

Integrated Impact Analysis for Managing Software Changes

Malcom Gethers
1
, Bogdan Dit

1
, Huzefa Kagdi

2
, Denys Poshyvanyk

1

1
Computer Science Department

 The College of William and Mary

Williamsburg, VA 23185

{mgethers, bdit, denys}@cs.wm.edu

2
Department of Computer Science

Wichita State University

Wichita, KS 67260-0083

kagdi@cs.wichita.edu

Abstract — The paper presents an adaptive approach to

perform impact analysis from a given change request to source

code. Given a textual change request (e.g., a bug report), a

single snapshot (release) of source code, indexed using Latent

Semantic Indexing, is used to estimate the impact set. Should

additional contextual information be available, the approach

configures the best-fit combination to produce an improved

impact set. Contextual information includes the execution

trace and an initial source code entity verified for change.

Combinations of information retrieval, dynamic analysis, and

data mining of past source code commits are considered. The

research hypothesis is that these combinations help counter the

precision or recall deficit of individual techniques and improve

the overall accuracy. The tandem operation of the three

techniques sets it apart from other related solutions.

Automation along with the effective utilization of two key

sources of developer knowledge, which are often overlooked in

impact analysis at the change request level, is achieved.

To validate our approach, we conducted an empirical

evaluation on four open source software systems. A

benchmark consisting of a number of maintenance issues, such

as feature requests and bug fixes, and their associated source

code changes was established by manual examination of these

systems and their change history. Our results indicate that

there are combinations formed from the augmented developer

contextual information that show statistically significant

improvement over stand-alone approaches.

I. INTRODUCTION

Software change requests, such as bug fixes and new
features, are an integral part of software evolution and
maintenance. Effectively supporting software changes is
essential to provide a sustainable high-quality evolution of
large-scale software systems, as realizing even a slight
change may not be always straightforward. Software-change
impact analysis, or simply impact analysis (IA), has been
recognized as one such key maintenance activity. IA aims at
estimating the potentially impacted entities of a system due
to a proposed change [7]. The applications of IA include
cost estimation, resource planning, testing, change
propagation, managing ripple effects, and traceability [8, 16,
22, 26, 27, 29-31, 35].

In several realistic settings, change requests are typically
specified in natural language (e.g., English). They include
bug reports submitted, by programmers or end users, during
the post-delivery maintenance of a product. In the
distributed collaborative software development
environments, such as the open source software model,
change requests are typically managed with issue tracking

systems (e.g., Bugzilla). These change requests may need to
be resolved with the appropriate changes to relevant source
code. It is not uncommon in such projects to receive
numerous change requests daily that need to be resolved in
an effective manner (e.g., within time, priority, and quality
factors) [3, 20]. Another factor that adds to the challenge of
IA in the maintenance environment is the regular absence of
useful intermediate artifacts (e.g., design documents and
pertinent traceability information) between the abstractions
levels of change requests and source code. It is a common
maintenance scenario in which a change request, described
in the natural language, is the only source of information
available to perform IA and an automatic technique must
operate in such a situation. Moreover, developers or
development environments may have accumulated valuable
sources of information in the context of solving a specific
change request (or past change requests). On the other hand,
developers cannot be expected to manually provide such
information all the time.

In this paper, we present a novel approach for IA that
automatically adapts to the specific maintenance scenario at
hand. We consider scenarios in which the change request is
available at the minimum and is the source of focus.
Additional forms of developer knowledge may be available
or not in the context of this change request. Two quantifiable
forms of the developer knowledge are considered: a verified
source code entity to start performing the change (e.g., a
relevant source code method) and run-time information
pertinent to the features in change request (i.e., an execution
trace for a feature specific scenario). Developers may
narrow down to at least one entity to change, e.g., using
feature location techniques [23, 28], previous project
experience, and/or tacit software development knowledge.
Also, developers typically attempt to reproduce the problem
reported in the change request; a typical activity during the
issue triage process [3, 20]. In some cases, call stacks of the
failure are also available in the bug reports.

Our approach uses a scenario-driven combination of
information retrieval (IR), dynamic analysis, and mining
software repositories techniques (MSR). We chose a
history-based mining technique, as we share a prevalent view
in MSR that the information in software repositories is an
extension of the collective developer or development
knowledge [5]. Given a textual change request, an IR (e.g.,
Latent Semantic Indexing or simply, LSI) indexed single
release of source code is used to estimate the impact set.
Should the execution information be made available for the

same snapshot associated with the change request, methods
in the trace are also obtained. A combination of IR and
dynamic analyses is favored over IR to estimate the impact
set in such cases.

Furthermore, should a verified start entity of change be
available, evolutionary couplings are mined from the
commits in software repositories that occur before the
snapshot of code used for IR-based indexing (and dynamic
analysis). A combination of IR and evolutionary coupling
analyses is favored over IR to estimate the impact set in such
cases. Evolutionary couplings are used in our approach, as
they are derived from the actual changes to artifacts across
multiple releases, rather than estimations that are based on
the analysis of various structural and semantic dependencies
between them in a single snapshot of a system. Also, the
commits embody part of the developer’s knowledge and
experience [2]. The version history may contain domain-
specific “hidden” links that are manually created and
maintained (e.g., database schema changes [24]), which
traditional program-analysis methods may fail to uncover
[35]. When both forms of additional developer-information
context are available, a combination of IR, dynamic
information, and evolutionary couplings supersedes others to
estimate the impact set.

 Our hypothesis is that such combinations would help
counter the accuracy, i.e., precision and/or recall, deficit of
individual techniques and improve upon the accuracy
collectively. To validate our approach, we first created a
benchmark of change requests and their associated source
code changes by manual examination of open source projects
ArgoUML, jEdit, muCommander and JabRef. Empirical
evaluation of our approach on this benchmark shows
statistically significant gains in precision and recall up to
17% and 41% respectively.

II. RELATED WORK

Several IA approaches ranging from classical static and
dynamic analysis techniques [8, 22, 26, 27, 30, 31] to the
recent unconventional approaches, such as those based on IR
[16, 29] and MSR [15, 19, 35], exist in the literature. In the
next subsections, we review some of the related approaches
to provide a breadth of the IA solutions; the intent is not to
exhaustively discuss every single technique.

A. Software Change IA via Static & Dynamic Analyses

Depending on the type of information available, impact
analysis is traditionally performed using static program
analysis [7, 9], dynamic program analysis [22, 25, 26] or a
combination of these techniques [30]. Static program
analysis relies solely on the structure of the program and the
relationship between program elements, at different levels of
granularity, whereas dynamic program analysis takes into
account information gathered from program execution.

Law and Rothermel [22] introduced PathImpact, a
dynamic IA technique based on whole path profiling (i.e.,
when a method m is changed, any method that calls m or is
called after m is added to the set of potentially impacted
methods). Orso et al. [25] proposed CoverageImpact, a
technique that combines forward static slicing with respect to

a modified program element (i.e., method) with dynamic
information collected from program instrumentation. Orso
et al. [26] conducted an experiment to analyze the tradeoff
between in terms of cost and precision for two dynamic IA
techniques, CoverageImpact and PathImpact. These two
techniques require data gathered during program execution
using various inputs or test cases. Using this information,
their technique determines the impact set by locating the
program elements that were executed simultaneously with
the given program elements used as seeds. It should be
noted that we are not using any of these algorithms in this
paper. In our solution execution information is rather used as
a filter to eliminate methods that were not executed and, as a
result, are less likely to be relevant to the change request.

