
Portfolio: A Search Engine for Finding Functions
and Their Usages

Collin McMillan
College of William & Mary
Williamsburg, VA 23185

cmc@cs.wm.edu

Mark Grechanik
Accenture and UIC
Chicago, IL 60601

drmark@uic.edu

Denys Poshyvanyk
College of William & Mary
Williamsburg, VA 23185
denys@cs.wm.edu

Qing Xie, Chen Fu
Accenture Technology Lab

Chicago, IL 60601
qing.xie@accenture.com

ABSTRACT
In this demonstration, we present a code search system called Port-
folio that retrieves and visualizes relevant functions and their us-
ages. We will show how chains of relevant functions and their us-
ages can be visualized to users in response to their queries.

Categories and Subject Descriptors
D.2.13 [Reusable Libraries]: Reusable Libraries

General Terms
Algorithms, Experimentation

Keywords
source code search engines, information retrieval

1. INTRODUCTION
Source code search engines locate and display sections of code

relevant to the concepts given in a user query. Different studies
show that when searching source code, programmers are more in-
terested in finding definitions of functions and chains of function
invocations than variables, statements, or arbitrary fragments of
source code [19, 20]. Moreover, the process of understanding the
code returned by search engines and determining how to use it is
a manual and laborious process that takes anywhere from 50% to
80% of programmers’ time [5]. Short code fragments returned by
existing source code search engines do not give enough background
or context to help programmers determine how to reuse these code
fragments, and programmers typically invest a significant intellec-
tual effort (i.e., they need to overcome a high cognitive distance
[10]) to understand how to reuse these code fragments. On the
other hand, if code fragments are retrieved as functions, developers
can more easily understand how to reuse these functions.

A majority of code search engines treat code as plain text where
all words have unknown semantics. The words in source code do
have meaning, however. For example, applications contain func-
tional abstractions that already provide a basic level of code reuse,
since programmers define functions once and call them from differ-
ent places in source code. The idea of using functional abstractions
to improve code search was proposed and implemented elsewhere
[1, 6, 14, 21]; however, these code search engines do not auto-
matically analyze how functions are used in the context of other
functions. Unfortunately, existing code search engines do little to
ensure that they retrieve code fragments in a broader context of rel-
evant functions that invoke one another to accomplish certain tasks.

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

Consider the situation where a programmer wants to accomplish
the complete task of editing and saving a PDF file. He or she may
enter the query “edit save pdf file” into a search engine.
Existing source code search engines would return some functions
that create PDF files, some functions that write data in the PDF
file format, and some functions that manipulate PDF files. Typi-
cally, programmers investigate these functions to determine which
of them are relevant and to determine how to compose the concepts
in these functions into complete tasks. Unfortunately, the results
from existing engines do not show to programmers how isolated
functions interact in the context of other functions, despite the fact
that the programmer wants to see the code for the whole task of
how to edit PDF data and save it. A search engine can support pro-
grammers efficiently if it incorporates in its user ranking how these
functions call one another, and displays that information to the user.

We demonstrate a code search system called Portfolio [13] that
supports programmers in finding relevant functions that implement
high-level requirements reflected in query terms (i.e., finding initial
focus points), determining how these functions are used in a way
that is highly relevant to the query (i.e., building on found focus
points), and visualizing dependencies of the retrieved functions to
show their usages. Portfolio finds highly relevant functions in close
to 270 Millions LOC in projects from FreeBSD Ports by combin-
ing various natural language processing (NLP) and indexing tech-
niques with PageRank and spreading activation network (SAN) al-
gorithms. With NLP and indexing techniques, initial focus points
are found that match key words from queries; with PageRank, we
model the surfing behavior of programmers, and with SAN we el-
evate highly relevant chains of function calls to the top of search
results. Portfolio is free and available for public use1. A video
accompanying this demonstration is online2. We evaluated Port-
folio with an experiment involving 49 professional programmers
from Accenture. We tested Portfolio against two other source code
search engines: Google Code Search and Koders. The participants
used each engine to perform specified tasks. We found statistically-
significant improvement by Portfolio over Google Code Search and
Koders3.

2. PORTFOLIO APPROACH
The search model of Portfolio uses a key abstraction in which

the search space is represented as a directed graph with nodes as
functions and directed edges between nodes that specify usages of

1http://www.searchportfolio.net
2http://www.youtube.com/watch?v=FNZYXZNo_g0
3For full details about Portfolio and our evaluation, we direct read-
ers to our technical paper. This work is supported by NSF CCF-
0916139, CCF-0916260, and Accenture.



