Machine Learning-Based Detection of
Open Source License Exceptions

Christopher Vendome*, Mario Linares-VésquezT, Gabriele Bavotai,
Massimiliano Di Penta$, Daniel German, Denys Poshyvanyk*
*College of William and Mary, Williamsburg, VA, USA — TUniversidad de los Andes, Bogotd, Colombia
fUniversita della Svizzera italiana (USI), Lugano, Switzerland — §University of Sannio, Benevento, Italy
qlUniversity of Victoria, BC, Canada

Abstract—From a legal perspective, software licenses gov-
ern the redistribution, reuse, and modification of software as
both source and binary code. Free and Open Source Software
(FOSS) licenses vary in the degree to which they are permissive
or restrictive in allowing redistribution or modification under
licenses different from the original one(s). In certain cases,
developers may modify the license by appending to it an exception
to specifically allow reuse or modification under a particular
condition. These exceptions are an important factor to consider
for license compliance analysis since they modify the standard
(and widely understood) terms of the original license. In this
work, we first perform a large-scale empirical study on the
change history of over 51K FOSS systems aimed at quantitatively
investigating the prevalence of known license exceptions and
identifying new ones. Subsequently, we performed a study on the
detection of license exceptions by relying on machine learning. We
evaluated the license exception classification with four different
supervised learners and sensitivity analysis. Finally, we present a
categorization of license exceptions and explain their implications.
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I. INTRODUCTION

Software licenses have been designed to facilitate and define
the conditions under which software projects (open source and
commercial) can be copied, modified, and distributed. Also,
software licenses are a way to promote and support the phi-
losophy and goals of specific communities of developers (e.g.,
Apache and Eclipse) as well as of the open source community
in general. As described by the License Proliferation Report
by the Open Source Initiative [1] and reported by empirical
studies from the research community [2], [3], [4], [5], [6], [7],
[8], proliferation of FOSS licenses implies that (i) it is hard
for developers to choose the right license for their projects and
goals; (ii) there are incompatibilities between some licenses
that might be a threat for developers’ goals; and (iii) reuse of
FOSS can lead to projects with multi-license distributions.

One partial solution to the aforementioned issues is the
definition and usage of license exceptions that, when attached
to a license, modify it without changing the text of the license
itself [7]. For example, the MySQL database management
system faced a challenging problem: It needed to stop commer-
cial companies from reusing the MySQL connectors library
(required to connect to the database) while still allowing other
FOSS projects to continue using it. The first issue was easily
addressed by using the GPL (since it would require those

companies to also release their products under the GPL, unless
they bought a commercial license). However, doing so would
also stop projects that were not GPL licensed (such as PHP)
to continue connecting to the database. The solution MySQL
AB chose was to add an exception to the GPL (the MySQL
FOSS License Exception) that allows software under certain
FOSS licenses (including the PHP license) to use the connector
libraries, effectively altering the scope and impact of the GPL
on such software projects [9].

Licensing usage in FOSS has been investigated in several
studies, mainly focused on identifying the prevalence and adop-
tion of FOSS licenses and the developers’ rationale under their
licensing choices [2], [3], [4], [5], [6]. However, no previous
effort has been devoted to analyze the prevalence/adoption of
license exceptions. Given the large volume of FOSS projects
available in forges (not only for reuse but also for direct
usage), license exceptions might result in legal issues when
developers/users are neither knowledgeable of the exceptions
declared in the FOSS nor of the implications. While reliable
tools for license identification and classification exist [10], [11],
[12], [13], and some of these tools can be used to check for
licensing inconsistencies [8], no tool is available to support
the identification and analysis of license exceptions.

In this work, we aim to address two main questions:

o Are the exceptions to FOSS licenses used by the community,

which exceptions are used, and to what extent?

o Can we automatically detect license exceptions with a

high precision and recall?

We address these questions by first performing a large scale
mining-based study in which we analyze the phenomenon of
license exceptions from both a quantitative and a qualitative
perspectives. In particular, we analyzed the source code of
51,754 projects written in six different programming languages
(Ruby, Javascript, Python, C, C++, & C#) and hosted on GitHub,
looking for usages of the license exceptions reported in the
SPDX list [14]. By using defined heuristics, we found files
identified as potentially containing license exceptions. Then,
we manually inspected the files to (i) remove false positives,
and (ii) categorize the exceptions according to their purpose.

Having assessed the magnitude of the license exception
phenomenon used in FOSS projects, we devised an approach
aimed at automatically identifying exceptions (if any) declared
in a license.



Given a licensing statement, our approach exploits the
words in its text as predictor variables for a machine learner
that classifies the type of exception (categorical dependent
variable) reported in the statement or marks it as “not reporting
exceptions”. We evaluated the precision and recall of our
approach using Decision Trees, Naive Bayes, Random Forest,
and Support Vector Machine (SVM). SVM outperformed the
other classifiers, achieving an F-Measure higher than 95%.
Since this is the first work to tackle the identification of license
exceptions, we compared our approach with a baseline using
template-matching techniques to identify license exceptions,
showing the superiority of the SVM-based solution.

To the best of our knowledge, this is the first work
analyzing the usage and adoption of FOSS license excep-
tions in open source projects and to address the automatic
identification of exceptions in licensing statements.

II. THE IMPACT OF LICENSE EXCEPTIONS

A license exception, when attached to a license, changes
its meaning and implication. Specifically, an exception can
change the requirements of the license (expand them or narrow
them) and/or the grants of the license (again, expand them or
narrow them). A license with an exception effectively becomes
another license. However, license identification tools have
focused on identifying the licenses, and while they identify
some exceptions, there has been no research in this area.

A recent discussion in the SPDX mailing list (SPDX, the
Standard Package Description Language, is intended to create a
standard format to document licensing information in software)
focused on a relatively unknown exception created by Sun
Microsystems and used along with variants of the BSD and the
MIT license. This exception [15] states (emphasis is ours) [16]:

You acknowledge that this software is not designed,
licensed or intended for use in the design, construc-
tion, operation or maintenance of any nuclear facility.

