
Identifying Method Friendships to Remove
the Feature Envy Bad Smell (NIER Track)

Rocco Oliveto
University of Molise, Pesche (IS), Italy

rocco.oliveto@unimol.it

Malcom Gethers
The College of William and Mary, Williamsburg, USA

mgethers@cs.wm.edu

Gabriele Bavota
University of Salerno, Fisciano (SA), Italy

gbavota@unisa.it

Denys Poshyvanyk
The College of William and Mary, Williamsburg, USA

denys@cs.wm.edu

Andrea De Lucia
University of Salerno, Fisciano (SA), Italy

adelucia@unisa.it

ABSTRACT
We propose a novel approach to identify Move Method refac-
toring opportunities and remove the Feature Envy bad smell
from source code. The proposed approach analyzes both
structural and conceptual relationships between methods
and uses Relational Topic Models to identify sets of meth-
ods that share several responsabilities, i.e., “friend methods”.
The analysis of method friendships of a given method can
be used to pinpoint the target class (envied class) where the
method should be moved in. The results of a preliminary
empirical evaluation indicate that the proposed approach
provides meaningful refactoring opportunities.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Design, Experimentation.

Keywords
Source Code Quality, Refactoring, Relational Topic Model.

1. INTRODUCTION
High levels of coupling and lack of cohesion are generally

associated with lower productivity, greater rework, more sig-
nificant design efforts by developers, and higher defect rates
[11]. Consequently, low coupling and high cohesion can be
regarded as indicators of good design quality in terms of
maintenance. Monitoring coupling and cohesion of classes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

is particularly valuable during software evolution, where the
classes of a system undergo continuous modifications mak-
ing the source code more complex and drifting away from
its original design. Indeed, due to strict deadlines, program-
mers do not always have sufficient time to make sure that
the resulting source code conforms to OOP guidelines [9].

Feature Envy bad smell can be considered as the most
common symptom related to problems with class coupling
and cohesion. Such a bad code smell arises when a software
engineer violates the principle of grouping behavior with re-
lated data and occurs when “a method is more interested in
a class other than the one it actually is in” [9]. Move method
refactoring (a method is moved to the class that it envies)
represents a way to remove the Feature Envy bad smell and
improve the overall system quality. Unfortunately, the iden-
tification of both the envied class and the method that has
to be moved to the target class is not always trivial [20].

In this paper, we propose a novel approach for identify-
ing move method refactoring opportunities. The proposed
approach, called MethodBook, follows the Facebook1 met-
aphor. Facebook is a well-known social networking portal,
where users can add people as friends, send them messages,
and update their personal profiles to notify friends about
themselves. The personal profile plays a crucial role. In par-
ticular, Facebook uses Relational Topic Model (RTM) [5] to
analyze users’ profiles and suggest new friends or groups of
people sharing similar interests. In our implementation of
MethodBook, methods and classes play the same role as peo-
ple and groups of people, respectively, in Facebook; meth-
ods’ bodies, that is profiles, contain information about struc-
tural (e.g., method calls) and conceptual relationships (e.g.,
similar comments) with other methods in the same class and
in the other classes. Having such a metaphorical representa-
tion, we can employ the same technique successfully utilized
in Facebook, i.e., RTM, to identify “friends” of a method in
order to suggest move method refactoring opportunities in
software. In particular, given a method, we can apply RTM
to suggest as a target class (i.e., group of methods), the class
that contains the higher number of “friends” of the method
under analysis.

1http://www.facebook.com/

The usefulness of MethodBook has been empirically eval-
uated in a preliminary case study conducted on ArgoUML2.
The results are encouraging and highlighted that Method-
Book is able to suggest meaningful move method refactor-
ings.

The paper is organized as follows. Section 2 introduces the
proposed approach, while Section 3 reports and discusses
results from a preliminary empirical evaluation. After an
overview of existing approaches to support refactoring (Sec-
tion 4), Section 5 concludes the paper and overviews chal-
lenges and potential applications of the proposed approach.

