

SE2 Model to Support Software Evolution

Huzefa Kagdi
Department of Computer Science
Winston-Salem State University

Winston-Salem, NC 27110
kagdihh@wssu.edu

Malcom Gethers and Denys Poshyvanyk
Computer Science Department
College of William and Mary

Williamsburg, VA 23185
{mgethers, denys}@cs.wm.edu

Abstract—The paper proposes an integrated approach, namely
SE2, to support three core software maintenance and evolution
tasks: feature location, software change impact analysis, and
expert developer recommendation. The approach is centered
on the combinations of the conceptual and evolutionary
relationships latent in structured and unstructured software
artifacts. Information Retrieval (IR) and Mining Software
Repositories (MSR) based techniques are used for analyzing
and deriving these relationships. All the three tasks are
supported under a single, common framework by providing
systematic combinations of MSR and IR analyses on single and
multiple versions of a software system. This combining ability
of SE2 sets it apart from previously reported relevant solutions
in the literature. The outlined empirical assessment is aimed at
identifying the exclusive and synergistic improvements offered
by such combinations for each of the addressed tasks.
Preliminary evaluation on a number of open source systems
suggests that such combinations do offer improvements over
individual approaches.

I. INTRODUCTION

Software maintenance and evolution is a particularly
complex phenomenon in case of long-lived, large-scale
systems [11, 14]. It is not uncommon for such systems to
progress through years of development history, a number of
developers, and a multitude of software artifacts including
millions of lines of code. Therefore, realizing even a tad of
change may not be always straightforward. Clearly, changes
are the central force driving software evolution. Therefore, it
is not surprising that a paramount effort has been (and should
be) devoted in the software engineering community to
systematically understanding, estimating, and managing
changes to software artifacts. This effort includes three core
change related tasks of concept or feature location (where a
particular functionality is implemented in a code or a starting
point of a change) - FL, impact analysis (which other
software entities should be changed given a starting point) -
IA, and expert developer recommendations (who are the
most experienced developers to implement needed changes)
– DR

In this paper, we propose SE2 model for comprehensive
analysis of software evolution that combines the semantic (or
conceptual) and evolutionary relationships in software to
directly support the core software maintenance tasks FL, IA,
and DR. Conceptual information captures the extent to
which domain concepts and software artifacts are related to
each other. This information is derived using Information

Retrieval based analysis of textual software artifacts that are
not limited to a single version of software (e.g., comments
and identifiers in a single snapshot of source code), but also
across versions (e.g., change logs and bug reports in the
change history). Evolutionary information is derived from
analyzing relationships and relevant information observed
from past changes by mining software repositories. Central
to our approach are the information sources that are
developer/human centric (e.g., comments and identifiers, and
commit practices), rather than (formal)language/artifact
centric (e.g., static and dynamic dependencies such as call
graphs).

The core research philosophy is that the past and present
of software system leads to its better future evolution. For
example, the existing methods of FL are largely limited to a
single version analysis (typically the latest release) and do
not consider the past evolutionary information. For IA, both
single and multiple version analysis methods have been
utilized independently, but their combined use has not been
previously investigated. Overall, a comprehensive change
management solution under a single unified umbrella that
not only helps with locating the starting point of a change,
but also the extent of it, and who should handle it, is
currently missing. Our proposed SE2 solution is an attempt
to address these open issues and support software
maintenance under one cohesive unit.

The rest of the paper is organized as follows. In Section
II we describe the principle components of SE2. The support
for maintenance tasks is discussed in Section III with
evaluation plans in Section IV. Finally, we conclude in
Section V.

II. SE2
 MODEL PRIMITIVES

We describe the principals underlying the SE2 model.

A. Conceptual Coupling

A vast amount of conceptual information is buried in the
documentary or textual elements of software artifacts, e.g.,
comments and identifiers in source code, and commits logs
and bug reports in software repositories. We can infer
dependencies or couplings between software entities based
on natural, real phenomenon of human driven implicit
documentation of application/problem/solution domains.
For example, if two methods share a similar vocabulary, a
conceptual, change dependency, or conceptual coupling, is
assumed to be present between them. Therefore, managing
changes becomes a discovery process for uncovering

patterns, trends, and relationships from documentary
constructs and their evolution.

