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Abstract — The paper presents an adaptive approach to 

perform impact analysis from a given change request to source 

code.  Given a textual change request (e.g., a bug report), a 

single snapshot (release) of source code, indexed using Latent 

Semantic Indexing, is used to estimate the impact set.  Should 

additional contextual information be available, the approach 

configures the best-fit combination to produce an improved 

impact set.  Contextual information includes the execution 

trace and an initial source code entity verified for change. 

Combinations of information retrieval, dynamic analysis, and 

data mining of past source code commits are considered. The 

research hypothesis is that these combinations help counter the 

precision or recall deficit of individual techniques and improve 

the overall accuracy.  The tandem operation of the three 

techniques sets it apart from other related solutions.  

Automation along with the effective utilization of two key 

sources of developer knowledge, which are often overlooked in 

impact analysis at the change request level, is achieved.   

To validate our approach, we conducted an empirical 

evaluation on four open source software systems.  A 

benchmark consisting of a number of maintenance issues, such 

as feature requests and bug fixes, and their associated source 

code changes was established by manual examination of these 

systems and their change history.  Our results indicate that 

there are combinations formed from the augmented developer 

contextual information that show statistically significant 

improvement over stand-alone approaches. 

I. INTRODUCTION 

Software change requests, such as bug fixes and new 
features, are an integral part of software evolution and 
maintenance.  Effectively supporting software changes is 
essential to provide a sustainable high-quality evolution of 
large-scale software systems, as realizing even a slight 
change may not be always straightforward.  Software-change 
impact analysis, or simply impact analysis (IA), has been 
recognized as one such key maintenance activity.  IA aims at 
estimating the potentially impacted entities of a system due 
to a proposed change [7].  The applications of IA include 
cost estimation, resource planning, testing, change 
propagation, managing ripple effects, and traceability [8, 16, 
22, 26, 27, 29-31, 35]. 

In several realistic settings, change requests are typically 
specified in natural language (e.g., English).  They include 
bug reports submitted, by programmers or end users, during 
the post-delivery maintenance of a product.  In the 
distributed collaborative software development 
environments, such as the open source software model, 
change requests are typically managed with issue tracking 

systems (e.g., Bugzilla).  These change requests may need to 
be resolved with the appropriate changes to relevant source 
code.  It is not uncommon in such projects to receive 
numerous change requests daily that need to be resolved in 
an effective manner (e.g., within time, priority, and quality 
factors) [3, 20].  Another factor that adds to the challenge of 
IA in the maintenance environment is the regular absence of 
useful intermediate artifacts (e.g., design documents and 
pertinent traceability information) between the abstractions 
levels of change requests and source code.  It is a common 
maintenance scenario in which a change request, described 
in the natural language, is the only source of information 
available to perform IA and an automatic technique must 
operate in such a situation.  Moreover, developers or 
development environments may have accumulated valuable 
sources of information in the context of solving a specific 
change request (or past change requests).  On the other hand, 
developers cannot be expected to manually provide such 
information all the time.  

In this paper, we present a novel approach for IA that 
automatically adapts to the specific maintenance scenario at 
hand.  We consider scenarios in which the change request is 
available at the minimum and is the source of focus. 
Additional forms of developer knowledge may be available 
or not in the context of this change request.  Two quantifiable 
forms of the developer knowledge are considered: a verified 
source code entity to start performing the change (e.g., a 
relevant source code method) and run-time information 
pertinent to the features in change request (i.e., an execution 
trace for a feature specific scenario).  Developers may 
narrow down to at least one entity to change, e.g., using 
feature location techniques [23, 28], previous project 
experience, and/or tacit software development knowledge.  
Also, developers typically attempt to reproduce the problem 
reported in the change request; a typical activity during the 
issue triage process [3, 20].  In some cases, call stacks of the 
failure are also available in the bug reports.   

Our approach uses a scenario-driven combination of 
information retrieval (IR), dynamic analysis, and mining 
software repositories techniques (MSR).  We chose a 
history-based mining technique, as we share a prevalent view 
in MSR that the information in software repositories is an 
extension of the collective developer or development 
knowledge [5].  Given a textual change request, an IR (e.g., 
Latent Semantic Indexing or simply, LSI) indexed single 
release of source code is used to estimate the impact set.  
Should the execution information be made available for the 



 

same snapshot associated with the change request, methods 
in the trace are also obtained.  A combination of IR and 
dynamic analyses is favored over IR to estimate the impact 
set in such cases. 

Furthermore, should a verified start entity of change be 
available, evolutionary couplings are mined from the 
commits in software repositories that occur before the 
snapshot of code used for IR-based indexing (and dynamic 
analysis).  A combination of IR and evolutionary coupling 
analyses is favored over IR to estimate the impact set in such 
cases.  Evolutionary couplings are used in our approach, as 
they are derived from the actual changes to artifacts across 
multiple releases, rather than estimations that are based on 
the analysis of various structural and semantic dependencies 
between them in a single snapshot of a system.  Also, the 
commits embody part of the developer’s knowledge and 
experience [2].  The version history may contain domain-
specific “hidden” links that are manually created and 
maintained (e.g., database schema changes [24]), which 
traditional program-analysis methods may fail to uncover 
[35]. When both forms of additional developer-information 
context are available, a combination of IR, dynamic 
information, and evolutionary couplings supersedes others to 
estimate the impact set.  

 Our hypothesis is that such combinations would help 
counter the accuracy, i.e., precision and/or recall, deficit of 
individual techniques and improve upon the accuracy 
collectively.  To validate our approach, we first created a 
benchmark of change requests and their associated source 
code changes by manual examination of open source projects 
ArgoUML, jEdit, muCommander and JabRef.   Empirical 
evaluation of our approach on this benchmark shows 
statistically significant gains in precision and recall up to 
17% and 41% respectively. 

II. RELATED WORK 

Several IA approaches ranging from classical static and 
dynamic analysis techniques [8, 22, 26, 27, 30, 31] to the 
recent unconventional approaches, such as those based on IR 
[16, 29] and MSR [15, 19, 35], exist in the literature. In the 
next subsections, we review some of the related approaches 
to provide a breadth of the IA solutions; the intent is not to 
exhaustively discuss every single technique. 