2. METHODBOOK IN A NUTSHELL
The concept of method friendships3 can be used as a met-

aphor to explain our idea of identifying envied classes. In
the context of our approach two methods are considered to
be friends if they share responsibilities, i.e., they operate
on the same data structures or are related to the same fea-
tures or concepts in the program. Such a definition suggests
that methods that are good friends should be in the same
class, since “a class should be a crisp abstraction, handle
a few clear responsibilities, or some similar guideline” [9].
Based on this definition, if the “best” friends of a method m
implemented in Cm are in a class Cf , then m shares more
responsibilities with the methods of class Cf than with those
in Cm. We conjecture that such a scenario implies the pres-
ence of a Feature Envy bad smell with the class Cf as an
envied class.

2.1 Identify Method Friendships
The method friendships are identified using RTM through

the analysis of structural and conceptual relationships among
methods as well as the original structure of the classes. In
particular, RTM analyzes the content of methods4 and de-
fines a model capable of comparing methods on the basis of
conceptual topics that they share. Semantic overlap between
methods serves as a good indication of method friendships.
However, we also supply two different types of structural
information to RTM, i.e., class composition data and struc-
tural relationships between methods derived using similarity
measures. The former is represented by class composition,
where methods implemented in the same class are consid-
ered to be friends. The latter type of structural information
is derived by combining two different structural measures,
namely, Structural Similarity between Methods (SSM) [10]
and Call-based Interaction between Methods (CIM) [2], pre-
viously used to compute similarities between methods for
identifying Extract Class refactoring opportunities [2]. These
measures do not correlate and capture two distinct aspects
of method relationships [2]. SSM captures attribute refer-
ences in methods, i.e., the higher the number of instance
variables that two methods share, the higher the similarity
between the two methods. Instead, CIM takes into account
calls performed by the methods. It is important to note
that using such measures it is also possible to identify spuri-
ous (light) structural relationships between methods [2]. In
order to identify the most important relationships (actual

2http://argouml.tigris.org/.
3Here the concept of method friendship is different from the
concept of friend classes/methods of C++.
4A content of a method is represented by identifiers (e.g.,
variable and parameters names) and comments.

friendships) between methods, we filter all the relationships
having near zero values, i.e., values lower than 0.1 [2].

The set of friendships derived by analyzing structural sim-
ilarity between methods are supplied as existing links to
RTM. It should be noted that when the method provided as
input to MethodBook is implemented in the “wrong” class,
there is a risk of supplying “inconsistent” information to
RTM. In particular, by analyzing class composition we can
supply RTM with a list of friends of the method in question
that are actually not friends. Since we do not know a priori
if the input method is in the correct class or not, we opted
for leaving out relationships of the method under evaluation
with other methods from the same class identified via class
composition, as supplied to RTM. However, we opted for
keeping the links between the method under evaluation and
other methods in the same class as identified by structural
similarity metrics.

The set of friendships provided to RTM are used to enrich
the model for identifying friendships between methods that
are not only based on conceptual overlap, but also on struc-
tural relationships derived from structural similarity mea-
sures and class composition. In addition, the structural and
conceptual relationships between methods are based on fac-
tors that might affect class cohesion and coupling. Thus,
implementing methods with high structural and conceptual
similarity, i.e., friend methods, in the same class should im-
prove overall quality of a software system.

2.2 Identify the Envied Class
The model built by RTM is used to determine degree of

similarity among methods in the system and rank friend-
ships among these methods. Thus, a cut point is then
used to identify the µ best friends of (the methods hav-
ing the highest similarity with) the method under analy-
sis (in our evaluation we set µ = 5). Once the “best”
friends of a given method are identified, MethodBook ana-
lyzes the classes where these methods are implemented aim-
ing at identifying the envied class. The suggested envied
class is the class containing the highest number of identified
friend methods. This choice is justified by our conjecture
that the higher the number of friends in a class, the higher
the quality of the class in terms of cohesion and/or coupling.
Note that if two or more classes contain identical number of
friend methods, the envied class is the class that contains
the highest ranked best friend methods.

