
ImpactMiner: A Tool for Change Impact Analysis

Bogdan Dit, Michael Wagner, Shasha Wen, Weilin Wang, Mario Linares-Vásquez,
Denys Poshyvanyk, and Huzefa Kagdi*

Computer Science Department
The College of William and Mary

Williamsburg, VA 23185, United States
{bdit, mmwagn, swen, wwang01,

mlinarev,denys}@cs.wm.edu

*Department of Computer Science
Wichita State University

Wichita, KS 67260-0083, United States
kagdi@cs.wichita.edu

ABSTRACT
Developers are often faced with a natural language change request
(such as a bug report) and tasked with identifying all code elements
that must be modified in order to fulfill the request (e.g., fix a bug
or implement a new feature). In order to accomplish this task,
developers frequently and routinely perform change impact
analysis. This formal demonstration paper presents ImpactMiner,
a tool that implements an integrated approach to software change
impact analysis. The proposed approach estimates an impact set
using an adaptive combination of static textual analysis, dynamic
execution tracing, and mining software repositories techniques.
ImpactMiner is available from our online appendix
http://www.cs.wm.edu/semeru/ImpactMiner/

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – enhancement, restructuring, reverse engineering,
and reengineering

General Terms
Documentation, Design

Keywords
Change impact analysis, repository mining, subversion, dynamic
analysis, information retrieval

1. INTRODUCTION
Throughout the development and maintenance of a software

system, developers are frequently given change requests that they
must implement in the project. Given such a change request (e.g.,
bugs or feature requests) the developers must identify relevant
source code entities that need to be modified. This activity is referred
to as change impact analysis or simply impact analysis (IA) [1] and
it is a fundamental part of the software development and
maintenance process.

Two good starting points in performing IA are project’s
documentation and developers’ experience on that project.
However, many times these sources are not available, since the
documentation for a given project may be either inaccurate or

missing entirely or because the original developers are no longer
available. In such situations, developers must look into other
sources of information about the project. IA was traditionally
performed by analyzing the static and dynamic information about a
software system, or by using Information Retrieval (IR) techniques.
In addition to these traditional sources of information, one recent
source of information that is recognized and used is the software
repositories. Mining Software Repositories (MSR) approaches
analyze historical changes in the source code repositories to
determine co-changed source code elements and infer association
rules. Gethers et al. [2] proposed a scenario driven approach for IA
that recommends impact sets based on the available sources of
information generated using IR, dynamic and MSR techniques.

In this paper we introduce a novel tool for IA called
ImpactMiner, which implements the adaptive approach to IA that
was evaluated in our previous work [2]. ImpactMiner is a new
addition to the limited suite of IA tools, such as JRipples [3] and
Chianti [4], which use static and/or dynamic techniques.
ImpactMiner uses co-changes from source code repositories, as well
as, combining multiple sources of information. Our previous work
[2] showed that the combination of the results are statistically
significantly better than the results obtained from any single
technique or any combination of two techniques.

2. BACKGROUND AND RELATED WORK

2.1 Integrated Impact Analysis
Our approach adapts to the available sources of information,

such as textual, dynamic and historical, and provides support for
combining these sources of information to improve the results for
IA [2]. For a given maintenance task the approach works as follows.
First, IR is used to retrieve textually similar methods for a change
request. Second, if the developer is able to generate an execution
trace based on a scenario that exercises the feature of interest, she
can combine this information with the textual information (similar
to the SITIR approach [5]) in order to get improved results. Finally,
once the developer identifies a relevant method, she can use
historical information to get recommendations on other relevant
methods (i.e., methods that could be of interest because they were
co-changed frequently in the past). In addition, she can use the
historical information in combination with textual and dynamic
information (if available). An evaluation involving four Java
systems showed that combining IR, dynamic and MSR techniques
produced results that were statistically significant better than stand-
alone techniques [2].

