
submitted

Java
revised

comment
Please add parenthesis in if
statement in getId method

comment

public int getId() {
 if (id > 0)
 return id;
 return 0;
}

public int getId() {
 if (id > 0) {
 return id;
 }
 return 0;
}

method
submitted
extracted

method
revised

extracted

idioms

src2absLizard

please add parenthesis if
statement getId method

public int getId () { if (id > 0)
return id ; return 0 ; }

public int getId () { if (id > 0)
{ return id ; } return 0 ; }

abstract cleaned comment

abstract submitted method

abstract revised method ⟨ms , mr, rnl ⟩

⟨ms , mr ⟩

Dp

Dt
multi-head
attention

feed forward

multi-head
attention

feed forward

masked
multi-head
attention

}2x }4x

multi-head
attention

feed forward}2x

encoder

encoder

decoder

multi-head
attention

feed forward

multi-head
attention

feed forward

masked
multi-head
attention}1x }3x

encoder
decoder

OpenNmt-tf
Transformer 1-encoder

Transformer 2-encoders

~890k comments’
review

~234k comments and
methods extracted

comments and
methods abstracted

1 2 3 4

5

5

~17k pairs

~17k triplets

Fig. 1: Approach overview.

The output of this process is represented, for each review
round, by (i) the set of code files submitted for review, (ii)
the comments received on this code files with information
about the specific impacted lines (character-level information
is available for Gerrit), and (iii) the revised code files submitted
in response to the received comments.

B. Data Preprocessing

After having collected the data from Gerrit and GitHub,
we start its preprocessing, with the goal of building the two
datasets of triplets (〈ms, rnl〉 → mr) and pairs (ms → mr)
previously mentioned.

1) Methods Extraction and Abstraction: We start by pars-
ing the Java files involved in the review process (both the
ones submitted for review and the ones implementing the code
review comments) using the Lizard [13] Python library. The
goal of the parsing is to extract the methods from all the
files. Indeed, as said, we experiment with the DL models at
method-level granularity, as also done in previous work [10]–
[12]. After this step, for each mined review round, we have
the list of Java methods submitted for review, the reviewers’
comments, and the revised list of methods resubmitted by the
author to address (some of) the received comments.

Then, we adopt the abstraction process described in the
work by Tufano et al. [10] to obtain a vocabulary-limited
yet expressive representation of the source code. Recent work
on generating assert statements using DL [12] showed that
the performance of sequence-to-sequence models on code
is substantially better when the code is abstracted with the
procedure presented in [10] and implemented in the src2abs
tool [14]. Triplets for which a parsing error occur during
the abstraction process on the ms or on the mr methods
are removed from the dataset. Fig. 2 shows an example of
abstraction procedure we perform. The top part represents the
raw source code. src2abs uses a Java lexer and a parser
to represent each method as a stream of tokens, in which
Java keywords and punctuation symbols are preserved and the
role of each identifier (e.g., whether it represents a variable,
method, etc.) as well as the type of a literal is discerned.

public PageProperties getProperties() {
 if (hasProperties()) {
 return properties;
 } else {
 return null;
 }
}

public TYPE_1 METHOD_1 () { if (METHOD_2 ())
{ return properties ; } else { return null ; } }

raw source code

abstracted code

Fig. 2: Example of abstraction.

IDs are assigned to identifiers and literals by considering
their position in the method to abstract: The first variable name
found will be assigned the ID of VAR 1, likewise the second
variable name will receive the ID of VAR 2. This process
continues for all identifiers as well as for the literals (e.g.,
STRING X, INT X, FLOAT X). Since some identifiers and
literals appear very often in the code (e.g., variables i, j,
literals 0, 1, method names such as size), those are treated
as “idioms” and are not abstracted. We construct our list
of idioms by looking for the 300 most frequent identifiers
and literals in the extracted methods (list available in our
replication package [15]). The bottom part of Fig. 2 shows
the abstracted version of the source code. Note that during
the abstraction code comments are removed. src2abs is
particularly well suited for the abstraction in our context,
since it implements a “pair abstraction mode”, in which a
pair of methods can be provided (in our case, ms and mr)
and the same literals/identifiers in the two methods will be
abstracted using the same IDs. As output of the abstract
process, src2abs does also provide an abstraction map M
linking the abstracted token to the raw token (e.g., mapping
V AR 1 to sum). This allows to go back to the raw source
code from the abstracted one [10].

2) Linking and Abstracting Reviewer Comments: Each col-
lected reviewer comment is associated with the specific set of
code lines it refers to. This holds both for Gerrit and GitHub.

Using this information, we can link each comment to the
specific method (if any) it refers to: Given ls and le the start
and the end line a given comment refers to, we link it to a
method mi if both ls and le fall within mi’s body, signature,
or annotations (e.g., @Override). If a comment cannot be
linked to any method (e.g., it refers to an import statement)
it is discarded from our dataset, since useless for our scope.

After having linked comments to methods for each review
round, we are in the situation in which we have, for each
review round, a set of triplets 〈ms, mr, and {rnl}〉, where
ms and mr represent the same abstracted method before and
after the review round, and {rnl} is a set of comments ms

received in this round. At this point, we also abstract all code
components mentioned in any comment in {rnl} using the
abstraction map obtained during the abstraction of ms and mr.
Thus, assuming that the comment mentions “change the type of
sum to double” and that the variable sum has been abstracted
to V AR 1, the comment is transformed into “change the type
of V AR 1 to double”. On top of this, any camel case identifier
that is not matched in the abstraction map but that it is present
in the comment, is replaced by the special token CODE .
Such a process ensures consistency in (i) the representation
of the code and the comment that will be provided as input
to the 2-encoder model, and (ii) the representation of similar
comments talking about different CODE elements.