It is worth noting cases where the identification of the
envied class is trivial, i.e., there is a class containing a sensi-
bly higher number of friend methods as compared to other
classes. However, there might also be cases where the en-
vied class is difficult to identify, i.e., there are two or more
classes that contain a comparable number of friend meth-
ods. To provide further support to software engineers, the
suggestion of the envied class is supplied with a confidence
level that indicates the reliability of the proposed refactor-
ing. The confidence level uses the concept of information
entropy which measures the amount of uncertainty of a dis-
crete random variable [7]. In particular, we consider the
suggestion of the envied class as a random variable, where
the probability of its states is given by the distribution of
the friend methods over suggested classes. We compute the
confidence level as the entropy of the suggestion of the en-
vied class. That is, the more scattered the friend methods
among the classes are, the higher the entropy of the sugges-

m1

m2
m3

C1 C2 C3 C4

Envied
class

Confidence
level

C1 0.26

m1
m2

m3
m4

m6

m7
m8

m9 m10

C1 C2 C3

Envied
class

Confidence
level

C1 0.72

m5

m10m9
m7

m8m4
m5

m6

C5 C6

Figure 1: Two examples of envied class identification
with different confidence levels.

tion of the envied class, i.e., it is more difficult to identify
the envied class. On the contrary, if nearly all the friend
methods are implemented in a single class, the entropy of
the suggestion is low.

Figure 1 shows two examples of identifying envied class
with different confidence levels. In both scenarios the num-
ber of best friends identified is ten. In the first case, the
friend methods are scattered across several classes. In par-
ticular, the highest number of friend methods (three) belong
to class C1, while C2 and C3 contain two friend methods and
the other three methods are distributed across classes C4,
C5, and C6. In this case the envied class is C1 with a con-
fidence level being relatively low, i.e., 0.26. The situation is
quite different in the second example, where there is a class
C1 that contains a higher number of friend methods as com-
pared to the other classes. In this case the confidence level is
higher (0.72) indicating a better recommendation reliability
as compared to the prior scenario.

3. PRELIMINARY EVALUATION
A preliminary evaluation of our approach was performed

on a well-designed open-source system, namely ArgoUML
version 0.16. This system is characterized by 1,071 classes
and an overall number of methods equal to 9,926. The
classes of the system have generally a good average qual-
ity in terms of cohesion (LCOM25 = 23.40 and C36 = 0.58)
and coupling (CBO7 = 28.49).

The evaluation aimed at investigating whether Method-
Book is able to identify meaningful move method refactoring
operations analyzing a given input method. Moreover, we
were also interested in verifying whether the proposed ap-
proach for computing the confidence level serves as a good
estimation of the recommendation reliability provided by
MethodBook. The evaluation planning is inspired by mu-
tation testing. In particular, we randomly extracted 1,000
methods from the classes of ArgoUML. The extracted meth-
ods were removed from the original classes. Then, we ap-
plied MethodBook to identify the envied class for each of
the extracted methods. The original classes, where the ex-
tracted methods are implemented, were used as the oracle to
evaluate MethodBook’s recommendations for move method
refactoring. Since the system used in our experimentation
has a good design, we assume that the ideal outcome is
when the envied class coincides with the original class. Thus,
the suggested envied classes are compared against original

5Lack of Cohesion of Methods [6].
6Conceptual Cohesion of Classes [11].
7Coupling Between Object classes [6].

Table 1: MethodBook performance on ArgoUML.
Confidence

Recall Precision
Confidence

Recall Precision
level level
0.0 0.71 0.71 0.6 0.49 0.89
0.1 0.71 0.75 0.7 0.39 0.98
0.2 0.66 0.79 0.8 0.39 0.98
0.3 0.66 0.79 0.9 0.39 0.98
0.4 0.64 0.82 1.0 0.39 0.98
0.5 0.58 0.85 - - -

classes to evaluate the accuracy of MethodBook, in terms of
a number of envied classes correctly identified.

