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ABSTRACT
Application profiling is an important performance analysis tech-
nique, when an application under test is analyzed dynamically to
determine its space and time complexities and the usage of its in-
structions. A big and important challenge is to profile nontrivial
web applications with large numbers of combinations of their input
parameter values. Identifying and understanding particular subset-
s of inputs leading to performance bottlenecks is mostly manual,
intellectually intensive and laborious procedure.

We propose a novel approach for automating performance bottle-
neck detection using search-based input-sensitive application profil-
ing. Our key idea is to use a genetic algorithm as a search heuristic
for obtaining combinations of input parameter values that maxi-
mizes a fitness function that represents the elapsed execution time of
the application. We implemented our approach, coined as Genetic
Algorithm-driven Profiler (GA-Prof) that combines a search-based
heuristic with contrast data mining of execution traces to accurate-
ly determine performance bottlenecks. We evaluated GA-Prof
to determine how effectively and efficiently it can detect injected
performance bottlenecks into three popular open source web appli-
cations. Our results demonstrate that GA-Prof efficiently explores
a large space of input value combinations while automatically and
accurately detecting performance bottlenecks, thus suggesting that
it is effective for automatic profiling.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools; C.4 [Performance of Systems]: Performance attributes

General Terms
Performance
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1. INTRODUCTION
Improving performance of software applications is one of the

most important tasks in software evolution and maintenance [16].
Software engineers make performance enhancements routinely dur-
ing perfective maintenance [55] when they use exploratory random
performance testing [25, 11] to identify methods that lead to per-
formance bottlenecks (or hot spots), which are phenomena where
the performance of the Application Under Test (AUT) is limited by
one or few components [2, 5]. Developers and testers need per-
formance management tools for identifying performance problems
automatically in order to achieve better performance of software
while keeping the cost of software maintenance low. In a survey
of 148 enterprises, 92% reported that improving application perfor-
mance was a top priority [84, 70]. The difficulty of comprehending
the source code of large-scale applications and their high complexi-
ty leads to performance problems that result in productivity losses
approaching 20% for different domains due to application downtime
[34].

Application profiling is an important performance analysis tech-
nique, where an AUT is analyzed dynamically to determine its space
and time complexities and the usage of its instructions that reveal
performance bottlenecks [73]. Software engineers commonly use
profilers, i.e., tools that insert instructions into the AUT to obtain fre-
quency, memory usage and elapsed execution time of method calls.
When profiling, software engineers perform the following actions:
1) instrument the AUT with a profiler and run the instrumented AUT
using some input values and 2) from the collected measurements,
they determine what methods are responsible for excessive execu-
tion time and resource usage. Simply put, all AUT’s methods are
sorted in the descending order by their elapsed execution times and
top N methods on this list are declared bottlenecks and investigated
further by engineers. Profilers are widely used at different stages
of software development life cycle to analyze runtime performance
measurements [33].

A weakness of profiling is that its success for detecting bottleneck-
s depends on the chosen set of input values for the AUT. A big and
important challenge is to profile nontrivial applications with large
numbers of combinations of their input parameter values. Many non-
trivial applications have complex logic that programmers express
by using different control-flow statements, which are often deeply
nested. In addition, these control-flow statements have branch con-
ditions that contain expressions that use different variables whose
values are computed using some input parameters. In general, it is
difficult to choose specific values of input parameters to profile the
executions of these applications to obtain bottlenecks.

The full performance analysis can be done if an AUT is profiled
with all allowed combinations of values for its inputs. Unfortunately,
this is often infeasible because of the enormous number of combi-



nations; for example, 20 integer inputs whose values range from
zero to nine give us 1020 combinations. To address this problem,
input-sensitive profiling was introduced where the sizes of their
inputs and the values of the input parameters are varied to uncover
performance problems in the AUT [86, 20, 51]. Essentially, the
standard profiling procedure that we described above is extended
with three more steps: 3) study the code of the AUT to understand
which methods are specific to certain classes of inputs; 4) construct
different combinations of input values to the AUT to find methods
involved in bottlenecks, and 5) analyze different execution traces
for different combinations of input values to generalize the results.
Unfortunately, this procedure is manual, intellectually intensive and
laborious, its effectiveness is limited and it increases the cost of
application development.

We propose a novel approach for automating performance bot-
tleneck detection using search-based application profiling. Our key
idea is to use a genetic algorithm (GA) as a search heuristic for
obtaining combinations of input parameter values that maximizes
a fitness function that guides the search process [39]. We imple-
mented our approach, coined as Genetic Algorithm-driven Profiler
(GA−Prof) that combines a search-based heuristic with contrast da-
ta mining [22] from execution traces to automatically and accurately
determine bottlenecks. Our paper makes the following noteworthy
contributions:

• To the best of our knowledge, GA−Prof is the first fully
automatic input-sensitive profiling approach that explores the
input parameter space for detecting performance bottlenecks
automatically.

• We evaluated GA−Prof on three popular open-source non-
trivial web applications. Our results show that GA−Prof
effectively explores a large space of possible combinations of
inputs while accurately detecting performance bottlenecks.

• GA−Prof and experimental results are publicly available at
http://www.cs.wm.edu/semeru/data/ISSTA15-
GAProf.

2. PROBLEM STATEMENT
In this section, we provide a background on input-sensitive profil-

ing, discuss peculiarities of execution trace analysis for uncovering
bottlenecks and formulate the problem statement.

2.1 Background on Input-Sensitive Profiling
In standard profiling methodology, the input to an application

is given as a concrete set of values or as an abstract description
from which all values can be generated. Using this input data,
profilers instrument and run applications to produce flat or call-graph
outputs: the former outputs give a breakdown of resource and time
consumption by function while the latter preserve calling contexts
by showing caller-callee dependencies among functions. Profilers
that are based on the standard methodology are ubiquitous and easy
to use; however, their key weakness is based on the assumption that
all input data is available in advance, its size is small and finding
bottlenecks is orthogonal to the type and the size of the input data.
This assumption reduces the effectiveness of profiling for solving
performance problems.

Input-sensitive profiling departs from the standard profiling metho-
dology by inferring the size or the type of the input that can pinpoint
performance problems in a software application. Consider an exam-
ple of the pseudocode that is shown in Figure 1. Line 1 specifies
that input variables x, y, z and u are initialized with some values.
In line 2, the value of the variable v is assigned the result of the

Figure 1: A pseudocode example of input-sensitive profiling.

execution of the method m of A that takes two parameters: x and y
and returns their product. In line 3, if the value of v is greater than
the value of z, components C and B interact by invoking the method
m of B and passing its return value as the parameter to the method
h of C. Otherwise, components B and D interact by invoking the
method m of B and passing its return value as the parameter to the
method h of D. A conclusion that can be inferred from profiling this
code depends on specific inputs.