One of the outcomes of this discussion is that this exception
appears to restrict the original license to non-nuclear facilities
(“is not [...] licensed [...] for use [...] any nuclear facility”).
While the original license (BSD-like) is open source, the
addition of this exception potentially turns it into non-open
source because it appears to contravene clause 6 of the Open
Source Definition that requires a license not to discriminate
against fields of Endeavor [17].

License identification tools, Ninka [18] and Fossology [10]
are capable to identify and classify licensing in software
projects, but are oblivious to information that they do not
recognize as a license. For instance, Fossology identifies the
aforementioned Sun license—including the exception—as
BSD-style. This implies that the license is open source, even
though the exception potentially makes it non-open source.

We searched Debian source files to determine whether this
license was being used in open source systems. We identified
two main variations of this exception, and we found it in
two packages of Debian. If this license is considered non-
open source, that contravenes the Debian Guidelines and these

packages need to be reviewed for their inclusion in Debian
(we have reported this issue to Debian).

Other exceptions, such as the MySQL FOSS License
Exception, and the Java CLASSPATH Exception [19] soften
the restrictions of the GPL regarding derivative works. A library
that is licensed under the GPL requires any derivative works
that use it to be also licensed under the GPL. The MySQL
FOSS License Exception when attached to the GPL allows the
creation of derivative works that link to a library without also
having to be licensed under the GPL as long as the derivative
work is licensed under one of the FOSS licenses the exception
lists. The Java CLASSPATH Exception is broader and allows
the creation of derivative works under any license (including
commercial) that link to libraries (licensed under the GPL plus
the Java CLASSPATH Exception). If a library was licensed
under the GPL plus either exception, but the exception is not
identified, potential users of the library would not use it because
they would not be willing to license their software under the
GPL (something that the exception allows them to do).

III. EMPIRICAL INVESTIGATION ON LICENSE EXCEPTIONS
IN GITHUB PROJECTS

The goal of this study is to investigate the phenomenon of
license exceptions in FOSS projects hosted on GitHub. The
purpose is to understand the relevance of license exception
usage, identify what kinds of exceptions are being used, and
understand implications of FOSS license exceptions. The
perspective is of researchers interested in supporting developers
with respect to license compliance and verification. The
context consists of the change history of 17,984 Ruby, 14,161
JavaScript, 9,349 Python, 4,671 C, 3,690 C++, and 1,902 C#
FOSS projects mined from GitHub.

A. Research Questions (RQs)
We aim at answering the following research question:

e RQq: How prevalent are license exceptions in FOSS
systems? This research question analyzes the prevalence of
different types of exceptions to FOSS licenses for projects
hosted in GitHub and written in the six programming
languages we considered. The goal is to understand license
exceptions in practice, since they have not been investi-
gated in prior studies. Besides quantitatively measuring
the diffusion of different types of license exceptions, we
also contacted the developers of the systems in which we
identified exceptions to understand whether they are aware
of the license exceptions. Additionally, we qualitatively
discuss prominent cases that we found in order to better
understand the context in which license exceptions are
used.

B. Data Extraction Process

In order to identify license exceptions, we analyzed the
commit history of 51,754 projects hosted on GitHub and
developed in six of the most popular programming languages
on GitHub [20]. We leveraged the project metadata to filter the
repositories such that they had at least one star, watcher, or fork



and were not themselves a fork (i.e., removing abandoned or
personal repositories, and preventing duplication). We locally
cloned the 51,754 project repositories to perform our analysis.
For each file f; in the locally cloned repositories, we
used Ninka [18] to extract a comment file C, containing all
source code comments in f; (and, therefore, the license header
with the exception text, if any). Then, we defined a set of
heuristics to identify (candidate) license exceptions in each
comment c; € Cy,. The authors defined these heuristics by
manually inspecting the description of the known/accepted
license exceptions listed in SPDX[21]. In particular, we looked
for sentences and keywords representing “markers” for the
presence of a (specific) license exception. In the end, we
defined the following heuristics, assuming that a comment c;
reports a license exception ley if:
H; c¢; contains the exact text (i.e., definition) of a license
exception ley;

H; c; contains the le;’s exception name (e.g., “autoconf” for

the Autoconf Exception) and the token “exception”;
H3 c; contains the string “as a special exception”, a quite

common pattern across the exceptions listed in SPDX.

It is important to note that these three heuristics are
purposefully designed to address recall of license exceptions in
order to identify the possible presence of license exceptions that
were not listed by SPDX. Hz was designed such that it might
be able to identify license exceptions not reported in SPDX.
Also, as with any heuristic-based approach, our heuristics can
lead to the identification of false positives. We deal with such
limitations by manually analyzing every comment identified
by our heuristics as reporting a license exception. In particular,
our manual analysis (i) validated the presence of the license
exception (i.e.,, discarded false positives) and (ii) assigned
a license exception name. If a comment reported a license
exception without a known name, we assigned a custom
name to the exception. Overall, our heuristics identified 728
files reporting candidate license exceptions for RQj; then,
we manually analyzed the files, getting 298 (40.9%) files
with license exceptions (true positives). As previously stated,
this true positive ratio is expected, since the heuristics were
designed to capture exceptions that were not included by SPDX
(while this reduced precision, we minimized the impact on
our findings through the manual validation). It is possible that
some license exceptions were not detected by the heuristics
(false-negatives), but we tried to mitigate this by designing the
heuristics from existing license exceptions. From the 298 files,
we identified fourteen unique exception types, six of which
are not documented/reported in the SPDX list.

To answer RQ;, we report the diffusion of the different
exceptions in the mined repositories when considering them
together and separately by different languages. It is important to
note that the results report only systems with license exceptions
and not the diffusion of licenses (i.e., we do not consider all
licensing of the 51,754 projects, but the subset that are licensed
and have a license exception). Therefore, after the manual vali-
dation, we obtained a set E of tuples E; = (f;, except, lang)

TABLE I: Frequencies of license exceptions by language at
file and system (in parenthesis) granularity.