A. Software Change IA via Static & Dynamic Analyses 

Depending on the type of information available, impact 
analysis is traditionally performed using static program 
analysis [7, 9], dynamic program analysis [22, 25, 26] or a 
combination of these techniques [30]. Static program 
analysis relies solely on the structure of the program and the 
relationship between program elements, at different levels of 
granularity, whereas dynamic program analysis takes into 
account information gathered from program execution.  

Law and Rothermel [22] introduced PathImpact, a 
dynamic IA technique based on whole path profiling (i.e., 
when a method m is changed, any method that calls m or is 
called after m is added to the set of potentially impacted 
methods).  Orso et al. [25] proposed CoverageImpact, a 
technique that combines forward static slicing with respect to 

a modified program element (i.e., method) with dynamic 
information collected from program instrumentation.  Orso 
et al. [26] conducted an experiment to analyze the tradeoff 
between in terms of cost and precision for two dynamic IA 
techniques, CoverageImpact and PathImpact. These two 
techniques require data gathered during program execution 
using various inputs or test cases. Using this information, 
their technique determines the impact set by locating the 
program elements that were executed simultaneously with 
the given program elements used as seeds.  It should be 
noted that we are not using any of these algorithms in this 
paper. In our solution execution information is rather used as 
a filter to eliminate methods that were not executed and, as a 
result, are less likely to be relevant to the change request. 

Other tools, such as Chianti [30] support IA by analyzing 
the changes between two versions of a program (i.e., static 
information) and a set of tests that execute parts of a program 
(i.e., dynamic information). Using this information, Chianti 
suggests a set of regression or unit tests that might have been 
affected by the changes between the two versions of the 
program.  JRipples [9] is an Eclipse plug-in that relies on 
static information to guide developers while manually 
locating the impact set, by keeping track of impacted 
program elements.  The comprehensive summary on using 
dynamic analysis to support program comprehension 
including IA is reported in Cornelissen et al. [12]. 

B. Software Change IA via Information Retrieval 

IR methods were proposed and used successfully to 
address tasks of extracting and analyzing textual information 
in software artifacts, including change impact analysis in 
source code [10, 19, 29].  

Existing approaches to IA using IR operate at two levels 
of abstraction: change request [10]  and source code [19, 29]. 
In the first case, the technique relies on mining and indexing 
the history of change requests (e.g., bug reports). In 
particular, this IA method utilizes IR to link an incoming 
change request description to similar past change requests 
and file revisions that were modified to address them [10, 
34].  While this technique has been shown to be relatively 
robust in certain settings, it is entirely dependent on the 
history of prior change requests.  In cases where textually 
similar change requests cannot be identified (or simply do 
not exist), the technique may not be able to identify relevant 
impact sets.  Also, these works show that a sizeable change 
request history must exist to make this approach operational 
in practice, which may limit the effectiveness.  The work in 
[16] relates to our approach in the use of lexical (textual) 
clues from the source code to identify related methods. 

The other set of techniques to IA that use IR operates at 
the source code level and requires a starting point (e.g., a 
source code method that is likely to be modified in response 
to an incoming change request) [19, 29].  This approach is 
based on the hypothesis that modules (or classes) in software 
systems are related in multiple ways.  The evident and most 
explored set of relationships is based on data and control 
dependencies; however, the classes can be also related 
conceptually (or textually), as they may contribute to the 
implementation of similar domain concepts.  This 



 

information is derived using IR-based analysis of textual 
software artifacts that are derived from a single version of 
software (e.g., comments and identifiers in source code). 

Our previous work [19] was consistent with earlier 
usages of IR in IA [29]; however, it was limited to IA at the 
source-code level staring point, and the work presented in 
this paper operates at the change-request level as a starting 
point.  In this paper, we apply IR for IA similar to how it has 
been used in the context of feature location [23, 28], which is 
different from two aforementioned approaches.  We also use 
this technique as our baseline in our adaptive solution. We 
do not discuss applications of IR-based techniques in the 
context of other maintenance tasks due to space limitations; 
however, such an overview can be found elsewhere [6]. 

C. Software Change IA via Mining Software Repositories 

The term MSR has been coined to describe a broad class 
of investigations into the examination of software 
repositories (e.g., Subversion and Bugzilla).  We refer the 
interested readers to Kagdi et al. [18] literature survey, and 
Xie’s online bibliography and tutorial

1
 on MSR. We now 

briefly discuss some representative works in MSR for 
mining of evolutionary couplings. 

 Zimmerman et al. [35] used CVS logs for detecting 
evolutionary coupling between source code entities.  
Association rules based on itemset mining were formed from 
the change-sets and used for change-prediction.  Canfora et 
al. [10] used the bug descriptions and the CVS commit 
messages for the purpose of change prediction.  An 
information retrieval method is used to index the changed 
files, and commit logs, in the CVS and the past bug reports 
from the Bugzilla repositories. 

In addition, conceptual information has been utilized in 
conjunction with evolutionary data to support several other 
tasks, such as assigning incoming bug reports to developers 
[3, 17], identifying duplicate bug reports [33], estimating 
time to fix incoming bugs [34] and classifying software 
maintenance requests [13].  

Traditionally, given a proposed change in a given source 
entity, other change-prone source code entities are estimated 
using static and/or dynamic analysis based models of a 
specific snapshot of source code.  Traditional techniques 
largely performed impact analysis at the same level of 
abstraction and that too mostly on source code.  Supporting 
IA at the change request level has been suggested only 
recently [10]; an advent of applied IR and MSR methods has 
provided a renewed interest in cross abstraction IA.   

Our combined approach is different from other previous 
approaches, including those using IR and MSR techniques, 
for IA that rely solely on the historical account of past 
change requests and/or source code change history.  Our 
approach is not dependent on past change requests (e.g., 
repositories of past bug reports, which may not be always 
available), and only requires source code of a single 
complete release of the system, source code change history, 
and access to execution and tracing environment (e.g., JPDA 
or TPTP).  To the best of our knowledge, ours is the only 
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approach that utilizes such a combination for performing IA 
from change request to source code without the need for a 
bug/issue history.  The selective use of dynamic and 
evolutionary information along with the textual information 
has not been used before.  Our approach builds on existing 
solutions, but synergizes them in a new holistic technique. 