Let us assume that this application is profiled with the input
x 7→ 5,y 7→ 2,z 7→ 3. The methods of the classes A, C and B are
invoked, and the method m of A has the highest elapsed execution
time followed by the method m of B. Naturally, these methods are
assumed to be bottlenecks; however, while the method m of A and
the method m of B are always invoked and they do not depend on
the values of the input data, the method m of C and the method m of
D depend on the result of the evaluation of the branch condition in
line 3. Thus, choosing a different value for the variable z, say 15,
may reveal the method m of C and the method m of D as bottlenecks.
Also, a different observation is that the input variable u is not used
in the invoked methods, and its values do not affect the performance
of this program. Thus, knowing how to select input data affects the
precision of detecting bottlenecks.

2.2 Analyzing Profile Data for Bottlenecks
Our illustrative example shown in Figure 1 demonstrates two

ideas. First, it is not enough to collect performance measurements
for some selected input values during profiling – they can be mis-
leading in determining bottlenecks. Consider a situation where a
method is invoked many times in different AUT runs for some com-
binations of input values. In each separate execution trace the total
elapsed execution time of the method may not put it on the top of the
list of bottlenecks, however, when analyzed across different traces,
these methods may be viewed as bottlenecks based on their overall
contribution to the total elapsed execution time.

Second, it is important to distinguish bottlenecks based on their
generality versus their specificity for different input values when
using input-sensitive profiling. Some methods are computationally
intensive, they implement some important requirements and they
are invoked for most of the combinations of input data. The method
main in Java applications is an example of a generally invoked
method. In our illustrative example that is shown in Figure 1, these
are the method m of A and the method m of B. Even though profilers
easily put these methods on top of the list of bottlenecks, there is
often little that software engineers can do to fix these bottleneck-
s, since these methods are general-purpose. Another example of
such general-purpose bottleneck is a logging facility that records
execution events on a persistent media. While some improvements
can be performed to make a logging facility more efficient, it is
often a necessary overhead. Throughout this paper we call these
bottlenecks natural as opposed to artificially injected or those that
result from incorrect implementation of some requirements. The
former bottlenecks are rarely fixed while the latter ones are often
considered performance related bugs.

On the other hand, specific bottlenecks are methods that are in-
voked in response to certain combinations of input values. These
bottlenecks are most difficult to find, since they involve an explo-
ration of the enormous space of combinations of the input values



that collectively are a small ratio of the total input values space.
As it often happens, these bottlenecks remain undetected until the
application performance worsens significantly when deployed in the
field and used by customers. An important goal of input-sensitive
profiling is to increase the specificity of determined bottlenecks by
finding a small number of combinations of input values that lead to
exposing worsened performance in certain methods of the AUT.

2.3 The Problem Statement
In this paper, we address a fundamental problem of software

maintenance and evolution – how to increase the effectiveness of
input-sensitive profiling efficiently. The root of this fundamental
problem is that profiling applications as part of random exploratory
performance testing results in a large number of execution traces,
many of which are not effective (or useful) in determining specific
bottlenecks. Selecting a small subset of input values often results
in a skewed distribution of performance measurements, leading
to decreased accuracy and low recall for bottlenecks. That is, the
output of an input-sensitive profiler is a list of methods that are
sorted in the descending order using some performance criteria (e.g.,
elapsed execution time). If the order of the methods on this list
varies significantly from run to run using different input parameter
values, the effectiveness of such profiling is low, since engineers
cannot easily zero in on performance bottlenecks.

It is equally important to ensure that the exploration of the input
parameter space is not done indiscriminately, since many generated
input values may not be contributing anything to measuring the
effectiveness of the bottleneck detection algorithm. Consider our
motivating example in Figure 1, where the input variable u may
have many values thereby magnifying the input space. Clearly, this
parameter does not affect the methods in lines 2-3 and profiling this
application with different values for the input variable u reduces the
efficiency of detecting bottlenecks. Thus, not only is it ineffective
to explore the input parameter value space indiscriminately, but it is
also highly inefficient (if feasible at all) to profile applications on
all combinations of input values. The core problem is how to guide
the search process for input values, so that profilers keep extracting
useful information for determining and converging on bottlenecks
eventually.

Related to the problem of effectiveness and efficiency of input-
sensitive profiling is a problem of detecting specific bottlenecks, i.e.,
those bottleneck methods that become visible only for a small num-
ber of combinations of input values. Automatically detecting highly
specific bottlenecks is undecidable and very expensive in general.
However, multiple evidence show that performance engineers use
contrast analysis on collected execution traces, where they analyze
correlations among various performance counters with respect to
different load profiles [45]. We partially address the problem of
determining highly specific bottlenecks in this paper.

3. OUR APPROACH
In this section, we explain key ideas behind our approach, give

background on genetic algorithms, provide an overview and describe
the architecture and workflow of GA−Prof.

3.1 Overview of GA-Prof
Search-based algorithms are at the core of GA−Prof to auto-

mate application profiling for detecting performance bottlenecks.
There are two key phases in GA−Prof: 1) generating test inputs
to automate application profiling and 2) identifying performance
bottlenecks.

Automating application profiling. A goal of our approach is
to automate application profiling by relying on evolutionary algo-

rithms to explore different combinations of the input parameter
values. While exploring these combinations a goal is to maximize
a fitness function that maps input values to the elapsed execution
times of the AUT that is run with these input values. Initially, the
instrumented AUT is run with randomly chosen input values; af-
ter collecting execution traces and performance measurements for
these runs GA−Prof evaluates a fitness function for every trace
and selects a few sets of inputs that are more likely to lead to per-
formance bottlenecks (i.e., they increase elapsed execution times
of the AUT). Subsequently, using the GA terminology, GA−Prof
evolves to choose combinations of the input parameter values and
run the AUT with them. This process is repeated continuously, and
the collected profiles are analyzed to detect performance problems
in the AUT.

To identify potential performance problems, evolutionary algo-
rithms are used to find good inputs that are likely to steer the appli-
cation’s execution towards more computationally expensive paths,
especially the paths that contain methods whose executions con-
tribute to performance problems. Conversely, we define bad com-
binations of AUT’s inputs as those that take less time for AUT to
execute. Note that definition of good and bad inputs may be counter-
intuitive. By selecting good combinations of inputs and discarding
bad ones, GA−Prof keeps evolving the inputs that trigger more
intensive workloads in the AUT. The conjecture is that traces that
correspond to these good input sets are more likely to be informative
at identifying performance bottlenecks.

