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Abstract—Deep learning (DL) techniques are gaining more and
more attention in the software engineering community. They have
been used to support several code-related tasks, such as automatic
bug fixing and code comments generation. Recent studies in the
Natural Language Processing (NLP) field have shown that the
Text-To-Text Transfer Transformer (T5) architecture can achieve
state-of-the-art performance for a variety of NLP tasks. The basic
idea behind T5 is to first pre-train a model on a large and generic
dataset using a self-supervised task (e.g., filling masked words in
sentences). Once the model is pre-trained, it is fine-tuned on
smaller and specialized datasets, each one related to a specific
task (e.g., language translation, sentence classification). In this
paper, we empirically investigate how the T5 model performs
when pre-trained and fine-tuned to support code-related tasks.
We pre-train a T5 model on a dataset composed of natural
language English text and source code. Then, we fine-tune such
a model by reusing datasets used in four previous works that
used DL techniques to: (i) fix bugs, (ii) inject code mutants, (iii)
generate assert statements, and (iv) generate code comments. We
compared the performance of this single model with the results
reported in the four original papers proposing DL-based solutions
for those four tasks. We show that our T5 model, exploiting
additional data for the self-supervised pre-training phase, can
achieve performance improvements over the four baselines.

Index Terms—Empirical software engineering, Deep Learning

I. INTRODUCTION

Deep Learning (DL) has been used to support a vast vari-
ety of code-related tasks. Some examples include automatic
bug fixing [1]–[4], learning generic code changes [5], code
migration [6], [7], code summarization [8]–[11], pseudo-code
generation [12], code deobfuscation [13], [14], injection of
code mutants [15], automatic generation of assert statements
[16], and code completion [17]–[21]. These works customize
DL models proposed in the Natural Language Processing
(NLP) field to support the previously listed tasks. For instance,
Tufano et al. [1] used an RNN Encoder-Decoder architecture,
commonly adopted in Neural Machine Translation (NMT)
[22]–[24], to learn how to automatically fix bugs in Java
methods. The model learned bug-fixing patterns by being
trained on pairs of buggy and fixed methods mined from
software repositories. This work, as the vast majority of the
ones previously mentioned (e.g., [5], [9], [11], [15], [16]),
share one common characteristic: They shape the problem at
hand as a text-to-text transformation, in which the input and
the output of the model are text strings.

For example, in the work by Watson et al. [16] the input is a
string representing a test method without an assert statement,
and the output is an appropriate assert statement for the
given test. In the approach by Haque et al. [11], the input
is composed of strings representing a subroutine to document,
while the output is a natural language summary documenting
the subroutine.

Recent years have seen the raise of transfer learning in the
field of natural language processing. The basic idea is to first
pre-train a model on a large and generic dataset by using a self-
supervised task, e.g., masking tokens in strings and asking the
model to guess the masked tokens. Then, the trained model is
fine-tuned on smaller and specialized datasets, each one aimed
at supporting a specific task. In this context, Raffel et al. [25]
proposed the T5 (Text-To-Text Transfer Transformer) model,
pre-trained on a large natural language corpus and fine-tuned
to achieve state-of-the-art performance on many tasks, all
characterized by text-to-text transformations.

The goal of this work is to empirically investigate the
potential of a T5 model when pre-trained and fine-tuned to
support many of the previously listed code-related tasks also
characterized by text-to-text transformations. We started by
pre-training a T5 model using a large dataset consisting of
499,618 English sentences and 1,569,889 source code compo-
nents (i.e., methods). Then, we fine-tune the model using four
datasets from previous work with the goal of supporting four
code-related tasks:

Automatic bug-fixing. We use the dataset by Tufano et al.
[1], composed of instances in which the “input string” is
represented by a buggy Java method and the “output string”
is the fixed version of the same method.

Injection of code mutants. This dataset is also by Tufano
et al. [15], and features instances in which the input-output
strings are reversed as compared to automatic bug-fixing (i.e.,
the input is a fixed method, while the output is its buggy
version). The model must learn how to inject bugs (mutants)
in code instead of fixing bugs.

Generation of assert statements in test methods. We use the
dataset by Watson et al. [16], composed of instances in which
the input string is a representation of a test method without
an assert statement and a focal method it tests (i.e., the main
production method tested), while the output string encodes an
appropriate assert statement for the input test method.



Code Summarization. We use the dataset by Haque et al.
[11] where input strings are some representations of a Java
method to summarize, & an output string is a textual summary.

Once the T5 model has been fine-tuned on all these tasks,
we run it on the same test sets used in the four referenced
works [1], [11], [15], [16] comparing the achieved results to
those reported in the original work. Our results show that the
T5 model is able to improve the performance of the original
models in all four tasks.

Worth noticing is that, besides the different architecture of
the T5 model, the latter can take advantage of a pre-training
phase in which additional training data is provided as input
as compared to the four baselines. This could explain, at least
partially, the boost of performance that we observed. Also, as
previously said, the additional pre-training is done in a self-
supervised way (i.e., by simply masking random tokens in the
code/text used for pre-training), making this step relatively
cheap to perform and scalable to large code bases that can be
easily collected from sources such as GitHub. In contrast, the
four baselines exploit a completely supervised training (e.g.,
in the case of automatic bug-fixing, the baseline needs pairs
of buggy and fixed methods to be trained). Building such
a dataset for supervised training has a cost, and there are
limitations in terms of the amount of data one can mine.

Besides the good performance ensured by the T5, having
a single model able to support different tasks can benefit
technological transfer since it simplifies the implementation
and the maintenance of a tool supporting several tasks. The
code and data used in this work are publicly available [26].

II. RELATED WORK

DL techniques have been used to support many software
engineering tasks. Due to space limitations, we discuss only
the approaches related to the four tasks we subject to our
study, with particular attention on those used as baselines. We
also introduce notions needed to understand our experimental
design.

A. Automatic Bug-Fixing

Many techniques have been proposed for the automatic
fixing of software bugs. Several of them [27]–[35] rely on the
redundancy assumption, claiming that large programs contain
the seeds of their own repair. Such an assumption has been
verified by at least two independent studies [36], [37]. In this
section we focus on techniques exploiting DL for bug-fixing.