The accuracy of MethodBook is analyzed considering dif-
ferent confidence levels (from 0 to 1 with a step of 0.1).
Indeed, we fixed a threshold for the confidence level and
analyzed the accuracy of the proposed envied classes hav-
ing a confidence level higher than the fixed threshold. The
accuracy of the MethodBook can be evaluated using two
well-known Information Retrieval (IR) metrics, namely re-
call and precision [1].

Table 1 reports the results achieved using various thresh-
olds for the confidence level. The analysis of the results
shows quite encouraging results. In particular, MethodBook
is capable of correctly identifying 40% of envied classes with
precision of 95%. Additionally, 75% recall is achieved while
precision is at 70%. In addition, considering different con-
fidence levels also allowed us to verify whether confidence
level correlates with the quality of MethodBook recommen-
dations. In particular, we computed correlation between
confidence level and MethodBook’s precision and obtained
a very high positive correlation, i.e., 0.97. Such a result
suggests that the confidence level provides a good indica-
tion of the reliability of the recommendations generated by
MethodBook, i.e., the higher the confidence level the higher
the accuracy of MethodBook.

4. RELATED WORK
A lot of effort has been devoted to the definition of ap-

proaches to support the software engineer during refactor-
ing. Existing approaches can be roughly classified into two
different categories. Approaches of the first category aim
at identifying source code components that might need to
be refactored. Object-oriented metrics have been widely
used to support the software engineer in the identification of
source code components that needs refactoring [8, 16, 18].
In addition, correlation between structural anomalies, i.e.,
different type of code smells that often occur together, and
other structural and semantic information has also been ex-
ploited to build a pattern-like mapping of design problems
to the adequate treatments [19].

The approaches that fall into the second category auto-
matically or semi-automatically perform refactoring opera-
tions to improve the overall quality of a system. Maruyama
et al. [12] present a mechanism that automatically refac-
tors methods in object-oriented frameworks to improve their
reusability. In [4, 17] the authors propose algorithms to re-
structure class hierarchies to maximize abstraction, while
Moore [13] proposes a method where existing classes with a
low quality are replaced with a new set of classes where their
methods are optimally factored to minimize meaningful code
duplication. In [2, 3] the authors proposed two approaches
for Extract Class refactoring that exploit graph theory to
identify sets of (structural and conceptual) strongly related

methods in a class to be refactored. The refactoring of a
software system has also been formulated as a search prob-
lem in the space of alternative designs [14, 15].

Recently, Tsantalis et. al. [20] propose a technique to
identify move method refactoring opportunities. In partic-
ular, for each method of the system, their approach forms
a set of candidate target classes where the method should
be moved. This set is obtained examining the entities that
a method accesses from the system classes. This approach
and the search-based approach proposed in [15] are, in our
knowledge, the closest to our work. The main difference
is that in previous works the class where a method should
be moved is based only on structural relationships between
methods. In our approach, we use also conceptual relation-
ships between methods. In addition, our approach is based
on an emerging learning technique, RTM, that also ana-
lyzes the original system design in order to capture other
kind of relationships between methods that might be missed
considering only structural, e.g., attribute references, and
conceptual relationships.

5. CONCLUSION AND FUTURE WORK
We proposed to exploit method friendships to build a rec-

ommendation system supporting the software engineer in
the identification of move method refactoring opportunities.
The results achieved in a preliminary evaluation supported
the applicability of such a metaphor and highlighted the
valuable support given by RTM in the identification of refac-
toring opportunities.