In SE2, conceptual similarity is a primary mechanism of
capturing conceptual relationships among software entities.
The conceptual similarity measure is designed to capture the
amount of shared conceptual information among software
documents. Formally, the conceptual similarity between
software entities ek and ej (e.g., ek and ej are methods), is
computed as the cosine between the vectors vek and vej,
corresponding to ek and ej in the vector space constructed by
an IR method (e.g., Latent Semantic Indexing – LSI):

CSE(ek, ej) =

2 2| | | |

T
k j

k j

ve ve

ve ve

The value of CSE(ek, ej)  [-1, 1] because CSE is a
cosine in the vector space model. The CSE can be used as a
basis for computing conceptual similarities among different
documents in the model. For instance, for source code
documents, these can be attributes, methods, or classes.
Computing attribute-attribute or method-method similarities,
CSE is straightforward (e.g., ek and ej are substituted by ak
and aj in the CSE formula), while deriving method-class or
class-class CSE requires additional steps. We define the
conceptual similarity between the method mk and the class cj,
CSEMC, which is an average of the conceptual similarities
between the method mk and all the methods from class cj.
Using CSEMC, we define the conceptual similarity between
two classes, CSEBC, as the average of the similarity
measures between all unordered pairs of methods from the
class ck and class cj.

While source code is used as an example here, all these
measures are directly applicable to other types of software
artifacts (e.g., requirements and bug reports). For more
details and examples on computing conceptual coupling
measures, please refer to [12].

B. Evolutionary Couplings

A research direction, rooted in the emerging area of
Mining Software Repositories, is to analyze multiple
versions, i.e., actual past changes in software repositories
such as Subversion and CVS, to identify dependencies
between software entities that are found to co-change. Such
dependencies are termed as evolutionary dependencies or
couplings [5, 6, 17, 18]. The changes observed from the past
evolution of a specific system are used as a basis to speculate
the change dependencies between any given software
entities. For example, if two methods are observed to co-
change in a number of change-sets, an inherent change
dependency between them is surmised. Therefore, managing
changes become a discovery process for detecting patterns,
trends, and relationships from past changes.

In SE2, evolutionary couplings are the patterns mined
from itemset and/or sequential-pattern mining of change-sets
or commits in the Software Change History (SCH).
Formally, an unordered evolutionary coupling is a set of
source code entities that are found to be recurring in at least a
given number (min) of groups of change-sets, ecu = {ep, eq,
…, eo} where each e  E and there exists a set of related

change-sets, S(ec) = {c  SCH | ec  c } with its cardinality,
(ec) = |S(ec)| ≥ min. Also, let EC =  ecii  1

kU be a set of

all the evolutionary couplings observed in SCH. If (partial)
order is desired, an ordered evolutionary coupling is a
sequence of sets of source code artifacts, eco = s1  s2
… sn where each s = {ep, eq, …, eo}  cs  SCH, and each
si occurs in a change-set before the change-set si+1, and each
 E. We give examples of ordered evolutionary couplings
mined from KDE repository. If the order is not desired, the
entities can be coalesced into a set (instead of a list).

For example, consider a method named getType in ArgoUML.
The evolutionary coupling

{argouml/model/mdr/FacadeMDRImpl.java/getType,
argouml/model/mdr/FacadeMDRImpl.java/isAStereotype}

is mined from the commit history between releases 0.24 and
0.26.2of ArgoUML. This coupling is supported by three commits
with ID’s 13341, 12784, and 12810. In these three commits, both
getType() and isAStereotype() are found to co-change. Based on
this evolutionary coupling, the association rule

{argouml/model/mdr/FacadeMDRImpl.java/getType} 
{argouml/model/mdr/FacadeMDRImpl.java/isAStereotype}

is computed. This rule has a confidence value of 1.0 (100%)
and it suggests that should the method getType() be changed,
the method isASteretype() is also likely to be a part of the
same change with a conditional probability of 100%.

In addition to conceptual and evolutionary couplings, we
are developing several measures to gauge developer
contributions or expertise from the past evolutionary
information. In our previous work [7], we presented a
developer expertise factor, termed xFactor. It is computed
using a similarity measure between two vectors representing
the change contributions of a developer to a given source
code entity and the total changes to that source code entity.
This element of SE2 is not discussed at length here, as it is
already reported previously [7].

