
User Reviews Matter! Tracking Crowdsourced
Reviews to Support Evolution of Successful Apps

Fabio Palomba⇤, Mario Linares-Vásquez§, Gabriele Bavota†, Rocco Oliveto‡,
Massimiliano Di Penta¶, Denys Poshyvanyk§, Andrea De Lucia⇤

⇤University of Salerno, Fisciano (SA), Italy – §The College of William and Mary, VA, USA
†Free University of Bozen-Bolzano, Bolzano (BZ), Italy – ‡University of Molise, Pesche (IS), Italy

¶University of Sannio, Benevento, Italy

Abstract—Nowadays software applications, and especially mo-
bile apps, undergo frequent release updates through app stores.
After installing/updating apps, users can post reviews and provide
ratings, expressing their level of satisfaction with apps, and
possibly pointing out bugs or desired features. In this paper
we show—by performing a study on 100 Android apps—how
applications addressing user reviews increase their success in
terms of rating. Specifically, we devise an approach, named
CRISTAL, for tracing informative crowd reviews onto source
code changes, and for monitoring the extent to which developers
accommodate crowd requests and follow-up user reactions as
reflected in their ratings. The results indicate that developers
implementing user reviews are rewarded in terms of ratings. This
poses the need for specialized recommendation systems aimed at
analyzing informative crowd reviews and prioritizing feedback
to be satisfied in order to increase the apps success.

I. INTRODUCTION

In recent years, software development and release planning
activities shifted from a traditional paradigm, in which a
software system is periodically released following a road map
(shipped to customers/shops or downloaded from the Internet),
towards a paradigm in which continuous releases become
available for upgrade with a cadence of few weeks, if not
days. This phenomenon is particularly evident in —though not
limited to—mobile apps, where releases are managed through
online app stores, such as the Apple App Store [3], Google
Play Market [15], or Windows Phone App Store [1].

In several contexts, and above all in the world of mobile
apps, the distribution of updates (i.e., new features and bug
fixes) through online markets is accompanied by a mechanism
that allows users to rate releases using scores (stars rating)
and text reviews. The quantitative part of the mechanism
is implemented in a form of scores, usually expressed as a
choice of one to five stars. The textual part of the rating
mechanism is a free text description that does not have a
predefined structure and is used to describe informally bugs
and desired features. The review is also used to describe
impressions, positions, comparisons, and attitudes toward the
apps. Therefore, app store reviews are free and fast crowd
feedback mechanisms that can be used by developers as a
backlog for the development process. Also, given this easy
online access to app-store-review mechanisms, thousands of
these informative reviews can describe various issues exhibited
in diverse combinations of devices, screen sizes, operating

systems, and network conditions that may not necessarily be
reproducible during development/testing activities.

Consequently, by reading reviews and analyzing the ratings,
development teams are encouraged to improve their apps, for
example, by fixing bugs or by adding commonly requested
features. According to a recent Gartner report’s recommenda-
tion [21], given the complexity of mobile testing “development
teams should monitor app store reviews to identify issues that
are difficult to catch during testing, and to clarify issues that
cause problems on the users’s side”. Moreover, useful app
reviews reflect crowd-based needs and are a valuable source
of comments, bug reports, feature requests, and informal user
experience feedback [7], [8], [14], [19], [22], [27], [29].

In this paper we investigate to what extent app development
teams can exploit crowdsourcing mechanisms for planning
future changes, and how these changes impact user satis-
faction as measured by follow-up ratings. Specifically, we
devise an approach named as CRISTAL (Crowdsourcing
RevIews to SupporT Apps evoLution) to detect traceability
links between incoming app reviews and source code changes
likely addressing them, and use such links to analyze the
impact of crowd reviews on the development process. It is
worth noting that several approaches have been proposed
in the literature for recovering requirements-to-source-code
traceability links [2], [26]. However, these methods are not
directly applicable in our context. First, as shown by Chen et
al. [8], not all the reviews can be considered useful and/or
informative. Also, unlike issue reports and emails, reviews
do not refer to implementation details. In other words, there
is a vocabulary mismatch between user reviews and source
code or issues reported in issue trackers. In order to address
these challenges, CRISTAL includes a multi-step reviews-to-
code-changes traceability link recovery approach that firstly
identifies informative comments among reviews (based on a
recent approach by Chen et al. [8]), and then traces crowd
reviews onto commit notes and issue reports by exploiting a
set of heuristics specifically designed for this traceability task.

We evaluated CRISTAL and the impact of a crowd review
mechanism (for planning and implementing future changes) on
the app success, with two empirical studies on 100 Android
apps. The results of our empirical investigation revealed that a
project monitoring mechanism like CRISTAL, which is based
on maintaining traceability links between reviews and source

1

<<Loop: for each review>>
Issue

Tracker

Extract reviews
for release rk-1

AR-Miner
Chen et al.
ICSE 2014

Issue
Extractor

Commit
Extractor

Versioning
System

reviews for rk-1

informative
reviews for rk-1

issues opened
after the review
date and closed
before rk release

commits
performed after the

review date and
before rk release

Link
Identifier

ReLink
Wu et al.
FSE 2011

All Links for
review rk

Links identified
for the review
under analysis

Monitoring
Component

CRISTAL's
report

Fig. 1. CRISTAL overview. Solid arrows represent information flow, while
dotted arrows represent dependencies.

code changes addressing them, is useful in the sense that
monitoring and implementing user reviews are rewarded by
apps’ users in terms of ratings.

The paper makes the following noteworthy contributions:
1) CRISTAL’s reviews-to-code-changes traceability recov-

ery approach. Albeit being inspired by classic IR-
based traceability recovery approaches (e.g., [2], [26]),
CRISTAL combines these techniques with some specific
heuristics to deal with (i) diversity and noise in crowd
reviews, and (ii) inherent abstraction mismatch between
reviews and developers’ source code lexicon.

2) CRISTAL’s monitoring mechanism. After linking re-
views to changes, the premier goal of CRISTAL is to en-
able developers tracking how many reviews have been ad-
dressed and analyzing the ratings to assess users’ reaction
to these changes. The proposed monitoring mechanism
can be used by developers to monitor project’s history by
analyzing the relationship between reviews and changes,
and thus better supporting release planning activities.

3) The results of an empirical study conducted on 100
Android apps. The study exploits CRISTAL to provide
quantitative and qualitative evidence on (i) how devel-
opment teams follow suggestions in informative reviews,
and (ii) how users react to those changes.