III. AN INTEGRATED APPROACH TO IMPACT ANALYSIS AT 

CHANGE REQUEST LEVEL 

Our framework for impact analysis is based on the 
possible degree of automation and developer augmented 
information that may be available in a given maintenance 
scenario.  In several realistic settings, change requests are 
typically specified in natural language (e.g., English).  It is 
reasonable to assume that change requests, in several cases, 
are the only source of available information to conduct the 
needed maintenance.  In such a situation, a high degree of 
automation in estimating the impact set can be achieved by 
taking the textual view of source code and applying IR 
techniques, which are an organic fit to automatic text 
analysis.  This component of our framework assumes that 
there is no developer or maintenance environment supplied 
information available.  Our framework operates in this 
default mode, which has the highest degree of automation 
and the least level of developer supplied information.  We 
refer to this default configuration as IR CR. 

The maintenance scenario may not necessarily be as 
ascetic as depicted in the default IR mode.  In several 
situations, additional pieces of valuable information are also 
available.  We consider two such developer-augmented 
information cases: 1) a developer somehow narrows down to 
at least one verified entity that needs a change (e.g., from 
previous experience of performing similar changes) − seed 
entity, 2) a developer has executed the feature, inferred by 
reading the textual change request, and collected the run-
time information − executed methods, (e.g., to verify if the 
issue that was reported can be replicated or collected from 
the call stack of a failure).  For the first case, our framework 
provides a component Histseed, which mines the past commits 
(change history) of software entities to estimate the impact 
set.  This component provides medium levels of automation 
and human intervention is in selecting a starting point of 
change; then a data mining technique is used to compute the 
impact set automatically.  For the second case, our 
framework provides the component that uses the methods 
executed in the run-time scenario.  This component requires 
the most human involvement and the lowest level of 
automation.  We refer to this component as DynCR. 

Our framework employs the best effort paradigm in an 
adaptive manner − it selectively employs the best-fit 
components depending on the type of developer-supplied 
information before resorting to the default mode.  For 
example, when a seed entity is available along with the 
change request, a combination of the components IRCR and 
Histseed is engaged. Similarly, when the dynamic information 
is available along with the change request, a combination of 
the components IR CR and DynCR is selected.  The premise of 
our approach is that any combination that involves the 
human augmented information and (highest or medium) 



 

automation would provide a better impact set than those 
based on automated components alone.  

The impact analysis model presented here defines several 
sources of information, the analyses used to derive the data, 
and how the information can be combined to support impact 
analysis at the change request level.   

A. Analyzing Textual Information via IR 

Textual information in source code and software 
repositories (e.g., changes requests in Bugzilla), reflected in 
identifiers and comments, encodes problem domain 
information about a software project.  This unstructured 
information can be used to support impact analysis through 
the use of IR techniques [10].  IR works by comparing a set 
of artifacts (e.g., source code files) to a query (e.g., a change 
request) and ranking these artifacts by their relevance to the 
query.  IRCR follows five main steps [23]: (1) building a 
corpus, (2) natural-language processing (NLP), (3) indexing, 
(4) querying, and (5) estimating an impact set.  

(1) Building a corpus.  To use IR on software, a 
document granularity needs to be defined, so that the corpus 
can be build.  A document contains all the text found in a 
contiguous section of software artifact, such as a method, 
class, or package.  A corpus consists of all such documents 
(artifacts).  For instance, for impact analysis, we employ the 
method-level granularity for documents that include 
contiguous text of each method in a project. 

(2) NLP.  Once the corpus is created, it is preprocessed 
using NLP techniques. For source code, operators and 
programming language keywords are removed.  
Additionally, identifiers and other compound words are split 
(e.g., “impactAnalysis” becomes “impact” and “analysis”) 
[14].  Finally, stemming is performed to reduce words to 
their root forms (e.g., “impacted” becomes “impact”).     

(3) Indexing the corpus with IR.  The corpus is used to 
compile a term-by-document matrix (TDM).  The matrix’s 
rows correspond to the words from identifiers or comments 
in the corpus, and the columns represent methods from 
source code.  A cell mi,j in the TDM holds a measure of the 
weight or relevance of the i

th 
word in the j

th 
method.  In 

particular we use a more complex measure, such as term 
frequency-inverse-document frequency.  Singular Value 
Decomposition (SVD) [32] is then used to reduce the 
dimensionality of the TDM by exploiting the co-occurrence 
of related words across source code methods.   

(4) Running a query.  The title and description of an 
incoming change request serve as an input to this technique, 
that is a query.  An example of such a query is the bug 
#2472

2
 reported in ArgoUML v0.22.  The query is 

formulated from its description “Wrong keyboard focus in 
Settings dialog after close & reopen […]”. 

 (5) Estimating an impact set.  In the SVD model, each 

method corresponds to a vector.  The query (or change 

request) is also converted to a vector-based representation, 

and then the cosine of the angle between the two vectors is 

used to measure the similarity of the source code method to 

the change request.  The closer the cosine is to one, the 
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more textually similar the method is to the change request.  

A cosine similarity value is computed between the change 

request and all the methods in the source code, and then 

these methods are sorted by their similarity values.  The top 

results from this list constitute an estimated impact set.  

For the input query from the bug #2472, the IRCR 

technique returns a ranked list of methods according to their 

similarity values in descending order.  The top methods in 

this ranked list are considered based on a cut point, which 

establishes the size of the estimated impact set.  Now, the 

question is how accurate are these IRCR estimated impact 

sets.  We manually examined the source code methods that 

were changed to address/fix a specific bug, which we refer 

to as a gold set. We identified 16 methods that are relevant 

to the change request for the bug #2472 (i.e., gold sets).  

When comparing the IRCR estimated impact set with its gold 

set, the relevant methods appeared at positions 2, 16, 30, 37, 

52, 56, 57, and so on.  This example shows that although IR 

can help identify the real impact set, it might produce results 

that require an examination of several candidates; in some 

cases it may not be quite practical (e.g., bug #2472).  