Other tools, such as Chianti [30] support IA by analyzing
the changes between two versions of a program (i.e., static
information) and a set of tests that execute parts of a program
(i.e., dynamic information). Using this information, Chianti
suggests a set of regression or unit tests that might have been
affected by the changes between the two versions of the
program. JRipples [9] is an Eclipse plug-in that relies on
static information to guide developers while manually
locating the impact set, by keeping track of impacted
program elements. The comprehensive summary on using
dynamic analysis to support program comprehension
including IA is reported in Cornelissen et al. [12].

B. Software Change IA via Information Retrieval

IR methods were proposed and used successfully to
address tasks of extracting and analyzing textual information
in software artifacts, including change impact analysis in
source code [10, 19, 29].

Existing approaches to IA using IR operate at two levels
of abstraction: change request [10] and source code [19, 29].
In the first case, the technique relies on mining and indexing
the history of change requests (e.g., bug reports). In
particular, this IA method utilizes IR to link an incoming
change request description to similar past change requests
and file revisions that were modified to address them [10,
34]. While this technique has been shown to be relatively
robust in certain settings, it is entirely dependent on the
history of prior change requests. In cases where textually
similar change requests cannot be identified (or simply do
not exist), the technique may not be able to identify relevant
impact sets. Also, these works show that a sizeable change
request history must exist to make this approach operational
in practice, which may limit the effectiveness. The work in
[16] relates to our approach in the use of lexical (textual)
clues from the source code to identify related methods.

The other set of techniques to IA that use IR operates at
the source code level and requires a starting point (e.g., a
source code method that is likely to be modified in response
to an incoming change request) [19, 29]. This approach is
based on the hypothesis that modules (or classes) in software
systems are related in multiple ways. The evident and most
explored set of relationships is based on data and control
dependencies; however, the classes can be also related
conceptually (or textually), as they may contribute to the
implementation of similar domain concepts. This

information is derived using IR-based analysis of textual
software artifacts that are derived from a single version of
software (e.g., comments and identifiers in source code).

Our previous work [19] was consistent with earlier
usages of IR in IA [29]; however, it was limited to IA at the
source-code level staring point, and the work presented in
this paper operates at the change-request level as a starting
point. In this paper, we apply IR for IA similar to how it has
been used in the context of feature location [23, 28], which is
different from two aforementioned approaches. We also use
this technique as our baseline in our adaptive solution. We
do not discuss applications of IR-based techniques in the
context of other maintenance tasks due to space limitations;
however, such an overview can be found elsewhere [6].

C. Software Change IA via Mining Software Repositories

The term MSR has been coined to describe a broad class
of investigations into the examination of software
repositories (e.g., Subversion and Bugzilla). We refer the
interested readers to Kagdi et al. [18] literature survey, and
Xie’s online bibliography and tutorial

1
 on MSR. We now

briefly discuss some representative works in MSR for
mining of evolutionary couplings.

 Zimmerman et al. [35] used CVS logs for detecting
evolutionary coupling between source code entities.
Association rules based on itemset mining were formed from
the change-sets and used for change-prediction. Canfora et
al. [10] used the bug descriptions and the CVS commit
messages for the purpose of change prediction. An
information retrieval method is used to index the changed
files, and commit logs, in the CVS and the past bug reports
from the Bugzilla repositories.

In addition, conceptual information has been utilized in
conjunction with evolutionary data to support several other
tasks, such as assigning incoming bug reports to developers
[3, 17], identifying duplicate bug reports [33], estimating
time to fix incoming bugs [34] and classifying software
maintenance requests [13].

Traditionally, given a proposed change in a given source
entity, other change-prone source code entities are estimated
using static and/or dynamic analysis based models of a
specific snapshot of source code. Traditional techniques
largely performed impact analysis at the same level of
abstraction and that too mostly on source code. Supporting
IA at the change request level has been suggested only
recently [10]; an advent of applied IR and MSR methods has
provided a renewed interest in cross abstraction IA.

Our combined approach is different from other previous
approaches, including those using IR and MSR techniques,
for IA that rely solely on the historical account of past
change requests and/or source code change history. Our
approach is not dependent on past change requests (e.g.,
repositories of past bug reports, which may not be always
available), and only requires source code of a single
complete release of the system, source code change history,
and access to execution and tracing environment (e.g., JPDA
or TPTP). To the best of our knowledge, ours is the only

1 https://sites.google.com/site/asergrp/dmse

approach that utilizes such a combination for performing IA
from change request to source code without the need for a
bug/issue history. The selective use of dynamic and
evolutionary information along with the textual information
has not been used before. Our approach builds on existing
solutions, but synergizes them in a new holistic technique.

III. AN INTEGRATED APPROACH TO IMPACT ANALYSIS AT

CHANGE REQUEST LEVEL

Our framework for impact analysis is based on the
possible degree of automation and developer augmented
information that may be available in a given maintenance
scenario. In several realistic settings, change requests are
typically specified in natural language (e.g., English). It is
reasonable to assume that change requests, in several cases,
are the only source of available information to conduct the
needed maintenance. In such a situation, a high degree of
automation in estimating the impact set can be achieved by
taking the textual view of source code and applying IR
techniques, which are an organic fit to automatic text
analysis. This component of our framework assumes that
there is no developer or maintenance environment supplied
information available. Our framework operates in this
default mode, which has the highest degree of automation
and the least level of developer supplied information. We
refer to this default configuration as IR CR.

The maintenance scenario may not necessarily be as
ascetic as depicted in the default IR mode. In several
situations, additional pieces of valuable information are also
available. We consider two such developer-augmented
information cases: 1) a developer somehow narrows down to
at least one verified entity that needs a change (e.g., from
previous experience of performing similar changes) − seed
entity, 2) a developer has executed the feature, inferred by
reading the textual change request, and collected the run-
time information − executed methods, (e.g., to verify if the
issue that was reported can be replicated or collected from
the call stack of a failure). For the first case, our framework
provides a component Histseed, which mines the past commits
(change history) of software entities to estimate the impact
set. This component provides medium levels of automation
and human intervention is in selecting a starting point of
change; then a data mining technique is used to compute the
impact set automatically. For the second case, our
framework provides the component that uses the methods
executed in the run-time scenario. This component requires
the most human involvement and the lowest level of
automation. We refer to this component as DynCR.

Our framework employs the best effort paradigm in an
adaptive manner − it selectively employs the best-fit
components depending on the type of developer-supplied
information before resorting to the default mode. For
example, when a seed entity is available along with the
change request, a combination of the components IRCR and
Histseed is engaged. Similarly, when the dynamic information
is available along with the change request, a combination of
the components IR CR and DynCR is selected. The premise of
our approach is that any combination that involves the
human augmented information and (highest or medium)

automation would provide a better impact set than those
based on automated components alone.