Identifying performance bottlenecks. Potential performance
bottlenecks are detected by using information extracted from multi-
ple traces. Our approach focuses on specific performance problems
(not general performance bottlenecks appearing in every application
run), which affect AUT’s performance significantly. Since the traces
are clustered into good traces that consume more resources (e.g.,
execution time) and the bad traces that consume less resources,
GA−Prof marks a method as a performance bottleneck if it has
significant contribution to good traces but less significant contribu-
tion to bad traces (see Section 3.2.3). A conjecture is that an AUT’s
specific bottleneck will manifest itself only in a few computationally
expensive executions for specific inputs. By extracting these spe-
cific performance bottlenecks from collected traces automatically,
we make GA−Prof favor the highly specific rather than general
bottleneck methods.

3.2 Using Genetic Algorithms in GA-Prof
We introduce Genetic Algorithms (GAs), explain why we use

GAs and discuss how we utilize GAs in GA−Prof.

3.2.1 Background on Genetic Algorithms
GAs are based on the mechanism of natural selection [41] and

they use stochastic search techniques to generate solutions to op-
timization problems. GAs have been widely used in applications
where optimization is required but a solution cannot be easily found.
The advantage of GA is in having multiple individuals evolve in
parallel to explore a large search space of possible solutions. An
individual/solution is represented by chromosome, i.e. a sequence
of genes.

There are different variations of GAs, but the core idea is that
new individuals (i.e., offspring) are generated using fitter existing
individuals (i.e., parents). A pre-defined fitness function [41] is used
to evaluate the fitness of each individual based on some fitness value.
Fitter individuals have a better chance to survive. In order to create
a new generation, new individuals are created by applying several
operators to existing individuals. These operators include (i) a selec-
tion operator, (ii) a crossover operator and (iii) a mutation operator.



The selection operator selects parents based on fitness values. The
crossover operator recombines a pair of selected individuals and
generates two new individuals. The mutation operator produces a
mutant of one individual by randomly altering its gene.

3.2.2 Why We Use Genetic Algorithms in GA-Prof
GAs are based on heuristic and optimization-based search over

solution spaces. An alternative to GAs is to use pattern recogni-
tion, such as machine learning (ML) algorithms. Specifically, our
previous work on FOREPOST showed that it is possible to obtain
performance bottlenecks for nontrivial applications with a high de-
gree of precision using feedback-directed learning system [32]. With
FOREPOST, execution traces for the AUT are collected, they are
assigned to different performance classes (i.e., Good and Bad), and
then ML algorithms are used to learn the model of the AUT that
maps classes of inputs to different performance behaviors of the
AUT (e.g., Good and Bad). Our hypothesis is that GA−Prof is
more effective than FOREPOST because determining what combi-
nations of input values reveal performance bottleneck is inherently
a search and optimization problem for which GA algorithms are
suited the best. Given the complexity of a nontrivial application, it
is difficult to learn a precise model from a limited set of execution
traces. We confirm this hypothesis with our experimental results in
Section 5.3. In future work, we will explore a combination of GA
and ML approaches to the problem of input-sensitive profiling.

3.2.3 Automating Profiling Using GAs
A gene representation introduces how we represent AUT’s test

inputs. For any AUT, one test input is usually a combination of mul-
tiple input parameters with specified values. Considering that one
chromosome is actually a sequence of genes, we use chromosome
to represent test input. Naturally, each gene of the chromosome
represents one input parameter. The value of each gene could be pri-
mary types, such as integers, float or boolean, or other well defined
types. For a specific type of AUT, e.g., a web-based application, an
input test case is a set of URLs. Therefore, we assign an integer
ID to each URL so that each gene is has an integer value. Natural-
ly, a chromosome of a sequence of integers actually represents a
sequence of URLs.

A fitness function evaluates an individual by computing its fitness
value. These fitness values are used to guide selection and evolu-
tion processes. Since performance problems are more likely to be
exposed when it takes longer for the AUT to execute, we favor sets
of input values which trigger more computationally intensive runs
of the AUT. As a result, the fitness value that we use to evaluate
each combination of inputs is measured as the total elapsed time for
executing AUT.

A termination criterion determines when to stop evolution. Usual-
ly, there is a maximum limit for the number of generations, meaning
that evolution will be terminated when maximum allowed number
of generation is reached, which we choose experimentally. Also,
in order to improve the efficiency of the GA, the evolution process
can also be terminated when the results converge, i.e., their changes
among generations become infinitesimal. In GA−Prof we monitor
the average fitness value of every individual in one generation and
we terminate the evolution when results converge.

Our GA implementation includes the following steps: (i) random-
ly generate an initial set of AUT’s inputs, (ii) use them to execute
AUT and collect execution traces, (iii) calculate the fitness value
of each execution trace, and (iv) use fitness values to guide the
evolution and choose new sets of input values. GA−Prof takes in
the complete set of input ranges for the subject application and the
GA configurations, including crossover rate, mutation rate, fitness

Algorithm 1 GA−Prof’s algorithm for automating application pro-
filing
1: Inputs: GA Configuration Ω, Input Set I
2: P ← Initial Population(I )
3: while Terminate() == FALSE do
4: P ← Crossover(P , Ω)
5: P ← Mutation( P , Ω,I )
6: for all p ∈ P do
7: F ← FitnessFunction( p)
8: end for
9: P ← Selection( F ,P )

10: end while
11: return P

function and termination criterion. Then, the algorithm generates an
initial population by randomly sampling the gene pool of complete
input set. Here is when the evolution begins. The crossover operator
takes in a pair of parent chromosomes, randomly selects a crossover
(cutting) point and exchanges the remaining gene sequence, thus
creating two offsprings for a new generation. The total number of
parent pairs is dependent on crossover rate. After that, the mutation
operator takes in an offspring chromosome and changes the value of
genes with another value within the specified range, thus generating
a mutant of the offspring chromosome. The probability of genes
being changed is so-called mutation rate. All newly generated indi-
viduals are considered a temporary pool and need to evaluated by
the pre-defined fitness function. Each one is assigned with a fitness
value and fitter individuals are selected to form a new generation.
The selection is based on tournament selection. To select one indi-
vidual, a tournament is run among a random subset of temporary
individuals and the winner is selected, while other individuals are
put back to the temporary pool. Multiple tournaments are needed
until the new generation meets required population. Thus, a new
generation is created. This cycle repeats until termination criterion
is satisfied and the final population is returned.

