
JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2017; 00:1–29
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

A Comprehensive Model for Code Readability

Simone Scalabrino1, Mario Linares-Vásquez2, Rocco Oliveto1, and Denys Poshyvanyk3

1 University of Molise, Pesche (IS), Italy
2 Universidad de los Andes, Bogotá, Colombia

3 The College of William and Mary, Williamsburg, Virginia, USA

SUMMARY

Unreadable code could compromise program comprehension and it could cause the introduction of bugs.
Code consists of mostly natural language text, both in identifiers and comments, and it is a particular form of
text. Nevertheless, the models proposed to estimate code readability take into account only structural aspects
and visual nuances of source code, such as line length and alignment of characters. In this paper we extend
our previous work in which we use textual features to improve code readability models. We introduce two
new textual features and we reassess the readability prediction power of readability models on more than
600 code snippets manually evaluated, in terms of readability, by 5K+ people. We also replicate a study
by Buse and Weimer on the correlation between readability and FindBugs warnings, evaluating different
models on 20 software systems, for a total of 3M lines of code. The results demonstrate that (i) textual
features complement other features, and (ii) a model containing all the features, achieves a significantly
higher accuracy as compared to all the other state-of-the-art models. Also, readability estimation resulting
from a more accurate model, i.e., the combined model, is able to predict more accurately FindBugs warnings.
Copyright © 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Code Readability; Textual Analysis; Quality Warning Prediction.

1. INTRODUCTION

Software developers read code all the time. The very first step in each software evolution and
maintenance task is to carefully read and understand the code; this step needs to be done even
when the maintainer is the author of the code. Developers spend much time reading code, far more
than writing it from scratch [1]. Therefore, if code is readable, it is pretty easy to start changing it;
instead, modifying unreadable code is like assembling a piece of furniture with instructions written
in a foreign language the one does not speak: the task is not impossible, but difficult, and a few
screws still may remain unused.

Furthermore, incremental change [2, 3, 4], which is required to perform concept location, impact
analysis, and the corresponding change implementation/propagation, needs a prior code reading
step before it can take place. This is why “readable code” is a fundamental and highly desirable at
any stage during software maintenance and evolution.

Yet, code readability remains to be a very subjective concept. Several facets, like complexity,
usage of design concepts, formatting, source code lexicon, and visual aspects (e.g., syntax
highlighting) have been widely recognized as elements that impact program understanding [5, 6, 7].
Only recently automatic code readability estimation techniques started to be developed and used in
the research community [8, 9, 10].

∗Correspondence to: University of Molise, Pesche (IS), Italy. E-mail: simone.scalabrino@unimol.it

Copyright © 2017 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]

2 S. SCALABRINO ET AL.

As of today, three models for source code readability prediction have been proposed [8, 9, 10].
Such models aim at capturing how the source code has been constructed and how developers
perceive it. The process consists of (i) measuring specific aspects of source code, e.g., line length
and number of white lines, and (ii) using these metrics to train a binary classifier that is able to tell
if a code snippet is “readable” or “non-readable”. State-of-the-art readability models define more
than 80 features which can be divided in two categories: structural and visual features. The metrics
belonging to the former category aim at capturing bad practices such as lines too long and good
practices such as the presence of white lines; the ones belonging to the latter category are designed
to capture bad practices such as code indentation issues and good practices such as alignment of
characters. However, despite a plethora of research that has demonstrated the impact of source
code lexicon on program understanding [11, 12, 13, 14, 15, 16, 17], state-of-the-art code readability
models are still syntactic in nature and do not consider textual features that reflect the quality of
source code lexicon.

In this paper we extend our previous work [18] in which we proposed a set of textual features
that can be extracted from source code to improve the accuracy of state-of-the-art code readability
models. Indeed, we hypothesize that source code readability should be captured using both
syntactic and textual aspects of source code. Unstructured information embedded in the source
code reflects, to a reasonable degree, the concepts of the problem and solution domains, as well
as the computational logic of the source code. Therefore, textual features capture the domain
semantics and add a new layer of semantic information to the source code, in addition to the
programming language semantics. To validate the hypothesis and measure the effectiveness of the
proposed features, we performed a two-fold empirical study: (i) we measured to what extent the
proposed textual features complement the structural ones proposed in the literature for predicting
code readability; and (ii) we computed the accuracy of a readability model based on structural and
textual features as compared to the state-of-the-art readability models. Both parts of the study were
performed on a set of more than 600 code snippets that were previously evaluated, in terms of
readability, by more than 5,000 participants. We also replicated the study performed by Buse and
Weimer [8], in which the authors correlated the readability with the warnings raised by FindBugs,
a static analysis tool. Our hypothesis is that, if readability is correlated with FindBugs warnings,
an improvement in readability prediction should imply an improvement in the correlation with
FindBugs warnings. We analyzed 20 open-source Java software systems, totaling in 3M lines of
codes and 7K methods and we show that using the readability predicted by the model which contains
all the features (i.e., the one which achieves the best readability prediction accuracy) we have a
higher correlation with FindBugs warnings. We also try to explain why such correlation is present,
providing examples and a more in-depth analysis.

Summarizing, the specific contributions of this paper as compared to our previous paper [18] are
as the following:

• The definition of two new textual features that enrich the set of previously proposed textual
features [18]. The new textual features improve the accuracy of both a readability model based
only on textual features (up to 3%) and of a comprehensive model that uses both structural
and textual features (about 3%);

• An empirical study conducted on three data sets of snippets aimed at analyzing the
effectiveness of the proposed approach while measuring the code readability. The results
indicate that the model based on both structural and textual features is able to outperform
the state-of-the-art code readability metrics;

• The replication of an empirical study originally performed by Buse and Weimer [8],
conducted on 20 software systems, totaling in 3M lines of code, in which we wanted to check
if readability predicted by a model which achieves higher accuracy (i.e., the model based on
both textual and structural features) is more correlated to FindBugs warnings as compared to
the baselines. The results confirm the hypothesis that readability is correlated with FindBugs
warnings and that, if readability is predicted with a higher accuracy, the correlation is stronger.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 3

The rest of the paper is organized as follows. Section 2 provides background information and
discusses the related literature. Section 3 presents in details the textual features defined for the
estimation of the source code readability (for the sake of completeness, we reported also the
features defined in our previous paper [18]). Sections 4 and 5 describe the two empirical studies
we conducted to evaluate the accuracy of a readability model based on both structural and textual
features and the correlation between code readability and quality warnings as captured by FindBugs.
Finally, Section 7 concludes the paper after a discussion of the threats that could affect the validity
of the results achieved in our empirical studies (Section 5.2).