Figure 1: The visual interface of Portfolio. The left side contains a list of ranked retrieved functions and the right side contains a static call
graph that contains these and other functions; edges of this graph indicate the directions of function invocations. Hovering a cursor over a function
on the list shows a label over the corresponding function on the call graph. Font sizes reflect the score; the higher the score of the function, the bigger
the font size used to show it on the graph. Clicking on the label of a function loads its source code in a separate browser window.

these functions (i.e., a call graph). For example, if the function g is
invoked in the function f, then a directed edge exists from the node
that represents the function f to the node that represents the func-
tion g. Since the main goal of Portfolio is to enable programmers
to find relevant functions and their usages, we need models that ef-
fectively represent the behavior of programmers when navigating a
large graph of functional dependencies. These are navigation and
association models that address surfing behavior of programmers
and associations of terms in functions in the search graph.

When using text search engines, users navigate among pages by
following links contained in those pages. Similarly, in Portfolio,
programmers can navigate between functions by following edges
in the directed graph of functional dependencies using Portfolio’s
visual interface. To model the navigation behavior of programmers,
we adopt the model of the random surfer that is the basis for the
popular ranking algorithm PageRank [11]. Specifically, we com-
pute the PageRank of every function in the call graph, and rank
functions higher if those functions receive high PageRank values.

Portfolio also establishes relevance among functions whose con-
tent does not contain terms that match user queries directly. Con-
sider the query “edit save pdf file.” This situation is shown
in Figure 2, where the function F contains the term edit, the func-
tion G contains the term postscript, the function P contains the
terms PDF and file, and the function Q contains the term save.

Figure 2: Example of associations between different functions.

Function F calls the function G, which in turn calls the function H,
which is also called from the function Q, which is in turn called
from the function P. The functions F, P, and Q will be returned
by a search engine that is based on matching query terms to those
that are contained in documents. Meanwhile, the functions H and
G may be highly relevant to the query but are not retrieved since
they have no words that match the search terms. In addition, the
function Q can be called from many other functions since its sav-
ing functionality is generic; however, its usage is most valuable for
programmers in the context of the function related to query terms.

To ensure that functions such as H and G end up on the list of
relevant functions, Portfolio uses an association model based on
a Spreading Activation Network [2, 3]. In SANs, nodes represent
documents, while edges specify properties that connect these doc-
uments. The edges’ direction and weight reflect the meaning and
strength of associations among documents. Given an entry point
node, spreading activation traverses a graph to locate a chain of
similar nodes. For example, if we use the function Q as the entry
point, spreading activation will find the functions H and P because
the two are connected with an edge in the call graph. In our case,
the associations among functions are the calls that those functions
make to one another. Portfolio locates the entry point nodes in the
graph using the textual similarity of user queries to functions in
source code as in many current source code search engines. Once
applied to SAN, Portfolio uses spreading activation to compute new
weights for nodes (e.g., ranks of functions) that reflect implicit as-
sociations in the network of these nodes (e.g., the call graph).

3. DEMONSTRATING PORTFOLIO
In this section, we demonstrate Portfolio in two ways. In the

first, the user submits a search query to the Portfolio search engine
web interface. Portfolio presents functions relevant to the query in
a browser window as it is shown in Figure 1. The left side contains
the ranked list of retrieved functions and project names, while the



right side contains a static call graph that contains these and other
functions. Edges of this graph indicate the directions of function
invocations. Hovering a cursor over a function on the list shows a
label over the corresponding function on the call graph. Font sizes
reflect the combined ranking; the higher the ranking of the function,
the bigger the font size used to show it on the graph. Clicking on the
label of a function loads its source code in a separate browser win-
dow. Also next to the function name is the name of the project to
which that function belongs. Hovering the mouse over the project
name will display a short description of that project.

The static call graph in Figure 1 helps programmers by visual-
izing the chain of function invocations among relevant functions.
Displaying this chain makes the connections among functions im-
mediately obvious to the user. For example, the function
PDFExportDialog is shown in large font with many incoming
edges, indicating its importance. Programmers may be guided to
functions such as doSaveAsPDF since it calls a variety of func-
tions including PDFExportDialog. Portfolio also shows that
certain functions, such as EPSPlug and convert, do not connect
to PDFExportDialog, which suggests that those functions are
relevant to different tasks. This knowledge about how functions in-
teract can help during reuse because it provides an at-a-glance view
of how functions are organized, and which functions may perform
the lowest-level functionality. Also, functions which call several of
these low-level functions are obvious without having to first read
the source code.

The second way in which developers can access Portfolio is pro-
grammatically by using our SOAP web service 4. The purpose of
this service is to enable programmers to build source code search
directly into their software or development environments. At the
time of writing, we have three SOAP functions available. The first,
search, returns a user-specified number of results to a query. The
second, code, can return the source code of any function in the
repository. Finally, edges, returns functions which call or are
called by a given function. In addition, all of our supporting tools
are online, including Fundex, which we built to extract the call
graph from the 270 Million lines of code in FreeBSD Ports. Inter-
ested parties may also download our repository, the full, extracted
call graph, and other information.