The algorithm of automating application profiling is shown in
Algorithm 1. GA−Prof takes in the complete set of input ranges
for the subject application and the GA configurations Ω, includ-
ing crossover rate, mutation rate, fitness function and termination
criterion. In Step 2, the algorithm randomly generates an initial
population. Starting from Step 3, the evolution process begins. In
Step 4, the crossover operator randomly selects a crossover point
and exchanges the remaining genes for selected patent individuals,
thus creating two new offspring individuals for a new generation.
In Step 5, the mutation operator changes the value of one random
gene with another value within the specified range, thus creating a
new (updated) individuals if mutation is triggered. In Step 6-8, the
fitness of each individual is evaluated using the pre-defined fitness
function, which is introduced above. The selection of individuals
participating in producing offsprings for a new generation is guided
via the fitness values (Step 9). The cycle of Step 3-11 repeats until
termination criterion is satisfied. The final population is returned in
Step 11 as the algorithm terminates.

3.3 Identifying Performance Bottlenecks
Our goal is to identify specific bottleneck methods automatically.

Recall that bottlenecks with a high degree of specificity are more
valuable to fix during maintenance than natural or general bottle-
necks. Our idea is to detect bottlenecks that are more significant
in good execution profiles and are less significant in bad execution
profiles.



In order to contrast methods in good/bad execution profiles we re-
ly on the Independent Component Analysis (ICA) algorithm that can
be used to break large execution traces into sets of orthogonal sets of
methods relating to different features of an AUT [42, 32, 31]. ICA
algorithm is a computational method that is used to extract compo-
nents from mixed signals if these components are independent and
satisfy the non-Gaussian distribution. ICA has been previously used
to address concept location [31] and performance testing problems
[32].

The decomposition process is described by the equation ‖x‖=
‖A‖ · ‖s‖, where ‖A‖ is the transformation matrix that is applied to
signal matrix ‖s‖ to obtain signal mixture matrix ‖x‖. In GA−Prof
context, each row in ‖x‖ corresponds to an execution trace and
each column corresponds to a method invoked in each trace. There-
fore, each element in x j

i reflects the contribution of method i in
trace j. Now we solve this reverse problem by decomposing ‖x‖.
The elements in ‖s‖, sk

p indicate the contribution of method k to
implementing a feature q. Our conjecture is that methods having
higher contribution in given features are likely to be involved in
performance problems.

Deg =

√√√√NMg

∑
i=0

NRg

∑
j=0

(Si j
Good −Skl

Bad)
2 (1)

Since execution traces are clustered into good and bad categories,
matrix ‖s‖ are generated for both of these two clusters, i.e. ‖sGood‖
and ‖sBad‖. Based on these two matrices, we rely on the Equation 1
to compute specificity weight for each method, where Deg is the
distance for each method, NMGood is the number of good methods,
NRGood is the number of features. Since we consider the distance
as the weight for each method, we favor potential performance
bottlenecks that are significant in good execution traces but not
invoked or not significant in bad execution traces. As a result,
GA−Prof generates a ranked list of methods based on their weights.
Higher ranked methods are identified as bottlenecks with a higher
degree of specificity.

3.4 GA-Prof’s Architecture and Workflow
The architecture of GA−Prof is shown in Figure 2. Solid arrows

indicate command and data flows between components and the
numbers in parentheses indicate the sequence of operations in the
workflow.

Initial input value combinations are chosen at random (1). For
each of the input sets, AUT’s methods are invoked and Profiler
collects (2) the execution trace for each individual solution. We
implemented Profiler component in GA−Prof using TPTP frame-
work1. The execution traces are passed (3) to Execution Trace
Analyzer, which uses these traces to produce (4) Trace Statistics,
containing information about method calls, such as the total number
of invocations and the total elapsed self-time for each method. GA
analyzer computes (5) the fitness value for each input is based on
the Trace Statistics of its corresponding execution trace. Then the
population is evolved using cross-over and mutation operators and
new individuals/offsprings are generated (6).

When the termination criterion is satisfied, potential bottlenecks
are identified using the last generation of individuals (input combi-
nations). However, it should be noticed that the bottlenecks can be
also produced GA−Prof for any given generation. Traces Statistics
are passed (7) to Trace Clustering, and all traces are divided into two
groups: good (8) and bad (9) execution traces. Clustering is done
based on computing the median value of the elapsed execution time.

1https://www.eclipse.org/tptp/

Figure 2: The architecture and workflow of GA−Prof.

Combining this with Method and Data Statistics produced (10) by
Execution Trace Analyzer, ICA algorithm computes (11) Method
Weights for each method using Equation 1. The higher the method’s
weight in good execution traces the higher the possibility that a
method is a AUT’s bottleneck. A ranked list of potential bottleneck
methods is generated (12) using their weights and is given to the
engineer for further evaluation.

4. EMPIRICAL EVALUATION
This section describes the design of the empirical study to evaluate

GA-Prof. We pose the following three Research Questions (RQs):

RQ1: How effective is GA−Prof in finding sets of inputs that steer
profiling applications towards more computationally intensive
executions?

RQ2: How effective is GA−Prof in identifying performance bot-
tlenecks for specific sets of inputs?

RQ3: Is GA−Prof more effective than competitive approach in
identifying performance bottlenecks?

We introduce the null hypothesis H0 (and consequently alterna-
tive hypothesis HA) to evaluate the statistical significance of the
difference in the mean value of elapsed execution time between ran-
dom input and GA−Prof generated input for subject applications,
designed to answer RQ1:

H0: There is no statistical difference in the mean values of elapsed
execution times triggered by input combinations generated
randomly and by GA−Prof, for subject applications.

HA: There is statistically significant difference in the mean values
of elapsed execution times triggered by input combinations
generated randomly and by GA−Prof, for subject applica-
tions.

In the rest of this section, we first introduce the subject applica-
tions used in the study. Then, we describe the methodology, inputs
and variables. Finally, we discuss the threats to validity with specific
strategies on how we minimized those.

