
Sanitizing And Minimizing Databases For Software
Application Test Outsourcing

Boyang Li
College of William and Mary

Williamsburg, VA 23185
boyang@cs.wm.edu

Mark Grechanik
University of Illinois at Chicago

Chicago, IL 60607
drmark@uic.edu

Denys Poshyvanyk
College of William and Mary

Williamsburg, VA 23185
denys@cs.wm.edu

Abstract—Testing software applications that use nontrivial
databases is increasingly outsourced to test centers in order to
achieve lower cost and higher quality. Not only do different data
privacy laws prevent organizations from sharing this data with
test centers because databases contain sensitive information, but
also this situation is aggravated by big data – it is time consum-
ing and difficult to anonymize, distribute, and test with large
databases. Deleting data randomly often leads to significantly
worsened test coverages and fewer uncovered faults, thereby
reducing the quality of software applications.

We propose a novel approach for Protecting and mInimizing
databases for Software TestIng taSks (PISTIS) that both sanitizes
and minimizes a database that comes along with an application.
PISTIS uses a weight-based data clustering algorithm that
partitions data in the database using information obtained using
program analysis that describes how this data is used by the
application. For each cluster, a centroid object is computed that
represents different persons or entities in the cluster, and we
use associative rule mining to compute and use constraints to
ensure that the centroid objects are representative of the general
population of the data in the cluster. Doing so also sanitizes
information, since these centroid objects replace the original data
to make it difficult for attackers to infer sensitive information.
Thus, we reduce a large database to a few centroid objects and we
show in our experiments with two applications that test coverage
stays within a close range to its original level.

I. INTRODUCTION

Database-centric applications (DCAs) are common in en-
terprise computing, and they use nontrivial databases [26].
Testing DCAs is increasingly outsourced to test centers in
order to achieve lower cost and higher quality [5], [15].
Unfortunately, not only do different data privacy laws prevent
organizations from sharing this data with test centers because
databases contain sensitive information [41], [45], but it is also
very time consuming and difficult to anonymize, distribute,
and test applications with large databases. Complying with
these privacy laws by removing and sanitizing data often leads
to significantly worsened test coverages and fewer uncovered
faults, thereby reducing the quality of software applications
[21]. For instance, if values of the attribute Nationality
are replaced with the generic value “Human,” DCAs may
execute some paths that result in exceptions or miss certain
paths [21]. As a result, test centers report worse test coverage
(e.g., statement coverage) and fewer uncovered faults, thereby
reducing the quality of DCAs and obliterating benefits of test
outsourcing in distributed software development [33].

This situation is aggravated by big data—collections of
large-sized data sets that contain patterns that may be useful
for some tasks [6], [7], [23], [28]. To perform these tasks
using big data, DCAs use databases whose sizes are measured
in hundreds of terabytes on the low end. Our interviews with
contractors who use industry-strength tools like IBM Optim1

reveal that sanitizing large databases often takes many weeks
and requires significant resources. In addition, maintaining
and resetting states of large databases when testing DCAs is
difficult [18], [22]. Ideally, the size of a database should be
reduced to alleviate testing without sacrificing its quality.

Sanitizing and Minimizing (S&M) databases are loosely con-
nected tasks – in some cases, removing data from a database
that describe persons or entities may hide sensitive information
about them. However, in general, minimizing databases does
not hide sensitive information and sanitizing data does not
result in smaller databases. A fundamental problem in test
outsourcing is how to allow a DCA owner to release a smaller
subset of its private data with guarantees that the entities
in this data (e.g., people, organizations) are protected at a
certain level while retaining testing efficacy. Ideally, sanitized
(or anonymized) data should induce execution paths that are
similar to the ones that are induced by the original data. In
other words, when databases are S&Med, information about
how DCAs use this data should be taken into consideration.
In practice, this consideration rarely happens; our previous
work [21] as well as follow-up research [8], [36] showed that
many data anonymization algorithms seriously degrade test
coverages of DCAs.

To address this issue, we offer a novel approach for Pro-
tecting and mInimizing databases for Software TestIng taSks
(PISTIS) that both sanitizes and minimizes a database that
comes along with an application. PISTIS uses a weight-
based data clustering algorithm that partitions data in the
database using information from program analysis in weights
that indicate how this data is used by the application. For each
cluster, a centroid object is computed that represents different
persons or entities in the cluster, and we use associative rule
mining to compute and use constraints to ensure that the
centroid objects are representative of the general population of
data in the cluster. At the same time, we sanitize information

1http://www-01.ibm.com/software/data/optim

in these centroid objects to make it difficult for attackers to
infer sensitive information. Our paper makes the following
contributions.

• We created a novel approach that achieves both sanitiza-
tion and minimization of data using a novel combination
of data mining approaches, program analysis, and pri-
vacy constraints. PISTIS is platform and application and
database-neutral; it is widely applicable to different DCAs
that use different databases, especially in the context of
big data. Our work is unique; to the best of our knowl-
edge, there exists no prior approach that synergetically
addresses all components of the S&M problem that we
pose in this paper.

• We evaluated our approach on two open-source Java
applications and we show in our experiments that a
reduction in statement coverage of no more than 25%,
while minimizing the size of the database by more than
an order of magnitude.

• All data files and subject applications are available for
reproducibility from the project website http://www.cs.
uic.edu/∼drmark/PISTIS.htm.

II. AN ILLUSTRATIVE EXAMPLE

In this section, we describe how PISTIS works using an
illustrative example.

A. The DCA and Its Database

The original database is shown as a table on the left side
of Figure 2 and the resulting S&M database is shown to the
right side of the arrow after applying PISTIS to the original
database to S&M it. A DCA that uses this database is shown as
a fragment of Java-like pseudo-code in Figure 1. Line numbers
to the right should be thought of as labels, as much code
is omitted for space reasons. This example has if-else
statements that control six branches, where branch labels are
shown in comments along with the numbers of statements
that these branches control. These numbers are given purely
for illustrative purposes. We omit database connectivity code
that retrieves data from the attributes Age, Gender, and
Treatment of the database table and puts this data into
the corresponding variables Age, Gender, and Treatment.
The last column in Figure 2 shows what branches are covered
in the DCA with the data that belong to specific rows.