4) A comprehensive replication package [30]. The package
includes all the materials used in our studies, and in
particular: (i) the traceability oracles manually defined
for the ten Android apps; (ii) the listing and URLs of the
studied 100 Android apps; (iii) the raw data reporting the
links retrieved by CRISTAL on each app; and (iv) the R
scripts used to generate reported tables and figures.

II. OVERVIEW OF CRISTAL
CRISTAL follows a three-step process for extracting links

between reviews for release r
k�1 of an app and commits/issues

generated while working on release r

k

(Fig. 1). The first step
aims at collecting user reviews posted for the app release
r

k�1. These reviews are collected from the app store (i.e.,
Google Play). However, considering all possible reviews is
not an option, since some of them might not contain any
informative feedback for the app’s developers. For example, a
review like “this app is terrible” does not provide any insight
into specific problems experienced or features demanded by
users. Therefore, we rely on AR-MINER by Chen et al. [8]

to avoid this problem and to classify informative and non-
informative reviews.

In the second step, for each of the collected informa-
tive reviews ir

j

, the ISSUE EXTRACTOR and the COMMIT
EXTRACTOR collect the issues and the commits, potentially
driven by (i.e., due to) ir

j

. Issues opened after the ir
j

date (i.e.,
the date in which the review was posted) and closed before
the r

k

release date are considered to be potentially linked to
ir

j

. Also, commits performed after ir
j

date and before the r

k

release date are considered to be potentially linked to ir

j

.
Finally, each review ir

j

and the issues/commits collected for
it in the previous step, are provided to the LINK IDENTIFIER,
which is used to identify possible links between ir

j

and
issues/commits by using a customized approach based on In-
formation Retrieval (IR) techniques. The set of links retrieved
for each informative review is stored in a database grouping
together all links related to release r

k

. This information is
exploited by the MONITORING COMPONENT, which creates
reports for managers/developers and shows stats on the reviews
that have been implemented. In the following subsections, we
provide the details behind each of these major steps.

A. Collecting Reviews
CRISTAL requires the release dates of r

k�1 and r

k

to
retrieve links between reviews posted by users for the app’s
release r

k�1 and the commits/issues generated while working
on release r

k

. Note that we intentionally limit our focus to r

k

,
while some user reviews could be addressed in future releases.
This is because (i) we are interested in determining how many
reviews are considered as important to be addressed promptly,
and (ii) looking for release beyond r

k

would make the cause-
effect relationship between review and change less likely.

CRISTAL downloads the user reviews posted the day after
r

k�1 has been released until the day before r

k

has been
released. These reviews are those likely related to release r

k�1.
We use the term likely, since nothing prevents users from
leaving a review referring to a previous app release (e.g., r

k�2)
while the release r

k�1 maybe available (i.e., the user did not
upgrade to the last available release yet). This problem arises
due to the fact that the current version of Google Play does not
allow the user to associate a review with the release of an app
that she is reviewing. Note that we consider both negative (i.e.,
reviews with low ratings) as well as positive (i.e., reviews with
high ratings) user reviews. Indeed, while user complaints are
generally described in negative reviews, positive reviews could
also provide valuable feedback to developers, like suggestions
for new features to be implemented in future releases.

While the reviews retrieved for the release r
k�1 may contain

useful feedback for developers working on the app release
r

k

, as shown by Chen et al. [8], only some reviews contain
information that can directly help developers improve their
apps (35.1% on average [8]). Thus, most of reviews posted by
the crowd are simply non-informative for app’s developers.
CRISTAL relies on AR-MINER [8] to filter out those non-
informative reviews. In their evaluation, Chen et al. [8] showed
that AR-MINER had an accuracy between 76% and 88%.

2

B. Extracting Issues and Commits

For each informative review ir

j

, CRISTAL extracts candi-
date issues and commits that can be potentially linked to it.
Specifically, the ISSUE EXTRACTOR mines the issue tracker of
the app of interest, extracting all the issues opened after the ir

j

was posted, and closed before the r

k

release date (or before the
current date). For each issue satisfying these constraints, the
ISSUE EXTRACTOR collects (i) the title, (ii) the description,
(iii) the name of the person who opened it, (iv) the timestamps
of the issue opening/closing, and (v) all comments (including
timestamp and author) left on the issue.

The COMMITS EXTRACTOR mines the change log of the
versioning system hosting the app of interest by selecting
all the commits performed after ir

j

was posted and before
the r

k

release date (or before the current date). For each
commit satisfying such constraints, the COMMITS EXTRAC-
TOR collects (i) the timestamp, (ii) the set of files involved,
(iii) the author, and (iv) the commit message. Finally, the
set of issues/commits extracted during this step are provided,
together with the referred review ir

j

, to the LINK IDENTIFIER
component for detecting traceability links (see Fig. 1).

C. Detecting Links

The LINK IDENTIFIER component is responsible for es-
tablishing traceability links between each informative review
ir

j

and the set of issues/commits selected as candidates
to be linked by the ISSUE EXTRACTOR and the COMMIT
EXTRACTOR. Establishing links between reviews and issues
or commits requires, in addition to using IR-based techniques,
some appropriate adaptations keeping in mind requirements
of the specific context such as: (i) discarding words that do
not help to identify apps’ features, (ii) considering GUI level
terms1 when performing the linking, and (iii) considering the
length difference between reviews and issues/changes.

1) Linking Informative Reviews and Issues: The linking
between ir

j

and issues consists of the following steps.
Text normalization. The text in the review and the text in the
issue title and body are normalized by performing identifier
splitting for CamelCase and underscore (we also kept the
original identifiers), stop words removal, and stemming (using
the Porter stemmer [33]). We built an ad-hoc stop word list
composed of (i) common English words, (ii) Java keywords,
and (iii) words that are very common in user reviews, and,
thus, are not highly discriminating. To identify the latter words,
we consider the normalized entropy [11] of a given term t in
user reviews:

E

t

=

X

r2Rt

p(t|r) · log
µ

p(t|r)

where R

t

is the set of apps’ reviews containing the term
t, µ is the number of reviews on which the terms entropy
is computed, and p(t|r) represents the probability that the
random variable (term) t is in the state (review) r. Such

1For example, reviews have the words window, screen, activity to refer
Android GUIs rendered by Android Activities.