III. SUPPORTING TASKS WITH SE2

We now describe the specifics of SE2 in supporting the
core software maintenance tasks FL, IA, and DR

A. Feature location (FL)

A feature represents in a program some functionality that
is accessible and visible to the developers. Identifying the
parts of the source code that correspond to a specific
functionality is a prerequisite to several maintenance tasks.
This process is referred to as feature location [13] and it is a
part of the incremental change [15]. For example, assume a
developer is working on text editor software and needs to
modify the file printing feature to ensure the files can be also
printed to PDF format. The developer first needs to find the
existing source code that implements file printing before
making any further changes. If the developer is unfamiliar
with this particular feature before, he might not know the
exact location and may spend considerable time and effort
searching for relevant source code before making any
changes. In SE2, FL is supported via the following steps:

Step 1: Create a corpus of the retrieved software system.
To analyze conceptual information in a given release of a
software system, the source code and accompanying artifacts

(e.g., requirements, design documentation, and bug reports)
are parsed using a developer-defined granularity level (that is
methods or files). A corpus is created, so that each software
artifact will have a corresponding document in it. We rely
on srcML [4] as the underlying representation for source
code and textual information. srcML is an XML
representation for C/C++/Java source code with selective
AST embedded and documentary constructs preserved.

Step 2: Index software using IR methods. The corpus is
indexed using advanced IR methods, such as LSI and Latent
Dirichlet Allocation, for indexing software. If LSI is used
for indexing, dimensionality reduction is performed to
capture important conceptual information about identifiers,
comments and their relationships in the source code.

Step 3: Expand the original query using terms from
evolutionary sources.

Evolutionary information at this point can be used in at
least three different ways. Firstly, the user query may be
expanded with similar words from commit logs (which, in
turn should improve expressiveness of user queries).
Secondly, the corpus of software, which is built in Step 1,
may be augmented with information from commit logs
pertaining to source code entities. For instance, all the
commit logs involving method foo() are added to the
document representing method foo() in a corpus of a
software system. The idea behind this approach is to capture
design decisions and rationale encoded by developers while
modifying code entities, which in turn should improve the
expressiveness of IR-based FL. Thirdly, the developer can
also utilize evolutionary couplings, which are obtained via
MSR-based analysis, to inspect other methods, which have
high evolutionary couplings with the methods in the ranked
list. We will compare how effective these three integration
scenarios are with respect to other potential combinations,
and develop and evaluate tool prototypes.

B. Change Impact Analysis (IA)

A typical IA technique takes a software entity in which a
change is proposed, and estimates other entities that are also
potentially change candidates, referred to as an estimated
impact set. Bohner and Arnold surveyed IA methodologies
in 1996 [2], and a number of approaches based on improved
static and dynamic analyses are proposed thereafter [1, 10,
16]. Our general approach consists of the following steps:

Step 1: Select the first software entity, es, for which IA
needs to be performed. For example, this first entity could
be a result of FL for a feature request. Note that IA starts
with a given entity.

Step 2: Compute conceptual couplings for the release of
a software system in which the first entity is selected with IR
methods. Let EI(es) be the set of entities that are
conceptually related to the entity from Step 1, i.e.,
Conceptual Coupling Between two Entities, CCBE(es, ej) is
within a user specified value, Ri. Let EI(es) = { ej | CCBE(es,
ej) ≤ Ri  [0, 1]}.

Step 3: Mine a set of commits from the source code
repository and compute evolutionary coupling metrics.
Here, only the commits that occurred before the release in
the above step are considered. Let EM(es) be the set of

entities that are evolutionary coupled to the entity from Step
1, i.e., Evolutionary Coupling Between two Entities, ECBE
(es, ej) is within a user specified value, Rm. Let EM(es) = { ek |
ECBE(es, ek) ≤ Rm  [0, 1]}.