In our illustrative example, when a branch condition of a
control-flow statement is evaluated to true, some code in
the branch is executed in the scope of this statement. The
statements that are contained in the executed code are said
to be controlled by or contained in the corresponding branch
of this control-flow statement. In program analysis, these
statements are said to be control dependent on the control-flow
statement [32]. Conditions of the control-dependent branches
use variables that contain data from the corresponding at-
tributes of the database, and it means that these values control
branch coverage. For example, if the values of the attribute
Gender are sanitized by replacing the values “Male” and
“Female” with “Human”, the resulting branch code coverage

1i f (Age >= 18 && Gender == ” Male ”) {
2. . / / branch B1 : 100 s t a t e m e n t s
3i f (T r e a t m e n t == ” Chemotherapy ”) {
4. . / / branch B3 : 100 s t a t e m e n t s
5} e l s e i f (T r e a t m e n t == ” Vasectomy ”) {
6. . / / branch B4 : 100 s t a t e m e n t s
7}
8} e l s e i f (Age < 70 && Gender == ” Female ”) {
9. . / / branch B2 : 100 s t a t e m e n t s
10i f (T r e a t m e n t == ” Chemotherapy ”) {
11. . / / branch B5 : 100 s t a t e m e n t s
12} e l s e i f (T r e a t m e n t == ” Hys t e rec tomy ”) {
13. . / / branch B6 : 100 s t a t e m e n t s
14} }

Fig. 1: An illustrative example of Java pseudocode that uses
the data shown in Figure 2. For the sake of simplicity, variables
are given names that match attributes.

will be zero when testing the code in Figure 1 using this
sanitized data. Reducing the size of the database by randomly
removing six records out of nine will result in the reduced
branch coverage by up to 66.7% (i.e., removing all four records
for males and the two records for females who underwent
chemotherapy).

B. Normalizing the Data

PISTIS involves three main steps. The first step involves
transformation of the database, so that distance can be com-
puted between different types of data. This step is shown
in Figure 3, where each column represents distinct values
for database attributes from the original database. Essentially,
clustering data is based on computing distances between
different types of data. For numerical attributes, such as Age,
computing the distance is trivial by obtaining the absolute
value of the difference between two age values. In addition,
we normalize this value by dividing the maximum value of
Age in the database. The original and normalized values of
Age are shown in the columns Ageo and Agen respectively.

For categorical attributes, the situation is different, since
it is not easy in general to define the order on the values
of these attributes or enumerate them in a specific order. In
this paper, we follow a general approach to assume that every
distinct value for a given attribute is equally different from one
another [9]. We represent each distinct value either as one if
it is present for a given row, or zero if it is not present. This
is the essence of the step one in constructing the intermediate
representation that is shown in Figure 3.

C. Clustering the Database

The second step is to cluster data by grouping them in a
way that similar entities (i.e., objects or persons) are described
by the data that are located in the same cluster. We define the
meaning of the similarity between entities by using Mizzaro’s
well-established conceptual framework for relevance [30],
[31]. In Mizzaro’s framework, similar entities are relevant to
one another if they share some common properties. Once these
properties are known, entities can be clustered by how they

Rec Age Zip Gender Treatment Branch
1 42 53000 Male Vasectomy B1,B4
2 47 53000 Female Hysterectomy B2,B6
3 51 32000 Male Chemotherapy B1,B3
4 55 32000 Male Chemotherapy B1,B3
5 62 53000 Female Chemotherapy B2,B5
6 67 35000 Female Hysterectomy B2,B6
7 30 53000 Male Vasectomy B1,B4
8 31 35000 Female Chemotherapy B2,B5
9 35 53000 Female Hysterectomy B2,B6

⇒
Rec Age Zip Gender Treatment Branch

1 47 53000 Male Vasectomy B1,B4
2 61 53000 Female Chemotherapy B2,B5
3 32 52000 Female Hysterectomy B2,B6

Fig. 2: Transformation of the original table on the left into a sanitized table on the right that contains centroid data. The last
column, Branch, designates covered branches in the example shown in Figure 1 for each row.

Rec Ageo Agen 53000 32000 35000 Female Male Hysterectomy Vasectomy Chemotherapy
1 42 0.63 1 0 0 0 1 0 1 0
2 47 0.7 1 0 0 1 0 1 0 0
3 51 0.76 0 1 0 0 1 0 0 1
4 55 0.82 0 1 0 0 1 0 0 1
5 62 0.93 1 0 0 1 0 0 0 1
6 67 1.0 0 0 1 1 0 1 0 0
7 30 0.45 1 0 0 0 1 0 1 0
8 31 0.46 0 0 1 1 0 0 0 1
9 35 0.52 1 0 0 1 0 1 0 0

Fig. 3: Step 1 of the transformation: translate the original data table into a normalized table. Step 2: cluster the normalized
table using weighted k-means clustering where k = 3. Clusters are shown with double horizontal dividers that separate rows.

Rec Ageo Agen 53000 32000 35000 Female Male Hysterectomy Vasectomy Chemotherapy
C1 47 0.7 0.67 0.33 0 0.33 0.67 0.33 0.33 0.33
C2 61 0.92 0.33 0.33 0.33 0.67 0.33 0 0.33 0.67
C3 32 0.48 0.67 0 0.33 0.67 0.33 0.33 0.33 0.33