4.1 Subject Applications
We evaluated GA−Prof on three subject applications: JPet-

Store2, DellDVDStore3 and Agilefant4.
2http://sourceforge.net/projectss/ibatisjpetstore/
3http://linux.dell.com/dvdstore/
4http://agilefant.com/



These three applications are all web-based open-source database-
centric applications. In these systems, users rely on a web-based
Graphical User Interface (GUI) front-end to communicate with
back-end that accepts URLs as inputs. We deploy JPetStore and
DellDVDStore on Apache Tomcat5 server 6.0.35 and Agilefant
on 7.0.47. JPetStore is a Java implementation of the benchmark,
PetStore. In our empirical study, we used iBatis JPetStore 4.0.5.
The system consists of 2,139 lines of code, 384 methods, 36 class-
es in 8 packages. JPetStore uses Apache Derby6 as its back-end
database and contains 125 URLs. DellDVDStore is an open-source
simulation of an online e-commerce site, which has been used in a
number of industrial performance-related studies similarly to JPet-
Store [46, 45, 14, 18, 72]. DellDVDStore uses MySQL7 as its back-
end database and contains 117 URLs. Agilefant is an enterprise-
level backlog product and project management system. It also uses
MySQL as its back-end database and contains 124 URLs. We used
Agilefant 3.5.1 in our experiments. It consists of 10,848 lines of
code, 2,528 methods and 254 classes in 21 packages.

4.2 Methodology
Since we use web-based subject applications, the inputs for these

applications are URL requests. For instance, JPetStore has a web-
based client-server architecture. Its GUI front-end communicates
with the J2EE-based back-end that accepts HTTP requests in the
form of URLs. Its back-end can serve multiple URL requests from
multiple users concurrently. Each URL exercises different compo-
nents of the application. For each subject application, we traversed
the web interface and source code of these systems and recorded all
unique URLs sent to the back-end, in order to obtain a complete set
of URL requests.

We define a transaction as a set of URLs that are submitted by
a single user. To answer RQ1, we issued multiple transactions in
parallel collecting profiling traces and computing the total elapsed
execution time for the back-end to execute the transactions. Our goal
is to evaluate if GA−Prof can automatically find combinations of
URLs that cause increase in elapsed execution time. In our experi-
ments, we set the number of concurrent users to five and the number
of URLs in one transaction to 50. To answer RQ2, we randomly
selected nine methods in each subject application and injected time
delays into them to test whether GA−Prof can correctly identify
them. In order to answer RQ3, we chose FOREPOST [32] as com-
petitive approach (see Section 3.2.2). We conducted comparison
experiments on subject applications, with artificial delays injected,
and compared the effectiveness of both approaches identifying them.

To choose the delay length and methods to inject bottlenecks
into, we ran the subject applications without injected bottlenecks
and obtained a ranked list of methods. On top of this list we ob-
tained natural bottlenecks. Then, we randomly chose nine methods
which all ranked very low on the list of profiled methods to avoid
natural bottlenecks of the system and injected artificial delays of
five milliseconds into the chosen methods. This delay was chosen
experimentally, so that these methods will become bottlenecks for a
small subset of combinations of the input values.

Since GA−Prof relies on GAs, which are based on randomized
algorithms, we had to conduct our experiments multiple times to
ensure statistical significance of the results. We followed the guide-
lines for statistical tests for assessing randomized algorithms [6,
7] when designing the methodology for our empirical study. We
repeated the experiments for each subject application for 30 times.

5http://tomcat.apache.org/
6http://db.apache.org/derby/
7http://www.mysql.com/

The experiments for JPetStore and Agilefant were carried out
using two Dell PowerEdge R720 servers each with two eight-core
Intel Xeon CPUs E5-2609 2.40GHz,10M Cache, 6.4GT/s QPI, No
Turbo, 4C, 80W, Max Mem 1066MHz with 32GB RAM that consists
of two 16GB RDIMM, 1333 MT/s, Low Volt, Dual Rank, x4 Data
Width. The experiments for DellDVDStore were carried out using
one Lenovo Y530 laptop with Intel Core2 Duo processor P7350,
2.0 GHz, 3 GB RAM. It typically takes three hours to finish one run
for JPetStore and DellDVDStore, and approximately one day for
Agilefant. All comparison experiments were conducted on the same
experimental platforms to ensure fair comparison.

The GA is implemented using the JGAP library, which provides
a collection of methods for a wide range of GA purposes8. We
used the following GA settings for GA−Prof: a crossover rate of
0.3, a mutation rate of 0.1, a population of 30 individuals and a
tournament selection of size five. We used the total elapsed time as
our fitness function, as described in Section 3.2.3. The evolution
is terminated if the results do not improve for ten generations. The
maximum number of generations is set to 30 – we chose this value
experimentally based on the duration of AUTs’ runs and the limits
of our experimental platform.

4.3 Variables
Dependent variables include the average number of transactions

that subject applications can sustain under the load and the average
time that it takes to execute a transaction. There is one main inde-
pendent variable, that is, bottlenecks. We are interested in two main
indicators of the search process: the variance in the position of the
bottleneck method relative to the top N methods on the list of all
profiled methods and the convergence rate to the ultimate position
on the list for the bottleneck method among generations of running
the GA.

Consider a situation when an engineer is asked to run a profiler on
the AUT. When selecting input values randomly, a specific execution
path can be taken that may not result in a long elapsed execution time
for a bottleneck method to be listed as top N method on the profile
method list. Depending on the selected input data, this method may
enter the top N methods on the list and leave it seemingly randomly,
as the input data are selected at random. Doing so contributes to
the large variance in the position of a given method on the profiled
methods list. In contrast, when using a stochastic approach like the
GA, we should observe a trend when the variance gets smaller as
the bottleneck method moves closer to the top of the list. A long
term trend should show this direction for a bottleneck method in our
experiments.

4.4 Threats to Validity
A threat to validity for our empirical study is that our experiments

were performed on only three open-source web-based applications,
which makes it difficult to generalize the results to other types of
applications that may have different logic, structure, or input types.
However, JPetStore and DellDVDStore were used in other empirical
studies on performance testing [46, 45, 72, 18, 14] and Agilefant
is representative of enterprise-level applications, we expect our
results to be generalizable to at least this type of web-based software
applications.