Exception Ruby Py. C C++ C# Total
Autoconf 113 20(7) 11 (1) 30@3) 0(0) 72 (14)
Libtool 3(1) 00 21 32 0(0) 8 (4)
dh-Make 0 (0) 33 21 00 0() 54
TexInfo 1) 0(0) 0() 0() 0 1)
RACC 22 (20) 11 0@ 0() 0( 23(21
Bison 6 (2) 00 00 21 0() 8 (3)
Nokia QT LGPL 0 (0) 0@ 00 21 0() 2(1)
Nokia QT GPL 0 (0) 00 0()49(1) 0(0) 49(1)
Classpath 0 (0) 00 0@ O0MIIOM 1W0M@M
GUILE 0(0) 2(2 0() 0 0 2(2)
Rails usage 19 (18) 0@ 0@ 0() 0() 19(18)
MIF 0 (0) 00 81 1@ 01(0) 9(2)
OpenSSL 00 881 0@ 11 0 3892
WxWin. Lib. 3.1 0 (0) 1(1) 0@ 00 0/ 1)
Total Files 62 (22) 115 (13) 23 (2) 88 (7) 10 (1) 298 (45)

with except being the license exception name, and lang the
programming language used in f;.

C. Results for RQ1: How prevalent are license exceptions in
FOSS systems?

Table I shows the number of files reporting each of the 14
identified exception types across five programming languages
(JavaScript is omitted, since we did not identify any exception
in projects written in this language) as well as the number of
projects (in parenthesis) containing each exception type.

1) Diffusion of different license exceptions: The OpenSSL
Exception was the most prevalent, with 89 files having
the exception across two systems. The OpenSSL Exception
facilitates linking the licensed code to OpenSSL or derivative
work that maintain the OpenSSL licensing terms. The Autoconf
Exception was the second most prevalent (72 files containing
the exception). This particular exception removes the copyleft
requirement of the GPL when it is being used with a
configuration script generated by Autoconf. The diffusion of
the two exceptions above is not surprising, as OpenSSL is a
widely diffused library, whereas Autoconf is a popular (and
language independent) tool to generate configure scripts.

The Nokia GPL Exception vi.3, created to govern the
redistribution of the Nokia Qt library, was the third most
prevalent (49 files); however, all files reporting it were from
the same project, gtablet. These 49 files were part of the
qtanimation framework-1.0-opensource, which is a third party
library for cross-platform software development in C++.

The RACC Exception (23 files) and Rails Exception (19
files) were the fourth and fifth most prevalent exception
types, respectively. The similarity in frequency is due to
these files being components of the same reused library.
Therefore, these two exceptions were often found in tandem in
the files parser.rb and format . rb belonging to Action
Mailer [22], which facilitates sending and receiving emails in
Rails applications. However, parser.rb was also utilized
independently of format . rb. Racc is a parser generator for
Ruby and the RACC Exception excludes the parsers that are
generated by Racc from being licensed under the Ruby license
(not yet approved by the Open Source Initiative). The Rails
Exception allows for the usage of a MIT-like alternative license



when the source code is used with the official Rails or systems
built upon the official Rails.

The Classpath Exception was the sixth most prevalent (ten
files in a single system). It allows for linking a library to
independent modules with requiring the generated binary from
being licensed under the terms of the GPL.

The Macros and Inline Functions Exception (MIF Exception),
which allows unrestricted reuse of executable that utilize
macros, inline functions, or instantiate a template from the file
containing the MIF Exception, was the seventh most prevalent
with nine files containing the exception.

The Bison Exception and Libtools Exception were found in
eight files each. The Bison Exception allows for unrestricted
reuse of the Bison skeleton as long as the system is functionally
different (i.e., not a parser generator), while the Librools
Exception allows for unrestricted distribution of the file if
it belongs to a system built by Libtools. Subsequently, we
observed dh-make Exception, which resembles the RACC
Exception differing in that it applies to dh-make output files
instead of Racc output files, and occurs in five files.

The Nokia Qt LGPL Exception and GUILE exception tied
with two files. The Nokia Qt LGPL Exception allows for un-
restricted reuse of binary code that (i) utilizes only unmodified
header files, modified code impacting numeric parameters, data
structure layout, or (ii) the modification adheres to the MIF
Exception, and (iii) adheres to the LGPL’s Section 6 (facilitating
reuse of the work as a library). The GUILE Exception is
an exception for the executable generated by linking GUILE
Library to other source files to be exempt from the terms of the
GPL (i.e., the generated binary does need to be releases under
the GPL). Finally, there was one file with the TeX Exception,
which excludes LaTeX files generated by texinfo from being
licensed under GPL, and one file with the WxWindows Library
Exception 3.1, allowing for unrestricted reuse of binary code
based on the library that contains this particular exception
instead of enforcing the terms of the GPL on the binary.

2) Distribution of license exceptions across programming
languages: For C, we observed 23 exception instances made
up of four exception types. The Autoconf Exception was most
prevalent in C (11 files). The second most prevalent was the
MIF Exception (eight files), while both the dh-make Exception
and the Libtool Exception were present in two files.

For C++, we had the greatest variability with eight different
types of exceptions and the highest overall number of files
reporting exceptions (88). The most prevalent was the Nokia
GPL Exception vi.3 with 49 files from the reused Qt Animation
Framework. The Autoconf Exception was second most prevalent
in C++ (30 files), followed by the Libtools Exception (three
files). The Nokia Qt LGPL Exception and Bison Exception tied
for fourth (two files), while the OpenSSL Exception and MIF
Exception tied for fifth each with one file.

For C#, we only observed the Classpath Exception in ten
files and only from the system Chefrate. The C# files were
reused components for the system’s Png Encoder within the
cross-platform and cross-browser APIL. Interestingly, the license
header of these files also indicate that they were translated

from Java to C# and thus inherited the Classpath Exception
from the original Java implementation.

For Python, we observed five different types of exceptions
resulting in 115 license exceptions. The OpenSSL Exception
was most prevalent with 88 files containing the exception. The
second was the Autoconf Exception with 20 files, while dh-
make Exception was the third (three files). Additionally, we
found the GUILE Exception once in two different projects, and
we observed one file with the WxWindows Library Exception
v3.1 and one with the RACC Exception. The latter was the
Ruby parser.rb file nested under a directory of external
libraries.

For Ruby, we found six different types of exceptions across
62 different files. The RACC Exception was most prevalent
license exception (22 files) and was closely followed by the
Rails Exception (19 files). The Autoconf Exception was the
third most prevalent exception with 11 files. The fourth was the
Bison Exception (six files). The Libtool Exception had three
files containing the license, while the TeX Exception was only
attributed to a single file.