3) Filtering Out Noisy Comments: Through a manual in-
spection of the code review data we collected, we noticed
that a non-negligible percentage of code comments we were
collecting, while linked to source code lines, were unlikely to
result in code changes and, thus, irrelevant for our study. For
example, if two reviewers commented on the same method,
one saying “looks good to me” and the other one asking for
a change “please make this method static”, it is clear that any
revised version of the method submitted afterwards by the
contributor would be the result of implementing the second
comment rather than the first one. With the goal of minimizing
the amount of noisy comments (i.e., comments unlikely to
result in code changes) provided to our model, we devised an
approach to automatically classify a comment as likely to lead
to code changes (from now on simply relevant) or unlikely to
lead to code changes (irrelevant).

We started by creating a dataset of comments manually
labeled as relevant or irrelevant. To this aim, we randomly
selected from our dataset a set of 1,875 comments and
related methods ms. These comments come from 500 reviews
performed on Gerrit and 500 performed on GitHub. On our
dataset (that we will detail later), such a sample guarantees
a significance interval (margin of error) of ±3% with a
confidence level of 99% [16]. The comments have then been
loaded in a web-app we developed to support the manual
analysis process, that was performed by three of the authors.
The web-app assigned each comment to two evaluators and,
in case of conflict (i.e., one evaluator said that the comment
was relevant and one that was irrelevant) the comment was
assigned to a third evaluator, that solved the conflict through
majority voting.

Conflicts arose for 21% of the analyzed comments. Ex-
amples of comments labeled as irrelevant include simple and
obvious cases such as “Thanks!” and “Nice”, but also more
tricky instances difficult to automatically identify (e.g., “At
least here it is clear that the equals method of the implementors
of TreeNode is important”).

The final labeled dataset consists of 1,875 comments, of
which 1,676 have been labeled as relevant and 199 as irrele-
vant. We tried to use a simple Machine Learning (ML)-based
approach to automatically classify a given comment as relevant
or not. We experimented with many different variants of ML-
based techniques for this task. As predictor variables (i.e.,
features) of each comment, we considered n-grams extracted
from them, with n ∈ {1, 2, 3}. Thus, we consider single words
as well as short sequences of words (2-grams and 3-grams)
in the comment. Before extracting the n-grams, the comment
text is preprocessed to remove punctuation symbols and put
all text to lower case. In addition to this, only when extracting
1-grams, English stopwords [17] are removed and the Porter
stemmer [18] is applied to reduce all words to their root. These
two steps are not performed in the case of 2- and 3-grams,
since they could break the “meaning” of the extracted n-gram
(e.g., from a comment “if condition should be inverted” we
extract the 2-gram “if condition”; by removing stopwords, the
if would be removed, breaking the 2-gram). Finally, in all
comments we abstract the mentioned source code components
as previously explained.

After having extracted the features, we trained the Weka
[19] implementation of three different models, i.e., the Ran-
dom Forest, J48, and Bayesian network [20] to classify
our comments. We performed a 10-fold cross validation to
assess the performance of the models. Since our dataset is
substantially unbalanced (89% of the comments are rele-
vant), we re-balanced our training sets in each of the 10-
fold iterations using SMOTE [21], an oversampling method
which creates synthetic samples from the minor class. We
experimented each algorithm both with and without SMOTE.
Also, considering the high number of features we extracted,
we perform an information gain feature selection process [22]
aimed at removing all features that do not contribute to the
information available for the prediction of the comment type.
This procedure consists of computing the information gain of
each predictor variable. This value ranges between 0 (i.e., the
predictor variable does not carry any useful information for
the prediction) to 1 (maximum information). We remove all
features having an information gain lower than 0.01.

We analyze the results with a specific focus on the precision
of the approaches when classifying a comment as relevant.
Indeed, what we really care about is that when the model
classifies a comment as relevant, it is actually relevant and
will not represent noise for the DL model. The achieved results
reported the Random Forest classifier using the SMOTE filter
as the best model, with a precision of 91.6% (meaning, that
∼92 out of 100 comments classified as relevant are actually
relevant). While such a result may look good, it is worth noting
that 89% of the comments in our dataset are relevant.

This means that a constant classifier always answering “rel-
evant” would achieve a 89% precision. Thus, we experimented
with a different and simpler approach. We split the dataset of
1,875 comments into two parts, representing 70% and 30% of
the dataset. Then, one of the authors tried to define simple
keyword-based heuristics with the goal of maximizing the
precision in classifying relevant comments on the 70% subset.
Through a trial-and-error process he defined a set of heuristics
that we provide as part of our replication package [15]. In
short, these heuristics aim at removing: (i) useless 1-word
comments (e.g., “nice”), (ii) requests to change formatting
with no impact on code (e.g., “please fix indentation”), (iii)
thank you/approval messages (e.g., “looks good to me”), (iv)
requests to add test code, that will not result in changes
to the code under review (e.g., “please add tests for this
method”), (v) requests for clarification (e.g., “please explain”),
(vi) references to a previous comment that cannot be identified
(e.g., “same as before”), and (vii) requests to add comments,
that we ignore in our study (e.g., “add to Javadoc”). Once there
was no more room for improvement on the 70% subset, the
set of defined heuristics has been tested on the 30% dataset,
achieving precision of 93.4% in classifying relevant comments.
On the same 30% test set, the running of a Random Forest
trained on the 70% dataset achieved precision of 92.1%. Given
these results, we decided to use the set of defined heuristics
as one of the filtering steps in our approach when preparing
the dataset for training our models. Basically, these heuristics
remove from the triplets 〈ms, mr, {rnl}〉 comments in {rnl}
that are unlikely to have triggered the code changes that
transformed ms in mr.