Our current implementation of GA−Prof deals with only one
type of inputs - URLs, whereas other programs may have different
input types. While this is a potential threat, in our opinion, this is
not a major one, since GA−Prof can be easily adapted to encode
inputs of other types. There is no theoretical limitation that prevents

8http://jgap.sourceforge.net/



GA−Prof from profiling other types of applications. In order to ap-
ply GA−Prof to other applications, one only needs to modify gene
representation approach so that GA−Prof recognizes other types of
input, such as numbers, strings and booleans. However, GA−Prof
currently does not support complex input types, such as inputs with
varying lengths. Additionally, it is possible that GA−Prof gener-
ates invalid URL sequences through the GA operators. This can be
solved by extracting special constraints of inputs for each AUT to
ensure generated URL sequences are valid, however, it is currently
out of the scope of this paper. Moreover, there may be cases where
some methods are naturally computationally intensive, yet they are
not performance problems. Our current implementation cannot dis-
tinguish these cases with the real performance problems, since we
only used elapsed execution time to measure method performance.
We are planning on addressing these limitations in the future work.

Artificial delays were injected into randomly chosen methods.
This may be a threat for two reasons. First, performance bottle-
necks of web-based applications may result from external sources,
such as network communication and database queries. Second, real
world bottlenecks do not necessarily exist in random spots. Howev-
er, understanding the locations of performance bottlenecks within
applications is currently out of scope for this work.

A different threat is that we perform experiments with a fixed
number of users and fixed size of transactions. Using multiple users
may lead to discovering new bottlenecks where multithreading,
synchronization, and database transactions may expose new types
of delays. Experimenting with large workloads is a subject of
future work and it is orthogonal to the RQs that we pose, since
large workloads will introduce complex interactions among software
components, which is outside the scope of this paper.

In spite of these threats, this empirical study design allowed us to
evaluate GA−Prof in a controlled setting. Thus, we are confident
that the threats have been minimized and our results are reliable.

5. EMPIRICAL RESULTS
This section describes and analyzes the results of our experiments

on three software systems in order to answer the research questions
stated in Section 4.

5.1 Searching Through Input Combinations
The results for JPetStore with injected artificial delays are shown

in the box-and-whisker plots in Figure 3(a), which summarizes the e-
lapsed execution times for the application for given sets of inputs. In
this figure, we are only comparing the first and the last generations
of the evolution, that is, the resulting running times while profiling
JPetStore with random sets of inputs (i.e., the first generation) and
evolved input combinations (i.e., the last generation). For the first
generation, where each individual is a randomly generated transac-
tion, the average elapsed execution time to execute the system using
given sets of inputs is ≈ 4.9 seconds. For the last generation, the
average time is ≈ 8.3 seconds, which shows 69.4% increase. The
average elapsed times for JPetStore to execute inputs in one trans-
action across every generation is shown in Figure 4(a). The results
demonstrate that GA−Prof is effective in finding combinations of
input values that trigger more intensive workloads.

This conclusion is confirmed by the results for DellDVDStore
shown in Figure 3(b). The average elapsed execution time is ≈
8.1 seconds in the first generation and ≈ 9.3 seconds in the last
generation. We can observe the increase in average elapsed time
of approximately 14.8%. This increase is smaller as compared
to JPetStore, because DellDVDStore has a relatively smaller and
simpler structure, which means that even with randomly generated
individuals, significant part of the bottleneck methods are triggered

Figure 3: Execution elapsed time measured in seconds for sub-
ject AUTs. We compare average elapsed times of each trans-
action in first and last generations for each application. The
x-axis corresponds to the first and last generations, and y-axis
corresponds to systems’ average elapsed time. The results for
all three subject applications are averaged over 30 runs. Sub-
figure (a), (b) and (c) corresponds to JPetStore, DellDVDStore
and Agilefant, respectively.

in the first generation, leaving relatively small part of the search
space for GA−Prof to explore. However, for those applications
with a large input set (i.e., large search space), we expect to see a
significant increase in elapsed time.

This conjecture is confirmed by the results of Agilefant, shown
in Figure 3(c). For the first generation, the mean value of elapsed
execution time is ≈ 4.13 seconds, and for the last generation, the
average time is ≈ 58.22 seconds. The increase in mean value of
elapsed execution time is significant because Agilefant is a much
larger system as compared to JPetStore and DellDVDStore, and
has a much larger input space. Thus, it is more likely that random-
ly generated combinations of inputs in the first generations may
not necessarily be able to focus on the hot spots. Also, the aver-
age elapsed times for DellDVDStore and Agilefant to execute one
transaction across every generation is shown in Figure 4(b) and
4(c). As the populations evolve, GA−Prof was consistently able
to find combinations of inputs that steer applications toward more
computationally intensive executions.

To test the null hypothesis H0,JPetStore, we applied t-test for paired
sample mean of the first and last generations from all 30 runs of
JPetStore. The p value is p = 1.5e−21, allowing us to reject the
null hypothesis and accept the alternative hypothesis HA,JPetStore
with strong statistical significance (p < 0.05) that GA−Prof is
effective in finding the combinations of inputs and steering JPetStore
towards more computationally intensive executions. Similarly, the
t-test results for DellDVDStore and Agilefant are p = 2.9e− 30
and p = 6.4e−17. We reject null hypotheses H0,DellDV DStore and
H0,Agile f ant , and accept the alternative hypotheses HA,DellDV DStore
and HA,Agile f ant , thus positively answering RQ1 that GA−Prof is
effective in finding sets of inputs that steer profiling applications
towards more computationally intensive executions.

5.2 Understanding Performance Bottlenecks
As stated in Section 3, GA−Prof ranks methods in a descending

order and generates a list of potential bottlenecks. Higher ranking
indicates the higher probability of being a performance bottleneck.
Since we inserted artificial delays into selected methods, we expect
these methods (injected bottlenecks) to be ranked higher on the list.
We tracked the ranks of each injected bottleneck across generations
and we performed linear fitting analysis in order to understand
variation and trends in rankings of known bottlenecks.

The standard deviation indicates the variation of rankings across
generations. For a given injected bottleneck, we take as input the
sequence of its ranks. We calculate the standard deviation at each



Figure 4: The results for elapsed execution time across every
generation for each application, measured in seconds. The x-
axis corresponds to generations, and y-axis corresponds to av-
erage elapsed time. Subfigure (a), (b) and (c) corresponds to
JPetStore, DellDVDStore and Agilefant, respectively.

generation using the segment of successive five generations, consist-
ing of the ranks at previous two generations, the current generation
and next two generations. However, for the first two generations
and the last two generations, the value of the standard deviation is
assigned to zero because we do not have respective data for genera-
tions before and after respectively.

The linear fitting reflects the trend of rankings as GA−Prof
evolves. For each run and method, we take the sequence of rankings
as input and perform linear fitting. A negative slope shows that a
method is converging to the top of the list; a positive slope shows
that a method ends up in lower positions.