probability is computed as the ratio between the number of
occurrences of the term t in the review r over the total number
of occurrences of the term t in all the considered reviews.
E

t

is in the range [0, 1] and the higher the value, the lower
the discriminating power of the term. To estimate a suitable
threshold for identifying terms having a high entropy, we
computed the entropy of all the terms present in the reviews
of a larger set of 1,000 Android apps considered in a previous
study [37]. This resulted in entropy values for 13,549 different
terms. Given Q3 the third quartile of the distribution of E

t

for such 13,549 terms, we included in the stop word list terms
having E

t

> Q3 (i.e., terms having a very high entropy),
for a total of 3,405 terms. Examples of terms falling in our
stop word list are work (very common in sentences like does
not work—E

work

= 0.93), fix, and please (e.g., please fix—
E

fix

= 0.81, E
please

= 0.84), etc. Instead, terms like upload
(E

upload

= 0.24) and reboots (E
reboots

= 0.36) are not part
of our stop word list, since showing a low entropy (high
discriminating power) and likely describing features of specific
apps. Including the entropy-based stop words into the stop
words list helped us to improve completeness of identified
links (i.e., recall) by +4% and precision by +2%. The resulting
stop word list can be found in our replication package [30].
Textual similarity computation. We use the asymmetric Dice
similarity coefficient [5] to compute a textual similarity be-
tween a review ir

j

and an issue report is

i

(represented
as a single document containing the issue title and short
description):

sim

txt

(ir

j

, is

i

) =

|W
irj \W

isi |
min(|W

irj |, |Wisi |)

where W

k

is the set of words contained in the document k and
the min function that aims at normalizing the similarity score
with respect to the number of words contained in the shortest
document (i.e., the one containing less words) between the
review and the issue. The asymmetric Dice similarity ranges
in the interval [0, 1]. We used the asymmetric Dice coefficient
instead of other similarity measures, such as the cosine sim-
ilarity or the Jaccard coefficient [20], because in most cases
user reviews are notably shorter than issue descriptions and,
as a consequence, their vocabulary is fairly limited.
Promoting GUI-related terms. Very often, users describe
problems experienced during the apps’ usage by referring to
components instantiated in the apps’ GUI (e.g., when clicking
on the start button nothing happens). Thus, we conjecture
that if a review ir

j

and an issue report is

i

have common
words from the apps’ GUI, it is more likely that is

i

is
related (i.e., due) to ir

j

and thus, a traceability link between
these two should be established. Thus, while retrieving links
for an Android app a

k

we build an a

k

’s GUI terms list
containing words shown in the a

k

’s GUI (i.e., buttons’ labels,
string literals, etc.). Such words are extracted by parsing the
strings.xml file, found in Android apps, which is used
to encode the string literals used within the GUI components.
Note that the presence of a term t in the a

k

’s GUI terms list has
a priority over its presence in the stop word list, i.e., t is not

3

discarded if present in both lists. Once the a

k

’s GUI terms list
has been populated, GUI-based terms shared between a review
ir

j

and an issue report is
i

are rewarded as in the following:

GUI

bonus

(ir

j

, is

i

) =

|GUI

W

(ir

j

) \GUI

W

(is

i

)|
|W

irj [W

isi |

where GUI

W

(k) are the GUI-based terms present in the
document k and W

k

represents the set of words present
in the document k. The GUI

bonus

(ir

j

, is

i

) is added to the
textual similarity between two documents, obtaining the final
similarity used in CRISTAL:

sim(ir

j

, is

i

) = 0.5 ·sim
txt

(ir

j

, is

i

)+0.5 ·GUI

bonus

(ir

j

, is

i

)

Note that both GUI

bonus

(ir

j

, is

i

) and the textual similarity
range in the interval [0, 1]. Thus, the overall similarity is
also defined in [0, 1]. In our initial experiments, we evaluated
CRISTAL without using the GUI

bonus

, and found that the
bonus helped obtaining additional improvement in terms of
recall and precision up to 1% and 5%, respectively.
Threshold-based selection. Pairs of (review, issue) having a
similarity higher than a threshold � are considered to be linked
by CRISTAL. We experimented with different values of �

ranging between 0.1 and 1.0 with a step of 0.1. The best results
were achieved with � = 0.6 (detailed results of the calibration
are reported in our online appendix [30]).

2) Linking Informative Reviews and Commits: The process
of linking each informative review ir

j

to a set of commits C

j

is quite similar to the one defined for the issues. However, in
this case, the corpus of textual commits is composed of (i) the
commit note itself, and (ii) words extracted from the names of
modified files (without extension and by splitting compound
names following camel case convention). Basically, we have
integrated the text from commit notes with words that are
contained in names of classes being changed (excluding inner
classes). This additional text better describes what has been
changed in the system, and can potentially match words in
the review especially if the commit note is too short and if
the names of the classes being changed match domain terms,
which are also referred from within the reviews. We chose
not to consider the whole corpus of the source code changes
related to commits, because it can potentially bring more
noise than useful information for our matching purposes. In
fact, we experimented with four different corpora: (a) commit
notes only, (b) commit notes plus words from file names, (c)
commit notes plus corpus from the source code changes, and
(d) commit notes plus words from file names and the result of
the unix diff between the modified files pre/post commit. The
option (b) turned out to be the one exhibiting highest recovery
precision. In particular, the difference in favor between (b)
and (a) was +11% in terms of recall and +15% in terms of
precision, between (b) and (c) it was +37% for recall and
+32% for precision, and between (b) and (d) it was +4% for
recall and +6% for precision.

3) Linking Issues and Commits: When all the links between
each informative review ir

j

and issues/commits have been
established, CRISTAL tries to enrich the set of retrieved links

by linking issues and commits. If ir

j

has been linked to an
issue is

i

and the issue is

i

is linked to a set of commits C

0
i

,
then we can link ir

j

also to all commits in C

0
i

. To link issues
to commits we use (and complement) two existing approaches.
The first one is the regular expression-based approach by
Fischer et al. [13] and a re-implementation of the RELINK
approach proposed by Wu et al. [38].

4) Filtering Links: Finally, a filtering step is performed by
the LINK IDENTIFIER to remove spurious links, related to
reviews that have been addressed already. As explained before,
the current version of Google Play does not associate a review
with an app release that the reviewer is using, thus allowing
users to post reviews related to issues, which could have been
already addressed in the past. To mitigate this problem, we also
extract changes and issues before r

k�1 release date (using the
ISSUE EXTRACTOR and the COMMIT EXTRACTOR), and use
the LINK IDENTIFIER for tracing a review to changes already
addressed in r

k�1. If a review is linked to past changes, all
links related to it are discarded by the LINK IDENTIFIER.

