
CodeTopics: Which Topic am I Coding Now?

Malcom Gethers
Computer Science Dept.

College of William and Mary
Williamsburg, VA, USA

mgethers@cs.wm.edu

Trevor Savage
HCI Institute

Carnegie Mellon University
Pittsburgh, PA, USA

trevorsa@cs.cmu.edu

Massimiliano Di Penta
Dept. of Engineering
University of Sannio

Benevento, Italy
dipenta@unisannio.it

Rocco Oliveto
STAT Dept.

University of Molise
Pesche (IS), Italy

rocco.oliveto@unimol.it

Denys Poshyvanyk
Computer Science Dept.

College of William and Mary
Williamsburg, VA, USA

denys@cs.wm.edu

Andrea De Lucia
Software Engineering Lab

University of Salerno
Fisciano (SA), Italy

adelucia@unisa.it

ABSTRACT

Recent studies indicated that showing the similarity between
the source code being developed and related high-level ar-
tifacts (HLAs), such as requirements, helps developers im-
prove the quality of source code identifiers. In this paper, we
present CodeTopics, an Eclipse plug-in that in addition to
showing the similarity between source code and HLAs also
highlights to what extent the code under development covers
topics described in HLAs. Such views complement informa-
tion derived by showing only the similarity between source
code and HLAs helping (i) developers to identify functional-
ity that are not implemented yet or (ii) newcomers to com-
prehend source code artifacts by showing them the topics
that these artifacts relate to.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—Program editors

General Terms

Documentation; Measurement; Management.

Keywords

Source code lexicon, program comprehension, traceability.

1. INTRODUCTION
Consistent use of identifiers and detailed, meaningful com-

ments are two factors that can affect source code maintain-
ability and comprehensibility, as indicated by recent stud-
ies [6, 9]. For example, referring to a concept using a non-
meaningful term, or either using different terms to refer to
the same concept, may increase the program comprehension
burden. This also creates a mismatch between the develop-
ers’ cognitive model and the intended meaning of the term,
thus increasing the risk of fault proneness [9].

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

Recent studies indicated that showing the similarity be-
tween the source code being developed and related high-
level artifacts (HLAs) helps developers improve the quality
of source code identifiers [3]. In particular, De Lucia et al.

have proposed COCONUT [3], an Eclipse plug-in that con-
tinuously shows the similarity between the source code that
the developer is writing and related HLAs (e.g., use cases,
requirements, design documents). This similarity informa-
tion might induce the developer to take different actions,
such as making the source code identifiers more consistent
with domain terms or better commenting the source code.
However, such a similarity information might be too coarse-
grained: a source code artifact the developer is coding may
by related to only one specific concept described in one HLA
(and not to the whole HLA), or, vice versa, it may be related
to concepts spread across different HLAs.

We conjecture that a better support can be provided show-
ing not only the similarity between source code and HLAs,
but, going into a finer-grained level of detail, showing what
are the specific topics being covered by the source code,
and to what extent these topics are covered. In this demo,
we present CodeTopics—an Eclipse plug-in built on top of
COCONUT—that uses an Information Retrieval (IR) tech-
nique, namely Relational Topics Model (RTM) [2]—to ana-
lyze the topics that software artifacts (i.e., HLAs and source
code) deal with. Recently, RTM has been used to capture
coupling in object-oriented systems [5], whereas topic mod-
els have been also used to capture cohesion in object-oriented
systems [7], explore topics in source code [8], and support
recovery of traceability links between software artifacts [1].

CodeTopics—other than showing the similarity between
source code and related HLAs as COCONUT does—visual-
izes the topics found in HLAs—by means of a list of terms
describing each topic—and highlights how important a topic
is for a HLA and to what extent the topic has been covered
in the source code artifact under development. This can be
used by developers to address the following needs:

• for a new developer joining the project, it describes the
source code file that the developer has opened in the
IDE using terms from the HLA traced to the source
code, i.e., provides an automatic, high-level description
of the source code, thus aiding the comprehension;



• it shows how the source code being developed covers
specific concepts described in a requirement/use cases.
This information complements the similarity between
source code and HLAs, giving a finer-grained level of
details that might improve the support provided to the
developer to improve the source code identifiers [3].