2. BACKGROUND AND RELATED WORK

In the next sub-sections we highlight the importance of source code lexicon (i.e., terms extracted
from identifiers and comments) for software quality; in addition, we describe state-of-the-art code
readability models. To the best of our knowledge, three different models have beed defined in the
literature for measuring the readability of source code [8, 9, 10]. Besides estimating the readability
of source code, readability models have been also used for defect prediction [8, 10]. Recently, Daka
et al. [19] proposed a specialized readability model for test cases, which is used to improve the
readability of automatically generated test suites.

2.1. Software quality and source code lexicon

Identifiers and comments play a crucial role in program comprehension and software quality
since developers express domain knowledge through the names they assign to the elements of
a program (e.g., variables and methods) [11, 12, 13, 15, 16]. For example, Lawrie et al. [15]
showed that identifiers containing full words are more understandable than identifiers composed
of abbreviations. From the analysis of source code identifiers and comments it is also possible to
glean the “semantics” of the source code. Consequently, identifiers and comments can be used to
measure the conceptual cohesion and coupling of classes [20, 21], and to recover traceability links
between documentation artifacts (e.g., requirements) and source code [22].

Although the importance of meaningful identifiers for program comprehension is widely
accepted, there is no agreement on the importance of the presence of comments for increasing
code readability and understandability. Also, while previous studies have pointed out that comments
make source code more readable [23, 24, 25], the more recent study by Buse and Weimer [8] showed
that the number of commented lines is not necessarily an important factor in their readability model.
However, the consistency between comments and source code has been shown to be more important
than the presence of comments, for code quality. Binkley et al. [26] proposed the QALP tool for
computing the textual similarity between code and its related comments. The QALP score has
been shown to correlate with human judgements of software quality and is useful for predicting
faults in modules. Specifically, the lower the consistency between identifiers and comments in
a software component (e.g., a class), the higher its fault-proneness [26]. Such a result has been
recently confirmed by Ibrahim et al. [27]; the authors mined the history of three large open source
systems observing that when a function and its comment are updated inconsistently (e.g., the code
is modified, whereas the related comment is not updated), the defect proneness of the function
increases. Unfortunately, such a practice is quite common since developers often do not update
comments when they maintain code [28, 29, 30, 31, 32, 33].

2.2. Source code readability models

Buse and Weimer [8] proposed the first model of software readability and provided evidence that a
subjective aspect like readability can be actually captured and predicted automatically. The model
operates as a binary classifier, which was trained and tested on code snippets annotated manually
(based on their readability). Specifically, the authors asked 120 human annotators to evaluate the
readability of 100 small snippets (for a total of 12,000 human judgements). The features used by
Buse and Weimer to predict the readability of a snippet are reported in Table I. Note that the features

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

4 S. SCALABRINO ET AL.

Table I. Features used by Buse and Weimer’s readability model [8]. The triangles indicate if the feature is
positively (up) or negatively (down) correlated with high readability, and the color indicates the predictive

power (green = “high”, yellow = “medium”, red = “low”).

FEATURE AVG MAX

Line length (characters) H H
N. of identifiers H H
Indentation (preceding whitespace) H H
N. of keywords H H
Identifiers length (characters) H H
N. of numbers H H

N. of parentheses H
N. of periods H
N. of blank lines N
N. of comments N
N. of commas H
N. of spaces H
N. of assignments H
N. of branches (if) H
N. of loops (for, while) H
N. of arithmetic operators N
N. of comparison operators H

N. of occurrences of any character H
N. of occurrences of any identifier H

consider only structural aspects of source code. The model succeeded in classifying snippets as
“readable” or “not readable” in more than 80% of the cases. From the 25 features, average number
of identifiers, average line length, and average number of parentheses were reported to be the most
useful features for differentiating between readable and non-readable code. Table I also indicates,
for each feature, the predictive power and the direction of correlation (positive or negative).

Posnett et al. [9] defined a simpler model of code readability as compared to the one proposed
by Buse and Weimer [8]. The approach by Posnett et al. uses only three structural features: lines of
code, entropy, and Halstead’s Volume metric. Using the same dataset from Buse and Weimer [8],
and considering the Area Under the Curve (AUC) as the effectiveness metric, Posnett et al.’s model
was shown to be more accurate than the one by Buse and Weimer.

Dorn introduced a “generalizable” model, which relies on a larger set of features for code
readability (see Table II), which are organized into four categories: visual, spatial, alignment, and
linguistic [10]. The rationale behind the four categories is that a better readability model should
focus on how the code is read by humans on screens. Therefore, aspects such as syntax highlighting,
variable naming standards, and operators alignment are considered by Dorn [10] as important for
code readability, in addition to structural features that have been previously shown to be useful for
measuring code readability. The four categories of features used in Dorn’s model are described as
follows:

• Visual features: In order to capture the visual perception of the source code, two types of
features are extracted from the source code (including syntax highlighting and formatting
provided by an IDE) when represented as an image: (i) a ratio of characters by color and
colored region (e.g., comments), and (ii) an average bandwidth of a single feature (e.g.,
indentation) in the frequency domain for the vertical and horizontal dimensions. For the latter,
the Discrete Fourier Transform (DFT) is computed on a line-indexed series (one for each
feature), for instance, the DFT is applied to the function of indentation space per line number.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 5

Table II. Features defined by Dorn [10]. The table maps categories (i.e., visual perception, spatial perception,
alignment or natural language analysis) to individual features.

FEATURE VISUAL SPATIAL ALIGNMENT TEXTUAL

Line length •
Indentation length •
Assignments •
Commas •
Comparisons •
Loops •
Parentheses •
Periods •
Spaces •
Comments • •
Keywords • •
Identifiers • • •
Numbers • •
Operators • • •
Strings •
Literals •
Expressions •

• Spatial features: Given a snippet S, for each feature A marked in Table II as “Spatial”, it is
defined as a matrix MA ∈ {0, 1}L×W , where W is the length of the longest line in S and L is
the number of lines in S. Each cell MA

i,j of the matrix assumes the value 1 if the character in
line i and column j of S plays the role relative to the feature A. For example, if we consider
the feature “comments”, the cell MC

i,j will have the value “1” if the character in line i and
column j belongs to a comment; otherwise, MC

i,j will be “0”. The matrices are used to build
three kind of features:

– Absolute area (AA): it represents the percentage of characters with the role A. It is

computed as: AA =
∑

i,j M
A
i,j

L×W ;
– Relative area (RA): for each couple of features A1, A2, it represents the quantity of

characters with role A1 with respect to characters with role A2. It is computed as:

RA =
∑

i,j M
A1
i,j∑

i,j M
A2
i,j

;

– Regularity: it simulates “zooming-out” the code “until the individual letters are not
visible but the blocks of colors are, and then measuring the relative noise or regularity of
the resulting view”[10]. Such a measure is computed using the two-dimensional Discrete
Fourier Transform on each matrix MA.