Step 4: Compute the estimated impact set, E(es), from
the metrics computed in steps 3 and 4. With regards to
combining conceptual and evolutionary dependencies, there
are quite a few possibilities. Should the union or intersection
of the two estimations be considered, i.e., EI(es)  EM(es) or
EI(es)  EM(es)? This question may not be an issue, if both
EI(es) and EM(es) predict the same estimation set. In a
different situation, taking their union could result in
increased recall; however, at the expense of decreased
precision (if a large number of false-positive estimates). On
the other hand, taking only the intersection imposes a stricter
constraint that could result in increased precision; however,
at the expense of decreased recall. Our initial finding shows
that the conceptual and evolutionary couplings provide
orthogonal information (i.e., they tend to give impact sets
with only a slight overlap) [9]. Therefore, we are focusing
on taking the union of the two couplings for impact sets and
refer to this combination as disjunctive approach.
Furthermore, we have devised schemes based on equal (and
adaptive weights given to the contribution of the two types of
couplings in the combinations. For example, in one equal
combination, both the coupling types contribute half the
elements in the impact set. In another adaptive combination,
the contribution of evolutionary couplings is parameterized
to the amount and period of the considered change history
(e.g., a week from the previous release).

We illustrate the mechanics of our disjunctive approach
with an equal combination scheme. In Apache httpd,
commit# 888310 is a fix for the bug# 470871: "Incorrect
request body handling with Expect: 100-continue….
response prior to sending its body." In this revision, three
source code files were changed: (/http/http_filters.c,
/http/http_protocol.c, /server/protocol.c). For this example,
let us assume the developer discovers, through feature
location, that fixing the problem requires modifying
http/http_filters.c. From this point, the developer can
perform impact analysis to discover other entities that also
require modification. As standalone techniques neither
conceptual nor evolutionary coupling were capable of
establishing a 100% recall. Conceptual coupling ranked
/server/protocol.c as first in the ranked list, but ranked
http/http_protocol.c as 91st, whereas evolutionary coupling
ranked http/http_protocol.c second in the ranked list, but
ranked /server/protocol.c as 16th. Here, we observed that
when combined, the couplings identify all methods requiring
modification within an impact set within a cut point of five
methods (i.e., improving both recall and precision).

1 https://issues.apache.org/bugzilla/show_bug.cgi?id=47087

C. Developer recommendations (DR)

Our approach to recommending expert developers two
steps [8]. In the first step, given a concept description, LSI is
used to locate a ranked list of relevant units of source code
(e.g., files, classes, and methods) that implement that concept
in a version (typically the release in which an issue is
reported) of the software system, i.e., FL. In the second step,
we use xFinder [7] (a tool that is based on xFactor) to
suggest a ranked list of developers to assist with a change in
a given file. Our approach differs from previous approaches,
as it does not need the history of past bug reports.
Furthermore, our approach not only supports bug
assignments, but also extends to features or any change
request (concept) in general.

For example, our approach correctly recommended a
ranked list of developers, [jaham, boemann], knowledgeable
in source code files related to a bug, from its description
“splitting views duplicates the tool options docker”, in
KOffice, an open source office productivity suite.

IV. EVALUATION PLANS AND PRELIMINARY

RESULTS

We conducted our first set of evaluations for IA on
hundreds of changes from open source systems Apache
httpd, ArgoUML, iBatis, and KOffice. The results show that
combining the two couplings provides statistically significant
improvements in precision and recall values over the two
couplings used individually. In some cases an improvement
of 20% in recall is achieved. We included code granularity
levels of files and methods, and several impact set sizes.

We have also conducted a preliminary evaluation for DR
on change requests from three open source systems
ArgoUML, Eclipse, and KOffice. The overall accuracies of
the correctly recommended developers are between 47% and
96% for bug reports, and between 43% and 60% for feature
requests. Furthermore, our approach outperformed two other
recommendation alternatives with a substantial margin.

We are planning on rigorously validating the proposed
SE2-based techniques for FL, IA and DR using empirical
techniques, such as case studies and controlled experiments.
For instance, we will perform case studies to determine to
what extent SE2 can be used to support IA tasks and compare
instantiated techniques with alternative approaches [3, 19].
Also, we will use the software change-history for
preliminary controlled experiments. Large open-source
systems, such as the KDE, Apache, jEdit, and GCC, will be
used as subject systems, as we have previous experience
with them in our preliminary case studies2. Moreover, they
provide a variety of applications, domains, programming
languages, development practices, and sizes.