C. Automating Code Review

1) Dataset Preparation: Starting from the collected triplets,
our goal is to build two datasets for the training/test of 1-
and 2-encoder model. First, we removed from all triplets the
comments classified as noisy. Then, we built the dataset for
the 2-decoder model since the other one can be easily obtained
from it. We apply a set of filtering steps to obtain triplets 〈ms,
mr, {rnl}〉 in which:
{rnl} does not contain any comment posted by the contrib-

utor. We are interested only in reviewers’ comments. Thus,
author’s comments are removed, leaving 231,439 valid triplets.
{rnl} does not contain any comment linked to lines in

the related method representing code comments. Such rnl are
removed from each {rnl} before the abstraction process since,
as previously explained, the abstraction removes comments.
ms and mr, after the abstraction, must be different. If ms

and mr are not different, we can remove the triplet, since this
means that no code change has been implemented as result of
the reviewer’s comments. Thus, there is nothing to learn for
our models. Such a scenario can happen in the case in which
the change is applied to code indentation, code comments, etc.
ms and mr have a reasonable length that can be handled

through NMT models. The variability in sentences length can
affect training and performance of NMT models even when
techniques such as bucketing and padding are employed.

Thus, we exclude all triplets having ms or mr longer than
100 tokens after abstraction. Such a filtering step has been
performed in previous work [10]–[12], and it is responsible
for the removal of 148,539 triplets from our dataset.

mr does not introduce identifiers or literals that were not
present in ms. If mr introduces, for example, a new variable
VAR_3 that was not present in ms, in a real usage scenario it
would not be possible for the model to generate the concrete
raw source code for mr, since it could not guess what the
actual value for VAR_3 should be. Thus, the model would
be useless to developers. Such a limitation is due to the
abstraction process that, however, has the advantage of limiting
the vocabulary size and of helping the model learning [12].
However, the presence of idioms allows to retain in our dataset
triplets that otherwise would be discarded because of the
inability to synthesize new identifiers/literals in mr.
{rnl} is a singleton, meaning that a single comment has

been provided by a reviewer on ms. All triplets containing
more than one comment in {rnl} have been removed, since
in those cases we cannot know what was the comment that
triggered the transformation of ms in mr.

The remaining triplets are thus in the form 〈ms, mr, rnl〉.
We preprocess the rnl comment to remove from it stopwords
[17], and links identified through regular expressions (e.g.,
links pointing to online examples). Then, we clean the com-
ment from superfluous punctuation like an ending question
mark. At the end, we transform all comment words that are
not code IDs in lower case, e.g., the comment “Could we use
String instead of Text?” is transformed into “String instead
TY PE 1”. Finally, we remove duplicates from the dataset.

After this process, the remaining 17,194 triplets represent
what we call the Dt dataset, used for training/evaluating
the 2-encoder model. By removing from each triplet the rnl
comment, we obtain the Dp dataset, that is instead used to
train and evaluate the 1-encoder model. Besides this difference
in the two datasets, the code ms in Dt includes two special
tokens <START> and <END> which mark the part of the
code interested by the reviewer’s comment rnl. These tokens
are removed in the Dp dataset, since the 1-encoder model
should be used in a scenario in which no comments have been
provided by the reviewer yet. Both datasets have been split into
training (80%), evaluation (10%) and test (10%) sets.

2) Scenario 1: Recommending Changes (1-encoder): The
1-encoder model is meant to help the developer anticipating
the changes a reviewer might suggest on the submitted code.
Therefore, we want to learn how to automatically generate
mr given ms. For this task we use a transformer model [7].
The transformer model consists of an encoder and decoder,
which takes as input a sequence of tokens and generates
another sequence as output, but it only relies on the attention-
mechanism, without implying any recurrent networks. Both
encoder and decoder consist of multiple layers each of which is
composed of Multi-Head Attention and Feed Forward layers.

In this first scenario we train a transformer model with
one encoder that will take as input the sequence ms and one
decoder that will generate one or multiple suggestions for mr.

Hyperparameter Possible values 1-encoder 2-encoder

Embedding size [128, 256, 512, 1024, 2048] 256 512
Encoder layers [1, 2, 3, 4] 1 2
Decoder layers [1, 2, 3, 4] 2 4
Number of units [128, 256, 512, 1024, 2048] 256 512
Ffn dimension [128, 256, 512, 1024, 2048] 256 512
Number of heads [2, 4, 8] 8 4
Learning rate (0.0, 1.0) 0.5132 0.3370
Dropout (0.0, 0.4) 0.2798 0.1168
Attention dropout (0.0, 0.4) 0.1873 0.1794
Ffn dropout (0.0, 0.4) 0.2134 0.2809

TABLE I: Hyperparameters and the best configuration

3) Scenario 2: Implementing Changes Recommended by
the Reviewer (2-encoder): The idea for the second scenario
is to automatically implement a reviewer recommendation
expressed in natural language in order to produce a practical
example of what the reviewer wants. Therefore, given ms and
rnl we want to automatically generate the sequence mr. Also
for this task we train a transformer model, but using two
encoders and one decoder. The two encoders take as input
the sequences ms and rnl, respectively, while the decoder
generates one or multiple suggestions for mr. To implement
both models we used the Python library OpenNmt-tf [23], [24].

4) Hyperparameter Search: For both models, in order to
find the best configurations, we performed hyper-parameter
search by adopting a Bayesian Optimization strategy [25],
[26]. We created the space of possible configurations selecting
the 10 hyper-parameters reported in Table I and choosing for
each one an interval of possible values by looking at the
DL literature. Given the large size of the domain space, to
explore it, we chose the Tree Parzen Estimator (TPE) [27],
[28] as optimization algorithm with the maximum number of
trials equals to 40. This means that 40 different configuration
of hyper-parameters have been tested for each model. Each
configuration has been trained for a maximum of 50k steps
using the number of perfect predictions on the evaluation set
as optimization metric. This means that the best configuration
output of this process is the one for which the model is able
to generate the highest number of mr strings that are identical
to the ones written by developers. To support this process, we
used the Hyperopt Python library [29], [30].