2.2 Related Work
Sando [6] is an open-source source code search tool

implemented as a Visual Studio extension. In addition, Sando [6]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICSE’14, May 31–June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/06…$15.00.

provides an extensible framework that can be easily adapted and
configured to support new search techniques. JRipples [3] is an
Eclipse plug-in that uses static information to analyze dependencies
between entities in order to help developers locate the impact set
manually, by keeping track of visited elements and the elements that
dependent on them. Chianti [4] is also an Eclipse plug-in that uses
static information, in the form of changes between consecutive
versions of the software, and dynamic information, such as
execution traces of test cases. By combining these two types of
information, Chianti is able to predict a set of unit tests that were
affected by the changes in the source between two versions.

ImpactMiner is built on top of FLAT3 [7], a tool for performing
feature location using textual searches, execution traces, a
combination of the two, annotating features, and visualization.
ImpactMiner is different than JRipples and Chianti because in
addition to static and dynamic information, it leverages historical
data and enables developers to combine these types of information
in the way that bests suits their needs.

We refer the interested reader to the related work presented in
our previous work [2].

3. IMPACTMINER
ImpactMiner is implemented as an Eclipse plug-in on top of

FLAT3 [7]. In addition to the inherited features from FLAT3,
ImpactMiner extracts evolutionary co-changes from SVN
repositories, and allows developers to perform IA via the techniques
introduced by Gethers et al. [2], namely IR, dynamic (Dyn) and
historical (Hist) techniques, or any combinations of these. Among
these three techniques IR is the least costly in terms of human effort,
but its performance is not always optimal [2]. Using additional Dyn
or Hist sources of information requires more human effort in terms
of gathering the data, but it produces more accurate results. In order
to address the tradeoff between human effort and performance we
implemented ImpactMiner to allow developers to share the data
produced by the Dyn and Hist techniques with other developers. For
example, a manager or a project leader can generate a set of
execution traces or can mine data from the SVN repositories and
extract evolutionary couplings, and can share this data with the rest
of the team. The benefit consists of reducing the amount of manual
human effort to a minimum.

3.1 Inherited Features
In addition to its own original features, ImpactMiner inherits the

following features from FLAT3 that were used for feature location:
using the IR engine based on Lucene1 to search for methods given a
natural language user query, generating execution traces, combining

1 http://lucene.apache.org/
2 http://svnkit.com/

results from IR and execution traces, annotating features, and
visualizing the distribution of the search results among different
lines of code.

One of the valuable inherited features to Impact Analysis is
feature annotation. Having identified one or more methods as being
related to a high-level concept or feature, the developer can annotate
those methods with the name of the feature (or bug ID) that they are
related to. This annotation should simplify the future attempts to fix
or improve such a feature, as there will already be an identified set
of related methods.

3.2 Extracting Evolutionary Co-Changes
ImpactMiner supports IA by extracting evolutionary co-changes

from SVN repositories. The major preprocessing steps are
enumerated next.

3.2.1 SVN Repositories Mining
The first part of generating evolutionary co-changes consists of

mining SVN repositories to extract change-sets of the source code.
Figure 1 (left) shows the options needed to mine the repository, such
as the URL of the SVN repository (e.g., the trunk or any repository
branches if needed). We use the SVNKit2 library for all the
operations involving the SVN repository. By default, the access to
the repository uses anonymous authentication. However, in cases
when repositories require authentication, a window prompting for a
username and password will appear. In addition, developers must
select a period of time for extracting SVN commits, by specifying a
start and end date. Alternatively, the developer can choose a more
precise range of revisions, by specifying the starting and ending
revisions (see Figure 1 (left)).

ImpactMiner iterates through the SVN commits specified by the
developer, and stores the java source code files associated with those
commits on disk. If a file was added in revision ܰ, the file stored on
disk is in folder ܰ/݂݈݅݁ܰܽ݉݁. .ܽݒ݆ܽ If a file was modified in .ܰݒ݁ݎ
revision ܰ, then that version of the file and the previous version of
the file are saved on disk (e.g., ܰ/݂݈݅݁ܰܽ݉݁. .ܽݒ݆ܽ and ܰݒ݁ݎ
ܰ/݂݈݅݁ܰܽ݉݁. .ܽݒ݆ܽ ܰݒ݁ݎ െ 1).