B. Analyzing Evolutionary Information via Data Mining 

Broadly, we use a data mining technique to infer 
evolutionary information, i.e., frequent change patterns of 
methods, from the commits stored in software repositories.  
The presented approach for mining fine-grained evolutionary 
couplings and prediction rules consists of three steps:  

(1) Extract Commits from Software Repositories. 
Modern version-control systems, such as Subversion, 

preserve the grouping of multiple changed files, i.e., change-
sets or commits, as submitted by a committer.  These 
commits can be readily obtained.  We perform additional 
processing in an attempt to group multiple commits forming 
a cohesive unit of a high-level change.  We use a heuristic, 
namely author-time, to estimate such related commits. The 
premise is that the change-sets committed by the same 
committer within a time interval (e.g., same day) are related 
and are placed in the same group or transaction [21].   

(2) Process to Fine-grained Change-sets 
The differences in a file of a commit can be easily 

obtained at a line-level granularity (e.g., diff utility).  Our 
approach employs a lightweight methodology for further 
fine-grained differencing of files in a change-set.  Our tool 
codediff is used to process all the files in every change-set 
for source code differences at a fine-grained syntactic level 
(e.g., method).  It uses a word-differencing tool, namely 
dwdiff (http://os.ghalkes.nl/dwdiff.html) and srcML 
representation for source code [11].  

(3) Mine Evolutionary Couplings 
We mine the change history of a software system for 

evolutionary relationships.  In our approach, evolutionary 
couplings are essentially mined patterns of changed entities.  
We employ itemset mining [1], a data mining technique to 
uncover frequently occurring patterns or itemsets (co-
changed entities such as methods) in a given set of 
transactions (change-sets/commits).  The frequency is 
typically measured by the metric support or support value, 



 

which simply measures the number of transactions in which 
an itemset appears. A mining tool, namely sqminer [21], was 
previously developed to uncover evolutionary couplings 
from the set of commits (processed at fine-granularity levels 
with codediff).  These patterns are used to generate 
association rules that serve as IA rules for source code 
changes.  For example, consider a method named getType in 
ArgoUML.  The evolutionary coupling 

{argouml/model/mdr/FacadeMDRImpl.java/getType, 
argouml/model/mdr/FacadeMDRImpl.java/isAStereotype} 

is mined from the commit history between releases 0.24 
and 0.26.2of ArgoUML and is supported by three commits 
with ID’s 13341, 12784, and 12810.  In these three commits, 
both getType() and isAStereotype() are found to co-change. 

(4) Estimating an impact set 
For any given starting/seed software entity, for impact 

analysis, we compute all the association rules from the mined 
evolutionary couplings where it occurs as an antecedent (lhs) 
and another entity as a consequent (rhs).  Simply put, an 
association rule gives the conditional probability of the rhs 
also occurring when the lhs occurs, measured by a 
confidence value.  That is, an association rules is of the form 

lhs ⇒ rhs.  When multiple rules are found for a given entity, 
they are first ranked by their confidence values and then by 
their support values; both in a descending order (higher the 
value, stronger the rule).  We allow a user specified cut-off 
point to pick the top n rules.  Thus, the estimated impact set 
is the set of all consequents in the selected n rules.  From the 
above evolutionary coupling example, the association rule 

{argouml/model/mdr/FacadeMDRImpl.java/getType} ⇒ 
{argouml/model/mdr/FacadeMDRImpl.java/isAStereotype} 

is computed.  This rule has a confidence value of 1.0 
(100%) and it suggests that should the method getType() be 
changed, the method isASteretype() is also likely to be a part 
of the same change with a conditional probability of 100%. 

For the bug #2472, using the seed method 

org.argouml.ui.SettingsDialog.SettingsDialog results in the 

methods in the gold set appearing at positions 1, 4, 5, 7, 11-

17, and so on in the estimated impact set. 

C. Analyzing Execution Information via Dynamic Analysis 

Majority of existing impact analysis techniques rely on 
post-mortem execution analysis [22, 26].  The approach 
presented in this paper takes a different approach to applying 
dynamic analysis for IA.  Information collected from 
execution traces is combined with textual and evolutionary 
data.  Execution information is combined with other types of 
information by using it as a filter, as in the SITIR approach 
[23] where methods not executed in a feature or bug-specific 
scenario are clipped from the ranked list produced by IRCR. 

 We use two different technologies to collect execution 
trace: Java Platform Debugger Architecture (JPDA

3
) and 

Test and Performance Tools Platform (TPTP
4
), which is a 

part of Eclipse.  JPDA and TPTP collect the runtime 
information (e.g., methods that were executed) about the 
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software system without requiring any source code or byte 
code instrumentation.  Using JPDA, we are able to collect 
marked traces (i.e., we manually control when to start and 
stop collecting traces), whereas, while using TPTP, we are 
able to collect only full traces (i.e., the trace contained all the 
methods from the program start until the end of the execution 
scenario).  A significant difference between these two 
techniques is that JPDA exhibits noticeable overhead for 
large programs, making simple scenarios (i.e., clicking on 
the menu and navigating through it) time-consuming.   

D. Combining different techniques 

The main goal of this work is to integrate information 
from orthogonal sources to attain potentially more accurate 
results.  For change impact analysis, we have defined three 
information sources derived from three types of analysis: 
information retrieval (on textual data), data mining (on 
change data), and dynamic analysis (on execution data). This 
subsection outlines integrated approaches to provide 
automated support to software developers in different impact 
analysis scenarios (depending on the information at hand). 

Information Retrieval and Dynamic Analysis. The 
idea of integrating IR with dynamic analysis was previously 
defined in the context of feature location [23]; however, it 
was not used for change impact analysis.  A single feature- 
or bug-specific execution trace is first collected. IRCR then 
ranks all the methods in the trace instead of all the methods 
in a software release.  Therefore, the run-time information is 
used as a filter to eliminate methods that were not executed 
and are less likely to be relevant to the change request.  We 
refer to this integrated approach as IRCRDynCR.  The dynamic 
information, if and when available, can be used to eliminate 
some of the false positives produced by IRCR. For the bug 
#2472, IRCRDynCR results in methods in its gold set at 
positions 1, 3, 5, 7, 11, 12, 14, 29, and so on. Once again, the 
impact set gleaned via IRCRDynCR is more accurate than IRCR. 

