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Abstract—The paper proposes an integrated approach, namely 
SE2, to support three core software maintenance and evolution 
tasks: feature location, software change impact analysis, and 
expert developer recommendation.  The approach is centered 
on the combinations of the conceptual and evolutionary 
relationships latent in structured and unstructured software 
artifacts.  Information Retrieval (IR) and Mining Software 
Repositories (MSR) based techniques are used for analyzing 
and deriving these relationships.  All the three tasks are 
supported under a single, common framework by providing 
systematic combinations of MSR and IR analyses on single and 
multiple versions of a software system. This combining ability 
of SE2 sets it apart from previously reported relevant solutions 
in the literature. The outlined empirical assessment is aimed at 
identifying the exclusive and synergistic improvements offered 
by such combinations for each of the addressed tasks.  
Preliminary evaluation on a number of open source systems 
suggests that such combinations do offer improvements over 
individual approaches. 

I.  INTRODUCTION 

Software maintenance and evolution is a particularly 
complex phenomenon in case of long-lived, large-scale 
systems [11, 14].  It is not uncommon for such systems to 
progress through years of development history, a number of 
developers, and a multitude of software artifacts including 
millions of lines of code.  Therefore, realizing even a tad of 
change may not be always straightforward.  Clearly, changes 
are the central force driving software evolution.  Therefore, it 
is not surprising that a paramount effort has been (and should 
be) devoted in the software engineering community to 
systematically understanding, estimating, and managing 
changes to software artifacts.  This effort includes three core 
change related tasks of concept or feature location (where a 
particular functionality is implemented in a code or a starting 
point of a change) - FL, impact analysis (which other 
software entities should be changed given a starting point) - 
IA, and expert developer recommendations (who are the 
most experienced developers to implement needed changes) 
– DR 

In this paper, we propose SE2 model for comprehensive 
analysis of software evolution that combines the semantic (or 
conceptual) and evolutionary relationships in software to 
directly support the core software maintenance tasks FL, IA, 
and DR.  Conceptual information captures the extent to 
which domain concepts and software artifacts are related to 
each other.  This information is derived using Information 

Retrieval based analysis of textual software artifacts that are 
not limited to a single version of software (e.g., comments 
and identifiers in a single snapshot of source code), but also 
across versions (e.g., change logs and bug reports in the 
change history).  Evolutionary information is derived from 
analyzing relationships and relevant information observed 
from past changes by mining software repositories. Central 
to our approach are the information sources that are 
developer/human centric (e.g., comments and identifiers, and 
commit practices), rather than (formal)language/artifact 
centric (e.g., static and dynamic dependencies such as call 
graphs). 

The core research philosophy is that the past and present 
of software system leads to its better future evolution.  For 
example, the existing methods of FL are largely limited to a 
single version analysis (typically the latest release) and do 
not consider the past evolutionary information.  For IA, both 
single and multiple version analysis methods have been 
utilized independently, but their combined use has not been 
previously investigated.  Overall, a comprehensive change 
management solution under a single unified umbrella that 
not only helps with locating the starting point of a change, 
but also the extent of it, and who should handle it, is 
currently missing.  Our proposed SE2 solution is an attempt 
to address these open issues and support software 
maintenance under one cohesive unit. 

The rest of the paper is organized as follows.  In Section 
II we describe the principle components of SE2.  The support 
for maintenance tasks is discussed in Section III with 
evaluation plans in Section IV.  Finally, we conclude in 
Section V. 

II. SE2
 MODEL PRIMITIVES 

We describe the principals underlying the SE2 model. 

A. Conceptual Coupling 

A vast amount of conceptual information is buried in the 
documentary or textual elements of software artifacts, e.g., 
comments and identifiers in source code, and commits logs 
and bug reports in software repositories.  We can infer 
dependencies or couplings between software entities based 
on natural, real phenomenon of human driven implicit 
documentation of application/problem/solution domains.  
For example, if two methods share a similar vocabulary, a 
conceptual, change dependency, or conceptual coupling, is 
assumed to be present between them.  Therefore, managing 
changes becomes a discovery process for uncovering 



 

patterns, trends, and relationships from documentary 
constructs and their evolution. 