It should be noted that the Autoconf Exception was found
in systems written in four languages with a relatively high
prevalence (i.e., top-3 across all four languages). Also, it
seems that the programming language may influence the types
of found exceptions. Indeed, the RACC Exception and Rails
Exception are inherently coupled to Ruby files, which explains
their isolation to Ruby (although a Ruby file did contain it in
a python project). Similarly, Nokia’s Qt Framework supports
C++ development and contains an extensive API, impacting
both the frequency of the exceptions when the libraries are
reused and the isolation to C++.

D. An Initial Discussion and Learned Lessons

In this section, we first present feedback collected by
surveying developers. Then, we present a manual categorization
of license exceptions by similar features or properties.

1) Developer Awareness of License Exceptions: After iden-
tifying the license exceptions, we contacted the developers
of the systems and asked them if they were aware of the
license exceptions and if they understood the exception text
(we provided paths to the files with exceptions and the exception
name to the developers). We received feedback from seven
developers contributing to five of the 45 projects reporting
license exceptions. While the low response rate limits the
ability to draw conclusions from the developer survey, the
responses are still useful to understand the perspective from at
least a subset of developers.

Interestingly, five developers were unaware of the license
exceptions. One respondent thanked us for bringing the license
exception to his attention and he expressed his intention to fix
the licensing statement. This case is particularly interesting
since it demonstrates the difficulty that developers may have
tracing the licensing constraints of third-party code and
reinforces the need for an automated tool to support the
identification of license exceptions.



Additionally, we asked the developers whether they were
able to easily understand the particular license exception.

While only two respondents replied that they do not
understand (and one indicated that licensing is troubling in
general), three respondents expressed their understanding and a
potential ambivalence regarding their understanding (i.e., they
indicated they were uncertain, but provided their interpretation).
The responses suggest the difficulty that developers have
when licensing extends to license exceptions, even in cases of
more straightforward exceptions (e.g., the Autoconf Exception).
Additionally, it demonstrates that certain developers would
benefit from licensing tools that provide more contextualized
licensing analysis, especially when exceptions are present.

The developers’ responses demonstrate that license excep-
tions may not be easily identified within reused third-party
code. Additionally, the implications of the license exceptions
may not be easy for developers to truly understand. While
the sample is small and not generalizable, it does suggest that
there are developers, such as package managers, who would
benefit from tools to identify license exceptions and determine
license compatibility.

2) Categorization of License Exceptions: Based on their

purpose, we can classify the exceptions found in our study
into three major categories.
Added by a third party and applicable to reused compo-
nents embedded into the client software. In this category,
we found the Autoconf, Libtool, dh-Make, TexInfo, RACC, and
Bison Exceptions. In all these cases, exceptions were found in
source code that has been generated by another tool (the tools
have the same name as the exception and they are licensed
under the GPL). The goal of these exceptions is to clarify
that, even if the generated output might contain copies of GPL
licensed-software, the GPL license does not affect the software
that is using the generated code. For example, Bison, a well-
known parser generator, embeds into its output source of Bison
itself. Since it is licensed as GPL, and the parser must be
compiled within the client program, this would require any
client program also to be GPL. The Bison Exception removes
this requirement: As a special exception, you may create
a larger work that contains part or all of the Bison parser
skeleton and distribute that work under terms of your choice,
so long as that work isn’t itself a parser generator using the
skeleton or a modified version thereof as a parser skeleton ...

In these cases, the text of the exception is embedded into
the code generated by the tool and is not added by the authors
of the software where they have been found. This is the main
reason why these license exceptions are the most prevalent.
Added to clarify or expand use of the software. These
exceptions are used as part of the license of the software where
it is found and has been explicitly added by the author of the
software. This includes the Nokia QT LGPL/GPL, WxWindows
Lib. 3.1, Classpath, GUILE, Rails, and the MIF Exceptions. In
these cases, the owner of the product is using the exception
to either modify the GPL or to clarify when the terms of the
GPL do not apply. For example, the goal of the ClassPath and
of the GUILE Exceptions is to indicate that anybody is free to

link to the (unmodified) library without having to release the
code also as GPL.

The QT Exception is more limiting, since it only allows the
linking with software that is licensed under specific open source
licenses. The MIF Exception (Macros and Inline Functions
Exception) clarifies that reusing templates and inlined macros
(creating a copy of the original source code as part of the
template and functions instantiation) is not a violation of the
terms of the GPL:

[...] Specifically, if other files instantiate templates or
use macros or inline functions from this file, or you
compile this file and link it with other files to produce an
executable, this file does not by itself cause the resulting
executable to be covered by the GNU General Public
License. [...]

Added to allow linking to a library under a license that
is not GPL compatible. This category contains only one
exception: OpenSSL. OpenSSL is considered to be the best
library in its kind, but its license is not compatible with the
GPL. The exception allows explicitly the authors of GPL code
to link OpenSSL even thought the license of OpenSSL is not
compatible with the GPL:

[...] the copyright holders give permission to link the
code of portions of this program with the OpenSSL library
under certain conditions as described in each individual
source file, and distribute linked combinations including
the two [...].

Given the importance of OpenSSL, its prevalence is not
surprising.

E. Threats to Validity

Threats to construct validity relate to the relationship between
theory and observation, and can be mainly due to imprecision
when detecting license exceptions with the textual heuristics.
To mitigate this threat, we manually removed the false positives
from the automatically identified candidate exceptions. In that
sense, the results we report are based on true positives only.
However, it is possible that some license exceptions were not
detected by the heuristics.

Threats to external validity relate to the ability to generalize
the study results. We do not assert that the results reported in
this paper are representative of the whole FOSS community.
We only analyzed projects written in Ruby, JavaScript, Python,
C, C++, and C#. Other languages and forges as well as
commercial systems may exhibit different frequencies in terms
of license exceptions. However, GitHub is the most popular
forge with a large number of public repositories. Developers
in other languages and utilizing other forges may have other
perspectives related to license exceptions.