D. Monitoring Crowdsourced Reviews with CRISTAL
Once CRISTAL builds traceability links between reviews

and commits, the MONITORING COMPONENT can be used
to track whether developers implement the crowdsourced
reviews. First, the links can be used during the development
of r

k

release to allow project managers keep track on which
requests have (not) been implemented. Indeed, the MONI-
TORING COMPONENT creates a report containing (i) the list
of informative reviews (not) implemented for a given date,
and (ii) the review coverage, providing an indication of the
proportion of informative reviews that are linked to at least
one commit/issue. Specifically, given the set of informative
reviews IR

k�1 posted after release k � 1, and the subset of
these reviews for which exists a traceability link towards a
change (TIR

k�1 ✓ IR

k�1), the review coverage is computed
as TIR

k�1/IRk�1. Second, the MONITORING COMPONENT
can be exploited after release r

k

has been issued. In this
case, besides providing all information described above, it also
includes the gain/loss in terms of average rating with respect
to r

k�1 in the generated report. This last piece of information
is the most important output of CRISTAL, because it can
provide project managers with important indications on the
work being done while addressing r

k�1’s reviews.

III. EVALUATING CRISTAL’S LINKING ACCURACY

The goal of the first study is to investigate to what ex-
tent user reviews can be linked to issues/commits by using
CRISTAL. In particular, we evaluated CRISTAL’s accuracy
by measuring precision and recall of the traceability recovery
process. The context of this study consists of ten Android
apps listed in Table I. For each app, the table reports the
analyzed release, the size in KLOCs, the number of reviews
for the considered release (and in parenthesis the number of
informative reviews as detected by AR-MINER), commits, and
issues. The choice of this set of ten apps is not completely
random; we looked for (i) open source Android apps published

4

TABLE I
THE TEN APPS CONSIDERED IN THIS STUDY.

App KLOC Reviews Commits Issues(Informative)
AFWall+ 1.2.7 20 161 (53) 181 30
AntennaPod 0.9.8.0 33 528 (112) 1,006 21
Camera 3.0 47 1,120 (299) 2,356 30
FrostWire 1.2.1 1,508 743 (230) 1,197 182
Hex 7.4 33 346 (119) 1,296 155
K-9 Mail 3.1 116 546 (174) 3,196 30
ownCloud 1.4.1 29 306 (85) 803 149
Twidere 2.9 114 541 (157) 723 23
Wifi Fixer 1.0.2.1 45 860 (253) 1,009 34
XBMC Remote 0.8.8 93 540 (167) 744 28
Overall 2,038 5,691 (1,649) 12,307 682

TABLE II
AGREEMENT IN THE DEFINITION OF THE ORACLES.

App E1 [E2 E1 \ E2 Agreement
AFWall+ 15 11 73%
AntennaPod 6 4 67%
Camera 11 9 82%
FrostWire 3 3 100%
Hex 24 19 79%
K-9 Mail 9 6 67%
ownCloud 23 13 57%
Twidere 13 11 85%
Wifi Fixer 16 9 57%
XBMC Remote 57 38 67%
Overall 177 123 69%

on the Google Play market with versioning system and issue
tracker publicly accessible, and (ii) enough diversity in terms
of app category (e.g., multimedia, communication), size, and
number of issues and commits (see Table I).

A. Research Question and Study Procedure

We aim at answering the following research question:
• RQ

a

: How accurate is CRISTAL at identifying links
between informative reviews and issues/commits?

While evaluating the traceability recovery precision simply
requires a (manual) validation of the candidate links, evalu-
ating its recall requires the knowledge of all links between
user reviews and subsequent issues and commits, some of
which might not be identified by CRISTAL. Therefore, to
assess CRISTAL in terms of precision and recall, we have
manually created an oracle as follows. For each app, the
authors independently inspected reviews, issues, and commit
logs/messages, in couples (i.e., two evaluators were assigned
to each app), with the aim of identifying traceability links
between reviews and issues/commits. In total, six of the
authors were involved as evaluators and, for each app to
analyze, each of them was provided with the app’s source code
and three spreadsheets: (i) the first reporting all user reviews
for the app of interest, with the possibility of ordering them by
score and review date, (ii) the second containing all the issues,
characterized by title, body, comments, and date, and (iii) the
third reporting for each commit performed by developers its
date, commit message, and the list of involved files. Given
the number of reviews/issues/commits involved (see Table I),
this process required approximately five weeks of work. This
is actually the main reason why the accuracy assessment of
CRISTAL was done on a relatively limited set of apps. Once
completing this task, the produced oracles were compared,
and all involved authors discussed the differences, i.e., a link

TABLE III
RQa: RECALL, PRECISION, AND F-MEASURE ACHIEVED BY CRISTAL.
App #Links (Oracle) precision recall F-measure
AFWall+ 13 85% 73% 79%
AntennaPod 3 67% 67% 67%
Camera 9 89% 89% 89%
FrostWire 2 100% 50% 67%
Hex 20 79% 75% 77%
K-9 Mail 7 72% 71% 71%
ownCloud 14 71% 86% 78%
Twidere 13 75% 69% 72%
Wifi Fixer 11 62% 73% 67%
XBMC Remote 47 80% 68% 74%
Overall 141 77% 73% 75%

present in the oracle produced by one evaluator, but not in
the oracle produced by the other. To limit the evaluation bias,
we made sure that at least one of the inspectors for each pair
did not know the details of the approach. Also, the oracle
was produced before running CRISTAL, hence none of the
inspectors knew the potential links identified by CRISTAL.
Table II summarizes the agreement for each app considered
in the study, reporting the union of links retrieved by two
evaluators (E1[E2), their intersection (E1\E2), and the level
of agreement computed as Jaccard similarity coefficient [20],
i.e., link intersection over link union. As we can see, while
there is not always full agreement on the links to consider,
the overall agreement of 69% is quite high and, combined
with the open discussion performed by the evaluators to solve
conflicts, it ensures high quality of the resulting oracle.

After building the unified oracle for each app, we used
well-known recall and precision [5] metrics to evaluate
the recovery accuracy of CRISTAL. Also, since there is a
natural trade-off between recall and precision, we assess the
overall accuracy of CRISTAL by using the harmonic mean
of precision and recall, known as F-measure [5].

B. Analysis of the Results

Table III reports precision, recall, and F-measure achieved
by CRISTAL when retrieving links between user reviews and
issues/commits on ten apps from our study. The last row of
Table III shows the results achieved when considering all 141
links present in our oracles as a single dataset. Note that, for
these ten apps, it never happened for a single review to be
traced onto a previously performed commit, i.e., that was likely
to be related to something already fixed (see Section II-C).

Results in Table III are relatively positive, showing an
overall precision of 77% and a recall of 73% (75% F-measure).
Also, the precision achieved by CRISTAL is never lower
than 60%. Manual analysis of false positive links identified
by CRISTAL highlighted that those were mostly due to
pairs of reviews and commits that, even exhibiting quite high
textual similarity, did not represent cases where app developers
were implementing user comments. For instance, consider the
following review left by a user for the XBMC REMOTE app
(open source remote for XBMC home theaters):

5

Rating: ? ? ? ? ? - April 25, 2014
App works great.
I did have a few null pointer exceptions but they were
only for the videos I had no metadata for.