In SE2, conceptual similarity is a primary mechanism of 
capturing conceptual relationships among software entities.  
The conceptual similarity measure is designed to capture the 
amount of shared conceptual information among software 
documents.  Formally, the conceptual similarity between 
software entities ek and ej (e.g., ek and ej are methods), is 
computed as the cosine between the vectors vek and vej, 
corresponding to ek and ej in the vector space constructed by 
an IR method (e.g., Latent Semantic Indexing – LSI): 

CSE(ek, ej) = 
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The value of CSE(ek, ej)  [-1, 1] because CSE is a 
cosine in the vector space model.  The CSE can be used as a 
basis for computing conceptual similarities among different 
documents in the model.  For instance, for source code 
documents, these can be attributes, methods, or classes.  
Computing attribute-attribute or method-method similarities, 
CSE is straightforward (e.g., ek and ej are substituted by ak 
and aj in the CSE formula), while deriving method-class or 
class-class CSE requires additional steps.  We define the 
conceptual similarity between the method mk and the class cj, 
CSEMC, which is an average of the conceptual similarities 
between the method mk and all the methods from class cj.  
Using CSEMC, we define the conceptual similarity between 
two classes, CSEBC, as the average of the similarity 
measures between all unordered pairs of methods from the 
class ck and class cj. 

While source code is used as an example here, all these 
measures are directly applicable to other types of software 
artifacts (e.g., requirements and bug reports).  For more 
details and examples on computing conceptual coupling 
measures, please refer to [12]. 

B. Evolutionary Couplings 

A research direction, rooted in the emerging area of 
Mining Software Repositories, is to analyze multiple 
versions, i.e., actual past changes in software repositories 
such as Subversion and CVS, to identify dependencies 
between software entities that are found to co-change.  Such 
dependencies are termed as evolutionary dependencies or 
couplings [5, 6, 17, 18].  The changes observed from the past 
evolution of a specific system are used as a basis to speculate 
the change dependencies between any given software 
entities.  For example, if two methods are observed to co-
change in a number of change-sets, an inherent change 
dependency between them is surmised.  Therefore, managing 
changes become a discovery process for detecting patterns, 
trends, and relationships from past changes. 

In SE2, evolutionary couplings are the patterns mined 
from itemset and/or sequential-pattern mining of change-sets 
or commits in the Software Change History (SCH).  
Formally, an unordered evolutionary coupling is a set of 
source code entities that are found to be recurring in at least a 
given number (min) of groups of change-sets, ecu = {ep, eq, 
…, eo} where each e  E  and there exists a set of related 

change-sets, S(ec) = {c  SCH | ec  c } with its cardinality, 
(ec) = |S(ec)| ≥ min.  Also, let EC =  ecii  1

kU  be a set of 

all the evolutionary couplings observed in SCH.  If (partial) 
order is desired, an ordered evolutionary coupling is a 
sequence of sets of source code artifacts, eco = s1  s2  
… sn where each s = {ep, eq, …, eo}  cs  SCH, and each 
si occurs in a change-set before the change-set si+1, and each 
 E.  We give examples of ordered evolutionary couplings 
mined from KDE repository.  If the order is not desired, the 
entities can be coalesced into a set (instead of a list). 

For example, consider a method named getType in ArgoUML.  
The evolutionary coupling 

{argouml/model/mdr/FacadeMDRImpl.java/getType, 
argouml/model/mdr/FacadeMDRImpl.java/isAStereotype} 

is mined from the commit history between releases 0.24 and 
0.26.2of ArgoUML. This coupling is supported by three commits 
with ID’s 13341, 12784, and 12810.  In these three commits, both 
getType() and isAStereotype() are found to co-change.  Based on 
this evolutionary coupling, the association rule 

{argouml/model/mdr/FacadeMDRImpl.java/getType}  
{argouml/model/mdr/FacadeMDRImpl.java/isAStereotype} 

is computed.  This rule has a confidence value of 1.0 (100%) 
and it suggests that should the method getType() be changed, 
the method isASteretype() is also likely to be a part of the 
same change with a conditional probability of 100%. 

In addition to conceptual and evolutionary couplings, we 
are developing several measures to gauge developer 
contributions or expertise from the past evolutionary 
information.  In our previous work [7], we presented a 
developer expertise factor, termed xFactor.  It is computed 
using a similarity measure between two vectors representing 
the change contributions of a developer to a given source 
code entity and the total changes to that source code entity.  
This element of SE2 is not discussed at length here, as it is 
already reported previously [7]. 