• it helps to check whether all the concepts described in
HLAs have source code related to them. In case where
there are concepts for which no correspondence in the
source code exists, this information can be used to
identify high-level, abstract concepts of features that
have not been implemented yet. On the other way
around, it also shows if there are concepts (implemen-
tation details) only mapped to source code and not to
HLAs.

Summarizing, the specific contributions of this tool demo
paper are: (i) a technique for analyzing and understanding
high-level topics and their relationships, as extracted with
RTM, that can be used for improving program comprehen-
sion and/or for detecting concepts and features that are not
implemented in source code, but which perhaps should be;
and (ii) the Eclipse plug-in, namely CodeTopics, which im-
plements an RTM-based set of features for evaluating lexicon
used in source files and HLAs.

2. CODETOPICS IN A NUTSHELL
This section describes CodeTopics. The current imple-

mentation of the tool supports Java development (as it is
integrated in the Eclipse Java Development Kit) although
without loss of generality the proposed approach can be ex-
tended to other programming languages. The following sub-
sections explain how the tool extracts the needed informa-
tion from the source code and from HLAs (Section 2.1), and
then describes the views provided by CodeTopics (Section
2.2).

2.1 Topic Extraction
Our underlying mechanism for establishing topics, namely

RTM, accepts as input a collection of documents (i.e., a
corpus) and a set of traceability links between documents.
The documents utilized in CodeTopics include HLAs (e.g.,
use cases) as well as all the Java source code files associated
with the project currently opened in Eclipse-JDT.

To identify similarities between HLA and source code, and
to extract topics, RTM needs pre-processed artifacts, plus a
list of links between artifacts. Source code files are processed
to filter out everything, but identifiers and comment words,
while all HLA are filtered using a list of stop-words.

Traceability links are obtained as follows. HLA-to-source
code links, are provided by the user. Links between HLA
are automatically recovered using a technique based on the
similarity between artifacts computed using Latent Seman-
tic Indexing (LSI) [4]. Links between source code classes are
method call dependencies recovered using X-Ray1. Finally,
in addition to the automatic link identification, we allow
users to specify additional links or to remove automatically
recovered ones.

1http://xray.inf.usi.ch/xray.php

Figure 1: The Similarity view.

For the generation of the RTM model, we use the R pack-
age lda2, which implements several information retrieval al-
gorithms, including RTM.

2.2 CodeTopics at Work
To support the developer in writing source code, and specif-

ically to support her specific programming needs outlined in
the introduction, CodeTopics provides developers with two
different views: Similarity and Topic Distribution views. In
addition, CodeTopics inherits from COCONUT the Identi-

fiers view, which recommends a list of candidate identifiers
extracting n-grams from HLAs related to the source code
under development. In the following we describe the Simi-

larity and Topic Distribution views using use cases and Java
source code from a simple program, that is Monopoly game3.
A more detailed description of CodeTopics at work is pro-
vided in a video available online4.

2.2.1 Similarity View

The aim of the Similarity view (Figure 1) is to show (i) as
in COCONUT, how similar is the code under development to
the related HLAs, and (ii) how the code under development
relates to the topics found in the HLAs it is traced to, thus
providing a quick description of the code in terms of words
from the related requirements. This view is context-sensitive
— its content relates to the source file active in the Eclipse-
JDT editor.

The view shows a list of high-level artifacts, with a check-
box—in the first column—indicating whether the artifact is
related to the source code under development. The second
column contains the name of the HLAs, and the third col-
umn shows the similarity between the artifact and the source
code under development (or zero if the HLA is not linked to
the source code). The indented rows beneath each selected
high-level artifact describe—by using a list of terms— the
topics found in the HLA. For each topic, the Similarity view
shows the degree to which the topic is found in the design ar-

2http://cran.r-project.org/web/packages/lda/
3http://agile.csc.ncsu.edu/rose/#reales
4http://www.youtube.com/watch?v=guU8Atqo7xY



Figure 2: The Topic Distribution view.

tifact (length of the blue rectangle) and in the source code
file (length of the green bar, which at its greatest length
would fill blue rectangle). This would provide additional
information to the developer, other than the similarity be-
tween code and requirements: given a HLA and a source
code file under development, the view provides an indica-
tion of the importance of different topics in the high-level
artifact, and the degree to which the code relates to those
topics.