The impact analysis model presented here defines several
sources of information, the analyses used to derive the data,
and how the information can be combined to support impact
analysis at the change request level.

A. Analyzing Textual Information via IR

Textual information in source code and software
repositories (e.g., changes requests in Bugzilla), reflected in
identifiers and comments, encodes problem domain
information about a software project. This unstructured
information can be used to support impact analysis through
the use of IR techniques [10]. IR works by comparing a set
of artifacts (e.g., source code files) to a query (e.g., a change
request) and ranking these artifacts by their relevance to the
query. IRCR follows five main steps [23]: (1) building a
corpus, (2) natural-language processing (NLP), (3) indexing,
(4) querying, and (5) estimating an impact set.

(1) Building a corpus. To use IR on software, a
document granularity needs to be defined, so that the corpus
can be build. A document contains all the text found in a
contiguous section of software artifact, such as a method,
class, or package. A corpus consists of all such documents
(artifacts). For instance, for impact analysis, we employ the
method-level granularity for documents that include
contiguous text of each method in a project.

(2) NLP. Once the corpus is created, it is preprocessed
using NLP techniques. For source code, operators and
programming language keywords are removed.
Additionally, identifiers and other compound words are split
(e.g., “impactAnalysis” becomes “impact” and “analysis”)
[14]. Finally, stemming is performed to reduce words to
their root forms (e.g., “impacted” becomes “impact”).

(3) Indexing the corpus with IR. The corpus is used to
compile a term-by-document matrix (TDM). The matrix’s
rows correspond to the words from identifiers or comments
in the corpus, and the columns represent methods from
source code. A cell mi,j in the TDM holds a measure of the
weight or relevance of the i

th
word in the j

th
method. In

particular we use a more complex measure, such as term
frequency-inverse-document frequency. Singular Value
Decomposition (SVD) [32] is then used to reduce the
dimensionality of the TDM by exploiting the co-occurrence
of related words across source code methods.

(4) Running a query. The title and description of an
incoming change request serve as an input to this technique,
that is a query. An example of such a query is the bug
#2472

2
 reported in ArgoUML v0.22. The query is

formulated from its description “Wrong keyboard focus in
Settings dialog after close & reopen […]”.

 (5) Estimating an impact set. In the SVD model, each

method corresponds to a vector. The query (or change

request) is also converted to a vector-based representation,

and then the cosine of the angle between the two vectors is

used to measure the similarity of the source code method to

the change request. The closer the cosine is to one, the

2
 http://argouml.tigris.org/issues/show_bug.cgi?id=2472

more textually similar the method is to the change request.

A cosine similarity value is computed between the change

request and all the methods in the source code, and then

these methods are sorted by their similarity values. The top

results from this list constitute an estimated impact set.

For the input query from the bug #2472, the IRCR

technique returns a ranked list of methods according to their

similarity values in descending order. The top methods in

this ranked list are considered based on a cut point, which

establishes the size of the estimated impact set. Now, the

question is how accurate are these IRCR estimated impact

sets. We manually examined the source code methods that

were changed to address/fix a specific bug, which we refer

to as a gold set. We identified 16 methods that are relevant

to the change request for the bug #2472 (i.e., gold sets).

When comparing the IRCR estimated impact set with its gold

set, the relevant methods appeared at positions 2, 16, 30, 37,

52, 56, 57, and so on. This example shows that although IR

can help identify the real impact set, it might produce results

that require an examination of several candidates; in some

cases it may not be quite practical (e.g., bug #2472).

B. Analyzing Evolutionary Information via Data Mining

Broadly, we use a data mining technique to infer
evolutionary information, i.e., frequent change patterns of
methods, from the commits stored in software repositories.
The presented approach for mining fine-grained evolutionary
couplings and prediction rules consists of three steps:

(1) Extract Commits from Software Repositories.
Modern version-control systems, such as Subversion,

preserve the grouping of multiple changed files, i.e., change-
sets or commits, as submitted by a committer. These
commits can be readily obtained. We perform additional
processing in an attempt to group multiple commits forming
a cohesive unit of a high-level change. We use a heuristic,
namely author-time, to estimate such related commits. The
premise is that the change-sets committed by the same
committer within a time interval (e.g., same day) are related
and are placed in the same group or transaction [21].

(2) Process to Fine-grained Change-sets
The differences in a file of a commit can be easily

obtained at a line-level granularity (e.g., diff utility). Our
approach employs a lightweight methodology for further
fine-grained differencing of files in a change-set. Our tool
codediff is used to process all the files in every change-set
for source code differences at a fine-grained syntactic level
(e.g., method). It uses a word-differencing tool, namely
dwdiff (http://os.ghalkes.nl/dwdiff.html) and srcML
representation for source code [11].

(3) Mine Evolutionary Couplings
We mine the change history of a software system for

evolutionary relationships. In our approach, evolutionary
couplings are essentially mined patterns of changed entities.
We employ itemset mining [1], a data mining technique to
uncover frequently occurring patterns or itemsets (co-
changed entities such as methods) in a given set of
transactions (change-sets/commits). The frequency is
typically measured by the metric support or support value,

which simply measures the number of transactions in which
an itemset appears. A mining tool, namely sqminer [21], was
previously developed to uncover evolutionary couplings
from the set of commits (processed at fine-granularity levels
with codediff). These patterns are used to generate
association rules that serve as IA rules for source code
changes. For example, consider a method named getType in
ArgoUML. The evolutionary coupling

{argouml/model/mdr/FacadeMDRImpl.java/getType,
argouml/model/mdr/FacadeMDRImpl.java/isAStereotype}

is mined from the commit history between releases 0.24
and 0.26.2of ArgoUML and is supported by three commits
with ID’s 13341, 12784, and 12810. In these three commits,
both getType() and isAStereotype() are found to co-change.

(4) Estimating an impact set
For any given starting/seed software entity, for impact

analysis, we compute all the association rules from the mined
evolutionary couplings where it occurs as an antecedent (lhs)
and another entity as a consequent (rhs). Simply put, an
association rule gives the conditional probability of the rhs
also occurring when the lhs occurs, measured by a
confidence value. That is, an association rules is of the form

lhs ⇒ rhs. When multiple rules are found for a given entity,
they are first ranked by their confidence values and then by
their support values; both in a descending order (higher the
value, stronger the rule). We allow a user specified cut-off
point to pick the top n rules. Thus, the estimated impact set
is the set of all consequents in the selected n rules. From the
above evolutionary coupling example, the association rule

{argouml/model/mdr/FacadeMDRImpl.java/getType} ⇒
{argouml/model/mdr/FacadeMDRImpl.java/isAStereotype}

is computed. This rule has a confidence value of 1.0
(100%) and it suggests that should the method getType() be
changed, the method isASteretype() is also likely to be a part
of the same change with a conditional probability of 100%.

For the bug #2472, using the seed method

org.argouml.ui.SettingsDialog.SettingsDialog results in the

methods in the gold set appearing at positions 1, 4, 5, 7, 11-

17, and so on in the estimated impact set.