Mesbah et al. [3] focus on build-time compilation failures
by presenting DeepDelta, an approach using NMT to fix the
build. The input is represented by features characterizing the
compilation failure (e.g., kind of error, AST path, etc.). As
output, DeepDelta provides the AST changes needed to fix
the error. In the presented empirical evaluation, DeepDelta
correctly fixed 19,314 out of 38,788 (50%) compilation errors.

Chen et al. [2] present SequenceR, a sequence-to-sequence
approach trained on over 35k single-line bug-fixes. SequenceR
takes as input the buggy line together with its “abstract buggy
context”, meaning the relevant code lines from the buggy class.

The output of the approach is the recommended fix for
the buggy line. The approach, tested on a set of 4,711 bugs,
was able to automatically fix 950 (∼20%) of them. Similar
approaches have been proposed by Hata et al. [4] and Tufano
et al. [1]. The latter is the one we compared our approach with
and, thus, we describe it in more details.

Tufano et al. [1] investigate the performance of an NMT-
based approach in the context of automatic bug-fixing.

They train an encoder-decoder model on a set of bug-fix
pairs (BFPs), meaning pairs of strings in which the first one
(input) represents a Java method that has been subject to a
bug-fixing activity, and the second one (target) represents the
same Java method once the bug was fixed.

To build this dataset, the authors mined ∼787k bug-fixing
commits from GitHub, from which they extracted ∼2.3M
BFPs. After that, the code of the BFPs is abstracted to make
it more suitable for the NMT model (i.e., to reduce the
vocabulary of terms used in the source code identifiers and
literals). The abstraction process is depicted in Fig. 1.

raw source code

abstracted code

abstracted code with idioms

public Integer getMinElement(List myList) {
   if(myList.size() >= 0) {
      return ListManager.getFirst(myList);
   }
   return 0;
}

public TYPE_1 METHOD_1 ( TYPE_2 VAR_1 ) 
{ if ( VAR_1 . METHOD_2 ( ) >= INT_1 ) 
{ return TYPE_3 . METHOD_3 ( VAR_1 ) ; } 
return INT_1 ; }

public TYPE_1 METHOD_1 ( List VAR_1 ) 
{ if ( VAR_1 . size ( ) >= 0 ) 
{ return TYPE_2 . METHOD_3 ( VAR_1 ) ; } 
return 0 ; }

Fig. 1: Abstraction process [1]

The top part of the figure represents the raw source code to
abstract. The authors use a Java lexer and a parser to represent
each method as a stream of tokens, in which Java keywords
and punctuation symbols are preserved and the role of each
identifier (e.g., whether it represents a variable, method, etc.)
as well as the type of a literal is discerned.

IDs are assigned to identifiers and literals by considering
their position in the method to abstract: The first variable name
found will be assigned the ID of VAR 1, likewise the second
variable name will receive the ID of VAR 2. This process
continues for all identifiers as well as for the literals (e.g.,
STRING X, INT X, FLOAT X). The output of this stage is
the code reported in the middle of Fig. 1 (i.e., abstracted code).
Since some identifiers and literals appear very often in the
code (e.g., variables i, j, literals 0, 1, method names such as
size), those are treated as “idioms” and are not abstracted
(see bottom part of Fig. 1, idioms are in bold). Tufano et al.
consider as idioms the top 0.005% frequent words in their
dataset. During the abstraction a mapping between the raw
and the abstracted tokens is maintained, thus allowing to
reconstruct the concrete code from the abstract code generated
by the model.



The set of abstracted BFPs has been used to train and
test the approach. The authors build two different sets,
namely BFPsmall, only including methods having a maxi-
mum length of 50 tokens (for a total of 58,350 instances), and
BFPmedium, including methods up to 100 tokens (65,455).
The model was able to correctly predict the patch for the
buggy code in 9% and 3% of cases in the BFPsmall and
BFPmedium dataset, respectively.

While other works have tackled the automatic bug-fixing
problem, the approach by Tufano et al. has been tested on
a variety of different bugs, rather than on specific types of
bugs/warnings (e.g., only single-line bugs are considered in
[2], while compilation failures are addressed in [3]).

Thus, we picked it as representative DL technique for
automatic bug-fixing and we use the two datasets by Tufano
et al. [1] to fine-tune the T5 model for the “automatic bug-
fixing” problem, comparing the achieved performance with the
one reported in the original paper.

B. Injection of Code Mutants

Brown et al. [38] were the first to propose a data-driven
approach for generating code mutants, leveraging bug-fixes
performed in software systems to extract syntactic-mutation
patterns from the diffs of patches. Tufano et al. [15] built
on this idea by presenting an approach using NMT to inject
mutants representative of real bugs. The idea is similar to the
previously described “bug-fixing” paper [1] with, however, the
learning happening in the opposite direction. Indeed, given
a bug-fixing commit, the input to the model is in this case
the “fixed method” (i.e., the method obtained after the bug-
fixing activity) while the target is the buggy method (before
the bug-fix). This allows the model to learn how to inject
in a working code a mutant representative of real bugs. The
applied methodology is the same described for the bug-fixing
work [15], including the abstraction process.

This is, to date, the only DL-based technique for injecting
code mutants. Thus, we use the dataset exploited by Tufano
et al. [15] to fine-tune the T5 model for the problem of
“injecting code mutants”, comparing the achieved results with
the ones reported in the original paper. Specifically, we reused
their largest dataset, referred to as GMident in the paper1,
featuring 92,476 training instances, 11,560 used for hyperpa-
rameter tuning (evaluation set), and 11,559 used for testing. On
this data, the approach by Tufano et al. was able to correctly
predict the bug to inject in 17% of cases (1,991).

C. Generation of Assert Statements in Test Methods

Watson et al. [16] start from the work by Shamshiri
et al. [39], who observed that tools for the automatic gen-
eration of test cases such as Evosuite [40], Randoop [41]
and Agitar [42] exhibit insufficiencies in the automatically
generated assert statements.

1A subset of this dataset named GMident−lit has also been used in
the original paper [15] to avoid including in the study bugs requiring the
generation of previously unseen literals. We decided to test the T5 model on
the most complex and complete dataset.