Information Retrieval and Data Mining. Existing 
change impact analysis techniques [16, 19, 29] take an initial 
software entity (e.g., a method) in which a change is 
identified and estimates other software entities that are 
probable change candidates, referred to as an estimated 
impact set.  Our approach (IRCRHistseed) not only considers 
this initial software entity, but also takes into account the 
textual description of a given change request, which triggers 
this maintenance task. Our integrated approach computes the 
estimated impact set with the following steps: (1) selecting 
the starting point; (2) mining commits for evolutionary 
couplings; (3) computing change request similarities; and (4) 
integrating IR and evolutionary coupling results. 

(1) Selecting the first relevant entity. This is the initial 
software entity for which IA needs to be performed.  For 
example, this initial entity (i.e., a method) could be a result 
of a feature location activity [23].   

(2) Mining evolutionary couplings from commits. 
Mine a set of commits from the source code repository and 
compute evolutionary couplings for a given software entity.  
Only the commits that occurred before the software release 
in the step (1) are considered.  Evolutionary couplings are 



 

then used to form association rules that are ranked by the 
support and confidence values. See details in Section B. 

(3) Computing similarities using a change request.  
Compute conceptual couplings with IR methods from the 
release of a software system in which the first entity is 
selected.  This process in discussed in depth in Section A. 

(4) Integrating IR and data mining results.  Like our 
previous work [19], the resulting impact set is acquired by 
combining the N/2 highest ranked elements from each 
technique (steps 2 and 3).  Note that N is the desired size of 
the final impact set.  Therefore, each technique equally 
contributes to the resulting set.  If the same method is 
suggested by both techniques, it will appear only once in the 
final impact set.  Methods will be continuously selected, 
alternating the source ranked list, until an impact set of size 
N is acquired or the two sources are exhausted. For the bug 
#2472, IRCRHistseed showed improvement over IRCR.  In this 
case IRCR returned a few relevant methods in the top 
positions and  Histseed returned complementary 11 relevant 
results in the first 18 positions.  The two examples depict two 
different scenarios where the combination improves IA by 
either alleviating the shortcomings of one source or blending 
the orthogonal information from the two sources.  

Information Retrieval, Data Mining and Dynamic 
Analysis. We combine all types of analyses: IR, dynamic, 
and data mining, to perform IA.  To integrate these three 
techniques, we utilize the combination IRCRDynCR with the 
standalone approach Histseed, which yields IRCRDynCRHistseed.  
Although the combination IRCRDynCR benefits from the 
filtering provided by dynamic information, it is also possible 
that correct methods are eliminated from further 
consideration; an undesired effect.  We augment IRCRDynCR 

with Histseed, with the intent of reducing the impact of 
erroneously filtered methods.  The techniques IRCRDynCR and 
Histseed, are combined using the same heuristic presented for 
the combination IRCRHistseed.  Using the highest ranked N/2 
methods, we strive to leverage the best selection of methods 
from each technique. Similar to the improvement of 
IRCRHistseed over IRCR, IRCRDynCRHistseed produces more 
accurate impact set than IRCRDynCR for the bug #2472.  Other 
combinations are worth investigating, but they present a 
different focus for future work. 

IV. EMPIRICAL CASE STUDY 

The research hypothesis is that these combinations help 
counter the precision or recall deficit of individual 
techniques and improve the overall accuracy.  The 
components IRCR and Histseed embed automatic elements, 
whereas, the most developer intensive component is DynCR.   
We posit the following research questions (RQ): 

RQ1: Does the combination of IRCR and DynCR provide 
an improved impact set over the one with the highest 
automated component IRCR? 

RQ2: Does the combination of IRCR and Histseed provide 
an improved impact set over the one with the highest 
automated component IRCR? 

RQ3: Does the combination of IRCR, DynCR, and Histseed 
provide an improved impact set over the one with the highest 
automated component IRCR? 

The above three research questions are substantiated with 
the statistical tests for the following null hypotheses:  

H0 P1: The combination of IRCR and DynCR (RQ1) does not 

significantly improve the precision results of 

impact analysis compared to IRCR. 

H0 R1: The combination of IRCR and DynCR (RQ1) does not 

significantly improve the recall results of impact 

analysis compared to IRCR. 

H0 P2: The combination of IRCR and Histseed (RQ2) does 

not significantly improve the precision results of 

impact analysis compared to IRCR. 

H0 R2: The combination of IRCR and Histseed (RQ2) does 

not significantly improve tje recall results of 

impact analysis compared to IRCR. 

H0 P3: The combination of IRCR, DynCR, and Histseed (RQ3) 

does not significantly improve the precision results 

of impact analysis compared to IRCR. 

H0 R3: The combination of IRCR, DynCR, and Histseed (RQ3) 

does not significantly improve the recall results of 

impact analysis compared to IRCR. 

Accordingly, we also defined alternative hypotheses for 
the cases where the null hypotheses can be rejected with high 
confidence.  For example: 

HALT P1: The combination of IRCR and DynCR (RQ1) 

significantly improve the precision results of 

impact analysis compared to IRCR. 

HALT R1: The combination of IRCR and DynCR (RQ1) 

significantly improve the recall results of impact 

analysis compared to IRCR. 

The remaining five alternative hypotheses are defined in 
an analogous fashion; however, their formulation is not 
shown here due to space limitations.  

The Wilcoxon signed-rank test, a non-parametric paired 
samples test, is applied to test for the statistical significance 
in the improvement obtained using the combinations of IA 
techniques.  The results of the test determine whether the 
improvement obtained using a given combination over the 
baseline approach (i.e., IRCR) is statistically significant.  Prior 
work [29] shows that a technique based on information 
retrieval yields better results than approaches that leverage 
structural information. 

We describe our empirical study using the Goal-
Question-Metrics paradigm [4], which includes goals, 
quality focus, and context.  In the context of our case study 
we aim at addressing our three research questions.  The goal 
of the empirical case study is to determine if it is beneficial 
to combine the various techniques when performing impact 
analysis, while the quality focus is on acquiring improved 
accuracy.  The perspective is of a software developer 
addressing a change request, which demands developers to 
perform a thorough impact analysis of related source code 
entities.  With regards to accuracy, it is desirable to have a 
technique that provides all, and only, the true impacted 
entities, i.e., alleviates the impact of false positives and false 
negatives. It is important to provide the developers with the 



 

highest accuracy using the sources of information available 
(e.g., static and dynamic).  Our approach considers various 
sources of information; however, an important issue is to 
compare performances of different analysis combinations.     