CRISTAL links this review to a commit modifying classes
VIDEOCLIENT and VIDEOMANAGER and having as com-
mit note: Handle empty playlists correctly: Do not throw
NULLPOINTEREXCEPTIONS and INDEXOUTOFBOUNDEX-
CEPTIONS when retrieving an empty playlist. While the user
was reporting a problem with videos without metadata, the
commit actually aimed at fixing a bug with empty playlists.
However, the high number of shared terms (i.e.,“null”,
”pointer”, “exception”, “video”) lead to a high similarity
between the review and the commit, with the consequent
identification of a false positive link. Indeed, most of the other
terms present in the review (i.e., all but metadata) were part of
our stop word list. In summary, as any other approach based on
textual similarity matching, CRISTAL may fail whenever the
presence of common words does not imply similar meaning of
the review and the commit note. For nine out of ten apps the
recall is above 60%, reaching peaks close to 90% for two of
them. On the negative side, the lowest recall value is achieved
on FROSTWIRE, where, the 50% recall value is simply due to
the fact that just one out of the two correct links is retrieved
by CRISTAL. We manually analyzed the links present in our
oracle and missed by CRISTAL, to understand the reasons
behind that. We noticed that the missing links were mainly
due to a vocabulary mismatch between the reviews and the
commits/issues to which they were linked. For instance, the
following review was left by a FROSTWIRE’s user:

Rating: ? - October 7, 2013
Stopped working
Doesn’t download any song. Needs to be fixed.

FROSTWIRE is an open source BitTorrent client available
for several platforms and the user is complaining about prob-
lems experienced with downloading songs. In our oracle, the
review above is linked to a commit performed to fix such a
problem. However, the terms being used in the commit note,
as well as the words contained in the names of the modified
files, are different from those used in the review. Indeed,
CRISTAL links this review to a commit performed by a
developer while working on the app release 1.2.2, and dealing
with the addition of a download log (i.e., the download history
of a user) to the FROSTWIRE app. The linking was due to the
fact that the commit, accompanied by the message “Added
download actions log”, involved among several others code
files, such as StopDownloadMenuAction.java, which
share with the review the words “stop” and “download”. Since
the other review’s words (all but song) are present in the stop
word list adopted by CRISTAL, the Dice similarity between
the review and the commit results to be high, thus leading to
a false positive link. In summary, as any approach based on
textual similarity, CRISTAL may fail whenever the presence

of common words does not imply similar meaning of the
review and the commit note.

Answer to RQ
a

. Despite few cases discussed above,
CRISTAL exhibits high accuracy in retrieving links between
crowd reviews and issues/commits, with an overall precision
of 77% and recall of 73%.

IV. HOW DEVELOPERS REACT TO USER’S REVIEWS

Once we know the CRISTAL’s linking accuracy, the goal
of the second study is to apply CRISTAL in its typical
usage scenario. Specifically, we aim at analyzing to what
extent developers use crowdsourced reviews for planning and
performing changes to be implemented in the next releases.
The purpose is to investigate possible gains (if any) for the
app’s success as maybe reflected in improved ratings/reviews.

A. Research Questions and Study Procedure

In the context of this study we formulate the following RQs:
• RQ

c

: To what extent do developers fulfill reviews when
working on a new app release? The goal here is to
empirically identify whether apps’ developers take into
account (or not) informative reviews when working on a
new app release.

• RQ
e

: Which is the effect of a crowd review mechanism
(for planning and implementing future changes) on the
app success? By addressing RQ

e

we aim at empirically
verifying the benefit (if any) of such crowdsourcing
activity, in this case measured in terms of apps’ scores.

To address RQ
c

, we used the CRISTAL’s MONITORING
COMPONENT to identify the review coverage (i.e., the per-
centage of informative reviews that are linked to at least
one issue/commit–see Section II-D) in 100 Android apps
(including the ten apps used in the context of our previous
study). Indeed, if a review is covered (i.e., it is linked to at
least one issue/commit), it is likely that it has been taken
into account by developers trying to fix the problem raised
by a user in her review. Note that when computing the review
coverage we only considered informative reviews as detected
by AR-MINER, as non-informative reviews do not provide
improvement suggestions for apps.

Before applying CRISTAL to measure reviews coverage,
we need to quantify its accuracy when classifying user reviews
as covered or not covered. For each informative review ir

j

,
CRISTAL classifies it as covered if it is able to identify a
link between ir

j

and at least one issue/commit, otherwise
the review is classified as not covered. Also in this case, we
need an oracle, i.e., the set of reviews covered to compute
the classification accuracy of CRISTAL. For this reason, we
evaluated CRISTAL on the same set of ten apps used to
answer RQ

a

as in our previous study. The results are analyzed
through the confusion matrix produced by the CRISTAL clas-
sification and computing Type I and Type II errors. A Type
I error occurs when CRISTAL wrongly classifies a covered
review as not covered, while a Type II error occurs when
CRISTAL wrongly classifies a not covered review as covered.

6

Note that, unlike the review coverage computation, when as-
sessing the CRISTAL classification accuracy we also consider
reviews that AR-MINER classified as non-informative. This
was needed to take into account possible informative reviews
wrongly discarded by CRISTAL that are actually linked to at
least one issue/commit. Indeed, three reviews classified as non-
informative and discarded by CRISTAL) are actually present
in the manually built oracle, i.e., they are covered.

The confusion matrix shows that (i) the number of reviews
that are covered (i.e., linked to at least one commit/issue) in
the oracle (74) and that are classified as such by CRISTAL are
51, (ii) the number of reviews that are covered in the oracle
and that are classified as not covered by CRISTAL (i.e.,
Type I errors) are 23, (iii) the number of reviews that are
not covered in the oracle (5,617) and that are classified as
such by CRISTAL are 5,610, and (iv) the number of reviews
that are not covered in the oracle and that are classified (i.e.,
Type II errors) as covered by CRISTAL are 7. Thus, out
of 5,691 reviews, 5,661 were correctly classified. However,
while the percentage of Type II errors is very low (<0.01%),
when applying CRISTAL to identify covered reviews we must
consider that we may miss around 31% of true positive links.