C. Analyzing Execution Information via Dynamic Analysis

Majority of existing impact analysis techniques rely on
post-mortem execution analysis [22, 26]. The approach
presented in this paper takes a different approach to applying
dynamic analysis for IA. Information collected from
execution traces is combined with textual and evolutionary
data. Execution information is combined with other types of
information by using it as a filter, as in the SITIR approach
[23] where methods not executed in a feature or bug-specific
scenario are clipped from the ranked list produced by IRCR.

 We use two different technologies to collect execution
trace: Java Platform Debugger Architecture (JPDA

3
) and

Test and Performance Tools Platform (TPTP
4
), which is a

part of Eclipse. JPDA and TPTP collect the runtime
information (e.g., methods that were executed) about the

3
 http://java.sun.com/javase/technologies/core/toolsapis/jpda/

4
 http://www.eclipse.org/tptp/

software system without requiring any source code or byte
code instrumentation. Using JPDA, we are able to collect
marked traces (i.e., we manually control when to start and
stop collecting traces), whereas, while using TPTP, we are
able to collect only full traces (i.e., the trace contained all the
methods from the program start until the end of the execution
scenario). A significant difference between these two
techniques is that JPDA exhibits noticeable overhead for
large programs, making simple scenarios (i.e., clicking on
the menu and navigating through it) time-consuming.

D. Combining different techniques

The main goal of this work is to integrate information
from orthogonal sources to attain potentially more accurate
results. For change impact analysis, we have defined three
information sources derived from three types of analysis:
information retrieval (on textual data), data mining (on
change data), and dynamic analysis (on execution data). This
subsection outlines integrated approaches to provide
automated support to software developers in different impact
analysis scenarios (depending on the information at hand).

Information Retrieval and Dynamic Analysis. The
idea of integrating IR with dynamic analysis was previously
defined in the context of feature location [23]; however, it
was not used for change impact analysis. A single feature-
or bug-specific execution trace is first collected. IRCR then
ranks all the methods in the trace instead of all the methods
in a software release. Therefore, the run-time information is
used as a filter to eliminate methods that were not executed
and are less likely to be relevant to the change request. We
refer to this integrated approach as IRCRDynCR. The dynamic
information, if and when available, can be used to eliminate
some of the false positives produced by IRCR. For the bug
#2472, IRCRDynCR results in methods in its gold set at
positions 1, 3, 5, 7, 11, 12, 14, 29, and so on. Once again, the
impact set gleaned via IRCRDynCR is more accurate than IRCR.

Information Retrieval and Data Mining. Existing
change impact analysis techniques [16, 19, 29] take an initial
software entity (e.g., a method) in which a change is
identified and estimates other software entities that are
probable change candidates, referred to as an estimated
impact set. Our approach (IRCRHistseed) not only considers
this initial software entity, but also takes into account the
textual description of a given change request, which triggers
this maintenance task. Our integrated approach computes the
estimated impact set with the following steps: (1) selecting
the starting point; (2) mining commits for evolutionary
couplings; (3) computing change request similarities; and (4)
integrating IR and evolutionary coupling results.

(1) Selecting the first relevant entity. This is the initial
software entity for which IA needs to be performed. For
example, this initial entity (i.e., a method) could be a result
of a feature location activity [23].

(2) Mining evolutionary couplings from commits.
Mine a set of commits from the source code repository and
compute evolutionary couplings for a given software entity.
Only the commits that occurred before the software release
in the step (1) are considered. Evolutionary couplings are

then used to form association rules that are ranked by the
support and confidence values. See details in Section B.

(3) Computing similarities using a change request.
Compute conceptual couplings with IR methods from the
release of a software system in which the first entity is
selected. This process in discussed in depth in Section A.

(4) Integrating IR and data mining results. Like our
previous work [19], the resulting impact set is acquired by
combining the N/2 highest ranked elements from each
technique (steps 2 and 3). Note that N is the desired size of
the final impact set. Therefore, each technique equally
contributes to the resulting set. If the same method is
suggested by both techniques, it will appear only once in the
final impact set. Methods will be continuously selected,
alternating the source ranked list, until an impact set of size
N is acquired or the two sources are exhausted. For the bug
#2472, IRCRHistseed showed improvement over IRCR. In this
case IRCR returned a few relevant methods in the top
positions and Histseed returned complementary 11 relevant
results in the first 18 positions. The two examples depict two
different scenarios where the combination improves IA by
either alleviating the shortcomings of one source or blending
the orthogonal information from the two sources.

Information Retrieval, Data Mining and Dynamic
Analysis. We combine all types of analyses: IR, dynamic,
and data mining, to perform IA. To integrate these three
techniques, we utilize the combination IRCRDynCR with the
standalone approach Histseed, which yields IRCRDynCRHistseed.
Although the combination IRCRDynCR benefits from the
filtering provided by dynamic information, it is also possible
that correct methods are eliminated from further
consideration; an undesired effect. We augment IRCRDynCR

with Histseed, with the intent of reducing the impact of
erroneously filtered methods. The techniques IRCRDynCR and
Histseed, are combined using the same heuristic presented for
the combination IRCRHistseed. Using the highest ranked N/2
methods, we strive to leverage the best selection of methods
from each technique. Similar to the improvement of
IRCRHistseed over IRCR, IRCRDynCRHistseed produces more
accurate impact set than IRCRDynCR for the bug #2472. Other
combinations are worth investigating, but they present a
different focus for future work.

IV. EMPIRICAL CASE STUDY

The research hypothesis is that these combinations help
counter the precision or recall deficit of individual
techniques and improve the overall accuracy. The
components IRCR and Histseed embed automatic elements,
whereas, the most developer intensive component is DynCR.
We posit the following research questions (RQ):

RQ1: Does the combination of IRCR and DynCR provide
an improved impact set over the one with the highest
automated component IRCR?

RQ2: Does the combination of IRCR and Histseed provide
an improved impact set over the one with the highest
automated component IRCR?

RQ3: Does the combination of IRCR, DynCR, and Histseed
provide an improved impact set over the one with the highest
automated component IRCR?

The above three research questions are substantiated with
the statistical tests for the following null hypotheses:

H0 P1: The combination of IRCR and DynCR (RQ1) does not

significantly improve the precision results of

impact analysis compared to IRCR.

H0 R1: The combination of IRCR and DynCR (RQ1) does not

significantly improve the recall results of impact

analysis compared to IRCR.

H0 P2: The combination of IRCR and Histseed (RQ2) does

not significantly improve the precision results of

impact analysis compared to IRCR.

H0 R2: The combination of IRCR and Histseed (RQ2) does

not significantly improve tje recall results of

impact analysis compared to IRCR.

H0 P3: The combination of IRCR, DynCR, and Histseed (RQ3)

does not significantly improve the precision results

of impact analysis compared to IRCR.

H0 R3: The combination of IRCR, DynCR, and Histseed (RQ3)

does not significantly improve the recall results of

impact analysis compared to IRCR.