5) Generating Multiple Solutions via Beam Search: Once
the best configuration of each model has been selected, we
evaluate it on the unseen samples of the test set. With the idea
that the outputs generated by the models must be suggestions
for developers/reviewers, we adopt a Beam Search decoding
strategy [31]–[34] to generate multiple hypotheses for a given
input. An output sequence is generated by adding the most
likely token given the previous ones step by step. Beam
search, instead of considering only the sequence of tokens
with the best probability, considers the top-k more probable
hypotheses, where k is known as the beam size. Thus, beam
search builds k sequences simultaneously. At each timestep,
it explores the space of possible hypotheses, consisting of the
sequences obtainable by adding a single token to the previous
k partial sequences. The process ends when the k sequences
are completed. We experiment with beam sizes k = 1, 3, 5, 10.

III. STUDY DESIGN

The goal of this study is to empirically assess whether NMT
can be used to partially automate code review activities. The
context consists of the Dp and Dt datasets (Section II).

The study aims at tackling the following research questions:
• RQ1: To what extent is NMT a viable approach to

automatically recommend to developers code changes as
reviewers would do? This RQ focuses on the “contributor
perspective” described in the introduction. We evaluate
the ability of an NMT model to automatically suggest
code changes for a submitted code contribution as re-
viewers would do. We do not focus on generating the
natural language comment explaining the code changes
that a reviewer would require, but on providing to the
developer submitting the code Cs a revised version of it
(Cr) that implements changes that will be likely required
in the review process. We employ the Dp dataset in the
context of RQ1.

• RQ2: To what extent is NMT a viable approach to auto-
matically implement changes recommended by reviewers?
The second RQ focuses on the previously described
“reviewer perspective”, and assesses the ability of the
NMT model to automatically implement in a submitted
code Cs a recommendation provided by a reviewer and
expressed in natural language (Rnl), obtaining the revised
code Cr. We employ the Dt dataset in the context of RQ2.

A. Data Collection and Analysis

To answer RQ1 we run the best configuration of the 1-
encoder model obtained after hyperparameter tuning (Sec-
tion II-C4) on the test set of the Dp dataset, and we perform
an inference of the model using beam search [35].

Given the code predicted by the NMT model, we consider
a prediction as correct if it is identical to the code manually
written by a developer after a review round (we refer to these
cases as “perfect predictions”). Since we experiment with
different beam sizes, we check whether a perfect prediction
exists within the k generated solutions. We report the raw
counts and percentages associated with perfect predictions for
each beam size.

Besides reporting the perfect predictions, we also compute
the BLEU-4 score [36] of all predictions. The BLEU score is
a metric used for assessing the quality of text automatically
generated in the context of a NMT task [36]. It takes values
between 0% and 100%, where 100% indicates a perfect
prediction, meaning that the predicted text is identical to the
reference one. We use the BLEU-4 variant, computed by
considering the 4-grams in the generated text and previously
used in other software engineering papers (e.g., [11], [12]).

Also, to assess the effort needed by developers to convert a
prediction generated by the model into the reference (correct)
code, we compute the Levenshtein distance [37] at token-
level. This is the minimum number of token edits (insertions,
deletions or substitutions) needed to convert the predicted code
into the reference one.

Since such a measure is not normalized, it is difficult to
interpret. For this reason, we normalize such a value by
dividing it by the number of tokens in the longest sequence
among the predicted and the reference code.

Finally, we complement our quantitative data with a qual-
itative analysis aimed at reporting (i) examples of perfect
predictions, categorized based on the type of code change
that the model automatically implemented; and (ii) non-perfect
predictions, to understand whether they still can be valuable
for developers. Concerning the first point, two of the authors
manually analyzed all 271 perfect predictions independently,
and categorized them by assigning to each prediction a label
describing the change automatically injected by the model.
Conflicts, that arose in 11% of cases, have been solved through
an open discussion. We present the obtained taxonomy as an
output of this analysis. As for the second point, we use the
BLEU score ranges 0-24, 25-49, 50-74 and 75-99 to split
the imperfect predictions. Then, we randomly selected 25
instances from each set and the first two authors manually
evaluated them to determine if the recommended code change
is still meaningful while being different to the reference one.
Also in this case, conflicts (i.e., cases in which the two authors
consistently disagreed) that arose in 9% of cases were solved
through open discussion.

To answer RQ2 we run the exact same analysis described
for RQ1, but by using the Dt dataset. The main differences are
related to the performed qualitative analysis. When evaluating
the perfect predictions, we decided to focus on the perfect
predictions obtained by the 2-encoder model but not by the
1-encoder model. Indeed, those are most likely the cases in
which the comment provided as input played a role in the
prediction. For those 300 instances, the two authors labeled
the reviewers’ comments to assign a label expressing the type
of code change required by the reviewer. In other words,
while in RQ1 the goal was on categorizing the type of code
change implemented by the model, here the focus is on the
type of change requested by the reviewer in the comment.
The goal is to identify categories of code comments that
help the model in correctly implementing the required code
change. In this case, conflicts arose for 8% of cases. The
second difference, still related to the qualitative analysis, is
represented by analyzed failure cases: Here the goal was to
check whether the change implemented by the model, while
different from the one manually implemented by the developer,
was still a meaningful implementation of the change requested
by the reviewer (conflicts in 2% of the analyzed instances).

IV. RESULTS DISCUSSION

Table II reports the results we achieved in the 1-encoder
(top part of Table II) and the 2-encoder model (bottom part).
It is important to remember that the two models have been
experimented exactly on the same code review instances but
that the 1-encoder model has been trained/tested on the Dp

dataset, featuring pairs ms → mr, while the 2-encoder model
deals with the Dt dataset, composed by triplets 〈ms, rnl〉 →
cr. In other words, when generating mr, the 2-encoder model

can take advantage of the comment provided by the reviewer
(rnl) and asking the specific change transforming ms into mr,
while this is not the case for the 1-encoder model.