The example of Figure 1 shows that the class under de-
velopment (JailCard, which models the jail in the monopoly
game) has, indeed a high similarity with use cases related
to managing the “going to jail” event in the game (UC4,
UC5, UC14). These use cases contain 2 topics, one, more
important (according to the length of the blue rectangles)—
described by words jail, game, turn, event related to going
to jail event, and the other related to more general parts
of the monopoly game, like rolling the dice, paying/earning
money, buying/renting lands/houses, etc. In this case, we
can see that the class JailCard covers completely the first
topic, while it is less related to the second one.

2.2.2 Topic Distribution View

The Topic Distribution view (Figure 2) provides informa-
tion from an opposite viewpoint as compared to the Simi-

larity view. In particular, this view shows a table reporting
the topics identified by RTM in all the artifacts (both doc-
umentation and source code) and, for each identified topic,
the degree to which the topic is found both in HLAs and
in source code artifacts. This shows which are the artifacts
more related to a topic (by means of bars). In addition, it
indicates whether a topic is not reflected in the source code
(i.e., there is no source code below a topic), as in the case
of the dialog, lands, after, amount, ... topic in our exam-
ple, either because this is a high level concept, or because
the concept has not been implemented yet. Similarly, it can
indicate cases where the topic was only found in the code—
i.e., no high-level artifact mentioned below the topic—and
not in the HLA. This can happen for topics related to im-
plementation details such as algorithms, protocols, etc.

3. CONCLUSION
In this paper we presented CodeTopics, a tool which sup-

plies programmers with topics found in the source code un-
der development, using the Relational Topics Model tech-
nique. The information provided by CodeTopics has differ-
ent purposes, namely (i) helping newcomers to quickly get
an idea of what a source code artifact is about, by describ-
ing it in terms of topics found in related high-level artifacts,
e.g., requirements or use cases; (ii) providing a finer-grained
level of traceability, i.e., telling to what extent a source code
artifact is related to a topic, other than to what extent it is
related to a high-level artifact; and (iii) highlighting topics
not covered by source code (high-level concepts) as well as
topics only covered by source code (implementation details).
CodeTopics is publicly available for download5.

Future work aims at further improving CodeTopics with
more advanced views, e.g., showing how well requirements
are (overall) covered by source code. Also, we plan to con-
duct controlled experiment to evaluate the the usefulness
of CodeTopics tool in program comprehension and develop-
ment tasks.

4. ACKNOWLEDGEMENTS
Chappell Fellowship program of the College of William

and Mary provided funding for Trevor Savage working on his
undergraduate research project. This work was supported
in part by NSF CCF-1016868 grant. Any opinions, findings,
and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

5. REFERENCES
[1] H. U. Asuncion, A. Asuncion, and R. N. Taylor.

Software traceability with topic modeling. In ICSE’10,
pages 95–104, 2010.

[2] J. Chang and D. M. Blei. Hierarchical relational models
for document networks. Annals of Applied Statistics,
2010.

[3] A. De Lucia, M. Di Penta, and R. Oliveto. Improving
source code lexicon via traceability and information
retrieval. TSE, (to appear), 2011.

[4] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora.
Recovering traceability links in software artefact
management systems using information retrieval
methods. TOSEM, 16(4), 2007.

[5] M. Gethers and D. Poshyvanyk. Using relational topic
models to capture coupling among classes in
object-oriented software systems. In ICSM’10, 2010.

[6] D. Lawrie, H. Feild, and D. Binkley. Quantifying
identifier quality: an analysis of trends. ESE Journal,
12(4):359–388, 2007.

[7] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and
N. Chrisochoides. Modeling class cohesion as mixtures
of latent topics. In ICSM’09, pages 233–242, 2009.

[8] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk.
Topicxp: Exploring topics in source code using latent
dirichlet allocation. In ICSM’10, 2010.

[9] A. Takang, P. Grubb, and R. Macredie. The effects of
comments and identifier names on program
comprehensibility: an experiential study. Journal of
Program Languages, 4(3):143–167, 1996.

5http://www.cs.wm.edu/semeru/CodeTopics