• Alignment features: Aligning syntactic elements (such as “=” symbol) is very common, and
it is considered a good practice in order to improve the readability of source code. Two
features, namely operator alignment and expression alignment, are introduced in order to
measure, respectively, how many times the operators and entire expressions are repeated on
the same column/columns.

• Natural-language features: For the first time, Dorn introduces a textual-based factor, which
simply counts the relative number of identifiers composed by words present in an English
dictionary.

The model was evaluated by conducting a survey with 5K+ human annotators judging the
readability of 360 code snippets written in three different programming languages (i.e., Java, Python

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

6 S. SCALABRINO ET AL.

and CUDA). The results achieved on this dataset showed that the model proposed by Dorn achieves
a higher accuracy as compared to the Buse and Weimer’s model re-trained on the new dataset [10].

Summarizing, existing models for code readability mostly rely on structural properties of source
code. Source code lexicon, while representing a valuable source of information for program
comprehension, has been generally ignored for estimating source code readability. Some structural
features, such as the ones that measure the number of identifiers, indirectly measure lexical
properties of code, such as the vocabulary size. However, only Dorn provides an initial attempt
to explicitly use such valuable source of information [10] by considering the number of identifiers
composed of words present in a dictionary. We conjecture that more pertinent aspects of source
code lexicon can be exploited aiming at extracting useful information for estimating source code
readability.

3. TEXT-BASED CODE READABILITY FEATURES

Well-commented source code and high-quality identifiers, carefully chosen and consistently used
in their contexts, are likely to improve program comprehension and support developers in building
consistent and coherent conceptual models of the code [11, 12, 17, 34, 35, 36]. Our claim is that the
analysis of source code lexicon cannot be ignored when assessing code readability. Therefore, we
propose seven textual properties of source code that can help in characterizing its readability. In the
next subsections we describe the textual features introduced to measure code readability.

The proposed textual properties are based on the syntactical analysis of the source code by
looking mainly for terms in source code and comments (i.e., source code lexicon). Note that we
use the word term to refer to any word extracted from source code. To this, before computing the
textual properties, the terms were extracted form source code by following a standard pre-processing
procedure:

1. Remove non-textual tokens from the corpora, e.g., operators, special symbols, and
programming language keywords;

2. Split the remaining tokens into separate words by using the under score or camel case
separators; e.g., getText is split into get and text;

3. Remove words belonging to a stop-word list (e.g., articles, adverbs) [37].

4. Extract stems from words by using the Porter algorithm [38].

3.1. Comments and Identifiers Consistency (CIC)

This feature is inspired by the QALP model proposed by Binkley et al. [26] and aims at analyzing
the consistency between identifiers and comments. Specifically, we compute the Comments and
Identifiers Consistency (CIC) by measuring the overlap between the terms used in a method
comment and the terms used in the method body:

CIC(m) =
|Comments(m) ∩ Ids(m)|
|Comments(m) ∪ Ids(m)|

where Comments and Ids are the sets of terms extracted from the comments and identifiers in a
method m, respectively. The measure has a value between [0, 1], and we expect that a higher value
of CIC is correlated with a higher readability level of the code.

Note that we chose to compute the simple overlap between terms instead of using more
sophisticated approaches such as Information Retrieval (IR) techniques (as done in the QALP
model), since the two pieces of text compared here (i.e., the method body and its comment) are
expected to have a very limited verbosity, thus making the application of IR techniques challenging
[39]. Indeed, the QALP model measures the consistency at file level, thus focusing on code
components having a much higher verbosity.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 7

Figure 1. Example of hypernyms and hyponyms of the word “state”.

One limitation of CIC (but also of the QALP model) is that it does not take into account the use
of synonyms in source code comments and identifiers. In other words, if the method comment and
its code contain two words that are synonyms (e.g., car and automobile), they should be considered
consistent. Thus, we introduce a variant of CIC aimed at considering such cases:

CIC(m)syn =
|Comments(m) ∩ (Ids(m) ∪ Syn(m))|
|Comments(m) ∪ Ids ∪ Syn(m)|

where Syn is the set of all the synonyms of the terms in Ids. With such a variant the use of synonyms
between comments and identifiers contributes to improving the value of CIC.

3.2. Identifier Terms in Dictionary (ITID)

Empirical studies have indicated that full-word identifiers ease source code comprehension [11].
Thus, we conjecture that the higher the number of terms in source code identifiers that are also
present in a dictionary, the higher the readability of the code. Thus, given a line of code l, we
measure the feature Identifier terms in dictionary (ITID) as follows:

ITID(l) =
|Terms(l) ∩Dictionary|

|Terms(l)|

where Terms(l) is the set of terms extracted from a line l of a method and Dictionary is the set
of words in a dictionary (e.g., English dictionary). As for the CIC, the higher the value of ITID,
the higher the readability of the line of code l. In order to compute the feature Identifier terms in
dictionary for an entire snippet S, it is possible to aggregate the ITID(l),∀l ∈ S—computed for
each line of code of the snippet— by considering the min, the max or the average of such values.
Note that the defined ITID is inspired by the Natural Language Features introduced by Dorn [10].

3.3. Narrow Meaning Identifiers (NMI)

Terms referring to different concepts may increase the program comprehension burden by creating
a mismatch between the developers’ cognitive model and the intended meaning of the term [34, 40].
Thus, we conjecture that a readable code should contain more hyponyms, i.e., terms with a specific
meaning, than hypernyms, i.e., generic terms that might be misleading. Thus, given a line of code l,
we measure the feature Narrow meaning identifiers (NMI) as follows:

NMI(l) =
∑
t∈l

particularity(t)

where t is a term extracted from the line of code l and particularity(t) is computed as the number
of hops from the node containing t to the root node in the hypernym tree of t. Specifically, we use

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

8 S. SCALABRINO ET AL.

hypernym/hyponym trees for English language defined in WordNet [41]. Thus, the higher the NMI,
the higher the particularity of the terms in l, i.e., the terms in the line of code l have a specific
meaning allowing a better readability. Figure 1 shows an example of hypernyms/hyponyms tree:
considering the word “state”, the distance between the node that contains such a term from the root
node, which contains the term “entity”, is 3, so the particularity of “state” is 3. In order to compute
the NMI for an entire snippet S, it is possible to aggregate the NMI(l),∀l ∈ S, by considering the
min, the max or the average of such values.