Accordingly, we also defined alternative hypotheses for
the cases where the null hypotheses can be rejected with high
confidence. For example:

HALT P1: The combination of IRCR and DynCR (RQ1)

significantly improve the precision results of

impact analysis compared to IRCR.

HALT R1: The combination of IRCR and DynCR (RQ1)

significantly improve the recall results of impact

analysis compared to IRCR.

The remaining five alternative hypotheses are defined in
an analogous fashion; however, their formulation is not
shown here due to space limitations.

The Wilcoxon signed-rank test, a non-parametric paired
samples test, is applied to test for the statistical significance
in the improvement obtained using the combinations of IA
techniques. The results of the test determine whether the
improvement obtained using a given combination over the
baseline approach (i.e., IRCR) is statistically significant. Prior
work [29] shows that a technique based on information
retrieval yields better results than approaches that leverage
structural information.

We describe our empirical study using the Goal-
Question-Metrics paradigm [4], which includes goals,
quality focus, and context. In the context of our case study
we aim at addressing our three research questions. The goal
of the empirical case study is to determine if it is beneficial
to combine the various techniques when performing impact
analysis, while the quality focus is on acquiring improved
accuracy. The perspective is of a software developer
addressing a change request, which demands developers to
perform a thorough impact analysis of related source code
entities. With regards to accuracy, it is desirable to have a
technique that provides all, and only, the true impacted
entities, i.e., alleviates the impact of false positives and false
negatives. It is important to provide the developers with the

highest accuracy using the sources of information available
(e.g., static and dynamic). Our approach considers various
sources of information; however, an important issue is to
compare performances of different analysis combinations.

A. Accuracy Metrics

1) Precision and Recall
In order to evaluate impact analysis techniques we use

precision (i.e., an inverse measure of false positives) and
recall (i.e., an inverse measure of false negatives), two
widely accepted metrics for accuracy assessment. Given an
estimated impact set acquired from a technique and the
actual impact set (e.g., a set of entities actually modified to
address a given change request), the metrics precision and
recall can be computed.

For a given impact set (IS) of entities and a set of actual
or correctly changed entities set (CS), the precision, PIS, is
defined as the percentage of correctly estimated changed
entities over the total estimated entities. The recall, RIS, is
defined as the percentage of correctly estimated changed
entities over the total correctly changed entities.

PIS =
| |

100%
| |

IS CS

IS

∩
× RIS=

| |
100%

| |

IS CS

CS

∩
×

B. Evaluated Subject Systems

The context of our study is characterized by four open
source Java systems, namely jEdit v4.3, a popular text editor,
ArgoUML v0.22, a well-known UML editor, muCommander
v0.8.5, a cross-platform file manager, and JabRef v2.6, a
BibTeX reference manager software. The sizes of these
considered systems range from 75K to 150K LOC and
contain between 4K and 11K methods. The characteristics
of these systems are detailed in Table II.

C. Building the benchnmarks

For each of the subject systems, we created a benchmark
to evaluate the impact analysis techniques. The benchmark
consists of a set of change requests that has the following
information for each change request: a natural language
query (change request summary) and a gold set of methods
that were modified to address the change request.

The benchmark was established by a human investigation
of the change requests (done by one of the authors), source
code, and their historical changes recorded in version-control
repositories. Subversion (SVN) repository commit logs were
used to aid this process. For example, keywords such as Bug
Id in the commit messages/logs were used as starting points

to examine if the commits were in fact associated with the
change request in the issue tracking system that was
indicated with these keywords. The files changes in those
commits, which can be readily obtained from SVN, were
processed to identify the methods that were changed, i.e.,
gold set, which forms our actual impact set for evaluation.

Our technique operates at the change request level, so we
also need input queries to test. These queries were
constructed by concatenating the title and the description of
the change requests referenced from the SVN logs.

D. Evaluation Procedure (for all systems)

Our evaluation procedure consists of the following steps:
1. Acquire Conceptual Training Set - Compute

conceptual/textual similarities between change requests
and methods on a release (e.g., ArgoUML 0.22) of a
subject system.

2. Acquire Evolutionary Training Set - Mine evolutionary
couplings (and association rules) from a set of commits
in a history period prior to the selected release in Step 1.
We mined over 7,000 commits between releases 0.14
and 0.22 of ArgoUML, over 1,800 commits between
releases 4.0 and 4.3 of jEdit, over 2,500 commits from
the change history before the release 0.8.5 of
muCommander, and over 2,400 commits from the
change history before the release 2.6 of JabRef. Both
the trunk and branches of the change history were
considered while choosing the appropriate commits.

3. Extract Testing Set – Pick the gold set of methods
associated with every change request in Step 1 from the
benchmark described in Section C. This gold set is
considered as an actual impact set, i.e., the ground truth,
for evaluation purposes.

4. Acquire Dynamic Information – Obtain execution traces
related for each change request in the testing set. A
profiler tool was used on the subject system to generate
the execution trace for every change request. Every
attempt was made to follow the steps to reproduce
described in the change request, which are typically the
steps described in natural language to reproduce the
issue that was reported, so that it can be verified. For
the jEdit system, we collected traces using JPDA,
whereas for the other three systems, we used TPTP.

5. Generate Impact Sets - Derive impact sets for the
different combinations and the baseline technique of our
approach, for each commit in the testing set.

6. Compute Results - Compute accuracy metrics for all the
estimated impact set in Step 5.

7. Evaluate Results - Compare the accuracy results of the
combinations over the baseline in Step 6.

Table II. Characteristics of the subject systems

considered in the case study.
System Ver LOC Files Methods Terms

jEdit 4.3 103,896 503 6,413 4,372

ArgoUML 0.22 148,892 1,439 11,000 5,488

muCommander 0.8.5 76,649 1,069 8,187 4,262

JabRef 2.6 74,182 577 4,604 5,104

Table I. Summary of the benchmarks: bugs (B),

features (F), and patches (P) with changed methods
 #change reqs methods in gold set: descriptive stats

System B F P min 25 med 75 max Total

jEdit 51 30 22 2 3 5 9 41 701

ArgoUML 50 8 23 2 3 5 12 72 673

muCom 55 10 0 2 3 4 11 104 691

JabRef 25 3 0 2 3 5.5 11 33 269

E. Results

1) RQ1: Comparing IRCRDynCR against IRCR
Combining multiple analysis techniques has been shown

useful for impact analysis [19]. Our first RQ focuses on a
combination of IR and dynamic analysis techniques, which
has not been considered for the task of impact analysis in the
literature previously. We investigate the likely benefits of
combining IRCR and DynCR for IA in our approach.

Table III presents the results for IRCR as well as the
results for the combination IRCRDynCR. The results indicate a
positive improvement for all four systems considered. The
table indicates an improvement of as much as 7% in
precision and up to 20% in recall for the software systems
considered. Based on these results, the combination of
IRCRDynCR is shown to be superior to the standalone
technique IRCR. Additionally, the results in Table IV for the
hypotheses H0 P1 and H0 R1 indicate that the improvement is
statistically significant for all the systems, with the exception
of JabRef. These two null hypotheses were rejected based on
the p values for all the systems, but JabRef.