Fig. 4: Step 3 of the transformation: compute centroids for clusters.

``````````Centroid
Original Record 1 Record 2 Record 3 Record 4 Record 5 Record 6 Record 7 Record 8 Record 9

C1 0.41 0.26 0.25 0.25 0.24 0 0.39 0.01 0.25
C2 0.03 0.03 0.18 0.18 0.35 0.04 0 0.3 0.01
C3 0.25 0.4 0.01 0 0.36 0.2 0.26 0.26 0.41

Fig. 5: A similarity matrix where cells contain the values that show the fraction of attributes whose values that are the same
between original and centroid records. Value zero means that the record does not match any centroids and value one means
that there is a total match, where the original and centroid records are the same.

are similar by comparing these properties, i.e., the values of
their attributes. Subsequently all entities in each cluster will
be more similar to one another when compared to entities that
belong to other clusters. This is the essence of the cluster
hypothesis that specifies that data that cluster together tend to
share the same or closely related values of their attributes [46].
Our intuition is that since all entities in a cluster are similar
to one another, they may have the same effect on the DCA
that uses these entities and thus only one representative of the
cluster is needed to test this DCA.

However, in general, attributes do not have equal weights.
Clearly, the values of the attributes Age, Gender, and
Treatment control branches of the code that is shown in
Figure 1, while the attribute Zip has no effect on this DCA,
since the latter does not use it at all. Therefore, when clustering
this database, the similarity between the values of Age for

two different entities may play a bigger role when compared
with the same values for the attribute Zip. Consequently, we
compute weights for different attributes by approximating how
their values affect the execution of the DCA. We discuss how
we compute weights in Section III.

Using this approach, we cluster the database and the results
are shown in Figure 3, where clusters are designated using
double-separator lines between rows. Of course, clustering is
an approximation of assigning different entities to different
groups. A cursory study reveals that entities designated by
rows are more similar to one another in each cluster – the
ages and genders for each person in the cluster are closer to
one another when compared to persons from the other clusters.
Moreover, we notice that most data that belong to the same
cluster leads to the same branch coverage of the DCA.



D. Computing Centroids

The third step is to compute centroid entities (i.e., cen-
troids), which are records that represent data in clusters. We
do so by computing the average of values for each column
for each cluster in Figure 3. Once it is done, we map the
resulting values back to specific distinct values and break
ties by randomly picking one. However, doing so may result
in semantically incorrect entities. Consider a case when a
centroid is created that describes a male who underwent
hysterectomy, a procedure that can only be done for female
patients. Semantically meaningless data poses a significant
problem for software testing.

Original data elements are often connected via intricate
semantic relationships that are not always explicitly defined
in database schemas. Testing with synthetic data often does
not yield the same results compared to testing with real
data. Consider one aspect of testing – comparing results with
oracles, automatic generation of which is a fundamentally
difficult problem [17] [35] [39] [40]. In many cases, domain
experts review results of testing manually, since generated data
often leaves the expected results unspecified [25, pages 114,
116]. When important relationships are missed between data
elements, running applications with test cases that use this
synthetic data produces results that make little sense to these
domain experts. For example, it may not make any sense to
develop oracles for medical insurance software if the generated
input test data describes a male who underwent hysterectomy,
for whom computing insurance premium (the oracle) is not
applicable. In reality, there are multiple relationships among
data elements, many of which are far from obvious. Thus, it
is important to release semantically correct data to testers.

E. Using Association Rules For Semantic Correctness

To reduce the chance of creating semantically incorrect
centroids, we obtain association rules that in general describe
relations between different elements as implication expressions
A1 ∧ A2 ∧ . . .∧ Ai ⇒ C1 ∨C2 ∨ . . .∨C j, where A and C are
disjoint itemsets, that is A∩C = /0 [42, pages 327–332]. There
are different algorithms for extracting association rules from
databases, and the quality metrics are support and confidence.
Support measures the applicability of an association rule
to a dataset, and confidence estimates the frequency with
which items in C also appear in query results that contain A.
Support, s, and confidence, c are calculated using the following
formulae: s(A⇒C) = σ(A∪C)

N and c(A⇒C) = σ(A∪C)
σ(A) , where σ

is the number of support records for the parameter and N is the
total number of records. In our case, we extract two associative
rules: Hysterectomy ⇒ Female and Vasectomy ⇒
Male. Using these rules, we take computed centroids that
are shown in Figure 4 and translate them into original distinct
values that are shown on the right side in Figure 2. Doing so,
we partially solve the sanitization and minimization problem:
we sanitized the original data and we reduced the size of the
database by two thirds. Also, all branches but B3 are covered
with the centroids.

F. Data Privacy

Finally, a question remains how easy it is for an attacker
to guess the original data given the sanitized data. A privacy
metric measures how identifiable records in the sanitized table
are with respect to the original table [19, page 43]. Our idea is
to quantify identifiability of records using a similarity matrix
that shows the similarity between sanitized (centroids) and
original records. For each record Ro in the original table, the
similarity of Ro to a record Ci in the sanitized table is measured
by the fraction of attributes whose values are the same between
Ro and Ci. Table 5 shows an illustrative example for computing
the similarity matrix ∥D∥ that has dimensions r× c, where r
is the number of records in original table and c is the number
of records in the centroid table. Rows correspond to centroid
records and columns correspond to the original records in ∥D∥.

We use the similarity matrix ∥D∥ to compute how difficult
it is for attackers to guess original records given sanitized
records. Consider an extreme case where all entries are zero.
In this case, each record is dissimilar to every centroid, that
is, all records are fully protected. On the other hand, if all
diagonal entries are one and other entries are zero, then each
record is unique and easily identifiable by attackers. In our