To address RQ
e

, we correlated the review coverage of 100
apps with the increment/decrement of the overall rating of
the apps between the previous release, i.e., the one to which
the reviews were referring to, and the current release, i.e.,
the one (not) implementing the reviews. To have a reliable
overall rating for both releases, we ensure that all 100 apps
had at least 100 reviews for each of the two releases we
studied. Once collected all data, we computed the Spearman
rank correlation [39] between the review coverage of apps and
the increment/decrement of the average rating (from now on
avgRat

change

) assigned by users to the current release with
respect to the previous release. We interpret the correlation
coefficient according to the guidelines by Cohen et al. [9]:
no correlation when 0  |⇢| < 0.1, small correlation when
0.1  |⇢| < 0.3, medium correlation when 0.3  |⇢| < 0.5,
and strong correlation when 0.5  |⇢|  1. We also grouped
the 100 apps based on the percentage of informative reviews
they implemented (i.e., the coverage level) to better observe
any possible correlation. In particular, given Q1 and Q3 the
first and the third quartile of the distribution of coverage
level for all apps, we grouped them into the following three
sets: high coverage level (coverage level > Q3); medium
coverage level (Q3 � coverage level > Q1); low coverage
level (coverage level  Q1)

We analyzed the boxplots of the distribution of
avgRat

change

by grouping the apps in the three categories
described above. In addition to boxplots, we performed a
pairwise comparison of avgRat

change

for the three groups
of apps by using the Mann-Whitney test [10] with ↵ = 0.05.
Since we perform multiple tests, we adjust our p-values using
the Holm’s correction procedure [18]. We also estimated the
magnitude of the difference between the avgRat

change

for
different groups of apps by using the Cliff’s Delta (d) [16].
We follow guidelines by Cliff [16] to interpret the effect size

Fig. 2. RQc: review coverage of the 100 apps.

Apps

C
ov
er
ag
e

0.
0

0.
2

0.
4

0.
6

0.
8

values: small for |d| < 0.33, medium for 0.33  |d| < 0.474

and large for |d| � 0.474.

B. Analysis of the Results

This section discusses the results for RQ
c

and RQ
e

.
1) Review coverage: Fig. 2 reports the percentage of infor-

mative reviews2 implemented by the developers of the consid-
ered 100 apps3. The results suggest that most of the developers
carefully take into account user reviews when working on the
new release of their app. On the one hand, among the 100
apps, on average 49% of the informative reviews (of which
64% are negative) are implemented by developers in the new
app release. Moreover, 28 apps implemented more than 74%
of informative reviews. On the other hand, we also found 27
apps implementing less than 25% of informative user reviews.
Overall, we observed a first quartile (Q1) of 18%, a median
(Q2) of 50% and a third quartile (Q3) of 73%. As examples
of interesting cases, we found that developers of the SMS
BACKUP+ app considered 61 informative reviews received in
release 1.5.0 by covering all of them in release 1.5.1; and
AUTOSTARTS’ developers implemented only five informative
reviews out of 24 received for the release 1.0.9.1.

Answer to RQ
c

. In most cases developers carefully take
into account user reviews when working on the new release of
their app. Indeed, on average, 49% of the informative reviews
are implemented by developers in the new app release.

2) Benefits of crowdsourcing: When analysing the change
of the app’s rating (64 of the 100 analysed apps increased
their rating between a release and the subsequent observed
one), we found a strong positive Spearman’s rank correlation
(⇢ =0.59, p-value<0.01) between the apps’ coverage level
and the change of average score between the old and the new
app release (avgRat

change

). This indicates that the higher the
coverage level, the higher the avgRat

change

(i.e., apps imple-
menting more informative reviews increase more their average
score in their new release). Fig. 3 shows the avgRat

change

dis-
tributions for apps with low, medium, and high coverage level.
Fig. 3 confirms that apps implementing a higher percentage
of reviews are rewarded by their users with a higher positive

2It is worth noting that 55% of the informative reviews identified by AR-
MINER are negative (rating  3).

3Among these 100 apps, only two reviews were traced to a previously
performed commit, i.e., they were likely to be related to something already
fixed, and thus discarded by the Link Identifier.

7

Fig. 3. RQe: Boxplots of avgRatchange for apps having different coverage
levels. The red dot indicates the mean.

TABLE IV
RQe: avgRatchange FOR APPS HAVING DIFFERENT coverage levels:

MANN-WHITNEY TEST (ADJ. P-VALUE) AND CLIFF’S DELTA (d).
Test adj. p-value d
high level vs medium level <0.001 0.82 (Large)
high level vs low level <0.001 0.91 (Large)
medium level vs low level 0.047 0.24 (Small)

avgRat

change

. Indeed, apps implementing low percentage of
reviews obtain, on average, a -0.21 avgRat

change

, i.e., their
average rating for the new release is lower than for the previous
one. Instead, apps having a medium and a high coverage
level achieve, on average, a 0.20 and a 0.33 avgRat

change

,
respectively.

Table IV reports the results of the Mann-Whitney test
(adjusted p-value) and the Cliff’s d effect size. We compared
each set of apps (grouped by coverage level) with all other
sets having a lower coverage level (e.g., high level vs. the
others). Table IV shows that apps implementing a higher
number of reviews always exhibit a statistically significantly
higher increment of their average score than apps having a
lower percentage of reviews implemented (p-value always <

0.05). The Cliff’s d is always large, except for the comparison
between apps having a medium level and those having low
level, where the effect size is medium.

Thus, the quantitative analysis performed to answer RQ
e

provides us with empirical evidence that developers of Android
apps implementing a higher percentage of informative user
reviews are rewarded by users with higher rating for their
new release. Although we are aware that this is not sufficient to
claim causation, we performed a qualitative analysis to (at least
in part) find a rationale for the relation that we quantitatively
observed. The most direct way to find some practical evidence
for our findings is analyzing comments left on Google Play
by the same user for the two releases considered in our study
for each of the 100 apps (i.e.,previous and current releases).
Specifically, we checked whether there were cases in which (i)
a user complained about some issues experienced in release
r

k�1 of an app, hence grading the app with a low score, (ii)
developers performed a change to solve the issue in release r

k

,
and (iii) the same user positively reviewed release r

k

, hence
acknowledging the fixes. In our study, we found 29 such cases.
While this number might appear low, it must be clear that it
may or may not happen that users positively (re)comment on
an app after their complaints were addressed. Having said that,
it is interesting to note that in all of the 29 cases the score given
by the user on the previous release (r

k�1) increased in the new
(fixed) release (r

k

). The average increment was of 3.7 stars

(median=4). For instance, a user of ANYSOFTKEYBOARD4

complained about release 74 of such app, grading it with a
one-star score: you cannot change the print location with the
left and right arrows, a normal delete button is missing, the
back space button for delete is not friendly. After the app
was updated in release 75, the same user assigned a five-
stars score: Love the keyboard, fixed the problems. Another
example is a user of TINFOIL FOR FACEBOOK5, assigning a
two-star score to release 4.3, and after upgrading release 4.4
assigning a five-stars score, commenting that the update fixed
all my gripes, great app. As a final highlight, it is interesting
to report the increase/decrease in average rating obtained by
the two apps cited in the context of RQ

c

. SMS BACKUP+,
implementing 100% of the 61 informative reviews received
for release 1.5.0, increased the overall score for release 1.5.1
in +0.86. Instead, the AUTOSTARTS app, implementing only
20% of the 24 negative reviews received on release 1.0.9.1,
obtained a decrease of -0.79 on its overall score for the release
1.0.9.2.