An example of this combination improvement can be
seen in the ArgoUML bug #2472, described in Section III D.
It is evident here that the dynamic information helped
eliminate the false positives that were ranked at the top by
IRCR and helped to bubble up the relevant methods buried at
the bottom. The ranking of relevant methods is drastically
improved with this combination over that of IRCR (i.e., a
number of method were promoted to the top 10 list).

2) RQ2: Comparing IRCRHistseed against IRCR
We explore the combination IRCR and Histseed and

compare its performance to that of IRCR. We used a 50:50
combination ratio of IRCR and change history for ArgoUML (
i.e., 50% of the method in the estimated impact set were
selected from IRCR and the other 50% from Histseed) and a
75:25 combination ratio for the other systems. The choice of
these ratios was driven by the system sizes and their
historical information. These results also appear in Table III.
Our findings reveal that this combination is quite useful in
several cases. For example, when performing impact
analysis on ArgoUML, this combination always yields an

improvement in accuracy. The improvement of 8% in
precision and 25% in recall, on average, is observed across
all the change requests in ArgoUML. These results are rather
promising. The results for other systems also indicate an
improvement yielded by this combination for certain cut
points, but there exist cases where the combination results in
a decrease in accuracy. It is interesting to note the results of
hypotheses H0 P2 and H0 R2 in Table IV, which show that only
the improvement in recall is statistically significant across all
the systems; however, note that the gain in precision
acquired for ArgoUML is still statistically significant, which
is the largest system in our evaluation.

We present examples from ArgoUML that show the
benefits of using historical change records in conjunction
with the textual information analyzed with IRCR. For
example, feature #1641

5
 "Explorer option for creating

diagrams from elements useful where you lost/never had a
class diagram for a particular package". This text was used
as a query for IR. The issue contains two methods in the
gold set. Using IR, the first method
ExplorerPopup.initMenuCreate in the gold set is ranked at the
position 12 and the second method
ExplorerPopup.ExplorerPopup) is at the position 179. With the
history information available, the method
ExplorerPopup.ExplorerPopup is used as a seed. The other
method ExplorerPopup.initMenuCreate in the gold set appears
on the position 1, using a confidence of 1 and a support value
of 2. This example shows that combining IR and history
information can yield better results than using IR alone.

 For the bug #2144
6
, using the query “Use Case property

tab: Operations are not listed in the Use Case Property Tab
furthermore, there is no possibility to create operations on
use cases”, IRCR ranked the first relevant method 206

th
.

When the method PropPanelClassifier.getAttributeScroll was
used as a seed with Histseed, three out of the four methods it
returned were in the gold set:
PropPanelClassifier.getOperationScroll,
ActionNewExtensionPoint.actionPerformed, and

5
 http://argouml.tigris.org/issues/show_bug.cgi?id=1641

6
 http://argouml.tigris.org/issues/show_bug.cgi?id=2144

Table III. Precision (P) and recall (R) percentages results of IRCR, combination IRCRDynCR, combination

IRCRHistseed, and combination IRCR DynCR,Histseed approaches to IA for all systems using various cut points.

Cut Points 5 10 20 30 40 5 10 20 30 40

Precision (P) and Recall (R) P R P R P R P R P R P R P R P R P R P R

IRCR 7 4 6 6 5 12 4 14 4 18 10 7 9 13 6 20 5 26 5 30

IRCRDynCR 11 7 8 10 6 19 6 26 5 28 17 14 14 25 10 35 8 23 7 50

IRCRHistseed 15 14 12 19 9 25 7 28 6 33 11 11 9 22 7 34 5 43 5 47

IRCRDynCRHistseed

A
rg

o
U

M
L

17 16 13 22 10 31 8 37 7 41

jE
d

it

18 23 14 37 9 53 8 64 7 75

IRCR 9 4 11 11 8 22 7 25 5 28 7 9 6 13 5 19 4 20 4 24

IRCRDynCR 14 9 11 14 8 24 6 29 5 31 11 11 9 17 7 22 5 27 5 34

IRCRHistseed 9 4 11 14 9 24 7 38 6 40 8 14 6 22 5 30 4 32 4 36

IRCRDynCRHistseed

J
a

b
R

ef

14 15 11 21 8 33 6 45 5 48 m
u

C
o

m
a

n
d

er

12 19 9 25 6 34 5 37 5 46

ActionNewExtensionPoint constructor at the first, second, and
fourth position respectively. This example demonstrates
cases where Histseed returns relevant methods in the top
positions, whereas IRCR returns false positives, possibly due
to the lack of specific expressiveness of the query. That is,
change information compensates for the deficiency of IRCR.

For the feature #1942
7
, which has 20 methods in the gold

set, IRCR produces relevant methods ranked positions 1, 3-7,
11, and so on. Furthermore, using the method
FacadeMDRImpl.getImportedElement as a seed, Histseed returns
a ranked list of relevant methods with positions 1, 2, 4-7, 11,
and so on. The first 10 results returned by both IRCR and
Histseed have 12 relevant methods (11 are unique and one
method appears in both lists). Combining the results of these
two techniques increases the recall of the returned set of
methods. This example demonstrates situations where both
IRCR and Histseed can complement each other with a relevant
set of methods can operate in tandem.

3) RQ3: Comparing IRCR DynCRHistseed against IRCR
Given the promising results of combining two techniques

at a time, i.e., IRCRDynCR and IRCRHistseed, we also evaluated
the combination of all the three techniques, i.e.,
IRCRDynCRHistseed. Table III provides the results for the
combination of the three types of analyses for IA. For
ArgoUML, the results indicate that we are able to achieve
precision and recall gains as high as 17% and 41%,
respectively. Additionally, combining these techniques
shows that after the cut point 20 IRCRDynCRHistseed provides
results superior to any other technique considered. Similar
trends are also observed for the other three considered
software systems. In the context of these results, it is clear
that that combining the three types of analyses yields the best
performance. Similar to the combination IRCRHistseed, the
results for the hypotheses H0 P1 and H0 R1 in Table IV reveal
that only the improvement in recall demonstrates statistical
significance (at the p values of 0.05 or smaller). Also, all the
systems, but JabRef, yield a statistically significant
improvement in precision.

We illustrate examples from ArgoUML where a
combination of textual, historical, and execution information
sources generates better results than techniques with fewer
types of information. For the bug #3164

8
, IRCR returns the

top relevant methods with ranks 36, 40, 44, and so on,
whereas IRCRDynCR eliminates some false positives and
returns the relevant methods with positions 25, 27, 29, and so
on. Historical information further improves the results. Using

7
 http://argouml.tigris.org/issues/show_bug.cgi?id=1942

8
 http://argouml.tigris.org/issues/show_bug.cgi?id=3164

the method FigState.addListenersForTransition as a seed with
Histseed, three relevant methods are found at positions 1, 2
and 6 in the returned top 6 methods.

For the bug #2618, IRCRDynC returns the first relevant
method FigAssociation.updateEnds ranked at the position 30;
however, the historical information, when added, further
improves the results. Using the method
FigAssociation.initNotationProviders as a seed, a list of 7
methods was returned. This list contained 5 relevant methods
at the positions 1-4 and 7.