The developer has the option to refine the range of revisions (see
Figure 2 (4)), in order to include more or less history to extract
evolutionary couplings. For systems with abundant history,
downloading a large period of history can take from a few minutes
to a few hours. To alleviate this potential issue, ImpactMiner
supports caching and importing/exporting of change-sets. The
caching mechanism allows all the previously downloaded change-
sets to be stored on disk. Hence, if the developer decides to increase
the range of commits, only the change-sets that were not previously
downloaded will need to be downloaded, reducing the waiting time
considerably. The import/export features (see Figure 2 (4)) allow
sharing the downloaded data with other team members.

3.2.2 Generating Itemsets
The second part of generating evolutionary co-changes consists

of extracting the names of the methods that were modified in the
SVN commits. We used the java tool made available by Dit et al.
[8], which uses the Eclipse Java Development Tools (JDT)3 to
generate the generate an abstract syntax tree (AST) of a java class.

For each of the downloaded SVN commits, if a file was
modified in that commit, (i) we generated an AST of the current file
version, (ii) we generated an AST of the previous file version and
(iii) we compared the current and previous version in order to

3 http://www.eclipse.org/jdt/

Figure 1 Options for Mining Software Repositories (left) and
for Associations Rule Mining (right)

produce a list of methods that were modified between those two
versions. If a file was added to an SVN commit, we used the same
tool to extract its method names. Note that commits with a large
number of modified files were excluded from the analysis.

The list of modified methods, which are associated with each
revision, constitute the itemsets we will use as input for finding the
frequent itemsets in the transactions (i.e., SVN commits). These
itemsets are cached on disk to avoid regenerating them once they are
generated. In addition, they can be shared between team members
using the import/export feature (see Figure 2 (4)).

3.2.3 Mine Evolutionary Co-Changes
Once the transactions (i.e., SVN commits) and their itemsets

(i.e., list of methods changed in those commits) are generated, we
mined association rules of the form ሼ݉ܣሽ ⇒ ሼ݉ܥ݉,ܤ, . . . ሽ. The
association rules that have less than a user specified support and
confidence value are ignored. The support value of an itemset ܺ,
noted as ݌݌ݑݏሺܺሻ, is characterized by the proportion of transactions
which contain that itemset. The confidence of a rule ܺ ⇒ ܻ is
defined as ݂ܿ݊݋ሺܺ ⇒ ܻሻ ൌ ሺܺ݌݌ݑݏ ∪ ܻሻ/݌݌ݑݏሺܺሻ. The
developer can specify the minimum values for support and
confidence in the settings window (see Figure 1 (right)).

These rules have only one method as the antecedent (e.g., ݉ܣ),
which represents the seed method (e.g., see method
UMLClassifierPackageImportsListModel from Figure 2 and Figure
2 (5)), and a set of methods as consequent (e.g., ݉ܥ݉ ,ܤ, etc.).
Intuitively, these rules can be interpreted as "developers who
modified method ݉ܣ in the past, also modified methods ݉ܥ݉ ,ܤ,
etc.". ImpactMiner takes as input a seed method that a developer
found to be of interest, and suggests a list of methods that could be
of interest for IA. These methods represent the union of all the
consequents, where the seed method is the antecedent, ranked by
their confidence and support values. These results are presented to
the user in the "Results View" (see Figure 3, where the results of
Hist are enabled, results or IR are hidden, and results of Dyn are
disabled. These methods are ranked based on their confidence
scores).

Similarly to the other historical data, the association rules that
are generated for a given period and a given support and confidence
values are cached on disk and can be shared with other developers.

3.3 IR, Dyn and Hist
Based on the types of data available, ImpactMiner allows the

developer to modify or refine the data produced by those techniques
(e.g., IR, Dyn or Hist), analyze the results of individual techniques,
or combine the results of those techniques to achieve better results
[2].