3.4. Comments Readability (CR)

While many comments could surely help to understand the code, they could have the opposite effect
if their quality is low. Indeed, a maintainer could start reading the comments, which should ease
the understanding phase. If such comments are inadequate, the maintainer will waste time before
starting to read the code. Thus, we introduced a feature that calculates the readability of comments
(CR) using the Flesch-Kincaid [42] index, commonly used to assess readability of natural language
texts. Such an index considers three types of elements: words, syllables, and phrases. A word is
a series of alphabetical characters separated by a space or a punctuation symbol; a syllable is “a
word or part of a word pronounced with a single, uninterrupted sounding of the voice [...] consisting
of a single sound of great sonority (usually a vowel) and generally one or more sounds of lesser
sonority (usually consonants)” [43]; a phrase is a series of words that ends with a new-line symbol,
or a strong punctuation point (e.g., a full-stop). The Flesch-Kincaid (FK) index of a snippet S is
empirically defined as:

FK(S) = 206.835− 1.015
words(S)

phrases(S)
− 84.600

syllables(S)

words(S)

While word segmentation and phrase segmentation are easy tasks, it is a bit harder to correctly
segment the syllables of a word. Since such features do not need the exact syllables, but just the
number of syllables, relying on the definition, we assume that there is a syllable where we can find
a group of consecutive vowels. For example, the number of syllables of the word “definition” is 4
(definition). Such an estimation may not be completely valid for all the languages.

We calculate the CR by (i) putting together all commented lines from the snippet S; (ii) joining
the comments with a “.” character, in order to be sure that different comments are not joined creating
a single phrase; (iii) calculating the Flesch-Kincaid index on such a text.

3.5. Number of Meanings (NM)

All the natural languages contain polysemous words, i.e., terms which could have many meanings.
In many cases the context helps to understand the specific meaning of a polysemous word, but,
if many terms have many meanings it is more likely that the whole text (or code, in this case) is
ambiguous. For this reason, we introduce a feature which measures the number of meanings (NM),
or the level or polysemy, of a snippet. For each term in the source code, we measure its number of
meanings derived from WordNet [41]. In order to compute the feature Number of Meanings for an
entire snippet S, it is possible to aggregate the NI(l) values—computed for each line of code l of
the snippet—considering the max or the average of such values. We do not consider the minimum
but still consider the maximum, because while it is very likely that a term with few meanings is
present, and such a fact does not help in distinguishing readable snippets from not-readable ones,
the presence of a term with too many meanings could be crucial in identifying unreadable snippets.

3.6. Textual Coherence (TC)

The lack of cohesion of classes negatively impacts the source code quality and correlates with the
number of defects [20, 44]. Based on this observation, our conjecture is that when a snippet has
a low cohesion (i.e., it implements several concepts), it is harder to comprehend than a snippet
implementing just one “concept”. The textual coherence of the snippet can be used to estimate
the number of “concepts” implemented by a source code snippet. Specifically, we considered the

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 9

1 public void buildModel() {
2 if (getTarget() != null) {
3 Object target = getTarget();
4 Object kind = Model.getFacade().getAggregation(target);
5 if (kind == null
6 || kind.equals(Model.getAggregationKind().getNone())) {
7 setSelected(ActionSetAssociationEndAggregation.NONE_COMMAND);
8 } else {
9 setSelected(ActionSetAssociationEndAggregation.AGGREGATE_COMMAND);

10 }
11 }
12 }
13

Figure 2. An example of computing textual coherence for a code snippet

syntactic blocks of a specific snippet as documents. We parse the source code and we build the
Abstract Syntax Tree (AST) in order to detect syntactic blocks, which are the bodies of every control
statement (e.g., if statements). We compute (as done for Comments and Identifiers Consistency) the
vocabulary overlap between all the possible pairs of distinct syntactic blocks. The Textual coherence
(TC) of a snippet can be computed as the max, the min or the average overlap between each pairs
of syntactic blocks. For instance, the method in Figure 2 has three blocks: B1 (lines 2-11), B2 (lines
5-8), and B3 (lines 8-10); for computing TC, first, the vocabulary overlap is computed for each pair
of blocks, (B1 and B2, B1 and B3, B2 and B3); then the three values can be aggregated by using the
average, the min, or the max.

3.7. Number Of Concepts (NOC)

Textual Coherence tries to capture the number of implemented topics in a snippet at block level.
However, its applicability may be limited when there are few syntactic blocks. Indeed, if a snippet
contains just a single block, such a feature is not computable at all. Besides, Textual Coherence is
a coarse-grain feature, and it works under the assumption that syntactic blocks are self-consistent.
Therefore, we introduced a measurement which is able to directly capture the Number of Concepts
implemented in a snippet at line-level. It is worth noting that such features can be computed also
on snippets that may not be syntactically correct. In order to measure the Number Of Concepts,
as a first step, we create a document for each line of a given snippet. All the empty documents,
resulting from empty lines or lines containing only non-alphabetical characters, are deleted. Then,
we use a density-based clustering technique, DBSCAN [45, 46], in order to create clusters of similar
documents (i.e., lines). We measure the distance between two documents (represented as sets of
terms) as:

NOCdist(d1, d2) =
|d1 ∩ d2|
|d1 ∪ d2|

Finally, we compute the “Number of Concepts” (NOC) of a snippet m as the number of clusters
(Clusters(m)) resulting from the previous step:

NOC(m) = |Clusters(m)|

We also compute an additional feature NOCnorm which results from normalizing NOC with the
number of documents extracted from a snippet m:

NOCnorm(m) =
|Clusters(m)|
|Documents(m)|

It is worth noting that NOC and NOCnorm measure something that has an opposite meaning
with respect to Textual Coherence. While Textual Coherence is higher if different blocks contain
the many similar words, Number of Concepts is lower if different lines contain many similar words.
This happens because when several lines contain similar words, they are put in the same cluster and,
thus, the number of clusters is lower, as well as the whole NOC and NOCnorm features.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

10 S. SCALABRINO ET AL.

1 public boolean isPlaying(TGMeasure measure) {
2 // thread safe
3 TGMeasure playMeasure = this.playMeasure;
4
5 return (isPlaying() && playMeasure != null && measure.equals(playMeasure));
6 }
7

Figure 3. Example of a small method
A
c
c
u
ra
c
y
(%

)

50

51

52

53

54

55

56

57

58

59

ε value
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NOCε

NOCε
norm

Figure 4. Accuracy of different classifiers based only on NOCε (blue) and NOCεnorm (red).