If GA−Prof yields a negative slope for the fit straight line for
one injected bottleneck, GA−Prof is considered to “capture” this
method. If the slope is positive, GA−Prof is considered to “miss”
this method. We run GA−Prof multiple times for each subject ap-
plication, and every GA−Prof run can capture injected bottlenecks.
Figure 5 shows the distribution of the quantity of captured injected
bottlenecks. In experiments with JPetStore (see Figure 5(a)), for
most of the time, GA−Prof can capture five or six bottlenecks.
The probability of capturing five or more bottlenecks is 80%. The
similar distribution pattern can be observed for DellDVDStore and
Agilefant, shown in Figure 5(b) and 5(c). To sum up, the aver-
age number (expectation) of injected bottlenecks that GA−Prof
can capture is 5.6, 4.6, and 3.7 for JPetStore, DellDVDStore and
Agilefant, respectively.

One example of GA−Prof run on JPetStore is shown in Figure 6.
We can see that at most times, injected bottlenecks ranked within
top 20 of the descending list, which means that GA−Prof ’s output
is stable and reliable. However, there are some cases where the
rank of a bottleneck method is ranked as low as taking the position
on the list below 200 and then comes back to the top of the list,

Figure 5: Distribution of the quantity of captured injected bot-
tlenecks. The x-axis corresponds to the number of injected bot-
tlenecks that are captured by one certain GA−Prof run. The
y-axis corresponds to the number of GA−Prof runs. Subfigure
(a), (b) and (c) corresponds to JPetStore, DellDVDStore and
Agilefant, respectively.

Table 1: Comparing GA-Prof and FOREPOST for detecting
performance bottlenecks in JPetStore (JP) and DellDVDStore
(DS). All numbers are averaged over multiple runs. “# of Meth-
ods” indicates the number of injected bottlenecks that are cap-
tured by one certain technique. “Final Ranks” indicates the
ranks of injected bottlenecks in the final ranked list.

FOREPOSTGA-Prof config1 config2
JP 5.6 > 1.8 2.2# of Methods DS 4.6 > 4.2 2.6
JP 13.78 < 241.67 145.98Final Ranks DS 10.94 < 12.67 14.80

for example, Figure 6(b). This phenomenon is expected, since our
approach is search-based and it can choose input values for some
generations that are not optimal. GA−Prof approaches to the target
(the bottlenecks) by continuous self-correction. It is expected that
sometimes GA−Prof experiences some “over-correction”, which is
when we observe a very low ranking of a method. This is inevitable,
however, it is not a concern. The method will come back later on top
of the list in future generations, as proved by the figures. As a result,
GA−Prof will eventually yield a reliable list of methods where
injected bottlenecks are ranked on top. This can be demonstrated by
the fit linear line (blue dashed lines in the figures). In the example
in Figure 6, we observe a negative slope for all nine methods, which
means that the ranking of all nine injected bottlenecks are converging
to the top of the list as the GA−Prof evolves. However, we do
not expect that GA−Prof would always be able to capture every
single injected bottleneck. A positive slope does not always mean
that the method is missed. Sometimes a method is ranked on top
of the list at every generation, leaving no space for improvement,
thus, the slope can not be negative. Sometimes a method may give
way to another method but still stay within top positions of the list.
These two cases do not impair the reliability of the ranked list at
all. In summary, results demonstrate that GA−Prof is effective in
identifying injected bottlenecks, thus, positively addressing RQ2.

5.3 Comparing GA-Prof to FOREPOST
Recall from Section 3.2.2 that FOREPOST is the closest compet-

itive approach to GA−Prof that uses machine learning to obtain
models that map classes of inputs to performance behaviors of the
AUT [32]. Like GA−Prof, FOREPOST outputs a descending list
of potential bottlenecks.



Figure 6: Understanding the trend of ranks of injected bottlenecks. The x-axis corresponds to generations, and y-axis corresponds
to the rank of bottlenecks. In each subfigure, the rank of the method is shown in black circles. The standard deviation at each
generations is shown in black vertical lines and whiskers. The fit straight line is shown is blue dashed lines.

In our comparison experiments, we used two configurations for
FOREPOST. In config1, we used four iterations of learning rules
and ten execution traces in between. In config2, we used four
iterations and 15 execution traces. Since FOREPOST experiments
are very time-consuming, we repeated FOREPOST experiments
five times for only two subject applications: JPetStore and DellD-
VDStore. The results are shown in Table 1, where we compared
the following: 1) how many injected bottlenecks are captured (ti-
tled as“# of Method”), and 2) final ranks of injected bottlenecks
(titled as“Final Ranks”). Capturing a bottleneck is defined in Sec-
tion 5.2. By "final ranks", we mean the average of all injected
bottlenecks rankings in last generation (GA−Prof) or last iteration
(FOREPOST).

Table 1 shows that GA−Prof was able to capture, on average,
5.6 injected bottlenecks in JPetStore, while FOREPOST captured
only 1.8 and 2.2 bottlenecks in two respective configurations. Simi-
larly, for DellDVDStore, GA−Prof also captured more bottlenecks.
Final ranks are injected bottlenecks’ rankings over multiple runs.
Smaller numbers represent higher positions in the list, indicating
higher probability of being performance problems. For JPetStore,
the injected bottlenecks have an average rankings of 13.78 in the list
by GA−Prof, and 241.67 and 145.98 by FOREPOST. For DellD-
VDStore, injected bottlenecks are also ranked higher by GA−Prof.
In summary, GA−Prof finds more bottlenecks than FOREPOST,
confirming our initial conjecture, and, thus, positively addressing
RQ3 that GA−Prof is more effective than FOREPOST in identify-
ing performance bottlenecks.