3.3.1 Use or Modify Data from Individual
Techniques

At any given point, the developer can choose to use one of the
three techniques in order to get a list of recommended methods for
IA.

She can define a query to obtain a list of textually similar
methods and fields to the query. If she is not satisfied by the results
produced by Lucene, she can refine the query to obtain other results
(see Figure 2 (2)).

The developer can use dynamic information by collecting an
execution trace of the software system. By choosing the trace button
(see Figure 2 (3)) she can collect traces until she obtains satisfactory
results. In addition she can export the collected trace and share it
with someone else, or she can import a trace that someone else
produced.

The developer also has the option to generate association rules
by specifying the repository address, the time period and the
parameters for the association rule algorithm (e.g., support and
confidence) (see Figure 1 (right)). She can generate new association
rules by modifying the amount of history and the parameters at any
time (see Figure 1). In addition, she can choose different seeds (i.e.,
starting methods) as antecedent, to get different results produced by
the MSR technique. For example, in the "Results View" once she
identified a method with potential interest, she can choose the option
"Use as seed for MSR" (see Figure 2) to get a list of methods that
were modified in the same commits in the past. This option is similar
to the "Open Call Hierarchy" option provided by Eclipse IDE, which
for a selected method, provides the callers and called methods.

3.3.2 Analyze Data from Individual Techniques
The "Results View" (see Figure 2 (1)) contains three buttons that

correspond to the results from IR (IR), Dyn (Ex) and Hist (H). These
buttons have three states: disabled, if there is no information
associated with them, hidden, if the information is not shown in the
view or enabled, if the information is presented in the view. In
Figure 2, IR is enabled, Dyn is disabled (i.e., there is no execution
trace), and Hist is hidden.

Note that the results of a technique are displayed in the view
only when one of those buttons is set to enabled, and the other two
are set to either disabled or hidden. If more than one button is set to
enabled, the results displayed will be the ones from the combination
of the results generated by their associated techniques.

3.3.3 Combining IR, Dyn and Hist
By enabling the buttons associated with the results produced by

the individual IR, Dyn and Hist techniques (Figure 2 (1)), the
developer can analyze the results of their combination. Note that the
results of IR are always ranked based on their similarities to the user

Figure 2 The Results View of ImpactMiner: The columns represent the rank, accessibility levels, name of the method/field, class

name, IR similarity or confidence value, full method name, feature name. (1) The buttons represent the three states (e.g., disabled,
hidden and enabled) for the three sources of information: textual (IR), dynamic (Ex) and historical (H). (2) IR buttons to refine and

clear the query. (3) Buttons for running/exporting/ importing a trace. (4) Buttons for configuring MSR settings, exporting and
importing the MSR data; (5) Option to run MSR technique using the selected method as seed

(1) (2) (3) (4)

(5)

query and the Hist results are ranked based on their confidence and
support values. The results produced by the Dyn technique are not
ranked. For additional details about the combination process we
refer the interested reader to our previous work [2].

IRDyn Enabling both the IR (IR) and Dyn (Ex) buttons the
results produced are the ones generated by the SITIR [5] approach
(i.e., it eliminates from the IR results the ones that do not appear in
the execution trace).

IRHist By combining these two approaches, the results
produced by IR on positions ݅ appear in the IRHist list on positions
2݅ െ 1, whereas the results produced by Hist on positions ݅ appear
in the IRHist list on positions 2݅. If a method appears in both IR and
Hist lists, it will appear only once in IRHist.

DynHist This combination returns only the methods that appear
both in the execution trace and in the results of the association rules.

IRDynHist The combination of all three sources of information
is performed as follows. First, the results of IRDyn are computed.
Second, the results of IRDyn are interweaved with the results of Hist
(i.e., the by IRDyn on positions ݅ appear in the IRDynHist list on
positions 2݅ െ 1, whereas the results produced by Hist on positions
݅ appear in the IRDynHist list on positions 2݅). Similarly to the case
of IRHist, if a method appears in both IRDyn and Hist lists, it will
appear only once in IRDynHist.

