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Abstract—When a bug manifests in a user-facing application, it
is likely to be exposed through the graphical user interface (GUI).
Given the importance of visual information to the process of
identifying and understanding such bugs, users are increasingly
making use of screenshots and screen-recordings as a means
to report issues to developers. Due to their graphical nature,
screen-recordings present challenges for automated analysis that
preclude the use of current duplicate bug report detection
techniques. This paper describes in detail our reproduction
package artifact for TANGO, a duplicate detection technique that
operates purely on video-based bug reports by leveraging both
visual and textual information to overcome these challenges and
aid developers in this task. Specifically, this reproduction package
contains the data and code that enables our TANGO’s empirical
evaluation replication and future research in the area of duplicate
video-based bug report detection.

Index Terms—Bug Reporting, Screen Recordings, Duplicate
Detection

I. INTRODUCTION

Many modern mobile applications (apps) allow users to
report bugs in a graphical form, given the GUI-based nature of
mobile apps. For instance, Android and iOS apps can include
built-in screen-recording capabilities in order to simplify the
reporting of bugs by end-users and crowd-testers [4, 6, 11].
The reporting of visual data is also supported by many crowd-
testing and bug reporting services for mobile apps [2–8, 10–
12], which intend to aid developers in collecting, processing,
and understanding the reported bugs [18, 22].

The proliferation of sharing images to convey additional
context for understanding bugs, e.g., in Stack Overflow Q&As,
has been steadily increasing over the last few years [23]. Given
this and the increased integration of screen capture technology
into mobile apps, developers are likely to face a growing set
of challenges related to processing and managing app screen-
recordings in order to triage and resolve bugs — and hence
maintain the quality of their apps.

To aid developers in determining whether video-based bug
reports depict the same bug, we developed TANGO [20],
a novel approach that analyzes both visual and textual in-
formation present in mobile screen-recordings using tailored
computer vision (CV) and text retrieval (TR) techniques, with

the goal of generating a list of candidate videos (from an issue
tracker) similar to a target video-based report.

We conducted an empirical study to measure TANGO’s
effectiveness and ability to save developer effort in identifying
duplicate video-based bug reports. The evaluation was carried
out using 180 video-bug reports from six Android apps, and
4,860 duplicate detection tasks. The evaluation revealed that
TANGO is able to suggest correct duplicate reports in the top-2
of the ranked candidates for 83% of duplicate detection tasks.
Additionally, TANGO can reduce the time they spend in finding
duplicate video-based bug reports by ≈ 65%.

This paper describes the artifact of TANGO’s empirical
evaluation. The artifact enables (i) the replication of the
evaluation results as reported in our original paper [20], and
(ii) future research on video-based duplicate detection, bug
replication, and mobile app testing. The artifact contains 180
video-based bug reports with duplicates for six Android apps,
TANGO’s source code, TANGO’s trained models, the defined
duplicate detection tasks, TANGO’s (intermediate) output, and
detailed evaluation results. Additionally, the artifact includes
a command-line tool that allows a user or researcher to run
TANGO on additional data. The artifact has been archived for
future use on Zenodo [16] and GitHub [17].

II. ARTIFACT DESCRIPTION

The artifact has four parts: (i) the source code for TANGO
and its evaluation, (ii) the data used to evaluate TANGO along
with the trained models, (iii) the intermediate outputs produce
by TANGO and the results of TANGO’s evaluation, and (iv) the
command line tool for easily running TANGO’s visual model
on additional data.

A. Source code

We built TANGO in Python and Java. We designed it
to be a tool that researchers and developers could easily
use and extend, so all of the code is well documented and
contains usage examples. The Python code is done via Jupyter
Notebooks [14] using the nbdev library [13], which allows for
TANGO’s code to reside next to its documentation.



TANGO’s python code has six modules, each responsible for
a different API.

1) prep: contains functionality for data loading and prepro-
cessing.

2) features: contains visual feature extractors, i.e., SimCLR
and SIFT.

3) eval: contains functionality and metrics for calculating
the performance of TANGO.

4) model: contains implementation for SimCLR along with
the similarity functions for the types of TANGO, i.e.,
longest common subsequence (LCS) and weighted LCS
version

5) approach: contains the visual versions of TANGO.
6) combinations: contains functionality for combining the

visual and textual components together.
For easy installation we created a PyPi package1 as well as

a Docker image2. The Java code is stored in our data artifact
and is discussed in the following section. The artifact contains
a README file outlining the steps to install and replicate the
results of TANGO’s evaluation. We release TANGO’s source
code under the Apache v2.0 licence.

B. Data and trained models

The data directory [16] contains the video-based bug reports
for six open source apps that we collected in a user study
(see our original paper for more details [20]) along with the
trained models and is linked in the artifact’s README. Each
user created a video-based bug report for a set of bugs across
different Android apps. The directory where the videos-based
bug reports are located is broken down into sub-directories,
each one representing a user. Within each user sub-directory,
there are multiple directories representing Android apps. Each
of these app directories contain sub-directories that denote
bugs, and each of the bug directories contains a video-based
bug report as an mp4 file.

The models directory contains the three TANGO models that
we evaluated (SIFT [21], SimCLR [19], and OCR+IR [1, 9]).
Each directory contains the corresponding trained codebook
files that we generated for SIFT and SimCLR. These codebook
files are pickle files3 that contain the binary representation of
the trained codebooks. Additionally, in the SimCLR folder,
you will find a checkpoint and Pytorch [15] model file for
reloading the trained SimCLR model. The OCR+IR folder
contains the Java code for the OCR+IR model as well as the
intermediate output.

We release this artifact’s data under ”Creative Commons
Attribution 4.0 International” license.

C. Intermediate outputs and results

The outputs folder contains all the intermediate outputs of
our code, except for OCR+IR. The results folder contains the
raw rankings and metrics for the SIFT and SimCLR models

1https://pypi.org/project/two-to-tango/
2https://hub.docker.com/repository/docker/semerulab/tools/general
3https://docs.python.org/3/library/pickle.html

for all combinations of video-based bug reports per app. The
evaluation setting directory contains a json file that defines
the duplicate detection tasks that we used for evaluating our
models, i.e., setting #2 (see paper for more details[20]). The
user rankings weighted all and user results weighted all di-
rectories contain the converted version of the raw rankings and
metrics for the SIFT and SimCLR models to match setting
#2. The extracted text directory contains the output OCR+IR
model, specifically, the frames of the videos and the text from
each frame. Lastly, the combined directory contains the results
of the combined tango approach.

D. Command-line tool
We also provide a command-line tool for running TANGO’s

visual model on additional data. Currently only the visual part
of TANGO with SimCLR is supported and not the combined
version since this version needs to be tuned depending on
vocabulary overlap in an app (see original paper for more
details[20]). This tool allows for a user to specify paths to
a query video and a directory containing a corpus of videos
that will be compared against the query video for duplicate
detection. The output of this tool is a list of the similarity
values (in descending order) between the query video and each
video in the given corpus.
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