Thus, they propose ATLAS, an approach for generating
syntactically and semantically correct unit test assert state-
ments using NMT. To train ATLAS, the authors mined 2.5M
test methods from GitHub with their corresponding assert
statement. For each of those test methods, they also identified
the focal method, meaning the main production code method
exercised by the test. A preprocessing of the dataset has
been performed to remove all test methods longer than 1K
tokens. Also, test methods requiring the synthesis of one or
more unknown tokens for generating the appropriate assert
statements have been removed. Indeed, if the required tokens
cannot be found in the vocabulary of the test method they
cannot be synthesized when the model attempts to generate
the prediction. Finally, all duplicates have been removed from
the dataset, leading to a final set of 158,096 Test-Assert
Pairs (TAPs). Each method left in the dataset has then been
abstracted using the same approach previously described by
Tufano et al. [1]. However, in this case the authors experiment
with two datasets, one containing raw source code and one
abstracted code. ATLAS was able to generate asserts identical
to the ones written by developers in 31.42% of cases (4,968
perfectly predicted assert statements) when only considering
the top-1 prediction, and 49.69% (7,857) when looking at the
top-5 in the abstracted dataset, while performance is lower on
the raw dataset (17.66% for top-1 and 23.33% for top-5).

This is the only DL-based technique proposed in the lit-
erature to generate assert statements. We use the datasets
by Watson et al. [16] to fine-tune our T5 model for the
“generation of assert statements” problem, and compare the
achieved performance with the one in the original paper.

D. Code Summarization

Code summarization is one of the mainstream methods for
automatic documentation of source code. The proposed sum-
marization techniques fall into two categories: extractive [43]–
[46] and abstractive [9], [11], [47]–[49]. The former create a
summary of a code component which includes information
extracted from the component being summarized, while the
latter may include in the generated summaries information
that is not present in the code component to document.
DL techniques have been used to support the generation of
abstractive summaries.

Hu et al. [49] use a Deep Neural Network (DNN) to
automatically generate comments for a given Java method. The
authors mine ∼9k Java projects hosted on GitHub to collect
pairs of 〈method, comment〉, where “comment” is the first
sentence of the Javadoc linked to the method. These pairs,
properly processed, are used to train and test the DNN. The
authors assess the effectiveness of their technique by using the
BLEU-4 score [50], showing the superiority of their approach
with respect to the competitive technique presented in [51].

Allamanis et al. [52] use attention mechanisms in neural
networks to suggest a descriptive method name starting from
an arbitrary snippet of code. Their approach can name a code
snippet exactly as a developer would do in ∼25% of cases.



LeClair et al. [8] present a neural model combining the
AST source code structure and words from code to generate
coherent summaries of Java methods. The approach, tested
on 2.1M methods, showed its superiority as compared to the
previous works by Hu et al. [49] and Iyer et al. [51].

The approach by Haque et al. [11] is the most recent in
the area of DL-aided source code summarization, and it is an
improvement of the work by LeClair et al. [8].

It still aims at documenting Java methods through an
encoder-decoder architecture but, in this case, three inputs
are provided to the model to generate the summary: (i) the
source code of the method, as a flattened sequence of tokens
representing the method; (ii) its AST representation; and (iii)
the “file context”, meaning the code of every other method
in the same file. The authors show that adding the contextual
information as one of the inputs substantially improves the
BLEU score obtained by deep learning techniques. The dataset
used in the evaluation is composed of 2.1M Java methods
paired with summaries. We reuse this dataset for the fine-
tuning of the T5 model for the code summarization problem,
and compare its performance to the state-of-the-art approach
proposed by Haque et al. [11].

III. MULTITASK LEARNING FOR CODE-RELATED TASKS

The T5 model was introduced by Raffel et al. [25] to support
multitask learning in the domain of NLP. This approach is
based on two phases: pre-training, which allows defining a
shared knowledge-base useful for a large class of sequence-to-
sequence tasks, and fine-tuning, which specializes the model to
specific tasks of interest. In this section, we first provide basic
information about the T5 model (refer to [25] for a detailed
explanation of the architecture). Then, we explain how we
adapted it to the software engineering domain, with the goal of
supporting the four tasks previously described: automatic bug-
fixing, generation of assert statements in test methods, code
summarization, and injection of code mutants. Such a process
is depicted in Fig. 2. Finally, we describe the hyperparameter
tuning of the model and the adopted decoding strategy.

A. T5 in a Nutshell

The T5 model is based on the transformer model architec-
ture [53] that allows to handle a variable-sized input using
stacks of self-attention layers [54] instead of RNNs or CNNs.
When an input sequence is provided, it is mapped to a
sequence of embeddings that is passed into the encoder.

The encoders are all identical in structure and each one
is comprised of two subcomponents: a self-attention layer
followed by a small feed-forward network. Layer normal-
ization [55] is applied to the input of each subcomponent
while a residual skip connection [56] adds each input of the
subcomponent to its output. Dropout [57] is applied within the
feed-forward network, on the skip connection, on the attention
weights, and at the input and output of the entire stack. The
decoders work similarly to the encoders: Each self-attention
layer is followed by an additional attention mechanism that
attends to the output of the encoder.

The output of the final decoder block is fed into a dense
layer with a softmax output, to produce the output probabilities
over the vocabulary. Differently from the generic transformer
model, the T5 model [25] uses a simplified form of position
embeddings, where each embedding is a scalar that is added
to the corresponding logit used for computing the attention
weights. As pointed out by the authors, for efficiency they also
share the position embedding parameters across all layers.

The T5, in particular, and a transformer model, in general,
offer two main advantages over other state-of-the-art models:
(i) it is more efficient than RNNs since it allows to compute the
output layers in parallel, and (ii) it is able to detect hidden and
long-ranged dependencies among tokens, without assuming
that nearest tokens are more related than distant ones. This last
property is particularly relevant in code-related tasks since a
variable declaration may be distant from its usage.