case, it is very difficult for attackers to guess original data
since all centroid records are dissimilar to all original records.
Entries marked one should be dealt separately; they should
either be deleted from the database with possible reduction of
the test coverage or left in the database with a calculated risk
for disclosure of this potentially sensitive information. One
way or the other, stakeholders can make a calculated decision
about the balance between test coverage, privacy, and data
minimization.

III. OUR SOLUTION

In this section, we present core ideas behind PISTIS and
we describe its architecture and the workflow.

A. Core Ideas

At the core of our work are three major ideas. The first one
is our approach for sanitizing data that enables organizations
to keep derivatives of the original values in sanitized data
(i.e., centroids). As a result, test coverage is not affected so
negatively as it happens when data suppression and generaliza-
tion techniques are used. In addition, semantic integrity of the
sanitized data is largely preserved, since we use associative
rule mining to obtain constraints from the original data.
Coincidentally, reducing the original database to centroids
results in minimizing the database, thereby partially solving
the S&M problem using a single approach.

The second idea is our guessing anonymity privacy metric
that allows stakeholders to quantify the level of privacy
achieved in a sanitized database. In particular, the metric
provides measurement of difficulty for an attacker to relate
a sanitized record to the original record. We apply the idea
that we previously developed for PRIEST in this new S&M
context [43].



DBO1 DBA
SchemaExtractor

Static Analyzer Attribute Rankings4 2 4
Schema and relations6 3 578 9 10 11RulesAssociativeRule MinerClusteringAlgorithmk CentroidGeneratorDBCDCA 10 10

Fig. 6: PISTIS architecture and workflow. Solid arrows depict
the flow of command and data between components, numbers
indicate the sequence of operations in the workflow.

The third idea is an idea to improve the precision of
computing centroids in a way that the sanitized databases
maintain testing utility. We statically determine how different
database values affect the behavior of a DCA. This idea unifies
DCAs and their databases in a novel way – database attributes
are tied to the source code of the DCAs, and depending on
how the DCAs use values of these attributes, clustering finds
similar groups of data from which centroids are computed
without sacrificing much of test coverage.

B. PISTIS Architecture and Process

The first step of the PISTIS process involves programmers
who link program variables to database attributes using an-
notations, so that these annotations can be traced statically
using control- and data-flow analyses. Tracing these attribute
annotations is required to determine how the values of these
attributes are used in conditional expressions to make branch-
ing decisions, thereby influencing the execution flow of the
DCAs. Quantifying the effect of replacing values of database
attributes on reachability of program statements enables us to
apply weighted k-mean clustering to group database records.

Figure 6 shows the architecture of PISTIS. The inputs to
PISTIS are the application’s source code and the original
database DBO that this DCA uses (1). PISTIS performs
control- and data-flow analyses (2) using the Soot toolkit2

to establish how the DCA uses values of different database
attributes. Values of some attributes are used in expressions
to compute other values, which in turn are used in other
expressions and statements. In some cases, these values are
used in conditional statements, and they affect control flows
of DCAs using control-flow dependencies. Ideally, attributes
whose values affect many other expressions and statements
in DCAs (in terms of branch coverage) should be assigned
the highest weights for clustering. The output (3) of this
procedure is a list of attribute rankings that show how many
statements are approximately encapsulated by branches whose
conditions contain program variables that receive their values
from database attributes.

2http://www.sable.mcgill.ca/soot

The next step is to run the Clustering Algorithm, which
takes as its input (4) the number of clusters (it is a user-
defined parameter), the original database DBO, and the At-
tribute Rankings. Once clustering is done, (5) the clustered
original database DBC is outputted. Then, (6) the Associa-
tive Rule Miner computes (7) rules that describe semantic
constraints that are obtained from DBO.

At this point, PISTIS (8) extracts (9) the database schema
and its constaints from DBO using JDBC metadata services.
The schema and constaints are important in conjunction with
rules to ensure that centroids are compliant with the schema
and the constraints. For example, if an attribute is indexed
and its values are unique, putting duplicate values may lead
to exceptions within the DCA. In addition, foreign keys and
dependencies ensure the match among values of certain at-
tributes in the database. Violating the schema and its constrains
reduces the efficacy of testing.

Finally, (10) the Rules and the Schema and Relations
along with the clustered database DBC is inputted into the Cen-
troid Generator that (11) computes the resulting anonymized
database DBA that contains centroids.

C. Ranking Attributes

To understand which attributes affect DCAs the most, we
rank these attributes by counting the numbers of statements
that their values affect. To find the preceding information,
our approach uses static taint analysis to track the annotated
variables corresponding to each attribute [43]. In particular, for
each attribute, our approach uses control- and data-flow taint
propagation [13] to find out branch conditions that are tainted
by an annotated variable corresponding to the attribute.

Specifically, we construct and traverse a control-flow graph
(CFG) of the DCA. When traversing the CFG we count the
number of statements and branches that are control-dependent
on branch conditions that are linked to database attributes.
We perform virtual-call resolution using static class hierarchy
analysis, and we take a conservative approach by counting the
biggest number of statements of a method that can potentially
be invoked. We also count all the statements in all the target
methods that can potentially be invoked, but only when the
call site is the only entry point of that method. Currently, we
only take into consideration that values of attributes are used
in variables that control branches.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the results of the experimental
evaluation of PISTIS on two open-source Java programs.

A. Research Questions

In this paper, we make a claim that using PISTIS solves the
S&M problem, i.e., it enables stakeholders to both reduce the
size of the database and sanitize data while maintaining testing