6. RELATED WORK
Profiling, a form of dynamic program analysis, is widely used in

software testing, such as test generation [23, 74, 50], functional fault
detection [8, 66, 88, 9, 19, 49], and non-functional fault detection
[81, 20, 62, 21, 56, 35, 83]. Korel provided an approach that
generates test cases based on actual executions of AUT to search for
the values of input variables, which influence undesirable execution
flow, by using function minimization methods [50]. Schur et al.
provided an tool ProCrawl, which mined an extended finite-state
machine as a behavior model and generated test scripts for regression
testing [68, 69]. Artzi et al. used the Tarantula algorithm to localize
source codes which lead to failures in web application by combining

the concrete and symbolic execution information [9]. Chilimbi et
al. provided a tool, HOLMES, to instrument the selected parts
of the application, which are likely to contain the root causes of
bug reports, and then used statistical analysis to identify the paths
that predict the failures strongly by assigning score to these paths
[19]. An approach provided by Jiang et al. utilizes execution
profilers that possibly contain faults to simplify the program and
scale down its complexity for in-house testing [44]. But these
works only focused on functional faults. Coppa et al. provided an
approach to measure how the performance scales with increasing
size of input, and used it to find out performance faults by analyzing
the profiles [20, 24]. Liu et al. designed an innovative system,
AutoAnalyzer, to identify existence of performance bottlenecks
using clustering algorithms and to locate performance bottlenecks
by searching algorithm [56]. However, these two papers only paid
attention to some specific problems, whereas GA−Prof is aimed at
exploring and detecting all possible performance bottlenecks. Han et
al. proposed an approach, StackMine, which applied a costly-pattern
mining algorithm on callstack traces, and then extracted impactful
subsequences of function calls to help the performance debugging
[35]. However, they only extracted callstack patterns that lead
to response delay, instead of detecting method-level performance
bottlenecks. Our approach applies genetic algorithms to generate
test cases, which are likely to reveal performance problems by
analyzing execution information.

Genetic Algorithms (GAs) is widely used in many areas of soft-
ware engineering [36], such as software maintenance [54, 61, 64],
textual analysis [65], cloud computing [28, 38] and testing [4, 3,
37, 60, 15, 10, 29, 82, 59, 57, 58]. Test generation is a key point in
software testing. Alshahwan et al. used dynamically mined value
seeding into search space to target branches and generate the test da-
ta automatically [4]. To achieve higher branch coverage, McMinn et
al. used a hybrid global-local search algorithm, which extended the
Genetic Algorithm with a Memetic algorithm, to generate the test
cases [40, 27]. Harman et al. designed an approach by using the dy-
namic symbolic execution and search-based algorithms to generate
test data, which can kill both the first order and higher order mutants
for mutation testing [37]. Ali et al. provided a systematic review for
the search-based test case generation, which built a framework to
evaluate the empirical search-based test generation techniques by
measuring cost and effectiveness [3]. Briand et al. applied GAs to



stress testing. They developed a method for automatically deriving
test cases to maximize the probability of critical deadline misses
[12]. Iqbal et al. used GAs in testing of real-time embedded systems
and their empirical study proved effectiveness in detecting system
faults [43]. Schwarz et al. applied GAs to mutation testing [71],
where GAs were used to produce mutations of a program aiming at
improving the quality of test case suits. Genetic Algorithms have
been successfully used in coverage-oriented testing. Jones et al.
[48] used GAs to automatically generate test data to execute every
branch in several subject applications written in Ada. They used
branch predicate as the basis of fitness function. Similarly, Watkins
[75] attempted to obtain full path coverage by assigning a small
fitness value to an individual that follows previously covered path.
Genetic Programming (GP), which is a variation of GAs, considers
an individual as the abstract syntax tree of a program that evolves
in a genetic way. Fitness is usually measured using results-based
approach that seeks to find a program that is best adapted to its
specification, such as mutation testing [52] and bug fixing [79, 26,
53, 30]. Wasif et al. demonstrated that genetic programming is
helpful for software fault prediction [1]. However, these approaches
did not consider the non-functional properties.

In Wegener et al.’s work [76, 78, 77], GAs were shown to find un-
known execution times, which also used GAs for selecting test input
data and exposing performance problems. However, they looked for
the longest as well as the shortest execution times. Moreover, they
did not repeat their experiments to account for the randomness of
GAs. Also, their decision about when to stop evolution was rather
arbitrary. Finally, GA−Prof uses contrast mining to detect specific
bottlenecks across different sets of inputs and profiles.

Performance Testing. Finding and fixing performance problems
was shown to be even more challenging than identifying functional
problems [85]. Thus, one critical goal in performance testing is to au-
tomatically generate test cases which may invoke performance prob-
lems. Burnim et al. provided a complexity testing algorithm for the
symbolic test generation tool, to construct the inputs that lead to the
worst-case computational complexity of the program [13]. Jin et al.
extracted efficiency-related rules from 109 real-world performance
bugs, and used them to detect performance bugs [47]. Chen et al.
detected performance anti-patterns (object-relational mapping) from
global call and data flow graphs and ranked them [17]. Nguyen et
al. designed an approach for mining the software regression-causes
repositories, and used machine learning algorithms to identify re-
gression causes automatically based on the results of prior tests [63].
Xiao et al. propose an approach that predicts workload-dependent
performance bottlenecks by using complexity models [80]. Zhang
et al. proposed an approach for exposing performance bottlenecks
using test cases generated by a symbolic-execution based approach
[87]. However, unlike GA−Prof, they did not utilize execution
information to identify performance problems. Pradel et al. pro-
vided a performance-guided test generation technique to identify
pairs of events whose execution time may gradually increase [67].
Grechanik et al. proposed FOREPOST, a feedback-directed black-
box approach for generating test data, finding performance problems
and identifying bottlenecks [32]. Generating test case inputs was
guided by rules which were derived from execution traces using
a machine learning algorithm. Both FOREPOST and GA−Prof
approaches are aiming at finding specific combinations of input sets
that steer application execution to hot paths. However, GA−Prof
uses genetic algorithms for exploring a large space of input combi-
nations in the context of automating application profiling. Moreover,
our experimental results confirm that GA−Prof demonstrate supe-
rior results as compared to those by FOREPOST, which is rooted in
our original conjecture - it is difficult to learn a precise model from

a limited set of execution traces as currently done in FOREPOST.
In summary, GA−Prof is more effective than FOREPOST because
determining what combinations of input values reveal performance
bottlenecks is an inherently search and optimization problem for
which GAs are best suited for.

7. CONCLUSION
We propose a novel approach for automating performance bot-

tleneck detection using search-based application profiling. Our key
idea is to use a genetic algorithm as a search heuristic for obtaining
combinations of input parameter values that maximizes a fitness
function that represents the elapsed execution time of the applica-
tion with these input values. We implemented our approach, coined
as Genetic Algorithm-driven Profiler (GA−Prof) that combines
a search-based heuristic with contrast data mining from execution
traces to accurately determine performance bottlenecks. We evalu-
ated GA-Prof in the empirical study to determine how effective-
ly and efficiently it detects injected performance bottlenecks into
three popular open source web applications: two popular perfor-
mance benchmarks and one enterprise-level application. Our results
demonstrate that GA-Prof effectively explores a large space of the
combinations of the input values while automatically and accurately
detecting performance bottlenecks.
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