Threats to internal validity relate to internal, confounding
factors that would bias the results of our study. We selected all
projects from GitHub meeting the filtering criteria; therefore,
we did not have a bias while selecting projects from a specific
domain; however, because of time considerations we focused
only on six programming languages. In the future work, we



aim to expand our analysis to other programming languages,
forges, and specifically investigate libraries.

IV. USING MACHINE LEARNING TO IDENTIFY LICENSE
EXCEPTIONS

The study in Section III suggested that license exception
identification is a cumbersome task as it requires developers
to sift through a high number of potential false positives when
using heuristics. Additionally, feedback from the developers
suggests that an automated approach would be useful, especially
for package maintainers. Automated approaches for text
categorization/classification often rely on supervised learning to
derive a model from labeled data (i.e., text with labels) that can
be used to categorize unseen data [23]. Text categorization has
been successfully used in software engineering tasks such as
software categorization [24], [25], [26], defect prediction [27],
and developer recommendation [28], [29]. However, the task
of automated classification of software licenses and license
exceptions has not been solved using a machine learning-based
approach. As a matter of fact, while tools to identify licenses
exist [10], [11], [12], [18], no technique to automatically
classify license exceptions has been proposed so far.

As we showed in our first study, keyword-based identification
of license exceptions is highly prone to false positives, which
suggests that “smarter” approaches should be used. One first
option could be to use template-based identification (similar to
Ninka [18]), or to use predefined queries to detect the license
exceptions within a software license text. Our hypothesis here
is that text categorization techniques can be used to detect
license exceptions by ensuring higher accuracy with respect
to techniques based on template-matching. Therefore, to assist
developers in automatically identifying license exceptions, we
implemented a text categorization approach. To validate the
accuracy of the approach when classifying license exceptions
automatically, we conducted an empirical study in which we
compare the accuracy of supervised classifiers against a baseline
representative of template-matching techniques.

More formally, the goal of this study is to evaluate a
machine learning-based approach that we devised for license
exception identification and compare it against a template-
matching baseline for license exception identification. The
perspective is of practitioners interested in ensuring license
compliance of their systems, and the confext consists of real
license exceptions from our preliminary study and a synthetic
dataset covering all license exception types.

A. Research Questions (RQs)
We aim at answering the following two research questions:

e RQy: What classifier provides the best accuracy for
license exception identification relying on machine learn-
ing? We compare the performances of different classifiers
for identifying license exceptions in licenses text.

o RQs: Can our machine learning-based approach beat a
baseline approach matching the license exception text?
RQgs aims at understanding whether a machine learning-
based approach provides sufficient benefits to solve the

problem of license exception identification. Thus, we
compare it with a baseline approach (BL) that searches
for the license exception text in the licensing statement.

B. Dataset Construction

In our first study, we did not find real examples for all the
types of exceptions listed in the SPDX list [14]. Also, in some
cases, we only found very few instances for a given exception
(e.g., the Texinfo Exception only had a single instance in our
dataset). To train our machine learning (ML) algorithms by
avoiding the “class imbalance problem” [30], [31], we created
a dataset composed of real and synthetic license exception
instances. In particular, given a set of software licenses text L,
and a set of classes' representing the possible exceptions in
licenses, we define a data instance for the classification process
as a couple d; = (l;, e;) where [; represents a license text and
e; the specific license exception declared in [;. We consider
33 license exception types, including the ones in the SPDX
index [14], the ones in Table I, and two variants (one of the
FLTK and one of the Nokia QT GPL exception).

As the classifiers should be able to distinguish when a license
text [; does not contain an exception, we included a negative
class Not-an-exception to describe the case in which a data
instance d; is not representative of any exception (e.g., the
canonical text of GPL does not include a license exception).
Therefore, our classifiers consider 34 possible classes to which
a license text [; can be assigned - 33 for the exceptions plus
the Not-an-exception class.

Also, note that a license text [/; is assigned to only one e;,
and the motivation for this is that in our first study we did
not find licenses with more than one exception. Therefore, the
classification process we are conducting is single-label.

The procedure we followed to build the dataset for evaluating
the proposed approach is the following:

1) For each e; (i.e., for each possible class) we build an
empty bucket Ble;]; each bucket contains the correspond-
ing d; instances from the real examples and the generated
synthetic instances.

2) We assign the empirically found license exceptions
(ie, di = (l;,e;),e; # Not-an-exception) to the
corresponding bucket Ble;].

3) Given a target sample size s to achieve within all
the buckets, we fill each bucket Ble;] with synthetic
instances until |Ble;]| = s. A synthetic example for
Blej] is generated by randomly picking a canonical
license (as indicated by the Open Source Initiative [32])
and appending the exception text of e; after the license.
This decision is based on the fact that in our previous
study we did not find cases with an exception preceding
a license; additionally, an exception applies to a license
so it is reasonable to expect the license attribution prior
to issuing an exception to the license.

4) For the examples in the negative class (i.e., e; = Not-an-
exception), we fill the corresponding bucket by randomly

1“Class” refers to the target of the classification process (exception type).



TABLE II: The distribution of the unique license exception
instances in our “real data” for the evaluation of RQjs. Asterisks
signify non-SPDX exceptions.

Exception Unique Instances | Exception Unique Instances
Autoconf 2.0 22 Libtool 1
OpenSSL 11 MIF 1
Bison 2.2 2 Nokia Qt GPL* 1
Nokia QT LGPL 2 RACC* 1
Classpath 2.0 1 Rails Usage* 1
dh-make* 1 TexInfo* 1
GUILE* 1 WxWindows 1

picking canonical licenses, without adding the exception
at the end. We do not aim at identifying the type of
a license, since existing license identification tools can
deal with this task.

5) To ensure diversity of the licenses’ text (including the
exception text), each element in Ble;],Vj € [1,34], is
perturbed/mutated by randomly injecting typographical
errors. We set a threshold of 1% of the words to be
mutated, while also ensuring that at least one word was
mutated. Prior work shows that scholarly writing texts
can achieve an error rate of 0.2% [33], or 1.1% per
word [34]. Therefore, to be conservative, we picked 1%
as for the mutation rate in the texts (a developer is
also less likely to review a header comment with the
same detail as a publish work). These text mutations
simulate slight changes that may occur in real data (e.g.,

different copyright years or different copyright owner).