utility. We seek to answer the following research questions.

RQ1 How much test coverage does PISTIS help achieve
at given levels of disclosure risk?



RQ2 How effective is PISTIS in reducing the size of the
database for maintaining test coverage?

RQ3 How effective is PISTIS in reducing the size of the
database for low disclosure rates for certain levels of
test coverage?

With these RQs we decompose our experimental results to
evaluate the effectiveness of PISTIS for different components
of the S&M problem. With RQ1, we address our claim that we
designed and implemented a technique that combines program
analysis for determining how values of database attributes
affect test coverage of DCAs with data mining techniques for
creating centroids that hide original data thus reducing the
disclosure risk. Our goal is to show that with PISTIS, the
disclosure risk metric is linked directly to test coverage and
vice versa; in other words, guaranteeing a certain level of test
coverage should allow stakeholders to estimate bounds of the
privacy level.

With RQ2, we address our claim that it is possible to reduce
the size of the database while at the same time maintaining
testing efficacy. Since competitive approaches for minimiza-
tion of data use data compression or deletion techniques,
which are independent of sanitization, PISTIS is in itself
a contribution, since it enables stakeholders to make trade-
off decisions about data minimization and testing utility. In
that, our goal is to show that minimizing data using PISTIS
enables stakeholders to maintain higher levels of test coverage,
which will not be possible with data compressing and deletion
techniques, since they destroy data completely.

With RQ3, we address our claim that PISTIS enables
stakeholders to both S&M database and retain much of testing
utility. RQ1 and RQ2 addressed questions of sanitization and
minimization separately w.r.t. the testing efficacy, and this sep-
aration allows us to account for confluence and confounding
factors. Our novel contribution is in a single approach that
both minimizes and sanitizes data and we must ensure that
these both functions permit an acceptable testing efficacy.

B. Subject Programs

We evaluate PISTIS using two open-source Java DCAs
that belong to different domains and they come with test
cases. Our selection of subject programs is influenced by
several factors: sizes of the databases, size of the source
code, presence of unit, system, and integration tests, and the
presence of embedded SQL queries that these programs use.
RiskIt is an insurance quote program.3 DurboDax enables
customer support centers to manage customer data.4 Table I
contains characteristics of the subject DCAs, their databases,
and test cases. The first column shows the names of the subject
programs, followed by the number of lines of code, LOC for
the program code and accompanying test cases. The source
code of the projects ranges from 14.2kLOC to 15.7kLOC.
Total numbers of statement for tests are 5kLOC and 11kLOC
respectively. For the number of test cases, there are 66 from

3https://riskitinsurance.svn.sourceforge.net.
4http://se547-durbodax.svn.sourceforge.net

DCA App Test DB Tbl Att BC NBC
[kLOC] [KB] %

DurboDax 14.2 5.0 791 27 114 19.3 87
RiskIt 15.7 11.0 9681 14 57 13.0 172

TABLE I: Characteristics of the subject DCAs. App = appli-
cation code, Test = test cases, DB = database, Tbl = tables,
Att = attributes in all tables, BC = initial test branch coverage
with the original database, NBC = number of covered branches
with the original database.

Durbodax and 12 from Riskit. Other columns show the
size of the database, number of tables and attributes in the
database, initial test branch coverage with the original database
and the number of covered branches. Both databases have
more than 88k records.

C. Methodology

To evaluate PISTIS, we carry out experiments to explore
its effectiveness in enabling users to preserve test coverage
while achieving different levels of data privacy and database
sizes (RQ1 and RQ2), and to show that it is possible to apply
PISTIS to get S&M guarantees (RQ3). All experiments were
carried out using Intel Core i5-2520M CPU2.5GHZ with 8GB
RAM. The operating system was Windows 7 Professional.

1) Variables: The main independent variable is the value k
of clusters, as in k-means clustering. The value k of clusters
specifies the data compression rate, since N records in the da-
tabase will be reduced to k centroid records at the compression
rate of N

k . Six main dependent variables are the disclosure rate
(DR), the number of unique records (UR), the average number
of records per cluster (ARPC), branch coverage (BC), and
statement coverages (SC). We compute the disclosure rate as
the average of all cells in the similarity matrix, an example of
which is shown in Figure 5. We measure the number of unique
records as the number of centroids that precisely match some
original records. Branch coverage is measured as the ratio of
the number of covered branches as part of executing test cases
to the total number of branches in the DCA.

2) The Structure of the Experiments: For the experiments,
we perform program analysis on subject DCAs to obtain
attribute rankings, and then we perform weighted k-mean
clustering. Unfortunately, data mining algorithms are very
computationally intensive especially when running on large
datasets. Therefore, we randomly select 2,000 records from
each database for each DCA and we apply clustering to these
records. Our goal is to run experiments for different values of
the independent variable k and report the effect of varying the
values on k on dependent variables.

D. Threats to Validity

A threat to the validity of this experimental evaluation is
that our subject programs are of moderate size. Large DCAs
that have millions of lines of code and use databases whose
sizes are measured in thousands of tables and attributes may
have different characteristics compared to our small to medium
size subject programs. Increasing the size of applications to
millions of lines of code may lead to a nonlinear increase in



Fig. 7: Dependency of the branch coverage on the number of
clusters for subject applications.

Fig. 8: Dependency of the statement coverage on the number
of clusters for subject applications.

Fig. 9: Dependency of the disclosure rate on the number of
clusters for subject applications.

Fig. 10: Dependency of the number of unique records on the
number of clusters for subject applications.

the analysis time and space demand for PISTIS. Future work
could focus on making PISTIS more scalable.

The other threat to validity is in selecting a subset of records
in the database to avoid computational complexity. Indeed, if
run with a full set of records, our results could be different.
For example, more unique records could be found thereby
negatively affecting the disclosure rate. However, since we