Five different versions of T5 have been proposed [25]:
small, base, large, 3 Billion, and 11 Billion. These variants
differ in terms of complexity, with the smaller model (T5small)
having 60M parameters against the 11B of the largest one
(T511B). As acknowledged by the authors [25], even if the
accuracy of the most complex variants are higher than the
less complex models, the training complexity increases with
the number of parameters. Considering the available compu-
tational resources, in our work we decided to use the simplest
T5small model. We expect the results achieved in our study to
be a lower bound for the performance of a T5-based model.
Nevertheless—as reported in Section V—the T5small model is
still able to outperform state-of-the-art approaches.

The T5small architecture is characterized by six blocks for
encoders and decoders. The feed-forward networks in each
block consist of a dense layer with an output dimensionality
(dff ) of 2,048. The key and value matrices of all attention
mechanisms have an inner dimensionality (dkv) of 64, and
all attention mechanisms have eight heads. All the other sub-
layers and embeddings have a dimensionality (dmodel) of 512.

B. Pre-training of T5

In the pre-training phase we use a self-supervised task
similar to the one used by Raffel et al. [25], consisting of
masking tokens in natural language sentences and asking
the model to guess the masked tokens. Differently, we did
not perform the pre-training by only using natural language
sentences, since all the tasks we target involve source code.
Thus, we use a dataset composed of both (technical) natural
language (i.e., code comments) and source code. To obtain the
dataset for the pre-training we start from the CodeSearchNet
dataset [58], which provides 6M functions from open-source
code. We only focus on the ∼1.5M methods written in Java,
since the four tasks we aim at supporting are all related to
Java code. Then, since for three of the four tasks we support
(i.e., automatic bug-fixing [1], generation of assert statements
[16], and injection of code mutants [15]) the authors of the
original papers used an abstracted version of source code (see
Section II), we used the src2abs tool by Tufano [1] to create
an abstracted version of each mined Java method.
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Fig. 2: Overview of the approach used to pre-train and fine-tune the T5 model.

Note that, since the tool was run on Java methods in isola-
tion (i.e., without providing it the whole code of the projects
they belong to), src2abs raised a parsing error in ∼600k of
the ∼1.5M methods (due e.g., to missing references), leaving
us with ∼900k abstracted methods. We still consider such a
dataset as sufficient for the pre-training.

The CodeSearchNet dataset does also provide, for a subset
of the considered Java source code methods, the first sentence
in their Javadoc. We extracted such a documentation using the
docstring tokens field in CodeSearchNet, obtaining it for
499,618 of the considered methods. We added these sentences
to the pre-training dataset. This whole process resulted in
a total of 2,984,627 pre-training instances, including raw
source code methods, abstracted methods, and code comment
sentences. Finally, in the obtained dataset there could be du-
plicates between (i) different raw methods that become equal
once abstracted, and (ii) comments re-used across different
methods. Thus, we remove duplicates, obtaining the final set
of 2,672,450 instances reported in Table I. This is the dataset
we use for pre-training the T5 model, using the BERT-style
objective function Raffel et al. used in their final experiments
and consisting of randomly masking 15% of tokens (i.e., words
in comments and code tokens in the raw and abstracted code).

Data sources Instances

Source code 1,569,773
Abstracted source code 766,129
Technical natural language 336,548

Total 2,672,450

TABLE I: Datasets used for the pre-training of T5.

Finally, since we pre-train the model on a software-specific
dataset, we needed to create a new vocabulary to accommodate
the tokens in our dataset. For this reason, we created a new
SentencePiece model [59] (i.e., a tokenizer for neural text
processing) by using the entire pre-training dataset.

C. Fine-tuning of T5
We use a slightly modified version of the multi-task learning

approach used by Raffel et al. [25]: we fine-tune the model on
a mixture of tasks instead of performing fine-tuning for each
single task.

Task Dataset Evaluation-set Training-set Test-set

Bug Fixing BF small [1] 5,835 46,680 5,835
BFmedium [1] 6,546 52,364 6,545

Mutant Generation MGident [15] 11,560 92,476 11,559
Assert Generation AGabs [16] 15,809 126,477 15,810

AGraw [16] 18,816 150,523 18,815
Code Summarization CS [11] 104,272 1,953,940 90,908

Total 162,838 2,422,460 149,472

TABLE II: Task-specific datasets used for fine-tuning T5.

We do this because of the relatively small size of the
specialized datasets available. Table II reports summary char-
acteristics of the datasets we use for each task. Also, for each
task we have to provide a consistent framing of the input
that allows the model to recognize the tasks that should be
performed given an input sequence of tokens. We use a special
token sequence indicating the task at hand (e.g., “generate
small patch” for BF small , followed by the token “:” and by
the input required by the task.

1) Datasets Used for Fine-Tuning: In the following, we
describe the details of the datasets we use for fine-tuning the
model for the four targeted tasks.

Automatic Bug Fixing (BF). We use the dataset by Tufano
et al. [1] composed by triplets BFm = 〈mb ,mf ,M〉, where
mb and mf are the abstracted version of the buggy and fixed
version of Java method, respectively, and M represents the
mapping between the abstracted tokens and the raw code
tokens (e.g., VAR 1→ webServerPort), which allows to track
back the output of the model to source code. The triplets refer
to methods with at most 100 tokens and they are split into two
sub-datasets: (i) the small version, containing methods with up
to 50 tokens, and a medium version, with methods with at most
100 tokens. We train the model to predict the fixed versions,
mf , given the buggy versions, mb . Given the presence of two
datasets, we divide the BF task in two sub-tasks, BF small and
BFmedium , depending on the size of the method [1].

Injection of Code Mutants (MG). For the MG task we
exploited one of the two datasets provided by Tufano et al.
[5]: MG ident and MG ident−lit . In both datasets each instance
is represented by a triple 〈mf ,mb ,M〉, where, similarly to the
BF datasets, mb and mf are the buggy and fixed version of the
snippet, respectively, and M represents the mapping between
the abstracted tokens and the code tokens.



The first dataset (MG ident ) represents the most general
(and challenging) case, in which the mutated version, mb ,
can also contain new tokens (i.e., identifiers, types, or method
names) not contained in the version provided as input (mf ).
MG ident−lit , instead, only contains samples in which the mu-
tated version contains a subset of the tokens in the non-mutated
code. In other words, MG ident−lit represents a simplified
version of the task. For this reason, we decided to focus on the
most general scenario and we only use the MG ident dataset.