The first thing that catches the eye from the analysis of
Table II are the better performance ensured by the 2-encoder
model. The gap, at any level of beam size, is substantial. When
only one prediction is generated (i.e., k = 1) the 1-encoder
model can generate the correct code in 50 cases (2.91% of the
test set) against the 209 (12.16%) ensured by the 2-encoder
model. This is a 4× improvement. The trend is confirmed
for all k values, with the difference, however, becoming less
strong with the increase of k. Indeed, when 10 candidate
predictions are performed, 271 perfect predictions (15.76%)
are generated by the 1-encoder model against the 528 (30.72%)
of the 2-encoder model. While the gap in performance is
still notable (+94.83% perfect predictions for the 2-enconder
model), it is less marked as compared to the lowest beam size.

The BLEU-4 scores and the normalized Levenshtein dis-
tance confirm the observed trend, with the code generated
by the 2-encoder model being closer to the reference code
(i.e., the one manually written by the developers). One ob-
servation that can be made for the 2-encoder model is that,
when generating three possible previews for the code change
recommended by the reviewer (k = 3), there is one of them
requiring, on average, to only change ∼13% of the code tokens
to obtain the reference code (median = 9%).

As a next step, we qualitatively analyze (i) all 271 perfect
predictions obtained by the 1-encoder model with k = 10,
and (ii) all 300 perfect predictions obtained by the 2-encoder
model with k = 10 and for which the 1-encoder model failed
to generate the correct prediction.

Table III reports a classification of the code changes per-
formed in the 1-encoder model perfect predictions. One perfect
prediction can contribute to multiple categories, since several
categories of changes may be performed in a single prediction.
We classified each change into two macro categories, namely
Refactoring and Behavioral changes. The former groups code
transformations that we judged as unlikely of resulting in
behavioral changes, while the latter should impact the code
behavior. Within each macro category, a further categorization
is performed to help understanding the types of code transfor-
mations learned by the model.

In the refactoring category, changes have been ap-
plied to the method visibility (e.g., with the addi-
tion/removal/modification of public, private, etc. mod-
ifiers), to the type of variables (e.g., change a variable dec-
laration from HashMap <String, String> VAR_1
= new HashMap<>(); to Map <String, String>
VAR_1 = new HashMap<>();), and to improve the
code readability. This sub-category features several inter-
esting types of changes that the model recommended to
simplify the code. For example, a developer submitted a
method having as body TYPE_4 <TYPE_2> reader =
view.VAR_1(); return reader;. The model recom-
mended to remove the unneeded variable declaration, trans-
forming the method body into return view.VAR_1();.

Beam Perfect Predictions BLEU-4 Levenshtein distance
Size # % mean median st. dev. mean median st. dev.

1-encoder

1 50 2.91% 0.7706 0.8315 0.1929 0.2383 0.2000 0.1670
3 156 9.07% 0.8468 0.8860 0.1419 0.1726 0.1454 0.1427
5 200 11.63% 0.8644 0.8980 0.1317 0.1554 0.1271 0.1348

10 271 15.76% 0.8855 0.9145 0.1166 0.1355 0.1092 0.1247

2-encoder

1 209 12.16% 0.8164 0.8725 0.1863 0.1849 0.1422 0.1734
3 357 20.77% 0.8762 0.9244 0.1484 0.1321 0.0838 0.1468
5 422 24.55% 0.8921 0.9376 0.1351 0.1173 0.0696 0.1366

10 528 30.72% 0.9142 0.9543 0.1169 0.0953 0.0519 0.1204

TABLE II: Quantitative results: Perfect predictions, BLEU-4, and Levenshtein distance achieved by the models

Refactoring (93)

Method Visibility 48
Modifies modifier 20
Adds modifier 17
Removes modifier 11

Readability 42
Adds/Removes curly brackets 8
Adds/Removes “this” keyword 6
Removes unneeded variable declaration 5
Merges two code statements 4
Removes logging information 4
Simplifies return statement 4
Removes parenthesis from return statement 3
Removes unneeded ; 2
Removes unneeded variable cast 2
Replaces else-if with if 1
Replaces if-else with inline if 1
Removes unneeded object instance 1
Removes unneeded return statement 1

Type 3
Modifies variable type 3

Behavioral changes (197)

Code Removal 124
If statement 32
Method Invocation 31
Return Statement 24
Variable 21
Deletes Method Body 15
For Loop 1

Method Invocation 31
Modifies parameters in method call 20
Modifies method invocation 10
Replaces method call 1

Exception Handling 26
Removes thrown exception 13
Removes try- catch 8
Removes try- finally 4
Moves variable assignment to finally block 1

Inheritance 8
Removes invocation to parent’s constructor 3
Removes Override annotation 3
Adds call to parent’s constructor 1
Adds modifier (final) 1

Concurrency 6
Removes synchronized 6

Bug-fixing 2
Modifies if condition 2

TABLE III: Changes in the 1-encoder’s perfect predictions

In the behavioral changes category, two of the implemented
changes aimed at fixing bugs by modifying an if condition.
For example, in one case the model added the negation
(i.e.,! operator) to the if condition. Such a change was also
recommended by the reviewer: “Negation missing?”. Note
that the reviewer’s comment was not available to the 1-
encoder model. Also other cases in the behavioral changes
category may be related to bug-fixes but we did not have
the confidence to classify them as such. For example, in the
modifies parameters in method call category, a method invoca-
tion message.substring(0, VAR_1+1) was changed
into message.substring(0, VAR_1). The reviewer’s
comment mentioned: “This line will return a substring of
length maxLength + 1. If the substring needs to be no longer
than maxLength, then replace “maxLength + 1” with just
maxLength” (VAR 1 maps to maxLength in the abstraction
map). Thus, this is likely a bug fix, assuming that the expected
behavior was the one described by the reviewer.