Figure 3 shows an example of a method with just a block. In this case, TC can not be computed.
On the other hand, NOC and NOCnorm are computed as follows. As a first step, 4 documents are
extracted from the snippet in Figure 3, namely: “public boolean is playing TG measure measure”,
“thread safe”, “TG measure play measure this play measure”, “return is playing play measure null
measure equals play measure”. Assuming that such documents are clustered all together, except
for “thread safe”, which constitutes a cluster on its own, we have that NOC(isP laying) = 2 and
NOCnorm(isP laying) = 2

4 = 0.5.
DBSCAN does not need to know the number of clusters, which is, actually, the result of the

computation that we use to defineNOC andNOCnorm. Instead, this algorithm needs the parameter
ε, which represents the maximum distance at which two documents need to be in order to be grouped
in the same cluster. We did not choose ε arbitrarily; instead we tuned such a parameter, by choosing
the value that allows the features NOC and NOCnorm to achieve, alone, the highest readability
prediction accuracy. In order to achieve this goal, we considered all the snippets and the oracles from
the three data sets described in Section 4 and we trained and tested nine classifiers, each of which
contained just a feature, NOCε, where NOCε is NOC computed using a specific ε parameter for
DBSCAN. Since the distance measure we use ranges between 0 and 1, also ε can range between such
values and, thus, the values we used as candidate ε for the nineNOCε features are {0.1, 0.2, ..., 0.9};
we discarded the extreme values, 0 and 1, because in these cases each document would have been in
a separate cluster or all documents would have been in the same cluster, respectively. We use each
classifier containing a single NOCε feature to predict readability, and we pick the value of ε that
leads to the best classification accuracy with 10-fold cross-validation. The classification technique
used for tuning ε was Logistic Regression, also used in Section 4. We repeated the same procedure
for NOCnorm. Figure 4 shows the accuracy achieved by each classifier containing different NOCε

(in blue) or NOCεnorm (in red). The best ε value for NOC is 0.1, while for NOCnorm it is 0.3, as
the chart shows.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 11

3.8. Readability vs understandability

Posnett et al. [9] compared the difference between readability and understandability to the difference
between syntactic and semantic analysis. Readability measures the effort of the developer to access
the information contained in the code, while understandability measures the complexity of such
information. We defined a set of textual features that still capture aspects of code related to the
difficulty of accessing the information contained in a snippet. For example, NOC estimates the
number of concepts implemented in a snippet. A snippet with a few concepts, potentially more
readable, can still be hard to understand if a few concepts are not easy to understand. In our opinion,
textual features, which do not take into account semantics, like the ones we defined, can be used to
measure readability.

4. CASE STUDY 1: IMPROVING READABILITY ESTIMATION

The goal of this study is to analyze the role played by textual features in assessing code readability,
with the purpose of improving the accuracy of state-of-the-art readability models. The quality focus
is the prediction of source code readability, while the perspective of the study is of a researcher,
who is interested in analyzing to what extent structural and textual information can be used to
characterize code readability.

We formulated the following research questions (RQs):

• RQ1: To what extent the proposed textual features complement the structural ones proposed in
the literature for predicting code readability? With this preliminary question we are interested
in verifying whether the proposed textual features complement structural ones when used
to measure code readability. This represents a crucial prerequisite for building an effective
comprehensive model considering both families of features.

• RQ2: What is the accuracy of a readability model based on structural and textual features as
compared to the state-of-the-art readability models? This research question aims at verifying
to what extent a readability model based on both structural and textual features overcomes
readability models mainly based on structural features, such as the model proposed by Buse
and Weimer [8], the one presented by Posnett et al. [9], and the most recent one introduced
by Dorn [10].

4.1. Data Collection

An important prerequisite for evaluating a code readability model is represented by the availability
of a reliable oracle, i.e., a set of code snippets for which the readability has been manually assessed
by humans. This allows measuring to what extent a readability model is able to approximate human
judgment of source code readability. All the datasets used in the study are composed of code snippets
for which the readability has been assessed via human judgement. In particular, each snippet in
the data sets is accompanied by a flag indicating whether it was considered readable by humans
(i.e.,, binary classification). The first dataset (in the following Db&w) was provided by Buse and
Weimer [8] and it is composed of 100 Java code snippets having a mean size of seven lines of
code. The readability of these snippets was evaluated by 120 student annotators. The second dataset
(in the following Ddorn) was provided by Dorn [10] and represents the largest dataset available for
evaluating readability models. It is composed of 360 code snippets, including 120 snippets written in
CUDA, 120 in Java, and 120 in Python. The code snippets are also diverse in terms of size including
for each programming language the same number of small- (∼10 LOC), medium- (∼30 LOC) and
large- (∼50 LOC) sized snippets. InDdorn, the snippets’ readability was assessed by 5,468 humans,
including 1,800 industrial developers.

The main drawback of the aforementioned datasets (Db&w andDdorn) is that some of the snippets
are not complete code entities (e.g., methods); therefore, some of the data instances in Db&w and
Ddorn datasets are code fragments that only represent a partial implementation (and thus they may

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

12 S. SCALABRINO ET AL.

Figure 5. Web application used to collect the code readability evaluation for our new dataset Dnew.

not be syntactically correct) of a code entity. This is an impediment for computing one of the new
textual features introduced in this paper: textual coherence (TC); it is impossible to extract code
blocks from a snippet if an opening or closing bracket is missing. For this reason, we built an
additional dataset (Dnew), by following an approach similar to the one used in the previous work to
collect Db&w and Ddorn [8, 10]. Firstly, we extracted all the methods from four open source Java
projects, namely jUnit, Hibernate, jFreeChart and ArgoUML, having a size between 10 and 50 lines
of code (including comments). We focused on methods because they represent syntactically correct
and complete code entities of code.

Initially, we identified 13,044 methods forDnew that satisfied our constraint on the size. However,
the human assessment of all the 13K+ methods is practically impossible, since it would require a
significant human effort. For this reason, we evaluated the readability of only 200 sampled methods
from Dnew. The sampling was not random, but rather aimed at identifying the most representative
methods for the features used by all the readability models defined and studied in this paper.
Specifically, for each of the13,044 methods we calculated all the features (i.e., the structural features
proposed in the literature and textual ones proposed in this paper) aiming at associating each method
with a feature vector containing the values for each feature. Then, we used a greedy algorithm for
center selection [47] to find the 200 most representative methods in Dnew. The distance function
used in the implementation of such algorithm is represented by the Euclidean distance between the
feature vector of two snippets. The adopted selection strategy allowed us (i) to enrich the diversity of
the selected methods avoiding the presence of similar methods in terms of the features considered
by the different experimented readability models, and (ii) to increase the generalizability of our
findings.

After selecting the 200 methods in Dnew, we asked 30 Computer Science students from the
College of William and Mary to evaluate the readability r of each of them. The participants were
asked to evaluate each method using a five-point Likert scale ranging between 1 (very unreadable)
and 5 (very readable). We collected the rankings through a web application (Figure 5) where
participants were able to (i) read the method (with syntax highlighting); (ii) evaluate its readability;
and (iii) write comments about the method. The participants were also allowed to complete the
evaluation in multiple rounds (e.g., evaluate the first 100 methods in one day and the remaining after
one week). Among the 30 invited participants, only nine completed the assessment of all the 200

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 13

methods. This was mostly due to the large number of methods to be evaluated; the minimum time
spent to complete this task was about two hours. In summary, given the 200 methods in mi ∈ Dnew

and nine human taggers tj ∈ T , we collected readability rankings r(mi, tj),∀i,j , i ∈ [1, 200], j ∈
[1, 9].