A. Accuracy Metrics 

1) Precision and Recall 
In order to evaluate impact analysis techniques we use 

precision (i.e., an inverse measure of false positives) and 
recall (i.e., an inverse measure of false negatives), two 
widely accepted metrics for accuracy assessment.  Given an 
estimated impact set acquired from a technique and the 
actual impact set (e.g., a set of entities actually modified to 
address a given change request), the metrics precision and 
recall can be computed. 

For a given impact set (IS) of entities and a set of actual 
or correctly changed entities set (CS), the precision, PIS, is 
defined as the percentage of correctly estimated changed 
entities over the total estimated entities.  The recall, RIS, is 
defined as the percentage of correctly estimated changed 
entities over the total correctly changed entities. 

PIS = 
| |

100%
| |

IS CS

IS

∩
×  RIS= 

| |
100%

| |

IS CS

CS

∩
×  

 
B. Evaluated Subject Systems 

The context of our study is characterized by four open 
source Java systems, namely jEdit v4.3, a popular text editor, 
ArgoUML v0.22, a well-known UML editor, muCommander 
v0.8.5, a cross-platform file manager, and JabRef v2.6, a 
BibTeX reference manager software.  The sizes of these 
considered systems range from 75K to 150K LOC and 
contain between 4K and 11K methods.  The characteristics 
of these systems are detailed in Table II. 

C. Building the benchnmarks 

For each of the subject systems, we created a benchmark 
to evaluate the impact analysis techniques.  The benchmark 
consists of a set of change requests that has the following 
information for each change request: a natural language 
query (change request summary) and a gold set of methods 
that were modified to address the change request.   

The benchmark was established by a human investigation 
of the change requests (done by one of the authors), source 
code, and their historical changes recorded in version-control 
repositories.  Subversion (SVN) repository commit logs were 
used to aid this process.  For example, keywords such as Bug 
Id in the commit messages/logs were used as starting points 

                                                           

 

 

to examine if the commits were in fact associated with the 
change request in the issue tracking system that was 
indicated with these keywords.  The files changes in those 
commits, which can be readily obtained from SVN, were 
processed to identify the methods that were changed, i.e., 
gold set, which forms our actual impact set for evaluation. 

Our technique operates at the change request level, so we 
also need input queries to test.  These queries were 
constructed by concatenating the title and the description of 
the change requests referenced from the SVN logs. 

D. Evaluation Procedure (for all systems) 

Our evaluation procedure consists of the following steps: 
1. Acquire Conceptual Training Set - Compute 

conceptual/textual similarities between change requests 
and methods on a release (e.g., ArgoUML 0.22) of a 
subject system. 

2. Acquire Evolutionary Training Set - Mine evolutionary 
couplings (and association rules) from a set of commits 
in a history period prior to the selected release in Step 1.  
We mined over 7,000 commits between releases 0.14 
and 0.22 of ArgoUML, over 1,800 commits between 
releases 4.0 and 4.3 of jEdit, over 2,500 commits from 
the change history before the release 0.8.5 of 
muCommander, and over 2,400 commits from the 
change history before the release 2.6 of JabRef.  Both 
the trunk and branches of the change history were 
considered while choosing the appropriate commits.  

3. Extract Testing Set – Pick the gold set of methods 
associated with every change request in Step 1 from the 
benchmark described in Section C.  This gold set is 
considered as an actual impact set, i.e., the ground truth, 
for evaluation purposes. 

4. Acquire Dynamic Information – Obtain execution traces 
related for each change request in the testing set. A 
profiler tool was used on the subject system to generate 
the execution trace for every change request.  Every 
attempt was made to follow the steps to reproduce 
described in the change request, which are typically the 
steps described in natural language to reproduce the 
issue that was reported, so that it can be verified.  For 
the jEdit system, we collected traces using JPDA, 
whereas for the other three systems, we used TPTP. 

5. Generate Impact Sets - Derive impact sets for the 
different combinations and the baseline technique of our 
approach, for each commit in the testing set. 

6. Compute Results - Compute accuracy metrics for all the 
estimated impact set in Step 5. 

7. Evaluate Results - Compare the accuracy results of the 
combinations over the baseline in Step 6. 

 
 

Table II. Characteristics of the subject systems 

considered in the case study. 
System Ver LOC Files Methods Terms 

jEdit 4.3 103,896 503 6,413 4,372 

ArgoUML 0.22 148,892 1,439 11,000 5,488 

muCommander 0.8.5 76,649 1,069 8,187 4,262 

JabRef 2.6 74,182 577 4,604 5,104 

 

Table I. Summary of the benchmarks: bugs (B), 

features (F), and patches (P) with changed methods 
 #change reqs methods in gold set: descriptive stats 

System B F P min 25 med 75 max Total 

jEdit 51 30 22 2 3 5 9 41 701 

ArgoUML 50 8 23 2 3 5 12 72 673 

muCom 55 10 0 2 3 4 11 104 691 

JabRef 25 3 0 2 3 5.5 11 33 269 



 

E. Results 

1) RQ1: Comparing IRCRDynCR  against IRCR 
Combining multiple analysis techniques has been shown 

useful for impact analysis [19].   Our first RQ focuses on a 
combination of IR and dynamic analysis techniques, which 
has not been considered for the task of impact analysis in the 
literature previously. We investigate the likely benefits of 
combining IRCR and DynCR for IA in our approach. 

Table III presents the results for IRCR as well as the 
results for the combination IRCRDynCR.  The results indicate a 
positive improvement for all four systems considered.  The 
table indicates an improvement of as much as 7% in 
precision and up to 20% in recall for the software systems 
considered.  Based on these results, the combination of 
IRCRDynCR is shown to be superior to the standalone 
technique IRCR.  Additionally, the results in Table IV for the 
hypotheses H0 P1 and H0 R1 indicate that the improvement is 
statistically significant for all the systems, with the exception 
of JabRef. These two null hypotheses were rejected based on 
the p values for all the systems, but JabRef. 