Due to the lack of space we do not comment on all
categories in Table III. However, one message that can be
derived from it is that the 1-encoder model is able to learn a
variety of code transformations, most of them being relatively
simple in terms of code changes, but sometimes solving
functional/non-functional quality issues difficult to spot.

Concerning the analysis of the 2-encoder perfect predic-
tions, here we focus on the cases in which the 1-encoder model
was not able to identify the change to perform. The complete
categorization of code changes we performed is available in
[15]. We present here (Table IV) the 20 novel categories of
changes we found that were not learned by the 1-encoder
model. While we anlayzed 300 instances of perfect predictions
performed by the 2-encoder but not by the 1-encoder, only 32
of them (11 refactorings + 21 behavioral changes) fall into
categories of changes that were completely missed by the 1-
encoder. This suggests that the additional comments provided
as input to the 2-encoder model, while able to substantially
boost its performance (528 vs 271 perfect predictions when
k = 10), do not allow it to learn many types of code changes
missed by the 1-encoder. The manual analysis also gave us
the opportunity to check the effectiveness of the heuristic we
use to filter out irrelevant code comments.

Refactoring (9)

Readability 5
Simplify if condition 3
Simplify if-else statement 1
Remove unneeded null check 1

Type 3
Remove type info from collection 3

Variable 1
Add modifier 1

Behavioral changes (23)

Return 6
Modify return type 4
Modify return value 2

Code Removal 4
Code block 3
Switch case 1

Exception Handling 4
Modify thrown exceptions 2
Modify try-catch 1
Use try-with-resource pattern 1

Concurrency 3
Remove concurrency lock 1
Remove unnecessary sync guard 1
Use shared variable instead of its copy 1

Inheritance 3
Modify parent’s constructor call 3

Bug-fixing 2
Change value of boolean 2

Code Addition 1
Add missing return 1

TABLE IV: Types of changes in the 2-encoder’s perfect
predictions not learned by the 1-encoder

We found that 22 out of the 300 inspected comments were
irrelevant for the performed code changes (i.e., were false
positives that should have been discarded), leading to a ∼93%
precision for our heuristic.

Looking at Table IV, we can see that several of the new
types of changes are still simple code changes that, however,
the model was only able to learn once the reviewer’s com-
ment recommending them was provided (e.g., the reviewer
recommended to “use final” as modifier for a variable, and
the model successfully implemented the change). Others are
instead more interesting, such as cases in which the model
recommended to delete entire code blocks. Looking at them,
in some cases the reviewers’ were recommending an extract
method, that was also suggested by the model. Clearly, the
model limits the recommendation to the “source” part of the
refactoring (i.e., suggests which statements to extract, but not
where to put them). Also, the 2-encoder model was able to
learn more complex code changes that can be useful to a
reviewer to quickly get a preview of how the code would look
like with her comment implemented. For example, in one case
the reviewer commented “We use Java7, so you should use the
try-with-resources feature”; the 2-encoder model was able to
provide as output the code implementing such a change.

As a final analysis, we looked at 100 non-perfect predictions
for each model selected in the BLEU score ranges 0-24, 25-49,

50-74, and 75-99 (25 each) to determine if the recommended
code change is still meaningful while being different from
the reference code. For the 1-encoder, we found five (5%)
of the non-perfect predictions to be still meaningful and
semantically equivalent to the code written by developers (1
in the BLEU range 50-74 and 4 in 75-99). Six (6%) instances
were instead found for the 2-encoder model (1 in 25-49, 3 in
50-74, and 1 in 75-99) as being successful cases of reviewer’s
comment implementation (despite being different from the
change implemented by the developer). For instance, in one
of these cases the reviewer asked to use for a public method
the protected or default visibility. The developer replaced the
public keyword with protected, while the 2-encoder
model just removed the public keyword, thus using the
default visibility. Overall, we can estimate an additional ∼5%
of performance for the experimented models on top of what
reported by the perfect predictions.

V. THREATS TO VALIDITY

Construct validity. While we applied many heuristics to
clean the data used in the training and testing of the NMT
model, by manual inspecting our dataset we still noticed
a small percentage of “noisy” comments (i.e., reviewers’
comments unlikely to trigger code changes). These are due
to failure of our automated heuristics and, as such, represent a
limitation of the proposed approach. Still, NMT models should
be able to deal with such a low level of noise in the data. The
good results in terms of BLEU-4 and Levenshtein distance
are influenced by (i) syntactic sugar of source code, and (ii)
the input code provided to the model, that is usually quite
similar to the one to be produced as output. This is why
we complemented these analyses with additional views on the
achieved results such as the number of perfect predictions.

Internal validity. Subjectiveness in the manual analyses
could have potentially affected our results. To mitigate such a
bias, when classifying comments as relevant or irrelevant, two
authors independently classified each comment, and a third
author was involved in a case of a conflict. Also, the qualitative
analyses have been performed by two of the authors. Despite
this, imprecisions are still possible.

External validity. We mined our datasets from both Ger-
rit and GitHub, considering a large set of projects (8,904).
However, we only focused on Java systems, thus limiting
the generalizability of our findings. Still, the approach that
we experimented with can be adapted to other languages by
simply replacing the abstraction component.

VI. RELATED WORK

We summarize the related literature focusing on DL in SE
and studies related to code reviews. While DL has been used
to support many different SE tasks, given the goal of our work,
we only focus on techniques automating source code changes.

A. Deep Learning for Automating Code Changes

Several DL-based approaches have been proposed to auto-
matically fix bugs [11], [38], [39].

Gupta et al. propose DeepFix to fix common errors in C
programs [38]. DeepFix is an end-to-end solution based on a
multi-layered sequence-to-sequence model that iteratively tries
to locate and fix errors in a given program. In the reported
evaluation, it managed to automatically fix 27% of the testing
samples.