selected records at random, it mitigates this threat to validity.

In addition, we set high threshold for the support and
confidence levels for associative rule mining to achieve two
goals: first, we obtain meaningful rules and second, we reduce
the computational load that is often directly proportional to the
low values of support and confidence. As a result, for RiskIt
we did not have any associative rules to correct centroid
records. The result is, as we believe, the higher number of
unique branches that are triggered when running DCAs with
S&Med data, which are not triggered with the original data.
Although, many of these branches match some of the original
branches, further investigation is required to study the effect
of associative rules. This is the subject of our future work.

E. Results

The results of the experiments conducted to address RQs
are shown in Figures 7– 10 and Table II. We compute the
centroids based on 4000 random records in the database. For
the number of clusters, k, we do interval selection between
the numbers from 0 to 2000. We didn’t pick k > 2000, since
the coverage is increase rapidly from k = 10 to 1000, but it’s
almost flat after k > 1500.

The Figure 7 shows dependency of branch coverage on
the number of clusters k. The branch coverage increases
with a greater number of clusters. The best branch coverages
are 17.6% and 10.3% for DCAs DurboDax and RiskIt
respectively. Alternatively, the worst branch coverages are
11.3% and 4.9% respectively. Comparing with the branch
coverages of the original datasets, which are 19.33% and
12.99%, the worst case drops in these coverages are only
41.5% and 62.3% when minimizing the dataset from 4,000
to 10 records. In addition, branch coverage of baseline (one
record) for Durbodax is 8.4% and baseline for Riskit is
3.25%. The Figure 8 shows dependency of statement coverage
on the number of clusters k. The upward trends are similar
with trends in the branch coverage. Drops are 17.5% and
36% for DCAs DurboDax and RiskIt respectively when
minimizing the original datasets to only 10 centroids. In
addition, the least drop in test coverage is observed for the
DCA DurboDax. Our explanation is that DurboDax is least
sensitive to values of the database attributes since it rarely uses
these values in conditional expressions.

The dependency of the disclosure rate from the number of
clusters is shown in the Figure 9. For DCA DurboDax, lower
disclosure rate are observed for smaller numbers of clusters.
It means that the centroid records hide more information
from the original dataset the more records are put into a
cluster. Naturally, it means that more generalization hides
more information. However, this statement does not hold true



Subject Init Stat. Init Br. Worst Worst Dep The Number of Clusters, k
Cov % Cov % St.Cov % Br.Cov % Var 10 100 200 500 700 1000 1250 1500 1750

Durbodax 16.28 19.33 13.42 11.33

DR 0.30 0.36 0.40 0.44 0.45 0.46 0.47 0.47 0.47
UR 0 3 39 295 469 770 1062 1338 1623

ARPC 200 20 10 4 2.9 2 1.6 1.3 1.14
σ 27.25 6.89 3.64 1.70 1.25 0.77 0.44 0.29 0.18

BC 11.3 14.0 14.0 14.9 15.6 16.2 16.2 17.6 17.6
SC 13.4 14.4 14.4 14.6 14.9 15.2 15.2 15.9 15.9

RiskIt 11.88 12.99 7.61 4.91

DR 0.707 0.681 0.688 0.691 0.690 0.689 0.687 0.686 0.687
UR 0 58 149 445 637 942 1203 1457 1716

ARPC 200 20 10 4 2.9 2 1.6 1.3 1.14
σ 41.19 17.87 11.72 5.68 3.84 2.55 1.54 0.96 0.48

BC 4.9 8.2 8.3 9.8 10.0 9.9 9.9 10.3 10.3
SC 7.61 10.46 10.46 10.97 11.09 11.03 11.03 11.05 11.05

TABLE II: Results of experiments with subject DCAs for different values of the independent variable k that is shown in the
last column header that spans nine subcolumns. The second (third resp.) column, Init Stat. Cov (Init Br. Cov resp.), shows the
percentage of statement(branch resp.) coverage that is achieved with running test cases against the DCA with the original data
in the database. The next two columns show the worst statement/branch test coverage with sanitized and minimized data. The
next column lists six dependent variables: the disclosure rate (DR), the number of unique records (UR), the average number
of records per cluster (ARPC), the standard deviation for records per cluster, σ, branch coverage in percentage (BC), and
statement coverage in percentage (SC). Finally, the last nine subcolumns show values of these dependent variables for different
values of k.

for RiskIt. Closer investigation of its source code and the
database revealed that records in RiskIt have same data in
many attributes. For example, almost all records in the attribute
“BIRTHCOUNTRY” are “United States”. Therefore, records
in RiskIt are more similar with each other and centroids
will be much similar with the original data. Since this data
is used by the application, it explains that disclosure rate for
RiskIt is higher than DurboDax.

For Figure 10, we compute how many centroids match orig-
inal records. Naturally, as the number of clusters approaches
the number of original records, the number of unique records
approaches the number of original records, since each cluster
will ultimately have one original record. The figure shows that
we have more centroids match original records in RiskIt
than it in DurboDax on same number of clusters. Recall that
RiskIt have many records that share the same values in
the same attribute, and it makes it difficult to effectively hide
information by clustering data. Thus, this experiment reveals a
limitation of PISTIS: if database records are highly similar to
one another, protecting information in this database becomes
a very difficult exercise.

Dependencies of branch and statement test coverages on
the disclosure rates are shown in Figure 11 and Figure 12
respectively. These graphs are not smooth and monotonic –
depending on how centroids are computed, we can see an
increase or a decrease in the coverages. Of course, different
DCAs can exhibit different dependencies. Our conclusion is
that balancing test coverages and disclosure rates is DCA-
specific, i.e., stakeholders has to have well-defined impact map
of how changing data in the database affects the execution of
the DCA.

Generating associative rules took ≈ 1.4 seconds of elapsed
time and ≈ 76.7MB of RAM for DurboDax and ≈ 10.4
seconds of elapsed time and ≈ 939.5MB of RAM for RiskIt
using the algorithm APriori [4]. Computing centroids was

done using a weighted k-mean algorithm. To compute 10
centroids, it took ≈ 0.7 seconds of elapsed time and ≈ 3.3MB
of RAM for DurboDax and ≈ 1.7 seconds of elapsed time
and ≈ 13.2MB of RAM for RiskIt. When increasing the
number of centroids to 200, it took ≈ 5.5 seconds of elapsed
time and ≈ 15.1MB of RAM for DurboDax and ≈ 30.1
seconds of elapsed time and ≈ 88.4MB of RAM for RiskIt.
Examples of associative rules for DurboDax include the
following: FARM=’All’ ⇒ YEARR=’All’ and GQTYPE=’(-
inf-0.5]’ ⇒ FARM=’All’.

Result summary. These results strongly suggest that PIS-
TIS helps achieve high test coverage for given levels of privacy