III. SUPPORTING TASKS WITH SE2 

We now describe the specifics of SE2 in supporting the 
core software maintenance tasks FL, IA, and DR 

A. Feature location (FL) 

A feature represents in a program some functionality that 
is accessible and visible to the developers.  Identifying the 
parts of the source code that correspond to a specific 
functionality is a prerequisite to several maintenance tasks.  
This process is referred to as feature location [13] and it is a 
part of the incremental change [15].  For example, assume a 
developer is working on text editor software and needs to 
modify the file printing feature to ensure the files can be also 
printed to PDF format.  The developer first needs to find the 
existing source code that implements file printing before 
making any further changes.  If the developer is unfamiliar 
with this particular feature before, he might not know the 
exact location and may spend considerable time and effort 
searching for relevant source code before making any 
changes.  In SE2, FL is supported via the following steps: 

Step 1: Create a corpus of the retrieved software system.  
To analyze conceptual information in a given release of a 
software system, the source code and accompanying artifacts 



 

(e.g., requirements, design documentation, and bug reports) 
are parsed using a developer-defined granularity level (that is 
methods or files).  A corpus is created, so that each software 
artifact will have a corresponding document in it.  We rely 
on srcML [4] as the underlying representation for source 
code and textual information.  srcML is an XML 
representation for C/C++/Java source code with selective 
AST embedded and documentary constructs preserved. 

Step 2: Index software using IR methods.  The corpus is 
indexed using advanced IR methods, such as LSI and Latent 
Dirichlet Allocation, for indexing software.  If LSI is used 
for indexing, dimensionality reduction is performed to 
capture important conceptual information about identifiers, 
comments and their relationships in the source code. 

Step 3: Expand the original query using terms from 
evolutionary sources. 

Evolutionary information at this point can be used in at 
least three different ways.  Firstly, the user query may be 
expanded with similar words from commit logs (which, in 
turn should improve expressiveness of user queries).  
Secondly, the corpus of software, which is built in Step 1, 
may be augmented with information from commit logs 
pertaining to source code entities.  For instance, all the 
commit logs involving method foo() are added to the 
document representing method foo() in a corpus of a 
software system.  The idea behind this approach is to capture 
design decisions and rationale encoded by developers while 
modifying code entities, which in turn should improve the 
expressiveness of IR-based FL.  Thirdly, the developer can 
also utilize evolutionary couplings, which are obtained via 
MSR-based analysis, to inspect other methods, which have 
high evolutionary couplings with the methods in the ranked 
list.  We will compare how effective these three integration 
scenarios are with respect to other potential combinations, 
and develop and evaluate tool prototypes. 

B. Change Impact Analysis (IA) 

A typical IA technique takes a software entity in which a 
change is proposed, and estimates other entities that are also 
potentially change candidates, referred to as an estimated 
impact set.  Bohner and Arnold surveyed IA methodologies 
in 1996 [2], and a number of approaches based on improved 
static and dynamic analyses are proposed thereafter [1, 10, 
16].  Our general approach consists of the following steps: 

Step 1: Select the first software entity, es, for which IA 
needs to be performed.  For example, this first entity could 
be a result of FL for a feature request.  Note that IA starts 
with a given entity. 

Step 2: Compute conceptual couplings for the release of 
a software system in which the first entity is selected with IR 
methods.  Let EI(es) be the set of entities that are 
conceptually related to the entity from Step 1, i.e., 
Conceptual Coupling Between two Entities, CCBE(es, ej) is 
within a user specified value, Ri. Let EI(es) = { ej | CCBE(es, 
ej) ≤ Ri  [0, 1]}. 

Step 3: Mine a set of commits from the source code 
repository and compute evolutionary coupling metrics.  
Here, only the commits that occurred before the release in 
the above step are considered.  Let EM(es) be the set of 

entities that are evolutionary coupled to the entity from Step 
1, i.e., Evolutionary Coupling Between two Entities, ECBE 
(es, ej) is within a user specified value, Rm. Let EM(es) = { ek | 
ECBE(es, ek) ≤ Rm  [0, 1]}. 

Step 4: Compute the estimated impact set, E(es), from 
the metrics computed in steps 3 and 4.  With regards to 
combining conceptual and evolutionary dependencies, there 
are quite a few possibilities.  Should the union or intersection 
of the two estimations be considered, i.e., EI(es)  EM(es) or 
EI(es)  EM(es)?  This question may not be an issue, if both 
EI(es) and EM(es) predict the same estimation set.  In a 
different situation, taking their union could result in 
increased recall; however, at the expense of decreased 
precision (if a large number of false-positive estimates).  On 
the other hand, taking only the intersection imposes a stricter 
constraint that could result in increased precision; however, 
at the expense of decreased recall.  Our initial finding shows 
that the conceptual and evolutionary couplings provide 
orthogonal information (i.e., they tend to give impact sets 
with only a slight overlap) [9].  Therefore, we are focusing 
on taking the union of the two couplings for impact sets and 
refer to this combination as disjunctive approach.  
Furthermore, we have devised schemes based on equal (and 
adaptive weights given to the contribution of the two types of 
couplings in the combinations.  For example, in one equal 
combination, both the coupling types contribute half the 
elements in the impact set. In another adaptive combination, 
the contribution of evolutionary couplings is parameterized 
to the amount and period of the considered change history 
(e.g., a week from the previous release).  