An example of this combination improvement can be 
seen in the ArgoUML bug #2472, described in Section III D.   
It is evident here that the dynamic information helped 
eliminate the false positives that were ranked at the top by 
IRCR and helped to bubble up the relevant methods buried at 
the bottom.  The ranking of relevant methods is drastically 
improved with this combination over that of IRCR (i.e., a 
number of method were promoted to the top 10 list). 

2) RQ2: Comparing IRCRHistseed against IRCR 
We explore the combination IRCR and Histseed and 

compare its performance to that of IRCR.  We used a 50:50 
combination ratio of IRCR and change history for ArgoUML ( 
i.e., 50% of the method in the estimated impact set were 
selected from IRCR and the other 50% from Histseed) and a 
75:25 combination ratio for the other systems.  The choice of 
these ratios was driven by the system sizes and their 
historical information.  These results also appear in Table III. 
Our findings reveal that this combination is quite useful in 
several cases.  For example, when performing impact 
analysis on ArgoUML, this combination always yields an 

improvement in accuracy.  The improvement of 8% in 
precision and 25% in recall, on average, is observed across 
all the change requests in ArgoUML.  These results are rather 
promising.  The results for other systems also indicate an 
improvement yielded by this combination for certain cut 
points, but there exist cases where the combination results in 
a decrease in accuracy.  It is interesting to note the results of 
hypotheses H0 P2 and H0 R2 in Table IV, which show that only 
the improvement in recall is statistically significant across all 
the systems; however, note that the gain in precision 
acquired for ArgoUML is still statistically significant, which 
is the largest system in our evaluation.   

We present examples from ArgoUML that show the 
benefits of using historical change records in conjunction 
with the textual information analyzed with IRCR.  For 
example, feature #1641

5
 "Explorer option for creating 

diagrams from elements useful where you lost/never had a 
class diagram for a particular package". This text was used 
as a query for IR.  The issue contains two methods in the 
gold set.  Using IR, the first method 
ExplorerPopup.initMenuCreate in the gold set is ranked at the 
position 12 and the second method 
ExplorerPopup.ExplorerPopup) is at the position 179.  With the 
history information available, the method 
ExplorerPopup.ExplorerPopup is used as a seed.  The other 
method ExplorerPopup.initMenuCreate in the gold set appears 
on the position 1, using a confidence of 1 and a support value 
of 2. This example shows that combining IR and history 
information can yield better results than using IR alone. 

  For the bug #2144
6
, using the query “Use Case property 

tab: Operations are not listed in the Use Case Property Tab 
furthermore, there is no possibility to create operations on 
use cases”, IRCR ranked the first relevant method 206

th
. 

When the method PropPanelClassifier.getAttributeScroll was 
used as a seed with Histseed, three out of the four methods it 
returned were in the gold set: 
PropPanelClassifier.getOperationScroll, 
ActionNewExtensionPoint.actionPerformed, and 
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Table III. Precision (P) and recall (R) percentages results of IRCR, combination IRCRDynCR, combination 

IRCRHistseed, and combination IRCR DynCR,Histseed approaches to IA for all systems using various cut points.  

Cut Points  5 10 20 30 40  5 10 20 30 40 

Precision (P) and Recall (R)  P R P R P R P R P R  P R P R P R P R P R 

IRCR 7 4 6 6 5 12 4 14 4 18 10 7 9 13 6 20 5 26 5 30 

IRCRDynCR 11 7 8 10 6 19 6 26 5 28 17 14 14 25 10 35 8 23 7 50 

IRCRHistseed 15 14 12 19 9 25 7 28 6 33 11 11 9 22 7 34 5 43 5 47 

IRCRDynCRHistseed  

A
rg

o
U

M
L

 

17 16 13 22 10 31 8 37 7 41 

jE
d

it
 

18 23 14 37 9 53 8 64 7 75 

IRCR 9 4 11 11 8 22 7 25 5 28 7 9 6 13 5 19 4 20 4 24 

IRCRDynCR 14 9 11 14 8 24 6 29 5 31 11 11 9 17 7 22 5 27 5 34 

IRCRHistseed 9 4 11 14 9 24 7 38 6 40 8 14 6 22 5 30 4 32 4 36 

IRCRDynCRHistseed  

J
a

b
R

ef
 

14 15 11 21 8 33 6 45 5 48 m
u

C
o

m
a

n
d

er
 

12 19 9 25 6 34 5 37 5 46 

 



 

ActionNewExtensionPoint constructor at the first, second, and 
fourth position respectively.  This example demonstrates 
cases where Histseed returns relevant methods in the top 
positions, whereas IRCR returns false positives, possibly due 
to the lack of specific expressiveness of the query. That is, 
change information compensates for the deficiency of IRCR. 

For the feature #1942
7
, which has 20 methods in the gold 

set, IRCR produces relevant methods ranked positions 1, 3-7, 
11, and so on. Furthermore, using the method 
FacadeMDRImpl.getImportedElement as a seed, Histseed returns 
a ranked list of relevant methods with positions 1, 2, 4-7, 11, 
and so on.  The first 10 results returned by both IRCR and 
Histseed have 12 relevant methods (11 are unique and one 
method appears in both lists). Combining the results of these 
two techniques increases the recall of the returned set of 
methods. This example demonstrates situations where both 
IRCR and Histseed can complement each other with a relevant 
set of methods can operate in tandem. 

3) RQ3: Comparing IRCR DynCRHistseed against IRCR 
Given the promising results of combining two techniques 

at a time, i.e., IRCRDynCR and IRCRHistseed, we also evaluated 
the combination of all the three techniques, i.e., 
IRCRDynCRHistseed.  Table III provides the results for the 
combination of the three types of analyses for IA.  For 
ArgoUML, the results indicate that we are able to achieve 
precision and recall gains as high as 17% and 41%, 
respectively.  Additionally, combining these techniques 
shows that after the cut point 20 IRCRDynCRHistseed provides 
results superior to any other technique considered.  Similar 
trends are also observed for the other three considered 
software systems.  In the context of these results, it is clear 
that that combining the three types of analyses yields the best 
performance.  Similar to the combination IRCRHistseed, the 
results for the hypotheses H0 P1 and H0 R1 in Table IV reveal 
that only the improvement in recall demonstrates statistical 
significance (at the p values of 0.05 or smaller).  Also, all the 
systems, but JabRef, yield a statistically significant 
improvement in precision. 