Answer to RQ
e

. Developers of Android apps implementing
user reviews are rewarded in terms of ratings. This is con-
firmed by the observed positive correlation (0.59) between
review coverage and change in overall score between the
old and the new app releases. Also, our qualitative analysis
supports, at least in part, our quantitative findings.

V. THREATS TO VALIDITY

Regarding construct validity (relationship between theory
and observation), one threat is due to how we built the oracle
needed for assessing CRISTAL’s traceability precision and
recall. Although the evaluators are authors of this paper, we
limited the bias by (i) employing in each pair one author who
did not know all the details of the approach beforehand, (ii)
building the oracle before producing (and knowing) the traces,
and (iii) following a clearly-defined evaluation procedure.
Such a procedure is also intended to mitigate imprecision
and incompleteness in the oracle, although cannot completely
avoid it. Also, the CRISTAL approach itself could suffer
from intrinsic imprecisions of other approaches that it relies
upon, such as AR-MINER [8] and RELINK [38], for which
we reported performances from the original work. Threats
to internal validity concern internal factors that could have
influenced our observations, especially for the relationship
between the coverage of reviews and the increase of the
ratings. Clearly, a rating increase could be due to many other
possible factors, such as a very important feature added in the
new release, regardless of the feedback. However, this paper
aims at providing a quantitative correlation (as it was also done
in previous work, where the use of fault- and change- prone
APIs was related to apps’ lack of success [6], [24]), rather
than showing a cause-effect relationship. Also, we found some
clear evidence of “rewarding” by mining and discussing cases
where the same user positively reviewed the new release of

4An on screen keyboard with support for multiple languages.
5A wrapper for Facebook’s site

8

the app after providing a lower score on a buggy one. As
for external validity (i.e., the generalizability of our findings)
the accuracy and completeness of CRISTAL (RQ

a

) has been
evaluated on ten apps, due to the need for manually building
the oracle. Nevertheless, we found links for a total of 5,691
reviews (1,649 were classified as informative) towards 12,307
commits and 682 issues. As for the second study (RQ

c

and
RQ

e

) the evaluation is much larger (100 apps) and diversified
enough in terms of apps’ size and categories.

VI. RELATED WORK

In this section we describe previous work on analyzing
crowdsourced requirements in mobile apps for building trace-
ability links between informal documentation and source code.

A. Analyzing Crowdsourced Requirements In Apps

Although CRISTAL is the first approach aimed at analyz-
ing and monitoring the impact of crowdsourced requirements
in the development of mobile apps, previous work has ana-
lyzed the topics and content of app store reviews [8], [14],
[19], [23], [29], the correlation between rating, price, and
downloads [17], and the correlation between reviews and rat-
ings [29]. Iacob and Harrison [19] provided empirical evidence
of the extent users of mobile apps rely on app store reviews
to describe feature requests, and the topics that represent the
requests. Among 3,279 reviews manually analyzed, 763 (23%)
expressed feature requests. CRISTAL also requires a labeled
set, but it uses a semi-supervised learning-based approach to
classify reviews as informative and non-informative [8] instead
of linguistic rules. Pagano and Malej [29] analyzed reviews
in the Apple App Store, and similar to Iacob and Harrison
[19], Pagano and Malej found that about 33% of the reviews
were related to requirements and user experience. In addition,
they also found that reviews related to recommendations,
helpfulness, and features information have the top ratings;
while reviews with worst ratings express dissuasion, dispraise,
and are mostly bug reports. Results of our second study
(Section IV-B2) are complementary to Pagano and Malej [29],
as we analyzed the impact of crowdsourcing requirements on
the apps’ success. Khalid et al. [23] conducted a qualitative
study on 6,390 user reviews of free iOS apps and qualitatively
classified them into 12 kinds of complaints. Their study sug-
gested that over 45% of the complaints are related to problems
developers can address, and that they can be useful to prioritize
quality assurance tasks. Fu et al. [14] analyzed reviews at three
different levels: (i) inconsistency of comments, (ii) reasons
for liking/disliking an app, and (iii) user preferences and
concerns. From a sample of 50K reviews, 0.9% were found
to be inconsistent with the ratings. Regarding the reasons for
problematic apps, they were related to functional features,
performance issues, cost and compatibility, among others.
Chen et al. [8] proposed an approach (i.e., AR-MINER) for
filtering and ranking informative reviews automatically. On
average, 35% of the reviews were labeled as informative by
AR-MINER. CRISTAL relies on AR-MINER for detecting
informative reviews (see Fig. 1).

B. Linking Informal Documentation to Code

Several approaches have been proposed for tracing infor-
mal documentation (i.e., emails, forums, etc.) onto source
code or other artifacts. Bacchelli et al. [4] used lightweight
textual grep-based analysis and IR techniques to link emails
to source code elements. Parnin et al. [32] built traceability
links between Stack Overflow (SO) threads (i.e., questions and
answers) and API classes to measure the coverage of APIs
in SO discussions. Linares-Vásquez et al. [25] linked Stack
Overflow questions to Android APIs to identify how develop-
ers react to API changes. Panichella et al. [31] proposed an
heuristic-based approach for linking methods description in
informal documentation such as emails or bug descriptions to
API elements. the short corpus of reviews and commit notes
is not suitable for techniques like RTM. Rigby and Robillard
[34] identified salient (i.e., essential) API elements in infor-
mal documentation by using island grammars [28] and code
contexts [12]. Subramanian et al. [35] extracted and analyzed
incomplete ASTs from code snippets in API documentation
to identify API types and methods referenced in the snippets.
Thung et al. [36] mined historical changes to recommend
methods that are relevant to incoming feature requests. Instead
of using oracles or island grammars for linking informal
documentation to source code, CRISTAL uses bug reports
and commit notes as a bridge between reviews and source
code changes. Also, although the purpose of CRISTAL is
not to recommend API elements that are relevant to incoming
crowdsourced requirements, it traces user reviews to source
code changes in order to monitor whether those requirements
are considered and implemented by the developers.