We illustrate the mechanics of our disjunctive approach 
with an equal combination scheme. In Apache httpd, 
commit# 888310 is a fix for the bug# 470871: "Incorrect 
request body handling with Expect: 100-continue…. 
response prior to sending its body."  In this revision, three 
source code files were changed: (/http/http_filters.c, 
/http/http_protocol.c, /server/protocol.c).  For this example, 
let us assume the developer discovers, through feature 
location, that fixing the problem requires modifying  
http/http_filters.c.  From this point, the developer can 
perform impact analysis to discover other entities that also 
require modification. As standalone techniques neither 
conceptual nor evolutionary coupling were capable of 
establishing a 100% recall.  Conceptual coupling ranked 
/server/protocol.c as first in the ranked list, but ranked 
http/http_protocol.c as 91st, whereas evolutionary coupling 
ranked http/http_protocol.c second in the ranked list, but 
ranked /server/protocol.c as 16th. Here, we observed that 
when combined, the couplings identify all methods requiring 
modification within an impact set within a cut point of five 
methods (i.e., improving both recall and precision). 

                                                           
1 https://issues.apache.org/bugzilla/show_bug.cgi?id=47087 

 



 

C. Developer recommendations (DR) 

Our approach to recommending expert developers two 
steps [8].  In the first step, given a concept description, LSI is 
used to locate a ranked list of relevant units of source code 
(e.g., files, classes, and methods) that implement that concept 
in a version (typically the release in which an issue is 
reported) of the software system, i.e., FL. In the second step, 
we use xFinder [7] (a tool that is based on xFactor) to 
suggest a ranked list of developers to assist with a change in 
a given file.  Our approach differs from previous approaches, 
as it does not need the history of past bug reports. 
Furthermore, our approach not only supports bug 
assignments, but also extends to features or any change 
request (concept) in general.  

For example, our approach correctly recommended a 
ranked list of developers, [jaham, boemann], knowledgeable 
in source code files related to a bug, from its description 
“splitting views duplicates the tool options docker”, in 
KOffice, an open source office productivity suite. 

IV. EVALUATION PLANS AND PRELIMINARY 

RESULTS 

We conducted our first set of evaluations for IA on 
hundreds of changes from open source systems Apache 
httpd, ArgoUML, iBatis, and KOffice.  The results show that 
combining the two couplings provides statistically significant 
improvements in precision and recall values over the two 
couplings used individually. In some cases an improvement 
of 20% in recall is achieved.  We included code granularity 
levels of files and methods, and several impact set sizes.  

We have also conducted a preliminary evaluation for DR 
on change requests from three open source systems 
ArgoUML, Eclipse, and KOffice.  The overall accuracies of 
the correctly recommended developers are between 47% and 
96% for bug reports, and between 43% and 60% for feature 
requests.  Furthermore, our approach outperformed two other 
recommendation alternatives with a substantial margin. 

We are planning on rigorously validating the proposed 
SE2-based techniques for FL, IA and DR using empirical 
techniques, such as case studies and controlled experiments.  
For instance, we will perform case studies to determine to 
what extent SE2 can be used to support IA tasks and compare 
instantiated techniques with alternative approaches [3, 19].  
Also, we will use the software change-history for 
preliminary controlled experiments. Large open-source 
systems, such as the KDE, Apache, jEdit, and GCC, will be 
used as subject systems, as we have previous experience 
with them in our preliminary case studies2.  Moreover, they 
provide a variety of applications, domains, programming 
languages, development practices, and sizes. 

V. CONCLUDING REMARKS 

The contributions of this investigation are a step towards 
answering our overarching research question as to what are 
the exclusive and potentially synergistic benefits of 
integrating conceptual and evolutionary information with 

                                                           
2 http://www.cs.wm.edu/semeru/data/jsme09-bugs-devs/   

regards to key software maintenance tasks.  While both these 
sources have been studied independently before, their 
combined use for tasks such as the ones studied here has not 
been scientifically investigated.  The proposed evaluation 
will provide an empirical basis to help answer this question, 
and define tools and techniques based on their integration.  
Our preliminary evaluation does indicate that there are 
improvements offered by the proposed SE2 model. 
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