Generation of Assertions in Test Methods (AG). For the
AG task we used the dataset provided by Watson et al. [16]
containing triplets 〈T, TMn, A〉, where T is a given test case,
TMn is the focal method tested by T , i.e., the last method
called in T before the assert [60], and A is the assertion
that must be generated (output). For such a task, we use two
versions of the dataset: AGraw , which contains the raw source
code for the input (T +TMn) and the output (A), and AGabs ,
which contains the abstracted version of input and output, i.e.,
src2abs(T + TMn) and src2abs(A), respectively. These are
the same datasets used in the original paper.

Code Summarization (CS). For code summarization, we
exploited the dataset provided by Haque et al. [11] containing
2,149,120 instances, in which each instance is represented by a
tuple 〈S,AS , CS , D〉, where S represents the raw source code
of the method, AS is its AST representation, CS is the code
of other methods in the same file, and D is the summary of
the method, i.e., the textual description that the model should
generate [11]. For this specific task, we consider a variation
of the original dataset to make it more coherent with the
performed pre-training. In particular, since in the pre-training
we did not use any AST representation of code, we decided to
experiment with the T5 model in a more challenging scenario
in which only the raw source code to summarize (i.e., S) is
available to the model. Therefore, the instances of our dataset
are represented by tuples 〈S,D〉: We train our model to predict
D given only S.

2) Data Balancing: The datasets we use for fine-tuning
have different sizes, with the one for code summarization
dominating the others. This could result in an unbalanced
effectiveness of the model on the different tasks. In our case,
the model could become very effective in summarizing code
and less in the other three tasks. However, as pointed out by
Arivazhagan et al. [61], there is no free lunch in choosing the
balancing strategy when training a multi-task model, with each
strategy having its pros and cons (e.g., oversampling of less
represented datasets negatively impacts the performance of the
most representative task). For this reason, while fine-tuning,
we decided not to perform any particular adaptation of our
training set, following the true data distribution when creating
each batch: We sample instances from the tasks in such a way
that each batch during the training has a proportional number
of samples accordingly to the size of the training dataset.

D. Decoding Strategy

Given the values of the output layer, different decoding
strategies can be used to generate the output token streams.

T5 allows to use both greedy decoding and Beam-search.
When generating an output sequence, the greedy decoding
selects, at each time step t, the symbol having the highest
probability. The main limitation of greedy decoding is that
it only allows the model to generate one possible output
sequence (e.g., one possible bug fix) for a given input sequence
(e.g., the buggy method).

Beam-search is an alternative decoding strategy previously
used in many DL applications [62]–[65]. Unlike greedy de-
coding, which keeps only a single hypothesis during decoding,
beam-search of order K, with K > 1, allows the decoder to
keep K hypotheses in parallel: At each time step t, beam-
search picks the K hypotheses (i.e., sequences of tokens up
to t) with the highest probability, allowing the model to output
K possible output sequences.

We used Beam-search to provide several output sequences
given a single input, and report results with different K
values. It is worth noting that having a large K increases the
probability that one of the output sequences is correct, but, on
the other hand, it also increases the cost of manually analyzing
the output for a user (i.e., a developer, in our context).

E. Hyperparameter Tuning

For the pre-training phase, we use the default parameters
defined for the T5 model [25]. Such a phase, indeed, is task-
agnostic, and hyperparameter tuning would provide limited
benefits. Instead, we tried different learning rate strategies
for the fine-tuning phase. Especially, we tested four different
learning rates: (i) Constant Learning Rate (C-LR): the learning
rate is fixed during the whole training (we use LR = 0.001,
i.e., the value used in the original paper [25]); (ii) Inverse
Square Root Learning Rate (ISR-LR): the learning rate decays
as the inverse square root of the training step (the same
used for pre-training by Raffel et al.); (iii) Slanted Triangular
Learning Rate [66] (ST-LR): the learning rate first linearly
increases and then linearly decays to the starting learning rate;
(iv) Polynomial Decay Learning Rate (PD-LR): the learning
rate decays polynomially from an initial value to an ending
value in the given decay steps.

Table III reports the specific parameters we use for each
scheduling strategy: the values are the default ones reported
in the papers that introduced them.

Learning Rate Type Parameters

Constant LR = 0.001
Inverse Square Root LRstarting = 0.01

Warmup = 10, 000
Slanted Triangular LRstarting = 0.001

LRmax = 0.01
Ratio = 32
Cut = 0.1

Polynomial Decay LRstarting = 0.01
LRend = 1e−06
Power = 0.5

TABLE III: Learning-rates tested for hyperparameter tuning.



Dataset Metric C-LR ST-LR ISQ-LR PD-LR

BF small [1] Accuracy@1 6.9% 13.2% 11.0% 0.27%
BFmedium [1] Accuracy@1 2.9% 5.5% 3.3% 0.0%
MGident [15] BLEU-A 75.6% 78.2% 77.7% 12.0%
AGabs [16] Accuracy@1 33.7% 39.7% 39.8% 2.0%
AGraw [16] Accuracy@1 48.9% 57.6% 56.7% 2.1%
CS [11] BLEU-A 23.3% 23.6% 24.3% 3.4%

# Best Results 0 4 2 0

TABLE IV: Hyperparameter tuning results.

We pre-train the model for a total of 100k steps in the four
configurations on the whole pre-training set and we test it on
the evaluation sets of the datasets provided by the original
papers we compare with.

We compute the following metrics: for BF and AG, we
compute the percentage of perfect predictions achieved with
the greedy decoding strategy (Accuracy@1); for MG, we
compute the BLEU score [50]; for CS, we compute BLEU-
A, the geometric average of the BLEU-{1,2,3,4} scores [50].
Basically, for each task we adopt one of the evaluation
metrics used in the original paper (details about these metrics
are provided in Section IV-A). We report in Table IV the
achieved results (in bold the learning rate obtaining the best
performance for each metric/dataset). As it can be noticed, the
Slanted Triangular Learning Rate (ST-LR) allows to achieve
the best performance in most of the cases. For this reason, we
decided to use this particular learning rate in our model.