Additionally, typographical errors are reasonable, as in
the case of a license added by the National Institute
of Standards and Technology in which there is a typo

having “Untied Stated” instead of “United States” [35].

Finally, these mutations also allowed us to verify that our
dataset did not have duplicated samples in the training
and validation sets by computing SHA1 checksums of
the files in both the training and test data.

6) Finally we split the data from each bucket into training

and validation sets, by assigning 70% for training and
30% for validation.

In addition to the synthetic dataset, we built a second dataset
to be used as test set. Note that this test set was unseen
data and not part of the training and validation sets. This test
set is composed only of real examples of canonical licenses
and exceptions that we found in our preliminary study in the
analyzed GitHub projects. Our goal with this dataset is to
measure the generalization error [36] of the classifiers and
of the baseline on “real data”. To construct this dataset, we
identified the unique instances from the results of our first study

by computing the SHA1 (Secure Hash Algorithm 1) checksum.

We only included one representative example of each unique
instance. Table II shows the breakdown of the dataset consisting
of real exceptions we used for evaluating the classifiers and
baseline accuracy. For the canonical licenses, we added an
instance of each canonical license to avoid any bias induced by
choosing a subset and represent the Not-an-exception class.

C. Building the Classifier
To build a classifier, we first extract terms from the
licensing statements of the files under analysis. We perform a

preprocessing in which we (i) remove English stop words, and
(ii) weight the terms using the #f-idf weighting scheme [37].
Then, we use the data from our training set to build a
machine learning classifier, using the license words as features
(weighted by their #f-idf) and as a dependent variable the
(manually labeled) kind of exception contained in the license.
We consider four machine learning classifiers that have been
widely used for text categorization [23], [38]: decision trees
(DT), Naive Bayes (NB), Random Forest (RF), and Support
Vector Machine (SVM). To build the classifiers, we relied on
the Weka [39] data mining library. The machine learners aim
to classify the dataset into 34 classes: six new exceptions from
our preliminary study (marked with an asterisk in Table II), 25
from SPDX’s index [14], one FLTK Exception variant, Nokia
QT GPL Exception variant, and the Not-an-exception class.

D. Analysis Method

To answer RQ3, we compared the accuracy of the classifiers
in terms of the F-1 score [40], which is the harmonic mean of
precision and recall, and the Receiver Operating Characteristic
(ROC) area [41]; both metrics are widely used in the machine
learning community to evaluate classifiers with a unified
metric [40], [41]. The accuracy of the classifiers was measured
with the synthetic dataset described in Section IV-B and with
a dataset composed only of the real examples we found in
our preliminary study. The evaluation on both datasets has the
objective to verify whether our results are an artifact of the
synthetic dataset. To measure the sensitivity of the classifiers to
the sample size, we trained/tested the classifiers with samples
sizes of 100, 200, 300, 400, 500, 1K, 2K, 3K, 4K, 5K, and
10K for each class (e.g., |Ble;]| = 10,000,V; € [1,34]). The
results for RQq are reported in Section IV-E.

Concerning RQs, since there is no existing approach for
identifying license exceptions, we constructed a baseline (BL)
to compare against the machine learning classifiers. The
baseline approach attempts to search for the license exception
text of each license exception. Since we already demonstrated
in our preliminary study that a keyword-matching approach is
prone to low precision (see Section III—40.9% of precision),
we considered a more conservative baseline that matches the
entire exception text. As for the target text to match, for each
exception, we extracted a canonical example from the real data,
and from the SPDX list when no instance was available in
the real data. Subsequently, the approach matches text of the
license exception to ensure the entire text is contained in the
test file. If the match is confirmed, the text under test is tagged
as containing the exception. As for RQs, the comparison is
done in terms on the F1-score achieved by the baseline and the
classifiers, and by performing sensitivity analysis with different
sample sizes. The results for RQg are reported in Section I'V-F.

For both RQs, we use statistical tests to measure the
significance of the achieved results. In particular, we use the
Wilcoxon signed-rank test [42] (with o = 0.05) in order to
statistically compare each approach with the baseline across the
different sample sizes. We use the (paired) Wilcoxon test as the
comparisons (e.g., SVM vs. BL) are performed between paired




samples. Since we perform multiple pairwise comparisons, we
adjust p-values using the Holm’s correction procedure [43].

In addition, we estimate the magnitude of the observed
differences by using the Cliff’s Delta (d), a non-parametric
effect size measure for ordinal data [44]. Cliff’s d is considered
negligible for d < 0.148 (positive as well as negative values),
small for 0.148 < d < 0.33, medium for 0.33 < d < 0.474,
and large for d > 0.474 [44]. Finally, to visually corroborate
the significance of the differences and the overlapping between
the accuracies achieved by each approach, we computed the
confidence intervals of the accuracies with 95% of confidence.

Replication: The dataset and results are available in our
online appendix [45].

E. Results for RQy: What classifier provides the best accuracy
for license exception identification relying on ML?

Synthetic data. Fig. 1a shows the F-1 scores achieved across
different sample sizes for each classifier, and the confidence
intervals around the means of the F-1 scores, on the validation
set from the synthetic data. Table III reports the results
of the Wilcoxon tests (adjusted p-values and Cliff’s d) for
each pairwise comparison. In general, there are statistically
significant differences between NB and the other classifiers; this
is confirmed by the F-1 curves, the ROC areas, the Wilcoxon
tests, and the confidence intervals. Concerning the other three
classifiers (i.e., RF, SVM, and DT), the results suggest that
SVM and DT, in general, outperform RF when training with
samples sizes per class less than 1k. DT and SVM are close
in terms of performance for all the sample sizes and their
confidence intervals completely overlap each other and the
difference is marginally significant (p-value=0.049). In the
dataset with 1k samples per class, the difference between
SVM, decision trees, and random forests become minimal. The
ROC area is always > 90% for all the classifiers except [or
NB when the dataset has 100 instances per class.

Both DT and SVM exhibit a high precision and recall for
all sample sizes. For a sample size of 200 DT outperforms
SVM, and they are basically equivalent for a sample size
of 5k. While random forests initially ranked third, it begins
outperforming decision trees at sample size of 2k, excluding a
performance drop in performance for a sample size of S5k. NB
always exhibited the lowest precision and recall.