Similarly, Chen et al. developed SequenceR, a model de-
signed to automatically repair bugs spanning a single line in
Java code [39]. SequenceR has been trained on a dataset of
35,578 one-line bug fixes and, in its best configuration, it was
able to perfectly predict the fix for 20% of the testing samples.

Another step in the automatic generation of fixes has been
taken by Tufano et al. [11], who evaluated the suitability of
an NMT-based approach to automatically generate patches
for defective code. Results show that the NMT models can
correctly produce candidate patches for the given defective
code in ∼9% and ∼3% of cases (depending on the length of
the method) when a single patch is generated by the model.

To generalize the usability of these tools, Tufano et al. [10]
investigated the possibility of using an NMT model to learn
how to automatically modify a given Java method as develop-
ers would do during a pull request (PR). In other words, they
try to learn generic code changes implemented over PRs using
an Encoder-Decoder RNN model feeding it with methods
before and after the mined PRs. They found that the model
can learn a wide variety of meaningful code transformations
and, in some cases, reproduce precisely the same changes that
are implemented by developers in PRs.

With a similar NMT approach, Watson et al. [12] tried
to address one of the main open problems of automated
software testing, namely the definition of the oracle. They
focused on the generation of meaningful assert statements for
a given test method. Their approach, generates syntactically
and semantically correct assert statements that are comparable
to ones manually written by developers in 31% of cases.

DL models have also been used to support code completion.
Karampatsis and Sutton [40] presented an open-vocabulary
neural language model to address some of the issues raised
a few years before by Hellendoorn and Devanbu [41] on the
usage of DL models for modeling code. The proposed model
is able to handle new identifier names that have not appeared
in its training data. Still with the goal of supporting code
completion, Kim et al. [42] first showed how Transformer
models outperform the previous sequence-based models, and
then focused on how to obtain higher accuracy exposing the
Transformer to the syntactic structure of the code. Results
show that the proposed model surpasses previous work.

Also Svyatkovskiy et al. [43] used Transformer models
to support code completion. They introduced a multi-layer
generative transformer model for code named GPT-C. GPT-
C is the core of IntelliCode Compose, a general-purpose
code completion framework able to generate syntactically
correct code sequences of arbitrary token types and in multiple
programming languages.

Alon et al. [44] used DL to target code completion in a
language-agnostic fashion. They presented a new approach

based on LSTMs and Transformers that generates the target
AST node-by-node, reaching state-of-the-art performance with
an exact match accuracy for the top prediction of 18.04%.

Another research problem in which DL has been applied is
the migration of software across programming languages [45],
[46], e.g., through statistical machine translation.

Looking at our work in the context of the discussed liter-
ature, this is, to the best of our knowledge, the first attempt
in automating code review activities from both the perspective
of the contributor and of the reviewer. Form the “technical”
point of view, the closest work to ours is the one by Tufano
et al. [10] about learning code changes implemented in PRs.
Indeed, their model architecture is similar to the one we use
in the 1-encoder scenario (we use Transformers) and we also
inherit from them the abstraction procedure. However, we
target a different problem that required (i) the collection of
a new dataset, with many filtering strategies put in place to
avoid noise during the training process; (ii) the definition of
a novel architecture exploiting two encoders to process the
reviewer comment and the submitted code as input.

B. Code Review

Several studies have focused on code reviews, investigating
its impact on the code quality [1]–[3], [47]. Kemerer and Paulk
[47], McIntosh et al. [1], and Bavota and Russo [3] agree in
reporting the lower likelihood of introducing bugs in reviewed
code as compared to non-reviewed code. Also, Morales et al.
[2] confirm the higher code quality ensured by code review.

Other authors studied how the code review process is
carried out in industry and in open source communities [4]–
[6], [48]–[53]. Due to space constraints, we do not discuss
these works in details but we only summarize some of the
findings relevant for our work. Identifying defects has been
confirmed in different studies [48], [50], [51], [53] as the
main reason for performing code review, thus highlighting
the importance of automating this activity. These studies also
provided evidence of the substantial time invested in code
review activities [4]–[6], one of the motivations for working
on code review automation.

Researchers also analyzed the factors influencing the ac-
ceptance of the code changes submitted for review [54]–[57].
Finally, a recent work proposed a tool, named ClusterChanges,
to help developers during the code review process [58]. This is
the work more related to ours. However, while the overall goal
(i.e., helping developers during code review) ClusterChanges
automatically decomposes changesets submitted for a review
into cohesive, smaller changes, while our goal tries to automate
specific code review steps.

VII. CONCLUSIONS

We experimented with DL techniques in the context of
automating two code review activities: (i) recommending to
the contributor code changes to implement as reviewers would
do before submitting the code for review; and (ii) providing
the reviewer with the code implementing a comment she has
on a submitted code.

This required the definition of two different transformer-
based architectures.

The achieved results were promising, with the models able
to generate meaningful recommendations in up to 16% (first
scenario) and 31% (second scenario) of cases. Still, vast
improvements are needed to make such models suitable to
be used by developers.

In future, we plan to explore different DL architectures and
increase the amount of data available for training our models.
The latter could be the key for learning a larger variety of
code changes.

VIII. DATA AVAILABILITY

We release the code and datasets used in our study [15].

ACKNOWLEDGMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 851720). Poshyvanyk was supported in part by the NSF
CCF-1955853 and CCF-2007246 grants. Any opinions, find-
ings, and conclusions expressed herein are the authors’ and do
not necessarily reflect those of the sponsors.

REFERENCES

[1] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014,
2014, pp. 192–201.

[2] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,”
in Proc. of the 22nd Int’l Conf. on Software Analysis, Evolution, and
Reengineering (SANER), 2015, pp. 171–180.

[3] G. Bavota and B. Russo, “Four eyes are better than two: On the impact
of code reviews on software quality,” in IEEE International Conference
on Software Maintenance and Evolution, (ICSME), 2015, pp. 81–90.