for subject DCAs, thereby addressing RQ1. PISTIS can also
achieve significant reduction in the size of the database while
preserving test coverage as it is seen from Table II, thereby
addressing RQ2. Finally, the results shown in Figure 7 and 8
strongly suggest that PISTIS is effective in enabling stakehold-
ers to both sanitize and minimize databases while maintaining
testing efficacy, thereby addressing RQ3.

V. RELATED WORK

Our work is related to regression testing [47] since PISTIS
is used to assess the impact of data anonymization on testing.
Numerous techniques have been proposed to automate regres-
sion testing. These techniques usually rely on information
obtained from the modifications made to the source code.
These techniques are not directly applicable to preserving test
coverage while achieving data anonymity for test outsourcing,
since regression information is derived from changes made to
the source code and not to how this code uses databases.

Automatic approaches for test data generation [12], [16],
[20], [29], [44] partially address this problem by generat-
ing synthetic input data that lead program execution toward
untested statements. However, one of the main issues for these
approaches is how to generate synthetic input data with which



test engineers can achieve good code coverage. Using original
data enables different approaches in testing and privacy to
produce higher-quality synthetic input data [2] [19, page 42],
thus making original data important for test outsourcing.

In selective anonymization, where a team is assembled com-
prising of business analysts and database and security experts
[24, page 134]. After the team sets privacy goals, identifies
sensitive data, and marks database attributes that may help
attackers to reveal this sensitive data (i.e., QIs), anonymization
techniques are applied to these QIs to protect sensitive data,
resulting in a sanitized database. A goal of all anonymization
approaches is to make it impossible to deduce certain facts
about entities with high confidence from the anonymized data
[3, pages 137-156]. Unfortunately, this approach is subjective,
manual, and laborious. In addition, it involves highly trained
professionals and therefore this approach is very expensive.
Currently, there exists no solution that enables these profes-
sionals to accomplish this task efficiently and effectively with
metrics that clearly explain the cost and benefits of selective
anonymization decisions.

Closely related to PISTIS is kb−anonymity model that
enables stakeholders to release private data for testing and
debugging by combining the k−anonymity with the con-
cept of program behavior preservation [8]. Unlike PISTIS,
kb−anonymity replaces some information in the original data
to ensure privacy preservation so that the replaced data can be
released to third-party developers. PISTIS and kb−anonymity
are complementary in using different privacy mechanisms to
preserve original data thereby improving its testing utility.

The idea of using clustering for improving k-anonymity was
proposed by Bertino et al [9]. A focus of this work is to ensure
anonymization of data while at the same time minimizing
the information loss resulting from data modifications. Unlike
PISTIS, this approach focuses only on applying clustering
for k-anonymity and the impact on test coverage and data
minimization is not investigated.

Recently proposed is an anonymization technique for pro-
tecting private information in bug reports that are delivered
to vendors when programs crash on computers of customers
[11] and the follow-up work on this technique by Clause
and Orso [14]. This technique provides software vendors with
new input values that satisfy the conditions required to make
the software follow the same execution path until it fails,
but are otherwise unrelated with the original inputs. This
technique uses symbolic execution to create new inputs that
allow vendors to reproduce the bug while revealing less private
information than existing techniques. The technique requires
test cases, which are not present in our situation. In contrast,
PISTIS does not require any test case.

There has been a lot of recent work to achieve general
purpose (task-independent) data anonymization. We choose the
guessing anonymity approach in this paper because guessing
anonymity can be used to provide privacy guarantees for data
swapping algorithms and can also provide an optimal noise
parameter when implementing data swapping algorithms for
anonymization. In contrast, approaches that aim to achieve

Fig. 11: Branch coverage as a function of the disclosure.

Fig. 12: Statement coverage as a function of the disclosure.

k-anonymity do not allow the user to explicitly control how
much each record is altered. Empirical results reported by
Rachlin et al. [38] show that Guessing anonymity outperforms
DataFly, a well-known k-Anonymity algorithm on specific data
mining tasks, namely classification and regression, while at the
same time providing a higher degree of control over how much
the data is distorted.

Recent work on privacy introduced a similar definition
of privacy for noise perturbation methods, known as k-
randomization [1]. This work defines a record as k-randomized
if the number of records that are a more likely match to the
original is at least k. Although this notion is similar to the
definition of guessing anonymity, the definition differs by not
providing a lower limit on the number of records that provide a
more likely match, and by explicitly establishing a connection
between privacy and guessing functions.

VI. CONCLUSION AND FUTURE WORK

We propose a novel approach for Protecting and mInimiz-
ing databases for Software TestIng taSks (PISTIS) that both
sanitizes a database and minimizes it. PISTIS uses a weight-
based data clustering algorithm that partitions data in the
database using information from program analysis that indicate
how this data is used by the application. For each cluster, a
centroid object is computed that represents different persons
or entities in the cluster, and we use associative rule mining



to compute and use constraints to ensure that the centroid
objects are representative of the general population of data in
the cluster. Doing so also sanitizes information, since these
centroid objects replace the original data to make it difficult
for attackers to infer sensitive information. Thus, we reduce
a large database to a few centroid objects and we show in
our experiments with four applications that test coverage stays
within a close range to its original level.

Our experimental results are promising, and there are several
areas that will improve our work. First, we plan to adapt
PISTIS to other test coverage metrics, such as path coverage
and MC/DC coverage, to study if PISTIS can generalize to
other metrics. Next, we plan to investigate the relationship
between disclosure rates and fault-detection abilities with