For the bug #4101
9
, IRCR produces a ranked list where the

relevant methods in the gold set appear at positions 7, 27, 61,
and so on; however, IRCRDynCR produces a ranked list where
the gold set methods appear at positions 1, 11, 17, 27, and so
on. Moreover, using the seed method/constructor
UMLComboBoxNavigator, Histseed returns three methods,
which are all in the gold set.

We evaluate the strength of our scenario driven approach
to impact analysis. A comparison of the baseline (IRCR) to
the combination IRCRDynCR indicates a clear improvement,
both in terms of precision and recall, when execution
information is available. In the scenario where a start entity
is identified, using the evolutionary coupling analysis
(Histseed) yields higher precision but suffers in recall, as
illustrated by the rapid decline in recall after the cut point
three. Our results indicate that the combination IRCRHistseed
overcomes the limitations associated with each individual
technique. More specifically, the integration of the two
techniques overcomes the low precision of IRCR as well as
the rapid decline in recall, which hinders Histseed. Finally,
the scenario when dynamic analysis is also obtainable,
IRCRDynCRHistseed further demonstrates the benefit of our
adaptive framework. Including the execution information
considerably builds upon the improvement of IRCRHistseed,
leading to a technique that returns results superior to all other
considered techniques.

V. THREATS TO VALIDITY

We identify threats to validity that could influence the
results of our empirical study and limit our ability to
generalize our findings. We demonstrated the benefits of
different types of analysis for IA, but our empirical study is
performed using four open source Java software systems.
Although we used a diverse set of software systems in
application domains, to claim generalization and external
validity of our results would require further empirical

9
 http://argouml.tigris.org/issues/show_bug.cgi?id=4101

Table IV. Results of Wilcoxon signed-rank test (µ = 40). The p values indicate

that the provided improvement by combined IA approaches is not by chance.
System H0 P1 H0 R1 H0 P2 H0 R2 H0 P3 H0 R3

ArgoUML < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

JabRef 0.266 0.324 0.381 < 0.001 0.091 < 0.002

jEdit < 0.001 < 0.001 0.068 < 0.001 < 0.001 < 0.001

muCommander < 0.001 < 0.001 0.425 < 0.001 < 0.001 < 0.001

evaluation on systems implemented in other programming
languages and different development paradigm.

In the empirical evaluation, we derived our testing set
using commits stored in version control systems of the
software systems considered in our empirical study. This
strategy is similar to what researchers have previously used
in MSR-based case studies [18]. Analogous to the work of
others, we acknowledge the possibility that entities within a
commit may not be all related. Additionally, commits may
not fully encapsulate all the entities related to specific
change requests. Therefore, the quality of the data stored in
version control system may have influenced the results of
our study. To lessen the impact of this threat, we evaluated
the commits and manually included the entities in our testing
set to ensure the quality of the data. The quality of the data
in the version control system also impacts one of our
underlying types of analysis (i.e., data mining of source code
changes). Inadequate historical information could
potentially limit data mining techniques to accurately predict
relevant methods when given an initial starting point [19].

We apply an IR technique to textual information
extracted from the source code of software systems.
Therefore, our findings may have been impacted by the
consistency of variable naming and commenting performed
by the software developers. Furthermore, we used the
descriptions of change request as queries, which may have
also affected the performance of our techniques.

The use of dynamic information introduces a threat
related to the quality of the dynamic traces obtained for a
given change request. For each entity in the testing set we
manually exercised the feature described in the
corresponding change request. It is possible that insufficient
or inaccurate details appeared in the change request, which
could have led to methods being erroneously filtered from
the impact set. To address the issue we thoroughly inspected
each change request to safeguard against inappropriate
filtering of methods.

VI. CONCLUSIONS

The paper presents a novel approach to IA at change
request level that automatically adapts to the specific
software maintenance scenario at hand. Our approach uses a
scenario-driven combination of IR, dynamic analysis, and
MSR techniques to analyze incoming change requests,
execution traces and prior changes to estimate an impact set.
The empirical results on four open source systems support
our premise that combining IA techniques help counter the
precision or recall deficit of individual ones and improve the
accuracy collectively. Our findings indicate that in certain
cases an improvement of 17% in precision and 41% in recall
is gained while combining, IRCR, DynCR, and Histseed.
Moreover, the overall improvement obtained while
combining these IA techniques is generally statistically
significant. Approaches to impact analysis have most likely
not reached the optimal levels of accuracy desired by
practitioners. Nonetheless, our technique provides improved
accuracy over previously published work. Our work provides
a noteworthy step forward towards achieving acceptance
from practitioners. Finally, the data used in producing the

results in this paper is publicly available and other
researchers are encouraged to reproduce or verify our
results

10
.

VII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for pertinent
comments, which helped us to improve the quality of the
paper. This work is supported in part by NSF CCF-1156401,
NSF CCF-1016868, and NSF CCF-0916260 grants. Any
opinions, findings and conclusions expressed herein are
those of the authors and do not necessarily reflect those of
the sponsors.

VIII. REFERENCES

[1] Agrawal, R. and Srikant, R., "Mining Sequential Patterns",

in Proc. of 11th International Conference on Data

Engineering, Taipei, Taiwan, March 1995.

[2] Alali, A., Kagdi, H., and Maletic, J. I., "What's a Typical

Commit? A Characterization of Open Source Software

Repositories", in Proc. of 16th IEEE International

Conference on Program Comprehension (ICPC'08),

Amsterdam, The Netherlands, June 2008.

[3] Anvik, J., Hiew, L., and Murphy, G. C., "Who should fix

this bug?" in Proc. of 28th International Conference on

Software Engineering (ICSE'06), 2006, pp. 361-370.

[4] Basili, V. R., Caldiera, G., and Rombach., D. H., The Goal

Question Metric Paradigm, John W & S, 1994.

[5] Begel, A., Phang, K. Y., and Zimmermann, T., "Codebook:

Discovering and Exploiting Relationships in Software

Repositories", in Proc. of 32nd ACM/IEEE International

Conference on Software Engineering (ICSE'10), 2010, pp.

125-134.

[6] Binkley, D., Davis, M., Lawrie, D., and Morrell, C., "To

CamelCase or Under_score", in Proc. of 17th IEEE

International Conference on Program Comprehension

(ICPC'09), May 17-19 2009, pp. 158-167.

[7] Bohner, S. and Arnold, R., Software Change Impact

Analysis, Los Alamitos, CA, IEEE CS, 1996.

[8] Briand, L., Wust, J., and Louinis, H., "Using Coupling

Measurement for Impact Analysis in Object-Oriented

Systems", in Proc. of IEEE ICSM'99, August 30 -

September 3, 1999, pp. 475-482.

[9] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V.,

"JRipples: A Tool for Program Comprehension during

Incremental Change", in Proc. of 13th IEEE International

Workshop on Program Comprehension (IWPC'05), St.

Louis, Missouri, USA, May 15-16 2005, pp. 149-152.