After having collected all the evaluations, we computed, for each method m ∈ Dnew, the mean
score that represents the final readability value of the snippet, i.e., r̄(m) =

Σ9
1r(m,j)

9 . We obtained
a high agreement among the participants with Cronbach-α=0.98, which is comparable to the one
achieved in Db&w=0.96. This confirms the results reported by Buse and Weimer in terms of humans
agreement when evaluating/ranking code readability: “humans agree significantly on what readable
code looks like, but not to an overwhelming extent” [8]. Note that code readability evaluation by
using crisp categories (e.g.,, readable, non-readable) is required to build a readability model over
the collected snippets; therefore, for the methods in Dnew, we used the mean of the readability
score among all the snippets as a cut-off value. Specifically, methods having a score below 3.6 were
classified as non-readable, while the remaining methods (i.e., r̄(m) ≥ 3.6) as readable. A similar
approach was also used by Buse and Weimer [8].

4.2. Analysis Method

In order to answer RQ1 and RQ2, we built readability models (i.e., binary classifiers) for each
dataset (i.e., Db&w, Ddorn, and Dnew) by using different sets of structural and (our) textual features:
Buse and Weimer’s (BWF) [8], Posnett’s (PF) [9], Dorn’s (DF) [10], our textual features (TF),
and all the features (All-Features= BWF ∪ PF ∪DF ∪ TF). With notational purposes, we will
use R〈Features〉 to denote a specific readability model R we built using a set of Features. For
instance, R〈TF 〉 denotes the textual features-based readability model. It is worth noting that with
our experiments we are not running the same models proposed in the prior works, but, we are using
the same features proposed by previous works.

As for the classifier used with the models, we relied on logistic regression because it has been
shown to be very effective in binary-classification and it was used by Buse and Weimer for their
readability model [8]. To avoid over-fitting, we performed feature selection by using linear forward
selection with a wrapper strategy [48] available in the Weka machine learning toolbox. In the
wrapper selection strategy each candidate subset of features is evaluated through the accuracy of
the classifier trained and tested using only such features. The final result is the subset of features
which obtained the maximum accuracy. With respect to our previous study [18], we increased
the “search termination” parameter from 5 to 10, in order to search more deeply in the possible
features subsets. Such a parameter indicates the amount of backtracking of the algorithm. Such a
modification resulted in a little improvement (2̃%) in the accuracy of some of the classifiers.

In the case of RQ1 we analyzed the complementarity of the textual features-based model with the
models trained with structural features, by computing overlap metrics between R〈TF 〉 and each of
the three competitive models (i.e., R〈BWF 〉, R〈PF 〉, R〈DF 〉). Specifically, given two readability
models under analysis, R〈TF 〉 a model based on textual features, and R〈SF 〉 a model based on
structural features (i.e., SF ∈ {BWF,PF,DF}) †, the metrics are defined as in the following:

ξ
(
R〈TF 〉 ∩R〈SF 〉

)
=
|ξ
(
R〈TF 〉

)
∩ ξ
(
R〈SF 〉

)
|

|ξ
(
R〈TF 〉

)
∪ ξ
(
R〈SF 〉

)
|
%

ξ
(
R〈TF 〉 \R〈SF 〉

)
=
|ξ
(
R〈TF 〉

)
\ ξ
(
R〈SF 〉

)
|

|ξ
(
R〈TF 〉

)
∪ ξ
(
R〈SF 〉

)
|
%

ξ
(
R〈SF 〉 \R〈TF 〉

)
=
|ξ
(
R〈SF 〉

)
\ ξ
(
R〈TF 〉

)
|

|ξ
(
R〈TF 〉

)
∪ ξ
(
R〈SF 〉

)
|
%

† Note that later in this paper we will replace R〈SF 〉 with R〈BWF 〉, R〈PF 〉, or R〈DF 〉.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

14 S. SCALABRINO ET AL.

where ξ
(
R〈TF 〉

)
and ξ

(
R〈SF 〉

)
represent the sets of code snippets correctly classified as

readable/non-readable by R〈TF 〉 and the competitive model R〈SF 〉 (SF ∈ {BWF,PF,DF}),
respectively. ξ

(
R〈TF 〉 ∩R〈SF 〉

)
measures the overlap between code snippets correctly classified

by both techniques, ξ
(
R〈SF 〉 \R〈TF 〉

)
measures the snippets correctly classified by R〈TF 〉

only and wrongly classified by R〈SF 〉, and ξ
(
R〈TF 〉 \R〈SF 〉

)
measures the snippets correctly

classified by R〈SF 〉 only and wrongly classified by R〈TF 〉.
Turning to the second research question (RQ2), we compared the accuracy of a readability model

based on both all the structural and textual features (R〈 All-Features 〉) with the accuracy of the three
baselines, i.e., R〈BWF 〉, R〈PF 〉 and R〈DF 〉. To further show the importance of textual features,
we also comparedR〈 All-Features 〉 to an additional baseline, namely a model based on all the state-
of-the-art structural and visual features (R〈SV F 〉 = R〈BWF + PF +DF 〉). In order to compute
the accuracy, we fist compute:

• True Positives (TP): number of snippets correctly classified as readable;

• True Negatives (TN): number of snippets correctly classified as non-readable;

• False Positives (FP): number of snippets incorrectly classified as readable;

• False Negatives (FN): number of snippets incorrectly classified as non-readable;

then, we compute accuracy as TP+TN
TP+TN+FP+FN , i.e., the rate of snippets correctly classified.

In addition, we report the accuracy achieved by the readability model only exploiting textual
features (i.e., R〈TF 〉). In particular, we measured the percentage of code snippets correctly
classified as readable/non-readable by each technique on each of the three datasets. We also report
the AUC achieved by all the models, in order to compare them taking into account an additional
metric, widely used for evaluating the performance of a classifier.

Each readability model was trained on each dataset individually and a 10-fold cross-validation
was performed. The process for the 10-fold cross-validation is composed of five steps: (i) randomly
divide the set of snippets for a dataset into 10 approximately equal subsets, regardless of the projects
they come from; (ii) set aside one snippet subset as a test set, and build the readability model with the
snippets in the remaining subsets (i.e., the training set); (iii) classify each snippet in the test set using
the readability model built on the snippet training set and store the accuracy of the classification;
(iv) repeat this process, setting aside each snippet subset in turn; (v) compute the overall average
accuracy of the model.

Finally, we used statistical tests to assess the significance of the achieved results. In particular,
since we used 10-fold cross validation, we considered the accuracy achieved on each fold by all
the models. We used the Wilcoxon test [49] (with α = 0.05) in order to estimate whether there are
statistically significant differences between the classification accuracy obtained by R〈TF 〉 and the
other models. Our decision for using the Wilcoxon test, is a consequence of the usage of the 10-
fold cross validation to gather the accuracy measurements. During the cross-validation, each fold is
selected randomly, but we used the same seed to have the same folds for all the experiments. For
example, the 5th testing fold used for R〈BWF 〉 is equal to the 5th testing fold used with R〈All-
Features〉. Consequently, pairwise comparisons are performed between related samples.