Several other hyperparameters could have been tuned. Given
the high computational cost to train the model (∼343 hours
on a colab [67] instance with 8 tpu cores and 35.5GB of
RAM), we did not manage to perform a comprehensive
hyperparameter tuning. The high dimensionality of the model,
indeed, makes hyperparameter tuning not very cost-effective:
we preferred to use the computational power available to
increase the number of steps for training the model.

IV. STUDY DESIGN

The goal of our study is to understand whether multi-task
learning, in general, and a T5-based model, in particular,
is suitable for automating code-related tasks. The context is
represented by the datasets introduced in Section II, i.e., the
ones by Tufano et al. for bug fixing [1] and injection of
mutants [15], by Watson et al. for assert statement generation
[16], and by Haque et al. for code summarization [11].

Our study is steered by the following research question: Is
the T5 model suitable for code-related tasks such as automatic
bug fixing, injection of mutants, assert statement generation
and code summarization?

A. Experimental Procedure

We use the model we trained and tuned as we specified
in Section III and we run it on the test sets provided in
the previously described datasets. Our baselines are the state-
of-the-art models described in Section II. For each task and
dataset, we compare the results achieved by our model with
the results reported in the original papers.

Task Baseline Accuracy@K BLEU-n ROUGE LCS

BF [1] {1, 5, 10, 25, 50} - -
MG [15] {1} {A} -
AG [16] {1, 5, 10, 25, 50} - -
CS [11] - {1, 2, 3, 4, A} {P,R, F}

TABLE V: Baselines and evaluation metrics for the tasks.

We use different metrics for the different tasks, depending
on the metrics reported in the papers that introduced our
baselines. Table V reports the baselines and metrics used to
evaluate the results for each task, that we define below.

Accuracy@K measures the percentage of cases (i.e., in-
stances in the test set) in which the sequence predicted by
the model equals the oracle sequence (i.e., perfect prediction).
Since we use beam-search, we report the results for different
K values (i.e., 1, 5, 10, 25, and 50), as done in [1] (BF) and
[16] (AG). Tufano et al. [5] do not report results for K > 1 for
the MG task. Thus, we only compare the results with K = 1.

BLEU score (Bilingual Evaluation Understudy) [50] mea-
sures how similar the candidate (predicted) and reference (ora-
cle) texts are. Given a size n, the candidate and reference texts
are broken into n-grams and the algorithm determines how
many n-grams of the candidate text appear in the reference
text. The BLEU score ranges between 0 (the sequences are
completely different) and 1 (the sequences are identical). We
use different BLEU-n scores, depending on the ones used in
the reference paper of the baseline. For the CS task, we report
BLEU-{1, 2, 3, 4} and their geometric mean (i.e., BLEU-A);
for the MG task we only report BLEU-A.

ROUGE (Recall-Oriented Understudy for Gisting Eval-
uation) is a set of metrics for evaluating both automatic
summarization of texts and machine translation techniques
in general [68]. ROUGE metrics compare an automatically
generated summary or translation with a set of reference
summaries (typically, human-produced). We use the ROUGE
LCS metrics based on the Longest Common Subsequence for
the CS task [11]. Given two token sequences, X and Y , and
their respective length, m and n, it is possible to compute three
ROUGE LCS metrics: R (recall), computed as LCS(X,Y )

m ,
P (precision), computed as LCS(X,Y )

n , and F (F-measure),
computed as the harmonic mean of P and R.

Besides such effectiveness metrics, we also perform an
additional analysis: we compute the inference time, i.e., the
time needed to run the model on a given input. We run such
an experiment on a laptop equipped with a 2.3GHz 8-core
9th-generation Intel Core i9 and 16 GB of RAM. We do this
for different beam search sizes, with K ∈ {1, 5, 10, 25, 50}.
For each K, we report the average inference time on all the
instances of each task. This allows understanding the efficiency
of the model and to what extent it can be used in practice.

Finally, for each task, we also compute the complementarity
between T5 and the baseline approach. For each dataset d we
consider and the related baseline approach BLd, we first define
the sets of perfect predictions obtained by the two approaches
PPT5d

and PPBLd
with a fixed beam size K = 1.



Then, we compute three metrics:

Sharedd =
|PPT5d

∩ PPBLd
|

|PPT5d
∪ PPBLd

|

OnlyT5d =
|PPT5d

\ PPBLd
|

|PPT5d
∪ PPBLd

|
OnlyBLd =

|PPBLd
\ PPT5d

|
|PPT5d

∪ PPBLd
|

Sharedd measures the percentage of perfect predictions
shared between the two compared approaches, while OnlyT5 d

and OnlyBLd measure the percentage of cases in which the
perfect prediction is only achieved by T5 or the baseline,
respectively, on the dataset d.

V. RESULTS DISCUSSION

We report a summary of the results achieved by T5 (in
red) and by the respective baselines (in orange) for the four
tasks we consider (i.e., BF, MG, AG, and CS) in Fig. 3.
We also show the inference times for all the tasks and the
overlap metrics between T5 and the experimented baselines in
Table VI and Table VII, respectively. We discuss the results
task by task below.

TABLE VI: Inference time with different beam size values.

K BF small BFmedium MGident AGabs AGraw CS

1 0.41 1.84 0.31 0.35 0.36 0.12
5 0.62 1.13 0.54 0.79 0.66 0.17
10 0.72 1.55 0.62 1.17 1.20 0.24
25 1.30 3.35 1.13 2.45 2.66 0.40
50 2.16 5.31 2.04 4.82 4.96 0.74

A. Automatic Bug Fixing (BF)

When using T5 for automatically fixing bugs, the accuracy
achieved using a greedy decoding strategy (K = 1) is very
similar to the one achieved by the baseline on both the datasets
we consider, i.e., BF small and BFmedium . While on the first
one there is a 1% improvement, on the other the results are
exactly the same. However, when increasing the beam size,
the difference becomes larger: on BF small the improvement
ranges between 8-10%, while on BFmedium it is lower, and
it ranges between 4-9%. In general, it can be noticed that the
improvement margin is constant.