[10] Canfora, G. and Cerulo, L., "Fine Grained Indexing of

Software Repositories to Support Impact Analysis", in

Proc. of International Workshop on Mining Software

Repositories (MSR'06), 2006, pp. 105 - 111.

[11] Collard, M. L., Kagdi, H. H., and Maletic, J. I., "An XML-

Based Lightweight C++ Fact Extractor", in Proc. of 11th

IEEE International Workshop on Program Comprehension

(IWPC'03), Portland, OR, May 10-11 2003, pp. 134-143.

10

 http://www.cs.wm.edu/semeru/data/icse2012-impact-analysis

[12] Cornelissen, B., Zaidman, A., van Deursen, A., Moonen,

L., and Koschke, R., "A Systematic Survey of Program

Comprehension through Dynamic Analysis", IEEE

Transactions on Software Engineering (TSE), vol. 35, no.

5, 2009, pp. 684-702.

[13] Di Lucca, G. A., Di Penta, M., and Gradara, S., "An

Approach to Classify Software Maintenance Requests", in

Proc. of IEEE International Conference on Software

Maintenance (ICSM'02), Montréal, Québec, Canada, 2002,

pp. 93-102.

[14] Dit, B., Guerrouj, L., Poshyvanyk, D., and Antoniol, G.,

"Can Better Identifier Splitting Techniques Help Feature

Location?" in Proc. of 19th IEEE International Conference

on Program Comprehension (ICPC'11), Kingston, Ontario,

Canada, June 22-24 2011, pp. 11-20.

[15] Gall, H., Hajek, K., Jazayeri, M., "Detection of Logical

Coupling Based on Product Release History", in Proc. of

Proceedings of the International Conference on Software

Maintenance (ICSM'98), March 16-19, pp. 190 - 198.

[16] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring

the Neighborhood with Dora to Expedite Software

Maintenance", in Proc. of 22nd IEEE/ACM International

Conference on Automated Software Engineering

(ASE'07), November 2007, pp. 14-23.

[17] Jeong, G., Kim, S., and Zimmermann, T., "Improving Bug

Triage with Bug Tossing Graphs", in Proc. of 7th

European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE 2009), Amsterdam, The

Netherlands, August 2009.

[18] Kagdi, H., Collard, M. L., and Maletic, J. I., "A Survey

and Taxonomy of Approaches for Mining Software

Repositories in the Context of Software Evolution",

Journal of Software Maintenance and Evolution: Research

and Practice (JSME), vol. 19, no. 2, March/April 2007,

pp. 77-131.

[19] Kagdi, H., Gethers, M., Poshyvanyk, D., and Collard, M.,

"Blending Conceptual and Evolutionary Couplings to

Support Change Impact Analysis in Source Code", in Proc.

of 17th IEEE Working Conference on Reverse

Engineering (WCRE'10), Beverly, Massachusetts, USA,

October 13-16 2010, pp. 119-128.

[20] Kagdi, H., Gethers, M., Poshyvanyk, D., and Hammad,

M., "Assigning Change Requests to Software Developers",

Journal of Software Maintenance and Evolution: Research

and Practice (JSME) 2011.

[21] Kagdi, H., Maletic, J. I., and Sharif, B., "Mining Software

Repositories for Traceability Links", in Proc. of 15th IEEE

International Conference on Program Comprehension

(ICPC'07), Banff, Canada, June 26-29 2007, pp. 145-154.

[22] Law, J. and Rothermel, G., "Whole Program Path-Based

Dynamic Impact Analysis", in Proc. of 25th International

Conference on Software Engineering, Portland, Oregon,

May 03 - 10, 2003 2003, pp. 308-318.

[23] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V.,

"Feature Location via Information Retrieval based

Filtering of a Single Scenario Execution Trace", in Proc.

of 22nd IEEE/ACM International Conference on

Automated Software Engineering (ASE'07), Atlanta,

Georgia, November 5-9 2007, pp. 234-243.

[24] Maule, A., Emmerich, W., and Rosenblum, D. S., "Impact

Analysis of Database Schema Changes", in Proc. of 30th

IEEE/ACM Inernational Conference on Software

Engineering (ICSE'08), Leipzig, Germany, 2008, pp. 451-

460.

[25] Orso, A., Apiwattanapong, T., and Harrold, M. J.,

"Leveraging Field Data for Impact Analysis and

Regression Testing", in Proc. of 9th European Software

Engineering Conference and 11th ACM SIGSOFT

Symposium on the Foundations of Software Engineering

(ESEC/FSE'03), Helsinki, Finland, September 1-5 2003,

pp. 128-137.

[26] Orso, A., Apiwattanapong, T., Law, J., Rothermel, G., and

Harrold, M. J., "An empirical comparison of dynamic

impact analysis algorithms", in Proc. of IEEE/ACM

International Conference on Software Engineering

(ICSE'04), 2004, pp. 776-786.

[27] Petrenko, M. and Rajlich, V., "Variable Granularity for

Improving Precision of Impact Analysis", in Proc. of 17th

IEEE International Conference on Program

Comprehension (ICPC'09), Vancouver, Canada, pp. 10-19

[28] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol,

G., and Rajlich, V., "Feature Location using Probabilistic

Ranking of Methods based on Execution Scenarios and

Information Retrieval", IEEE Transactions on Software

Engineering, vol. 33, no. 6, June 2007, pp. 420-432.

[29] Poshyvanyk, D., Marcus, A., Ferenc, R., and Gyimóthy,

T., "Using Information Retrieval based Coupling Measures

for Impact Analysis", Empirical Software Engineering,

vol. 14, no. 1, 2009, pp. 5-32.

[30] Ren, X., Shah, F., Tip, F., Ryder, B. G., and Chesley, O.,

"Chianti: a Tool for Change Impact Analysis of Java

Programs", in Proc. of 19th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages,

and Applications(OOPSLA '04), Vancouver, BC, Canada,

2004, pp. 432-448.

[31] Robillard, M., "Automatic Generation of Suggestions for

Program Investigation", in Proc. of Joint European

Software Engineering Conference and ACM SIGSOFT

Symposium on the Foundations of Software Engineering,

Lisbon, Portugal, September 2005, pp. 11 - 20

[32] Salton, G. and McGill, M., Introduction to Modern

Information Retrieval, New York, NY, USA, McGraw-

Hill, 1986.

[33] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J., "An

Approach to Detecting Duplicate Bug Reports using

Natural Language and Execution Information", in Proc. of

30
th
 International Conference on Software Engineering

(ICSE’08), Leipzig, Germany, May 10-18, pp. 461-470.

[34] Weiss, C., Premraj, R., Zimmermann, T., and Zeller , A.,

"How Long Will It Take to Fix This Bug?" in Proc. of 4th

IEEE International Workshop on Mining Software

Repositories (MSR'07), Minneapolis, MN, 2007, pp. 1-8.

[35] Zimmermann, T., Zeller, A., Weißgerber, P., and Diehl, S.,

"Mining Version Histories to Guide Software Changes",

IEEE Transactions on Software Engineering, vol. 31, no.

6, 2005, pp. 429-445.