Because we performed multiple pairwise comparisons (i.e., All-features vs. the rest), we adjusted
our p-values using the Holm’s correction procedure [50]. In addition, we estimated the magnitude
of the observed differences by using the Cliff’s Delta (d), a non-parametric effect size measure
for ordinal data [51]. Cliff’s d is considered negligible for d < 0.148 (positive as well as negative
values), small for 0.148 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474, and large for d ≥ 0.474 [51].

4.3. Replicability

We make our study fully replicable providing an online appendix for this paper [52]. Such an online
appendix contains: (i) the new dataset and the links to the other two dataset used in this study;
(ii) the ARFF files containing all the features computed on all the snippets in the three datasets;
(iii) our readability tool, which uses the combined dataset trained on all the dataset to compute the
readability level of a snippet.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 15

Table III. RQ1: Overlap between R〈TF 〉 and R〈BWF 〉, R〈PF 〉, and R〈DF 〉.

Dataset R〈TF 〉 ∩R〈BWF 〉 R〈TF 〉 \R〈BWF 〉 R〈BWF 〉 \R〈TF 〉
Db&w 72% 10% 18%
Ddorn 69% 15% 16%
Dnew 64% 20% 16%
Overall 68% 15% 17%

R〈TF 〉 ∩R〈PF 〉 R〈TF 〉 \R〈PF 〉 R〈PF 〉 \R〈TF 〉
Db&w 71% 12% 17%
Ddorn 66% 20% 14%
Dnew 72% 20% 8%
Overall 70% 17% 13%

R〈TF 〉 ∩R〈DF 〉 R〈TF 〉 \R〈DF 〉 R〈DF 〉 \R〈TF 〉
Db&w 70% 11% 19%
Ddorn 78% 10% 12%
Dnew 76% 12% 12%
Overall 75% 11% 14%

4.4. RQ1: Complementarity of readability features

Table III reports the overlap metrics computed between the results of the readability models
using textual and structural features. Across the three datasets, the R〈TF 〉 model exhibits an
overlap of code snippets correctly classified as readable/non-readable included between 68%
(R〈TF 〉 ∩R〈BWF 〉) and 75% (R〈TF 〉 ∩R〈DF 〉). This means that, despite the competitive model
considered, about 30% of the code snippets are differently assessed as readable/non-readable
when only relying on textual features. Indeed, (i) between 11% (R〈TF 〉 \R〈DF 〉) and 17%
(R〈TF 〉 \R〈PF 〉) of code snippets are correctly classified only by R〈TF 〉 and (ii) between 13%
(R〈PF 〉 \R〈TF 〉) and 17% (R〈BWF 〉 \R〈TF 〉) are correctly classified only by the competitive
models exploiting structural information.

These results highlight a high complementarity between structural and textual features when used
for readability assessment. An example of a snippet for which the textual features are not able to
provide a correct assessment of its readability is reported in Figure 6. Such a method (considered
“unreadable” by human annotators) has a pretty high average textual coherence (0.58), but, above
all, it has a high comment readability and comment-identifiers consistency, i.e., many terms co-
occur in identifiers and comments (e.g., “batch” and “fetch”). Nevertheless, some lines are too long,
resulting in a high maximum and average line length (146 and 57.3, respectively), both impacting
negatively the perceived readability [8].

Figure 7 reports, instead, a code snippet correctly classified as “readable” only when
exploiting textual features. The snippet has suboptimal structural characteristics, such as a high
average/maximum line length (65.4 and 193, respectively) and a high average number of identifiers
(2.7), both negatively correlated with readability. Nevertheless, the method has high average textual
coherence (∼ 0.73) and high comments readability (100.0). The source code can be read almost as
natural language text and the semantic of each line is pretty clear, but such an aspect is completely
ignored by structural features.

Summary for RQ1. A code readability model solely relying on textual features exhibits
complementarity with models mainly exploiting structural feature. On average, the readability of
11%-17% code snippets is correctly assessed only when using textual features.

4.5. RQ2: Accuracy of readability model

Table IV shows the accuracy achieved by (i) the comprehensive readability model, namely the model
which exploits both structural and textual features (All-Features), (ii) the model solely exploiting
textual features (TF), (iii) the three state-of-the-art models mainly based on structural features
(BWF, PF, and DF) and (iv) the model based on all the state-of-the-art structural and visual features.
We report the overall accuracy achieved by each model using two different proxies: overallwm and

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

16 S. SCALABRINO ET AL.

1 /**
2 * 1. Recreate the collection key -> collection map
3 * 2. rebuild the collection entries
4 * 3. call Interceptor.postFlush()
5 */
6 protected void postFlush(SessionImplementor session) throws HibernateException {
7
8 LOG.trace("Post flush");
9

10 final PersistenceContext persistenceContext = session.getPersistenceContext();
11 persistenceContext.getCollectionsByKey().clear();
12
13 // the database has changed now, so the subselect results need to be invalidated
14 // the batch fetching queues should also be cleared - especially the collection batch fetching one
15 persistenceContext.getBatchFetchQueue().clear();
16
17 for (Map.Entry<PersistentCollection, CollectionEntry> me : IdentityMap.concurrentEntries(

persistenceContext.getCollectionEntries())) {
18 CollectionEntry collectionEntry = me.getValue();
19 PersistentCollection persistentCollection = me.getKey();
20 collectionEntry.postFlush(persistentCollection);
21 if (collectionEntry.getLoadedPersister() == null) {
22 //if the collection is dereferenced, remove from the session cache
23 //iter.remove(); //does not work, since the entrySet is not backed by the set
24 persistenceContext.getCollectionEntries()
25 .remove(persistentCollection);
26 }
27 else {
28 //otherwise recreate the mapping between the collection and its key
29 CollectionKey collectionKey = new CollectionKey(
30 collectionEntry.getLoadedPersister(),
31 collectionEntry.getLoadedKey()
32);
33 persistenceContext.getCollectionsByKey().put(collectionKey, persistentCollection);
34 }
35 }
36
37 }

Figure 6. Code snippets correctly classified as “non-readable” only when relying on structural features and
missed when using textual features.

1 protected void scanAnnotatedMembers(Map<Class<? extends Annotation>, List<FrameworkMethod>>
methodsForAnnotations, Map<Class<? extends Annotation>, List<FrameworkField>> fieldsForAnnotations)
{

2 for (Class<?> eachClass : getSuperClasses(fClass)) {
3 for (Method eachMethod : MethodSorter.getDeclaredMethods(eachClass)) {
4 addToAnnotationLists(new FrameworkMethod(eachMethod), methodsForAnnotations);
5 }
6 // ensuring fields are sorted to make sure that entries are inserted
7 // and read from fieldForAnnotations in a deterministic order
8 for (Field eachField : getSortedDeclaredFields(eachClass)) {
9 addToAnnotationLists(new FrameworkField(eachField), fieldsForAnnotations);

10 }
11 }
12 }

Figure 7. Code snippets correctly classified as “readable” only when relying on textual features and missed
by the competitive techniques.