PISTIS. Since there is a body of research that shows a strong
correlation between improved test coverage and fault location
[10], [27], [34], [37], we expect that using PISTIS increases
the probability of finding faults while sanitizing and mini-
mizing data. Finally, we plan to improve the implementation
of PISTIS to reduce the analysis time. We identified several
bottlenecks from our experiments, i.e., data mining approach
are computationally intensive. With more engineering on the
bottlenecks, specifically by using massive parallelization plat-
form like MapReduce, we expect PISTIS to run faster and
thus be applicable in many real-world scenarios.

VII. ACKNOWLEDGMENTS

We thank Daniel Graham from the College of William and
Mary for his contributions to early versions of this work and Qi
Luo from W&M for helping us to reproduce the results of the
experiments presented in the paper. This material is based upon
work supported by the NSF under Grants No. CCF-1218129,
CCF-1016868, CCF-1017633, CCF-1217928 and Microsoft
SEIF award. Any opinions, findings and conclusions expressed
in this work are those of the authors and do not necessarily
reflect the views of the sponsors.

REFERENCES

[1] C. C. Aggarwal. On randomization, public information and the curse of
dimensionality. In ICDE, pages 136–145, 2007.

[2] C. C. Aggarwal and P. S. Yu. On static and dynamic methods for
condensation-based privacy-preserving data mining. TODS, 2008.

[3] C. C. Aggarwal and P. S. Yu. Privacy-Preserving Data Mining: Models
and Algorithms. Springer, 2008.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In VLDB, pages 487–499, 1994.

[5] W. Aspray, F. Mayades, and M. Vardi. Globalization and Offshoring of
Software. ACM, 2006.

[6] C. Bizer, P. Boncz, M. L. Brodie, and O. Erling. The meaningful use of
big data: four perspectives – four challenges. SIGMOD Rec., 40(4):56–
60, Jan. 2012.

[7] V. R. Borkar, M. J. Carey, and C. Li. Big data platforms: what’s next?
XRDS, 19(1):44–49, Sept. 2012.

[8] A. Budi, D. Lo, L. Jiang, and Lucia. b-anonymity: a model for
anonymized behaviour-preserving test and debugging data. In PLDI,
pages 447–457, 2011.

[9] J.-W. Byun, A. Kamra, E. Bertino, and N. Li. Efficient k -anonymization
using clustering techniques. In DASFAA, pages 188–200, 2007.

[10] X. Cai and M. R. Lyu. The effect of code coverage on fault detection
under different testing. In A-MOST, pages 1–7, 2005.

[11] M. Castro, M. Costa, and J.-P. Martin. Better bug reporting with better
privacy. In ASPLOS, pages 319–328, 2008.

[12] L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Trans. Softw. Eng., 2(3):215–222, 1976.

[13] J. Clause and A. Orso. Penumbra: Automatically identifying failure-
relevant inputs using dynamic tainting. In ISSTA, pages 249–260, 2009.

[14] J. A. Clause and A. Orso. Camouflage: automated anonymization of
field data. In ICSE, pages 21–30, 2011.

[15] Datamonitor. Application testing services: global market forecast model.
Datamonitor Research Store, Aug. 2007.

[16] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data
generation. IEEE Trans. Softw. Eng., 17(9):900–910, 1991.

[17] L. K. Dillon and Q. Yu. Oracles for checking temporal properties of
concurrent systems. In ACM SIGSOFT, pages 140–153, Dec. 1994.

[18] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for
database applications. In ISSTA, pages 151–162, 2007.

[19] B. C. M. Fung, K. Wang, A. W.-C. Fu, and P. S. Yu. Introduction
to Privacy-Preserving Data Publishing: Concepts and Techniques. Data
Mining and Knowledge Discovery. Chapman & Hall/CRC, August 2010.

[20] P. Godefroid. Compositional dynamic test generation. In POPL, pages
47–54, 2007.

[21] M. Grechanik, C. Csallner, C. Fu, and Q. Xie. Is data privacy always
good for software testing? In ISSRE, pages 368–377, 2010.

[22] F. Haftmann, D. Kossmann, and E. Lo. A framework for efficient
regression tests on database applications. The VLDB Journal, 16(1):145–
164, Jan. 2007.

[23] J. Horey, E. Begoli, R. Gunasekaran, S.-H. Lim, and J. Nutaro. Big data
platforms as a service: challenges and approach. In USENIX, pages 16–
16, 2012.

[24] C. Jones. Software Engineering Best Practices. McGraw-Hill, Inc., New
York, NY, USA, 1 edition, 2010.

[25] C. Kaner, J. Bach, and B. Pettichord. Lessons Learned in Software
Testing. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[26] G. M. Kapfhammer and M. L. Soffa. A family of test adequacy criteria
for database-driven applications. In ESEC/FSE, pages 98–107, 2003.

[27] Y. W. Kim. Efficient use of code coverage in large-scale software
development. In CASCON, pages 145–155, 2003.

[28] A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big
data. Proc. VLDB Endow., 5(12):2032–2033, Aug. 2012.

[29] R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE, pages
416–426, 2007.

[30] S. Mizzaro. Relevance: The whole history. JASIS, 48(9):810–832, 1997.
[31] S. Mizzaro. How many relevances in information retrieval? Interacting

with Computers, 10(3):303–320, 1998.
[32] S. S. Muchnick. Advanced compiler design and implementation. Morgan

Kaufmann, 1997.
[33] T. E. Murphy. Managing test data for maximum

productivity. http://www.gartner.com/DisplayDocument
?doc cd=163662&ref=g economy 2reduce, Dec. 2008.

[34] A. S. Namin and J. H. Andrews. The influence of size and coverage on
test suite effectiveness. In ISSTA, pages 57–68, 2009.

[35] D. Peters and D. L. Parnas. Generating a test oracle from program
documentation: work in progress. In ISSTA, pages 58–65, 1994.

[36] F. Peters and T. Menzies. Privacy and utility for defect prediction:
Experiments with morph. In ICSE, pages 189–199, 2012.

[37] P. Piwowarski, M. Ohba, and J. Caruso. Coverage measurement
experience during function test. In ICSE, pages 287–301, May 1993.

[38] Y. Rachlin, K. Probst, and R. Ghani. Maximizing privacy under data
distortion constraints in noise perturbation methods. In PinKDD, 2008.

[39] D. J. Richardson. Taos: Testing with analysis and oracle support. In
ISSTA, pages 138–153, 1994.

[40] D. J. Richardson, S. Leif-Aha, and T. O. O’Malley. Specification-based
Test Oracles for Reactive Systems. In ICSE, pages 105–118, 1992.

[41] I. Shield. International data privacy laws.
http://www.informationshield.com/intprivacylaws.html, 2010.

[42] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley Longman Publishing Co., Inc., 2005.

[43] K. Taneja, M. Grechanik, R. Ghani, and T. Xie. Testing software in age
of data privacy: a balancing act. In FSE, pages 201–211, 2011.

[44] K. Taneja, Y. Zhang, and T. Xie. MODA: Automated test generation for
database applications via mock objects. In ASE, pages 289–292, 2010.

[45] B. G. Thompson. H.R.6423: Homeland Security Cyber and Physical
Infrastructure Protection Act of 2010. U.S.House, 2010.

[46] C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.
[47] S. Yoo and M. Harman. Regression testing minimisation, selection and

prioritisation: A survey. STVR, 2011.