3.4 Availability
More information about ImpactMiner can be found on our

webpage4, which contains the source code and a video
demonstrating its main features.

3.5 Usage Example
Our approach to IA instantiated in our ImpactMiner tool was

evaluated in our previous work [2]. In this section we provide an
example of the results by ImpactMiner for issue #1942 of
ArgoUML5. The results produced using IR are presented in Figure
2, and the results produced by choosing the method on rank five as
the seed method for Hist are presented in Figure 3. The results
returned by Hist are part of the gold set associated with bug #1942
and are complementary with the results returned by IR (see column
“Feature” from Figure 2).

3.6 Future Work
First we want to include the incremental indexing functionality

of Lucene, which will allow updating the corpus with only the
methods that were changed, as opposed to re-indexing the entire
system for each change in the code. Second, we want to provide
statistics such as the number of commits downloaded, average
number of commits per file, number of transactions, average number

4 http://www.cs.wm.edu/semeru/ImpactMiner/

of itemsets, etc. This will help the user choose the association rules
parameters more easily. Third, we want to improve our
export/import feature for all the historical data (e.g., commits,
itemsets, association rules), to make sharing easier. Fourth, we want
to provide users with different options for combining the results
from these three different sources. Fifth, we want extend
ImpactMiner to support GIT repository mining in addition to SVN
repository mining. Finally, we would like to conduct a user study to
evaluate the benefits of this tool.

4. CONCLUSIONS
We introduced ImpactMiner, a tool that implements the adaptive

approach to IA presented in our previous work [2]. ImpactMiner
allows developers to extract co-changes from SVN repositories at
method level granularity. In addition it allows developers to use
different techniques (e.g., IR, dynamic and MSR), or a combination
of these techniques, based on the available sources of information.

5. ACKNOWLEDGMENTS
We would like to thank Malcom Gethers for his contribution to

the IA approach that ImpactMiner is based on. This work is
supported by NSF CCF-1016868, NSF CCF-1156401 and NSF
CCF-1253837 grants. Any opinions, findings, and conclusions
expressed herein are the authors’ and do not necessarily reflect those
of the sponsors.

6. REFERENCES
[1] S. Bohner and R. Arnold, Software Change Impact Analysis.

Los Alamitos, CA: IEEE Computer Society, 1996.
[2] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, "Integrated

Impact Analysis for Managing Software Changes," in 34th
IEEE/ACM International Conference on Software Engineering
(ICSE'12), Zurich, Switzerland, 2012, pp. 430-440.

[3] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, "JRipples:
A Tool for Program Comprehension during Incremental
Change," in 13th IEEE International Workshop on Program
Comprehension (IWPC'05), St. Louis, Missouri, USA, 2005,
pp. 149-152.

[4] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, "Chianti:
a Tool for Change Impact Analysis of Java Programs," in 19th
Conference on Object-Oriented Programming, Systems,
Languages, and Applications(OOPSLA '04), Vancouver, BC,
Canada, 2004, pp. 432-448.

[5] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, "Feature
Location via Information Retrieval based Filtering of a Single
Scenario Execution Trace," in 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE'07),
Atlanta, Georgia, 2007, pp. 234-243.

[6] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, "Sando:
An Extensible Local Code Search Framework," in 20th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE'12), 2012, pp. 1-4.

[7] T. Savage, M. Revelle, and D. Poshyvanyk, "FLAT^3: Feature
Location and Textual Tracing Tool," in 32nd ACM/IEEE
International Conference on Software Engineering (ICSE'10),
Cape Town, South Africa, 2010, pp. 255-258.

[8] B. Dit, A. Holtzhauer, D. Poshyvanyk, and H. Kagdi, "A
Dataset from Change History to Support Evaluation of
Software Maintenance Tasks," in 10th Working Conference on
Mining Software Repositories (MSR'13), Data Track, San
Francisco, CA, 2013, pp. 131-134.

5 http://argouml.tigris.org/issues/show_bug.cgi?id=1942

Figure 3 Results of generated by the MSR technique when the
method UMLClassifierPackageImportsListModel was used as

a seed