VII. CONCLUSION AND FUTURE WORK

This paper presents an in-depth analysis into what extent
app development teams can exploit crowdsourcing mecha-
nisms for planning future changes and how these changes
impact users’ satisfaction as measured by follow-up ratings.
We devised an approach, named CRISTAL, aimed at de-
tecting traceability links between app store reviews and code
changes likely addressing them. Using such links it is possible
to determine which informative reviews are addressed and
which is the effect of a crowd review mechanism (for planning
and implementing future changes) on the app success. The
achieved results showed that (i) on average, apps’ developers
implement 49% of informative user’s reviews while working
on the new app release, and (ii) user reviews really matter
for the app’s success, because fulfilling a high percentage
of informative reviews is usually followed by an increase in
the ratings for the new release of that app. As for the future
work, we are planning on replicating the study on different app
stores, not necessarily limited to mobile apps, and improving
the algorithms for matching reviews onto changes. We are
also planning, based on the findings from our study, to build
a recommender system for prioritizing user reviews in order
to increase the app’s success.

9

REFERENCES

[1] “Windows phone app store. http://www.windowsphone.com/en-us/
store/.”

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983,
2002.

[3] Apple, “Apple app store. https://itunes.apple.com/us/genre/ios/id36?mt=
8.”

[4] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010. ACM, 2010, pp. 375–384.

[5] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[6] G. Bavota, M. Linares-Vásquez, C. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of api change- and fault-
proneness on the user ratings of android apps,” Software Engineering,
IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[7] L. V. G. Carreno and K. Winbladh, “Analysis of user comments: An
approach for software requirements evolution,” in 35th International
Conference on Software Engineering (ICSE’13), 2013, pp. 582–591.

[8] N. Chen, J. Lin, S. Hoi, X. Xiao, and B. Zhang, “AR-Miner: Mining
informative reviews for developers from mobile app marketplace,” in
36th International Conference on Software Engineering (ICSE’14),
2014, pp. 767–778.

[9] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.
Lawrence Earlbaum Associates, 1988.

[10] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Wiley, 1998.
[11] T. Cover and J. Thomas, Elements of Information Theory. Wiley-

Interscience, 1991.
[12] B. Dagenais and M. Robillard, “Recovering traceability links between

an API and its learning resources,” in 34th International Conference on
Software Engineering (ICSE’12), 2012, pp. 47–57.

[13] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in 19th
International Conference on Software Maintenance (ICSM 2003), 22-
26 September 2003, Amsterdam, The Netherlands, 2003, pp. 23–.

[14] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,” in
19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2013, pp. 1276–1284.

[15] Google, “Google play market. https://play.google.com.”
[16] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical

approach, 2nd ed. Lawrence Earlbaum Associates, 2005.
[17] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: MSR

for app stores,” in 9th IEEE Working Conference of Mining Software
Repositories, MSR 2012, June 2-3, 2012, Zurich, Switzerland. IEEE,
2012, pp. 108–111.

[18] S. Holm, “A simple sequentially rejective Bonferroni test procedure,”
Scandinavian Journal on Statistics, vol. 6, pp. 65–70, 1979.

[19] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in 10th Working Conference on Mining
Software Repositories (MSR’13), 2013, pp. 41–44.

[20] P. Jaccard, “Etude comparative de la distribution florale dans une portion
des alpes et des jura,” Bulletin de la Société Vaudoise des Sciences
Naturelles, no. 37, 1901.

[21] N. Jones, “Seven best practices for optimizing mobile testing efforts,”
Gartner, Tech. Rep. G00248240, February 2013.

[22] H. Khalid, M. Nagappan, and A. Hassan, “Examining the relationship
between findbugs warnings and end user ratings: A case study on 10,000
android apps,” Software, IEEE, vol. PP, no. 99, pp. 1–1, 2015.

[23] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
App users complain about? a study on free iOS Apps,” IEEE Software,
no. 2-3, pp. 103–134, 2014.

[24] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “API change and fault proneness:
a threat to the success of Android apps,” in Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE’13,
Saint Petersburg, Russian Federation, August 18-26, 2013. ACM, 2013,
pp. 477–487.

[25] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk, “How do api changes trigger stack overflow discussions? a
study on the android sdk,” in Proceedings of the 22Nd International
Conference on Program Comprehension, ser. ICPC 2014. New York,
NY, USA: ACM, 2014, pp. 83–94.

[26] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proceedings of 25th
International Conference on Software Engineering, Portland, Oregon,
USA, 2003, pp. 125–135.

[27] I. Mojica Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. Hassan, “Impact of ad libraries on ratings of android mobile apps,”
Software, IEEE, vol. 31, no. 6, pp. 86–92, Nov 2014.

[28] L. Moonen, “Generating robust parsers using island grammars,” in 8th
IEEE Working Conference on Reverse Engineering (WCRE), 2001, pp.
13–22.

[29] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in 21st IEEE International Requirements Engineering Confer-
ence, 2013, pp. 125–134.

[30] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia, “Online appendix of: User reviews
matter! tracking crowdsourced reviews to support evolution of successful
apps,” Tech. Rep., http://www.cs.wm.edu/semeru/data/ICSME15-cristal.

[31] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora,
“Mining source code descriptions from developer communications,”
in IEEE 20th International Conference on Program Comprehension
(ICPC’12), 2012, pp. 63–72.

[32] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd docu-
mentation: Exploring the coverage and dynamics of API discussions on
stack overflow,” Georgia Tech, Tech. Rep. GIT-CS-12-05, 2012.

[33] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[34] P. C. Rigby and M. P. Robillard, “Discovering essential code elements in
informal documentation,” in 35th International Conference on Software
Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013.
IEEE / ACM, 2013, pp. 832–841.

[35] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API docu-
mentation,” in 36th International Conference on Software Engineering
(ICSE’14), 2014.

[36] F. Thung, W. Shaowei, D. Lo, and L. Lawall, “Automatic recommen-
dation of API methods from feature requests,” in 28th International
Conference on Automated Software Engineering (ASE’13), 2013, pp.
11–15.

[37] M. L. Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto,
and D. Poshyvanyk, “API change and fault proneness: a threat to the
success of Android apps,” in Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013. ACM, 2013, pp. 477–487.

[38] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink: recovering links
between bugs and changes,” in SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13rd European Software Engineering Conference (ESEC-13),
Szeged, Hungary, September 5-9, 2011. ACM, 2011, pp. 15–25.

[39] J. H. Zar, “Significance testing of the spearman rank correlation coeffi-
cient,” Journal of the American Statistical Association, vol. 67, no. 339,
pp. pp. 578–580, 1972.

10