The time needed to generate a fix depends on the dataset,
i.e., on the number of tokens of the input. If we use the
BF small dataset, the average inference time ranges between
0.41s (K = 1) and 2.16s (K = 50), while it is larger on the
BFmedium dataset (1.84s for K = 1 and 5.31s for K = 50).

TABLE VII: Overlap metrics for correct predictions generated
by the T5 model and the baselines.

Dataset (d) Sharedd OnlyT5d OnlyBLd

BF small 37.67% 36.52% 25.81%
BFmedium 28.78% 36.06% 35.16%
MGident 41.03% 46.65% 12.32%
AGabs 39.78% 36.19% 24.03%
AGraw 11.68% 84.30% 4.02%
CS 4.97% 93.46% 1.57%

There is a considerable overlap between the perfect predic-
tions done by the two approaches (see Table VII): ∼38% of
perfect predictions on BF small and ∼29% on BFmedium are
shared by the two techniques.

The remainder are perfect predictions only with T5 (∼36%
on BF small and ∼36% on BFmedium ) or only with the
baseline (∼26% on BF small and ∼35% on BFmedium ). This
indicates that the two approaches are complementary for the
BF task suggesting that, even if T5 was not able to fix some
bugs, it is still possible to automatically fix (a subset of) such
bugs with a specialized ML-based approach. This recalls the
need to further enrich the architecture of a transfer learning
method with the goal of further improving its ability to exploit
the knowledge acquired on specific tasks.

B. Injection of Code Mutants (MG)

Looking at Fig. 3, we can observe that using T5 to generate
mutants allows to obtain much more accurate results than
the baseline, with the Accuracy@1 improving by 11%, with
1,240 additional perfect predictions (+62% as compared to the
baseline). The average BLEU score improves by ∼0.01 on top
of the very good results already obtained by the baseline (i.e.,
0.77). Minor improvements in BLEU score can still indicate
major advances in the quality of the generated solutions [69].

As for the inference time (Table VI), we observed similar
results compared to the BF task on the BF small dataset: with
K = 1, the average inference time is 0.31s, while for K = 50
it is 2.04s. We do not report perfect predictions at K = 50
since those were not reported in the original paper [15].

Similarly to BF, also for MG the percentage of shared
perfect predictions (Table VII) is quite high (∼41%) with,
however, T5 being the only one generating ∼46% of perfect
predictions as compared to the ∼12% of the baseline approach.

C. Generation of Assertions in Test Methods (AG)

T5 achieves very similar results compared to the baseline
on the AGabs (see Fig. 3): when abstracting the tokens, both
approaches achieve very similar levels of accuracy, and such
values are reasonably high with the increase of K (e.g., they
both achieve 65% accuracy with K = 50). However, when
using the more challenging non-abstracted dataset AGraw ,
T5 allows to achieve much better results: it achieves a 29%
higher accuracy with K = 1, while for larger K values
the gap in performance ranges between 35-38%. The most
interesting result, however, is that T5 achieves similar results
both with and without abstraction, with the the Accuracy@1
being higher when considering AGraw then when considering
AGabs . The fact that T5 is capable of handling raw source
code makes its usage more straightforward compared to the
baseline: it does not need pre- and post-processing steps for
such a task.

Assert generation is very fast for low values of K (0.36s for
both the datasets with K = 1), while it gets much slower for
higher values of K, at a higher rate compared to other tasks
(4.82s for AGabs and 4.96s for AGraw with K = 50).
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Fig. 3: Performance of the T5 model against the experimented baselines.

In terms of overlap, we found a trend similar to BF on
AGabs : we have ∼40% of perfect predictions shared between
the two approaches, while the remainder instances are dis-
tributed between the ones only predicted by T5 (∼36%) and
the ones only predicted by the baseline (∼24%).

There is, instead, a small overlap on the AGraw dataset:
only ∼12% of the instances are perfectly predicted by both
the approaches, with ∼84% of them correctly predicted only
by T5.

D. Code Summarization (CS)

On this task, T5 achieves a substantial increase in BLEU
score as compared to the baseline. When considering the
average BLEU (BLEU-A), the improvement is of ∼5%. On
the other hand, it can be noticed that the ROUGE-LCS scores
achieved when using T5 are lower than the ones achieved
by the baseline (∼6% lower on the F-measure score). Thus,
looking at these metrics, there is no clear winner, but T5 seems
to be at least comparable to the baseline. To have something
easier to interpret, we compared the two approaches in terms
of the number of perfect predictions they generate, despite the
fact that such a metric was not used in the original paper [11].
This means counting the comments generated by a technique
that are exactly equal to the ones manually written by humans.
T5 managed to generate 11.4% of perfect predictions (10,401
instances) against the 3.4% (3,048) of the baseline technique
(over 3 × better).

Code summarization is the fastest task to complete for T5:
it takes only 0.12s for K = 1 and 0.74s for K = 50.

As expected from previous results, the majority of the
perfect predictions for this task can be done only using T5
(∼93%). A limited percentage of perfect predictions is shared
(∼5%), and a minority of instances can be only predicted
through the baseline (∼2%).

E. Qualitative Examples

We show in Fig. 4 four examples of perfect predictions by
T5; for the sake of space limitations, for BF and MG, we
only report the parts of code that T5 modified. In the first one
(BF), the developers used the != operator for comparing two
objects instead of calling the equals method. T5 was able to
fix the bug by (i) adding a call to equals and, less obvious,
(ii) adding the ! operator before the method call. In the second
example (MG), T5 generates a mutant by replacing the correct
string (string 1) with a different one (string 2). In the
third example (AG), the test checks if a call to setPosition
on the variable instant1 does not change its value (i.e., it
should be equal to result). Such an assertion is not trivial
to generate since result is used in the assertion even if p is
closer to the assert placeholder. Finally, in the last example
(CS), T5 detects that (i) the method applies a given procedure
to the pairs, (ii) the pairs belong to a receiver, and (iii) this
happens only if there is a receiver. This shows how T5 is able
to generate a summary for a method that even a developer
could struggle to understand.