4. RELATED WORK
Different code mining techniques and tools have been proposed

to find relevant software components. Some search based primar-
ily on textual artifacts extracted from source code or produced by
programmers [22, 7], in contrast to other approaches which use
documentation external to retrieved functions (such as documen-
tation for API calls) [6, 21, 1]. Portfolio, on the other hand, uses
PageRank and SANs to help programmers navigate and understand
usages of retrieved functions.

Web-mining techniques have been applied to graphs derived from
program artifacts before [14, 17, 15]. Notably, Inoue et al. pro-
posed Component Rank[9] as a method to highlight the most-frequently
used classes by applying a variant of PageRank to a graph com-
posed of Java classes. Portfolio differs from these approaches in
that it retrieves relevant functions using an association model based
on SANs in addition to PageRank.

There are task-oriented tools to assist programmers in writing
complicated code through reuse [12, 4, 8, 18, 16], however, their
utilities require additional environment information such as exist-
ing project source code or data types of test cases. Portfolio re-
trieves functions when given only a natural-language query.

4http://www.searchportfolio.net/, follow the “Pro-
grammer Access” link

5. CONCLUSION
We created an approach called Portfolio for finding highly rele-

vant functions and projects from a large archive of C/C++ source
code. In Portfolio, we combined various natural language pro-
cessing and indexing techniques with a variation of PageRank and
spreading activation network algorithms to address the need of pro-
grammers to reuse retrieved code as functional abstractions. Port-
folio differs from previous approaches in that it both retrieves and
visualizes functions and chains of function invocations using navi-
gation and association models. Moreover, we have made Portfolio
available to programmers as a free and extensible project.

6. REFERENCES
[1] S. Chatterjee, S. Juvekar, and K. Sen. Sniff: A search engine for java

using free-form queries. In FASE, pages 385–400, 2009.
[2] A. M. Collins and E. F. Loftus. A spreading-activation theory of

semantic processing. Psychological Review, 82(6):407 – 428, 1975.
[3] F. Crestani. Application of spreading activation techniques in

information retrieval. Artificial Intelligence Review, 11(6):453–482,
1997.

[4] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat: A
project memory for software development. IEEE Trans. Software
Eng., 31(6):446–465, 2005.

[5] J. W. Davison, D. Mancl, and W. F. Opdyke. Understanding and
addressing the essential costs of evolving systems. Bell Labs
Technical Journal, 5(2):44–54, 2000.

[6] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. M. Cumby. A search engine for finding highly relevant
applications. In ICSE (1), pages 475–484, 2010.

[7] S. Henninger. Supporting the construction and evolution of
component repositories. In ICSE, pages 279–288, 1996.

[8] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. In ICSE, pages 117–125, 2005.

[9] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto. Ranking significance of software components based on
use relations. IEEE Trans. Softw. Eng., 31(3):213–225, 2005.

[10] C. W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183,
1992.

[11] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond:
The Science of Search Engine Rankings. Princeton University Press,
Princeton, NJ, USA, 2006.

[12] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid mining:
helping to navigate the API jungle. In PLDI, pages 48–61, 2005.

[13] C. McMillan, M. Grechanik, D. Poshyvanyk, X. Qing, and C. Fu.
Portfolio: Finding relevant functions and their usages. In ICSE ’11.

[14] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes.
Sourcererdb: An aggregated repository of statically analyzed and
cross-linked open source java projects. MSR, 0:183–186, 2009.

[15] D. Puppin and F. Silvestri. The social network of java classes. In SAC
’06, pages 1409–1413, New York, NY, USA, 2006. ACM.

[16] S. P. Reiss. Semantics-based code search. In ICSE, 2009.
[17] M. Revelle, B. Dit, and D. Poshyvanyk. Using data fusion and web

mining to support feature location in software. In ICPC ’10, pages
14–23, 2010.

[18] N. Sahavechaphan and K. T. Claypool. XSnippet: mining for sample
code. In OOPSLA, pages 413–430, 2006.

[19] J. Sillito, G. C. Murphy, and K. De Volder. Asking and answering
questions during a programming change task. IEEE Trans. Softw.
Eng., 34(4):434–451, 2008.

[20] S. Sim, C. Clarke, and R. Holt. Archetypal source code searches: A
survey of software developers and maintainers. ICPC, 0:180, 1998.

[21] J. Stylos and B. A. Myers. A web-search tool for finding API
components and examples. In IEEE Symposium on VL and HCC,
pages 195–202, 2006.

[22] Y. Ye and G. Fischer. Supporting reuse by delivering task-relevant
and personalized information. In ICSE, pages 513–523, 2002.