We illustrate examples from ArgoUML where a 
combination of textual, historical, and execution information 
sources generates better results than techniques with fewer 
types of information.  For the bug #3164

8
, IRCR returns the 

top relevant methods with ranks 36, 40, 44, and so on, 
whereas IRCRDynCR eliminates some false positives and 
returns the relevant methods with positions 25, 27, 29, and so 
on. Historical information further improves the results. Using 
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the method FigState.addListenersForTransition as a seed with 
Histseed, three relevant methods are found at positions 1, 2 
and 6 in the returned top 6 methods. 

For the bug #2618, IRCRDynC returns the first relevant 
method  FigAssociation.updateEnds ranked at the position 30; 
however, the historical information, when added, further 
improves the results. Using the method 
FigAssociation.initNotationProviders as a seed, a list of 7 
methods was returned. This list contained 5 relevant methods 
at the positions 1-4 and 7. 

For the bug #4101
9
, IRCR produces a ranked list where the 

relevant methods in the gold set appear at positions 7, 27, 61, 
and so on; however, IRCRDynCR produces a ranked list where 
the gold set methods appear at positions 1, 11, 17, 27, and so 
on. Moreover, using the seed method/constructor 
UMLComboBoxNavigator, Histseed returns three methods, 
which are all in the gold set. 

We evaluate the strength of our scenario driven approach 
to impact analysis.  A comparison of the baseline (IRCR) to 
the combination IRCRDynCR indicates a clear improvement, 
both in terms of precision and recall, when execution 
information is available.  In the scenario where a start entity 
is identified, using the evolutionary coupling analysis 
(Histseed) yields higher precision but suffers in recall, as 
illustrated by the rapid decline in recall after the cut point 
three.  Our results indicate that the combination IRCRHistseed 
overcomes the limitations associated with each individual 
technique.  More specifically, the integration of the two 
techniques overcomes the low precision of IRCR as well as 
the rapid decline in recall, which hinders Histseed.  Finally, 
the scenario when dynamic analysis is also obtainable, 
IRCRDynCRHistseed further demonstrates the benefit of our 
adaptive framework. Including the execution information 
considerably builds upon the improvement of IRCRHistseed, 
leading to a technique that returns results superior to all other 
considered techniques. 

V. THREATS TO VALIDITY 

We identify threats to validity that could influence the 
results of our empirical study and limit our ability to 
generalize our findings.  We demonstrated the benefits of 
different types of analysis for IA, but our empirical study is 
performed using four open source Java software systems.  
Although we used a diverse set of software systems in 
application domains, to claim generalization and external 
validity of our results would require further empirical 
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Table IV. Results of Wilcoxon signed-rank test (µ = 40).  The p values indicate 

that the provided improvement by combined IA approaches is not by chance. 
System H0 P1 H0 R1 H0 P2 H0 R2 H0 P3 H0 R3 

ArgoUML < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

JabRef 0.266 0.324 0.381 < 0.001 0.091 < 0.002 

jEdit < 0.001 < 0.001 0.068 < 0.001 < 0.001 < 0.001 

muCommander < 0.001 < 0.001 0.425 < 0.001 < 0.001 < 0.001 



 

evaluation on systems implemented in other programming 
languages and different development paradigm. 

In the empirical evaluation, we derived our testing set 
using commits stored in version control systems of the 
software systems considered in our empirical study.  This 
strategy is similar to what researchers have previously used 
in MSR-based case studies [18].  Analogous to the work of 
others, we acknowledge the possibility that entities within a 
commit may not be all related.  Additionally, commits may 
not fully encapsulate all the entities related to specific 
change requests.  Therefore, the quality of the data stored in 
version control system may have influenced the results of 
our study.  To lessen the impact of this threat, we evaluated 
the commits and manually included the entities in our testing 
set to ensure the quality of the data.  The quality of the data 
in the version control system also impacts one of our 
underlying types of analysis (i.e., data mining of source code 
changes).  Inadequate historical information could 
potentially limit data mining techniques to accurately predict 
relevant methods when given an initial starting point [19]. 

We apply an IR technique to textual information 
extracted from the source code of software systems.  
Therefore, our findings may have been impacted by the 
consistency of variable naming and commenting performed 
by the software developers.  Furthermore, we used the 
descriptions of change request as queries, which may have 
also affected the performance of our techniques.   

The use of dynamic information introduces a threat 
related to the quality of the dynamic traces obtained for a 
given change request.  For each entity in the testing set we 
manually exercised the feature described in the 
corresponding change request.  It is possible that insufficient 
or inaccurate details appeared in the change request, which 
could have led to methods being erroneously filtered from 
the impact set.  To address the issue we thoroughly inspected 
each change request to safeguard against inappropriate 
filtering of methods. 

VI. CONCLUSIONS 

The paper presents a novel approach to IA at change 
request level that automatically adapts to the specific 
software maintenance scenario at hand.  Our approach uses a 
scenario-driven combination of IR, dynamic analysis, and 
MSR techniques to analyze incoming change requests, 
execution traces and prior changes to estimate an impact set.  
The empirical results on four open source systems support 
our premise that combining IA techniques help counter the 
precision or recall deficit of individual ones and improve the 
accuracy collectively.  Our findings indicate that in certain 
cases an improvement of 17% in precision and 41% in recall 
is gained while combining, IRCR,  DynCR, and Histseed.  
Moreover, the overall improvement obtained while 
combining these IA techniques is generally statistically 
significant.  Approaches to impact analysis have most likely 
not reached the optimal levels of accuracy desired by 
practitioners. Nonetheless, our technique provides improved 
accuracy over previously published work. Our work provides 
a noteworthy step forward towards achieving acceptance 
from practitioners.  Finally, the data used in producing the 

results in this paper is publicly available and other 
researchers are encouraged to reproduce or verify our 
results

10
.  
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