Automatic Bug Fixing (BF)
public void method_1(int var_1 , int var_2 , Intent data) {

super.method_1(var_1 , var_2 , data);
if ((data != null) && ((data.method_2(var_3)) != string_1)) {

var_4.setText(data.method_2(var_3));
}

}

> if ((data != null) && (!(data.method_2(var_3)).equals(string_1))) {

Injection of Code Mutants (MG)
public void method_1(result) {

if (result == null) {
var_1.setEnabled(false);
var_2.setEnabled(false);
return;

}
var_3.setText ((string 1 + result));

}

> var_3.setText ((string 2 + result));

Generation of Assert Statements in Test Methods (AG)
//test method
void testSetPosition () {

Position result = instant1.getPosition ();
Position p = org.geotools.temporal.Object.defaultPosition(new Date());
((org.geotools.temporal.Object.DefaultInstant)(instant1)).setPosition(p);
<assertplaceholder>;

}
//focal method
public Position getPosition () { return this; }

> assertFalse(instant1.getPosition().equals(result))

Code Summarization (CS)
public boolean forEachPair(final IntObjectProcedure procedure) {

for (int i = table.length; i-- > 0;) {
if (state[i] == FULL)

if (! procedure.apply(table[i], values[i]))
return false;

}
return true;

}

> "applies a procedure to each key value pair of the receiver if any"

Fig. 4: Examples of perfect predictions done by T5.

F. Answer to our Research Question

Our study showcases the potential of T5 for code-related
tasks. The T5 model achieved better performance as compared
to all baselines we experimented with. However, it is impor-
tant to highlight that there are many factors that may have
contributed to such a result. Indeed, the high effectiveness
we obtained on all the tasks we experimented with might
not only be related to the T5 architecture (e.g., the fact that
the T5 supports transfer learning with knowledge acquired
on a task that can be reused on other tasks) but to other
differences between the study presented in this paper and
the experiments performed in the original work. While the
datasets used for testing the techniques are exactly the same,
two aspects must be considered. First, the type of the model
we use (i.e., the transformer model): using such a model in a
single-task setting may still allow to achieve an improvement
over the respective baselines Second, as previously explained,
the pre-training phase may provide “knowledge” to the model
that is not available in the training sets used for the fine-tuning
(and, thus, not used by the competitive techniques).

The results in terms of inference time show that T5 is able
to complete all the tasks very quickly: it always takes less than
6 seconds even to generate 50 alternative solutions.

Note that the inference times we reported are based on the
usage of a consumer-level device and by only using CPUs:
when using GPUs (Nvidia Tesla P100 provided by Google
Colab), the time needed for each task flattens to at most
∼0.5 seconds for K = 50, i.e., the task variability previously
reported disappears. Finally, the overlap analysis indicates that
some instances of the considered tasks were not resolved
correctly by T5 but were resolved by the baselines. This means
that such instances can be still resolved automatically by a
ML-based approach. Such a consideration suggests that there
is still room for improving the accuracy of T5.

VI. THREATS TO VALIDITY

Construct validity. For both the pre-training and the fine-
tuning of our model we re-used available datasets, just per-
forming some additional cleaning (e.g., removal of duplicates
after abstraction in the dataset used for the pre-training). Even
though we remove duplicates from the pre-training dataset
and double-check all the datasets used for the fine-tuning, it
is possible that instances in the pre-training dataset appear
in some of the test datasets we reused. For example, a code
comment included among the pre-training instances we used
could have a duplicate, by chance, in the test set of the CS task,
thus helping the T5 model in the prediction. While removing
instances from the test sets was not an option since this would
not allow a fair comparison between the T5 results and the
ones reported in the original papers, we decided to investigate
such overlap, to have an idea of the extent to which it could
have influenced our findings. We found 0 duplicates between
the pre-training dataset and the test sets of: BF small , AGabs ,
AGraw ; 1 in MG ident ; 2 in BFmedium ; and 147 (out of
90,908) in the CS test set. Thus, the influence of duplicates
on the reported results should be marginal.

Internal validity. An important factor that influences DL
performance is hyperparameters tuning. For the pre-training
phase, we used the default T5 parameters selected in the orig-
inal paper [25] since we expect little margin of improvement
for such a task-agnostic phase. For the fine-tuning, due to
feasibility reasons, we did not change the model architecture
(e.g., number of layers) but we experiment with different
learning rates. We are aware that a more extensive calibration
would likely produce better results.

External validity. We experimented the T5 model on four
tasks using six datasets. The main generalizability issue is
related to the focus on Java code. However, excluding the
abstraction component, our approach is language agnostic.

VII. CONCLUSION

We investigated the usage of a T5 model to support four
code-related tasks: automatic bug-fixing, generation of assert
statements in test methods, code summarization, and injection
of code mutants. The achieved results show that the T5 model
can be successfully used for these tasks, with performance
superior to the four baselines. However, as explained in
Section V-F, such a finding deserves additional investigations
TO better understand what makes T5 performing better.



Also, Raffel et al. [25], who originally introduced T5,
showed that larger T5 models are able to achieve much better
results as compared to the small T5 model we used in this
work. From this perspective, the results reported in this paper
should be considered as a lower bound of the T5 capabilities.

Code and data used in this paper are publicly available [26].
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and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014.

[25] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” 2019.

[26] “Replication package https://github.com/antonio-mastropaolo/
T5-learning-ICSE 2021.”

[27] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Trans. Software
Eng., vol. 38, no. 1, pp. 54–72, 2012.

[28] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” ser. ICSE’12.

[29] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic
error elimination by horizontal code transfer across multiple applica-
tions,” SIGPLAN Not., vol. 50, no. 6, pp. 43–54, Jun. 2015.

[30] D. Pierret and D. Poshyvanyk, “An empirical exploration of regularities
in open-source software lexicons,” in The 17th IEEE International
Conference on Program Comprehension, ICPC 2009, Vancouver, British
Columbia, Canada, May 17-19, 2009, 2009, pp. 228–232.

[31] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE ’10. New York, NY,
USA: ACM, 2010, pp. 147–156.

[32] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezzè,
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