SVM is able to correctly classify 96.28% of the validation
set in the worst case, and classifies 99.99% of the validation
data correctly in the best case. The lowest precision achieved by
SVM is 0.974 and the highest is 1 (a value of 1 is achieved when
the incorrect classification was between 0.01% and 0.04%).
We observe this drop in terms of magnitude (from 0.20% to
0.02%) for a sample size of 500. The best results for SVM are
for a sample size of 2k when it only misclassifies 2 license
exceptions. In fact, we observe the number of incorrectly
classified exceptions decreases from sample size 100 until 1k
when it rises before dropping again at a sample size 2k. After
sample size 2k, the percentage of incorrect license exceptions
rises from 0.01% to 0.04% of the test set.

We observe that decision trees, random forests, and SVM
have a relatively similar accuracy in classification starting at
a sample size of 2k. While SVM outperforms both random
forest and decision trees. Decision trees incorrectly classify
between 0.03% and 0.08% of the test set, while random forests
incorrectly classify between 0.05% and 0.06% of the testing
data, while SVM incorrectly classifies between 0.01% and
0.04% of the test set.

Real data. The results of the supervised learners on the
real dataset (see Fig. 1b and Table III) demonstrate a similar
behavior to their results on the validation dataset. In general,
SVM outperforms the other supervised learners on the real
data (although DTs marginally outperforms SVM for sample
sizes of 100 and 200). SVM achieves an F-1 score of 0.997
or 1 for sample sizes 300 and larger (the precision is also 1
for each of these evaluations). In smaller sample sizes, we
observe that DTs outperform RF, but this behavior switches
above training sample size of 2k (inclusive of 2k). The ROC
area is always > 90% for all the classifiers except NB when
the dataset has 100, 300, 4k, and 5k instances per class.

Summary for RQs. The results demonstrate that SVM, DT,
and RF outperform NB with statistical significance in both
validation and testing set. SVM also attains a higher precision
and recall than DT and RF. In terms of the best accuracy, in
the validation set, SVM is the first to achieve a ROC area
of 99.99% at sample size of 2k, and a F-1 measure of 1 for
datasets of at least 500 instances per class. In the real test
set, SVM always exhibits a F-1 scores greater than 0.95, and
a ROC area greater than 97%.

F. Results for RQs: Can our machine learning-based approach
beat a baseline approach matching the license exception text?

Synthetic data. The baseline approach exhibits high preci-
sion for all sample sizes in the dataset, ranging between 0.958
and 0.976. This result is expected since the approach relies on
matching the text of the exception. Thus, it should find the
correct match when the exception is directly copy-pasted. The
negative class suffers from a high number of false positives,
which harms the overall precision of the baseline approach
(it wrongfully marks the license exceptions as licenses). The
recall suffers since this type of baseline does not account for
changes like modifications to a copyright year, copyright holder,
or typographical errors in the exception. We observe a recall
as low as 0.361 for a sample size of 100, and it achieves a
maximum value of 0.677 for sample size 4k. However, we
observe a decrease in precision at sample size 5k and 10k; the
latter case drops to 0.418.

SVM outperforms the baseline in terms of both precision
and recall. The precision of SVM and the baseline approach at
sample size 100 is very close, only differing by 0.016, while
the largest difference in precision is 0.0529 at sample size 4k.
However, the recall is much lower for the baseline approach,
never able to outperform any of the classifiers in terms of
precision and recall for any of the sample sizes. SVM has
more than twice the recall as compared to the baseline for
samples sizes of under 2k (inclusive of 2k) and sample size
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Fig. 1: F-1 scores and confidence intervals achieved across different sample sizes when testing the analyzed approaches with a)
synthetic data (i.e., validation set), and b) license exceptions extracted from GitHub projects (i.e., test set).

10k. In the best case, SVM still outperforms the baseline in
terms of recall with a difference of approximately 0.3. In terms,
of statistical tests, SVM has a significantly higher classification
performance when compared to the baseline (p-value < 0.05
with a large—0.909—-effect size).

Real data. In addition to the synthetic comparison, we
compare the baseline and the supervised learners on the real
dataset (see Fig. 1b and Table III). The real dataset consists
of the unique license exceptions identified in the preliminary
as well as an example of each canonical license (canonical
licenses are for the negative class). The baseline (textual-based
matching) achieves a precision and recall of 0.73 and 0.54,
respectively. We observe that the baseline is able to outperform
NB in terms of recall and F-1 score for the NB classifier
trained on sample sizes of 100 and 200, and the baseline is
able to outperform NB in terms of precision for sample size
of 5,000, which is the only case of the baseline achieving a
better precision than a supervised learner.

Fig. 1b depicts the F-1 score and confidence intervals for

supervised learners and baseline when classifying the real data.

We observe that the DT and SVM have similar confidence
intervals that are tight around the F-1 score. Only NB and
the baseline do not exhibit a significant difference in terms of
performance. These results are confirmed by the confidence
intervals shown in Fig. 1b. These results indicate that the
supervised learners trained on synthetic data can achieve a
high precision and recall with respect to classifying license
exceptions and identifying the absence of an exception (i.e.,
the negative class). Therefore, a supervised learner integrated
after the initial license identification stage would cnable a
license compliance engine to determine if the particular license
includes some additional exception to its terms.

Summary for RQs. The results show that supervised

TABLE III: Results of the Wilcoxon test (adjusted p-values
and Cliff’s d effect size) for the pairwise comparisons between
the classifiers (DT, NB, RF, SVM) and the baseline (BL), when
using the synthetic data (i.e., validation set), first table, and
when using real license exceptions found in GitHub project
(i.e., test set), second table.