Replicating our case studies in different contexts and using
different experimental designs is the only way to corroborate
the results presented in this paper and ensure generalization.
We plan such empirical studies in the future. In addition,
we have other items on our research agenda. In particular,
currently we focus on the specific problem of identifying the
envied class rather than on identifying all the methods that
need to be moved. MethodBook takes a method as an in-
put and suggests a class where the method should be placed
or implemented in. Such an approach finds a natural col-
location in Integrated Development Environments (IDE) to
suggest whether a particular method under development is
implemented in the right class or if it should be moved to
some other location in order to increase the overall quality
of the software. This type of recommendation provided dur-
ing development and maintenance should proactively help
software developers avoid the Feature Envy bad code smell.
Future work will be devoted to (i) empirically verify such
a conjecture and (ii) extend the proposed approach to dis-
cover candidate methods that need to be moved. In partic-
ular, MethodBook can take a set of classes as an input, e.g.,
the classes of some package, and identify the envied classes
for each method. A mismatch between an identified envied
class and the class where a method is actually implemented
would indicate alternative design decisions for Move Method
refactoring operations.

We also plan to improve MethodBook’s accuracy for iden-
tifying envied classes. In particular, the process adopted in
this paper does not take into account the number of friends
and other methods contained in a suggested class. Future
work will be devoted to analyze such scenarios and defining
new heuristics for MethodBook to overcome such problems.
Last but not least, we plan to apply the concept of friend-
ships to other problems, such as software re-modularization.

Acknowledgement
This work is supported by NSF CCF-1016868. Any opin-
ions, findings, and conclusions expressed herein are the au-
thors’ and do not necessarily reflect those of the sponsors.

6. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley, 1999.

[2] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto. A
two-step technique for extract class refactoring.
ASE’10, pages 151–154, 2010.

[3] G. Bavota, A. De Lucia, and R. Oliveto. Identifying
extract class refactoring opportunities using structural
and semantic measures. JSS, 84:397–414, 2011.

[4] E. Casais. An incremental class reorganization
approach. ECOOP’92, pages 114–132, 1992.

[5] J. Chang and D. M. Blei. Hierarchical relational
models for document networks. Annals of Applied
Statistics, 2010.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. TSE, 20(6):476–493, 1994.

[7] T. M. Cover and J. A. Thomas. Elements of
Information Theory. Wiley-Interscience, 1991.

[8] B. Du Bois, S. Demeyer, and J. Verelst. Refactoring -
improving coupling and cohesion of existing code.
WCRE’04, pages 144–151, 2004.

[9] M. Fowler. Refactoring: improving the design of
existing code. Addison-Wesley, 1999.

[10] G. Gui and P. D. Scott. Coupling and cohesion
measures for evaluation of component reusability.
MSR’06, pages 18–21, 2006.

[11] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the
conceptual cohesion of classes for fault prediction in
object-oriented systems. TSE, 34(2):287–300, 2008.

[12] K. Maruyama and K. Shima. Automatic method
refactoring using weighted dependence graphs.
ICSE’99, pages 236–245, 1999.

[13] I. Moore. Automatic inheritance hierarchy
restructuring and method refactoring. OOPSLA’96,
pages 235–250, 1996.

[14] M. O’Keeffe and M. O’Cinneide. Search-based
software maintenance. CSMR’06, pages 249–260, 2006.

[15] O. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class
structure of object-oriented systems. GECCO’06,
pages 1909–1916, 2006.

[16] F. Simon, F. Steinbr, and C. Lewerentz. Metrics based
refactoring. CSMR’01, pages 30–38, 2001.

[17] M. Streckenbach and G. Snelting. Refactoring class
hierarchies with kaba. OOPSLA’04, pages 315–330,
2004.

[18] L. Tahvildari and K. Kontogiannis. A metric-based
approach to enhance design quality through
meta-pattern transformation. CSMR’03, pages
183–192, 2003.

[19] A. Trifu and R. Marinescu. Diagnosing design
problems in object oriented systems. WCRE’05, pages
155–164, 2005.

[20] N. Tsantalis and A. Chatzigeorgiou. Identification of
move method refactoring opportunities. TSE, pages
347–367, 2009.