[4] A. Bosu and J. C. Carver, “Impact of peer code review on peer
impression formation: A survey,” in 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement, 2013,
pp. 133–142.

[5] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2013, 2013, pp. 202–212.

[6] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find bugs:
How the current code review best practice slows us down,” in Proceed-
ings of the 37th International Conference on Software Engineering -
Volume 2, ser. ICSE ’15, 2015, pp. 27–28.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[8] “Github. https://github.com/.”
[9] “Gerrit. https://www.gerritcodereview.com (last access: 11/08/2018).”

[10] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On learning meaningful code changes via neural machine translation,”
in Proceedings of the 41st International Conference on Software Engi-
neering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, 2019,
pp. 25–36.

[11] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019.

[12] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk, “On
learning meaningful assert statements for unit test cases,” in Proceedings
of the 42nd International Conference on Software Engineering, ICSE
2020, 2020, p. To Appear.

[13] “Lizard. https://github.com/terryyin/lizard/.”
[14] “src2abs. https://github.com/micheletufano/src2abs/.”
[15] R. Tufano, https://github.com/RosaliaTufano/code review.
[16] B. Rosner, Fundamentals of Biostatistics, 7th ed. Brooks/Cole, Boston,

MA, 2011.
[17] “English stopwords. https://code.google.com/p/stop-words/.”
[18] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,

pp. 130–137, 1980.
[19] “Weka. http://www.cs.waikato.ac.nz/ml/weka/.”
[20] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.
[21] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[22] T. Mitchell, Machine Learning, 1st ed. McGraw Hill, 1997.
[23] G. Klein, Y. Kim, Y. Deng, V. Nguyen, J. Senellart, and A. M.

Rush, “Opennmt: Neural machine translation toolkit,” arXiv preprint
arXiv:1805.11462, 2018.

[24] “Opennmt-tf. https://github.com/OpenNMT/OpenNMT-tf/.”
[25] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-

tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951–2959.

[26] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
conference on learning and intelligent optimization. Springer, 2011,
pp. 507–523.

[27] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2011, pp. 2546–2554. [Online]. Available: http://papers.nips.cc/paper/
4443-algorithms-for-hyper-parameter-optimization.pdf

[28] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in International conference on machine learning,
2013, pp. 115–123.

[29] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
Proceedings of the 12th Python in science conference, vol. 13. Citeseer,
2013, p. 20.

[30] “Hyperopt. https://github.com/hyperopt/hyperopt/.”
[31] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[32] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Audio chord
recognition with recurrent neural networks.” in ISMIR. Citeseer, 2013,
pp. 335–340.

[33] A. Graves, “Sequence transduction with recurrent neural networks,”
arXiv preprint arXiv:1211.3711, 2012.

[34] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, 2014, pp.
419–428.

[35] ——, “Code completion with statistical language models,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14. New York,
NY, USA: ACM, 2014, pp. 419–428. [Online]. Available: http:
//doi.acm.org/10.1145/2594291.2594321

[36] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, ser. ACL
’02, 2002, pp. 311–318.

[37] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[38] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, ser. AAAI?17. AAAI Press,
2017, p. 1345?1351.

[39] Z. Chen, S. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and
M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-to-
end program repair,” CoRR, vol. abs/1901.01808, 2019.

[40] R. Karampatsis and C. A. Sutton, “Maybe deep neural networks are
the best choice for modeling source code,” CoRR, vol. abs/1903.05734,
2019. [Online]. Available: http://arxiv.org/abs/1903.05734

[41] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017,
2017, p. 763?773.

[42] S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction by feeding
trees to transformers,” arXiv preprint arXiv:2003.13848, 2020.

[43] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intelli-
code compose: Code generation using transformer,” arXiv preprint
arXiv:2005.08025, 2020.

[44] U. Alon, R. Sadaka, O. Levy, and E. Yahav, “Structural language models
of code,” arXiv, pp. arXiv–1910, 2019.

[45] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining API usage mappings for
code migration,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: ACM, 2014, pp. 457–468.

[46] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical statistical
machine translation for language migration,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 651–654.

[47] C. Kemerer and M. Paulk, “The impact of design and code reviews
on software quality: An empirical study based on psp data,” Software
Engineering, IEEE Transactions on, vol. 35, no. 4, pp. 534–550, 2009.

[48] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: A case study of the apache server,” in Proceedings
of the 30th International Conference on Software Engineering, ser. ICSE
’08, 2008, pp. 541–550.

[49] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11, 2011,
pp. 541–550.

[50] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 712–721.

[51] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014, pp.
202–211.

[52] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality:
How developers see it,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16, 2016, pp. 1028–
1038.

[53] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process
aspects and social dynamics of contemporary code review: Insights from
open source development and industrial practice at microsoft,” IEEE
Transactions on Software Engineering, vol. 43, no. 1, pp. 56–75, 2017.

[54] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in
Proceedings of the 2008 International Working Conference on Mining
Software Repositories, ser. MSR ’08, 2008, pp. 67–76.

[55] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey, “The influence of
non-technical factors on code review,” in Reverse Engineering (WCRE),
2013 20th Working Conference on, 2013, pp. 122–131.

[56] A. Bosu and J. C. Carver, “Impact of developer reputation on code
review outcomes in OSS projects: an empirical investigation,” in 2014
ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM ’14, Torino, Italy, September 18-19, 2014,
2014, p. 33.

[57] ——, “Characteristics of the vulnerable code changes identified through
peer code review,” in 36th International Conference on Software Engi-
neering, ICSE ’14, Companion Proceedings, Hyderabad, India, May 31
- June 07, 2014, 2014, pp. 736–738.

[58] M. Barnett, C. Bird, J. a. Brunet, and S. K. Lahiri, “Helping developers
help themselves: Automatic decomposition of code review changesets,”
in Proceedings of the 37th International Conference on Software Engi-
neering - Volume 1, ser. ICSE ’15, 2015, pp. 134–144.