Synthetic Data

Comparison p-value Cliff’s d | Comparison p-value Cliff’s d
DT vs. NB 0.019 0.884 | NB vs. RF 0.010 -0.652
DT vs. RF 0.049 0.214 | NB vs. SVM 0.019 -0.966
DT vs. SVM 0.049 -0.454 | NB vs. BL 0.010 0.686
DT vs. BL 0.009 0.909 | RF vs. SVM 0.019 -0.561
SVM vs. BL 0.010 0.909 | RF vs. BL 0.010 0.909
Real Data
Comparison p-value Cliff’s d | Comparison p-value Cliff’s d
DT vs. NB 0.010 0.909 | NB vs. RF 0.010 -0.835
DT vs. RF 0.022 0.595 | NB vs. SVM 0.010 -1.000
DT vs. SVM 0.022 -0.669 | NB vs. BL 0.083 0.455
DT vs. BL 0.022 0.909 | RF vs. SVM 0.022 -0.835
SVM vs. BL 0.021 0.909 | RF vs. BL 0.022 0.909

learners trained on synthetic data were able to outperform a
baseline approach when classifying synthetic and real data.
Specifically, supervised learners are able to handle variations,
which occur in practice. Furthermore, the supervised learners
outperform the baseline approach on real data.

G. Threats to Validity

Construct validity threats can be mainly due to bias when
sampling our datasets. We balanced the classes of our dataset
and generated synthetic license and license exception pairs
randomly. Additionally, we performed sensitivity analysis by
varying sample sizes between 100 instances per class to 10k
instances per class. Internal validity threats can occur in the
creation of the training and test sets. When evaluating the
performance of the classifiers, we considered 70% of the dataset
for training and 30% for validation, which is an accepted
practice for evaluating supervised learners. Additionally, we



had a separate testing dataset with real data. For what concerns
external validity threats, it is possible that the performance
of the classifiers on the synthetic dataset does not generalize.
Such a dataset was designed to replicate user errors and aimed
to ameliorate the problem of limited real data.

The comparison with the real data suggests that the pertur-
bation rate of the dataset may inflate the differences between
to licenses with exceptions. It is possible that results might
vary using different datasets (e.g., from other projects).

H. Discussion

This study addressed a novel problem of detecting license
exceptions. Our results indicate the effectiveness of supervised
learners in identifying (when present) different types of license
exceptions reported in licensing statements. In general, SVM
seems to be the most applicable supervised learner, since
it outperformed the other algorithms. The results from the
evaluation on the real data mimics our results on the synthetic
data, which contains perturbations. The findings suggest that
supervised learners are able to learn relationships between the
terms of a license exception, while allowing for variations.

Results also indicate that keyword-based identification of
license exceptions generate a large number of false positives
(59.1%), which is not acceptable for an automated tool aimed
at supporting software developers, especially in large software
systems. Similarly, the recall of a baseline approach by
matching the text of the license exception results in a low
recall so it is likely to miss license exceptions. It is important
to note that no other approaches exist and the baseline was
designed to represent how a developer could identify license
exceptions (i.e., by pattern matching) without having to devise
a sophisticated approach.

V. RELATED WORK

Our work is related to prior approaches on license identifi-
cation and previous empirical studies on software licenses.

License Identification. Several approaches exist to identify
the license type and version of source code and jars, but these
approaches do not address license exceptions. The FOSSology
project [10] first utilized machine learning to classify licenses in
order to solve the challenge of license identification. ASLA was
also proposed by Tuunanen et al. [11] with a high accuracy of
89%. Ninka, the state-of-the-art approach proposed by German
et al. [18] utilized sentence matching and was empirically
shown to have a precision of 95%. Di Penta et al. [12] sought
to identify the licensing of jars and proposed an approach
employing code search (Google Code, which is no longer
available). Lastly, German et al. [13] investigated the impact
of propriety licensing, when used with FOSS licenses, on the
ability to accurately identify the FOSS license by analyzing
523,930 archives.

These previous approaches focused on the identification of
licenses, while not being capable to deal with license exceptions.
By identifying license exceptions, our work represent a natural
complement to previous work.

Empirical Studies. German et al. [7] identified exceptions as
a viable method for licensors to modify a certain license. In that

work, the authors proposed a model, based on their investigation
of 124 FOSS packages, to illustrate the applicability of
particular licenses. However, the work does not empirically
investigate the existence of license exceptions. German et
al. [8] studied license inconsistencies in Fedora-12 distribution.
Importantly, this work demonstrated the importance of studying
license exceptions, since the results showed that license
exceptions are an important factor for validating potential
license inconsistencies.

Additionally, Manabe et al. [46] investigated license changes
in FreeBSD, OpenBSD, Eclipse, and ArgoUML and found the
change patterns were project specific. Vendome et al. [3]
investigated 16,221 FOSS Java systems to understand the
license usage and changes in licensing. Additionally, the work
investigated the reason for potential usage and changes by
analyzing commits and issues trackers. Vendome et al. [2]
also performed a survey involving software developers to
investigate when developers pick a particular license or changes
the license(s) and to understand the underlying reasons why
developers choose or change licensing of their system.

Other empirical studies focused on license inconsistencies in
code clones between Linux and either OpenBSD or FreeBSD
[47], inconsistencies between the licensing of code clones
in Debian 7.5, suggesting potential violations [48], and the
presence of license violations in android applications [49].

VI. CONCLUSIONS

In this paper, we studied—for the first time, to the best of
our knowledge—the presence of license exceptions in 51,754
FOSS systems from six languages. We found 14 different
license exception types across 298 files in five of the six
languages. While we observed that certain license exceptions
are more prevalent in projects written in specific languages,
we also found that the Autoconf Exception was within the
top-3 most prevalent license exceptions for all of the languages
(being Autoconf, a cross-language tool). Additionally, we also
observed the frequent coexistence of the RACC Exception
and Rails Exception due their presence in the same library.
These license exceptions directly impact the way in which
software can be reused and are critical for understanding
license compliance. Specifically, these exceptions ameliorate
inconsistencies under particular circumstances. We have sent
the new license exceptions for consideration to the SPDX team.

After that, we evaluated the applicability and effectiveness of
supervised learners for the identification of license exceptions.
The results indicate that machine learning classifiers—and
specifically SVM and Random Forests—are able to achicve
high precision and recall when identifying the type of license
exception as well as determining the lack of a license exception
on real and synthetic data. A license exception classifier can
be integrated into a license compliance engine after the initial
license identification. In our future work, we aim to create a
solution that integrates an SVM-based classifier for classifying
exceptions into a license identification tool.

This research was supported in part via NSF CAREER CCF-1253837 and
CCF-1525902.
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