V. CONCLUDING REMARKS

The contributions of this investigation are a step towards
answering our overarching research question as to what are
the exclusive and potentially synergistic benefits of
integrating conceptual and evolutionary information with

2 http://www.cs.wm.edu/semeru/data/jsme09-bugs-devs/

regards to key software maintenance tasks. While both these
sources have been studied independently before, their
combined use for tasks such as the ones studied here has not
been scientifically investigated. The proposed evaluation
will provide an empirical basis to help answer this question,
and define tools and techniques based on their integration.
Our preliminary evaluation does indicate that there are
improvements offered by the proposed SE2 model.

VI. ACKNOWLEDGEMENTS

This work is supported in part by NSF CCF-1063253,
NSF CCF-1016868, and NSF CCF-0916260 grants. Any
opinions, findings and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

REFERENCES
[1] T. Apiwattanapong, A. Orso, and M. J. Harrold, "Efficient and precise

dynamic impact analysis using execute-after sequences," in 27th ICSE'05,
St. Louis, MO, USA 2005, pp. 432 - 441.

[2] S. Bohner and R. Arnold, Software change impact analysis. Los
Alamitos, CA: IEEE Computer Society, 1996.

[3] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, "Software
dependencies, work dependencies, and their impact on failures " IEEE
Transactions on Software Engineering (TSE), vol. 35, pp. 864-878, 2009.

[4] M. L. Collard, H. H. Kagdi, and J. I. Maletic, "An xml-based lightweight
c++ fact extractor," in 11th IWPC'03, Portland, OR, 2003, pp. 134-143.

[5] H. Gall, Hajek, K., Jazayeri, M., "Detection of logical coupling based on
product release history," in ICSM'98, pp. 190 - 198.

[6] H. Kagdi, "Improving change prediction with fine-grained source code
mining," in 22nd ASE'07, Atlanta, Georgia, USA, 2007, pp. 559-562.

[7] H. Kagdi, M. Hammad, and J. I. Maletic, "Who can help me with this
source code change?," in ICSM'08, Beijing, China, 2008.

[8] H. Kagdi and D. Poshyvanyk, "Who can help me with this change
request?," in 17th ICPC'09, Vancouver, BC, Canada, 2009, pp. 273-277.

[9] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Collard, "Blending
conceptual and evolutionary couplings to support change impact analysis
in source code," in 17th WCRE'10, Boston, USA, 2010, pp. 119-128.

[10] J. Law and G. Rothermel, "Whole program path-based dynamic impact
analysis," in 25th ICSE, Portland, Oregon, 2003, pp. 308-318.

[11] M. M. Lehman and L. A. Belady, Program evolution: Processes of
software change: Academic Press Professional, Inc., 1985.

[12] D. Poshyvanyk and A. Marcus, "The conceptual coupling metrics for
object-oriented systems," in 22nd ICSM'06, Philadelphia, PA, pp. 469 -
478.

[13] D. Poshyvanyk, Y. G. Guéhéneuc, A. Marcus, G. Antoniol, and V.
Rajlich, "Feature location using probabilistic ranking of methods based
on execution scenarios and information retrieval," IEEE Transactions on
Software Engineering, vol. 33, pp. 420-432, June 2007.

[14] V. Rajlich and K. Bennett, "A staged model for the software lifecycle,"
Computer, vol. 33, pp. 66-71, July 2000.

[15] V. Rajlich and P. Gosavi, "Incremental change in object-oriented
programming," in IEEE Software, 2004, pp. 2-9.

[16] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, "Chianti: A tool
for change impact analysis of java programs," in 19th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications(OOPSLA '04), Vancouver, BC, Canada, 2004, pp. 432-448.

[17] M. P. Robillard and B. Dagenais, "Retrieving task-related clusters from
change history," in 15th Working Conference on Reverse Engineering
(WCRE'08), 2008, pp. 17-26.

[18] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, "Mining
version histories to guide software changes," IEEE Transactions on
Software Engineering, vol. 31, pp. 429-445, June 2005 2005.

[19] T. Zimmermann and N. Nagappan, "Predicting defects using network
analysis on dependency graphs " in 30th International Conference on
Software Engineering (ICSE'08), 2008, pp. 531-540.