Table IV. RQ2: Average accuracy achieved by the readability models in the three datasets.

Dataset Snippets R〈BWF 〉 R〈PF 〉 R〈DF 〉 R〈TF 〉 R〈SV F 〉 R〈 All-features 〉
Db&w 100 81.0% 78.0% 81.0% 74.0% 83.0% 87.0%
Ddorn 360 78.6% 72.8% 80.0% 78.1% 80.6% 83.9%
Dnew 200 72.5% 66.0% 75.5% 76.5% 77.0% 84.0%

Overallwm 660 77.1% 71.5% 78.8% 77.0% 79.9% 84.4%
Overallam 660 77.4% 72.3% 78.8% 76.2% 80.2% 85.0%

overallam. Overallwm is computed as the weighted mean of the accuracy values for each dataset,
where the weights are the number of snippets in each dataset; we used such a proxy also in our

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 17

Table V. RQ2: Average AUC achieved by the readability models in the three datasets.

Dataset Snippets R〈BWF 〉 R〈PF 〉 R〈DF 〉 R〈TF 〉 R〈SV F 〉 R〈 All-features 〉
Db&w 100 0.874 0.880 0.828 0.762 0.850 0.867
Ddorn 360 0.828 0.781 0.826 0.830 0.842 0.874
Dnew 200 0.791 0.746 0.792 0.800 0.782 0.853

Overallwm 660 0.824 0.785 0.816 0.811 0.825 0.867
Overallam 660 0.831 0.802 0.815 0.797 0.825 0.865

Table VI. RQ2: P-values (corrected with the Holm procedure) of the Wilcoxon test and Cliff’s delta (d), for
the pairwise comparisons between the accuracy of R〈 All-features 〉 and each one of state-of-the-art models.

In bold statistically significant values.

Dataset R〈BWF 〉 R〈PF 〉 R〈DF 〉 R〈TF 〉 R〈SV F 〉
Db&w 0.70(d = 0.27) 0.70(d = 0.44) 0.70(d = 0.31) 0.21(d = 0.65) 0.70(d = 0.21)
Ddorn 0.10(d = 0.53) 0.03(d = 0.85) 0.22(d = 0.31) 0.22(d = 0.49) 0.22(d = 0.30)
Dnew 0.09(d = 0.55) 0.04(d = 0.77) 0.15(d = 0.45) 0.09(d = 0.43) 0.15(d = 0.39)

Dall 0.01(d = 0.43) 0.00(d = 0.64) 0.01(d = 0.33) 0.00(d = 0.51) 0.01(d = 0.28)

previous work [18]. Overallam is computed as the arithmetic mean of the accuracy values for each
dataset.

When comparing all the models, it is clear that textual features achieve an accuracy comparable
and, on average, higher than the one achieved by the model proposed by Posnett et al. (R〈PF 〉).
Nevertheless, as previously pointed out, textual-based features alone are not sufficient to measure
readability.

On the other hand, if we use a model which combines all the features, the combined model
achieves an accuracy higher than the other models when analyzing each dataset individually. In
addition, we obtained an overall accuracy (i.e., using all the accuracy samples as a single dataset)
higher than all the compared models for both the proxies, i.e., overallam (from 6.2% with respect
to R〈DF 〉 to 12.7% with respect to R〈PF 〉) and overallwm (from 5.6% with respect to R〈DF 〉
to 12.9% with respect to R〈PF 〉). It is also worth noting that R〈 All-features 〉 achieves an higher
accuracy also compared to a model containing all the state-of-the-art features together. This further
shows that textual features have an important role.

Since the results in terms of accuracy may depend on a specific threshold, we also report in Table
V the Area Under the Curve (AUC) achieved by all the readability models. Also in this case, we
report the overall accuracy achieved by each model using the two proxies previously defined, i.e.,
overallwm (weighted average) and overallam (arithmetic average). The AUC values, overall, confirm
that the combined model outperforms the other models. Nevertheless, we can see that the overallwm
AUC achieved by R〈TF 〉 is comparable to the overallwm AUC achieved by R〈DF 〉, and slightly
minor than the one achieved by R〈BWF 〉. While in terms of accuracy R〈DF 〉 seems to be slightly
better than R〈BWF 〉, in terms of AUC, the opposite is true. Furthermore, there is a high difference
in terms of accuracy between R〈 All-features 〉 and all the other models on the dataset by Buse
and Weimer, but in terms of AUC this difference is less evident and, instead, other models achieve
higher AUC (e.g., R〈PF 〉).

Table VI shows the p-values after correction and the Cliff’s delta for the pairwise comparisons
performed between the model that combines structural and textual features and the other models.
When analyzing the results at dataset granularity, we did not find significant differences between
All-Features and the other models. However, the effect size is medium-large (i.e., d ≥ 0.33) in most
of the comparisons. This issue of no statistical significance with large effect size is an artifact of
the size of the samples used with the test, which has been reported previously by Cohen [53]
and Harlow et al. [54]; in fact, the size of the samples used in our tests for each dataset is 10

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

18 S. SCALABRINO ET AL.

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90

Accuracy (mean and CIs)

F
e

a
tu

re
s

BWF

PF

DF

TF

SVF

ALL

Figure 8. Mean accuracy and confidence intervals (CIs) with 95% of confidence for the accuracy of each
one of the models analyzed for RQ2.

measurements (note that we performed 10-fold cross validation). In that sense, we prefer to draw
conclusions (conservatively) from the tests performed on the setDall, which has a larger sample (30
measurements). When using the datasets as a single one (i.e., Dall), there is significant difference in
the accuracy when comparingR〈All-features〉 to the other models; the results are confirmed with the
Cliff’s d that suggest a medium-large difference (i.e., d ≥ 0.33) in all the cases except for R〈SV F 〉,
for which the difference is, overall, small (0.28).

Figure 8 illustrates the difference in the accuracy achieved with each model by using the mean
accuracy and confidence intervals (CIs). There is a 95% of confidence that the mean accuracy of
R〈All-features〉 is larger than R〈BWF 〉, R〈PF 〉, and R〈TF 〉 (i.e., there is no overlap between
the CIs). Although the mean accuracy of R〈All-features〉 is the largest one in the study, there is
an overlap with the CIs for R〈DF 〉 and R〈SV F 〉. Combining R〈BWF 〉, R〈PF 〉, and R〈DF 〉,
improves the accuracy on average when compared to R〈TF 〉. Therefore, including the proposed
textual features in state-of-the-art models, overall, improves the accuracy of the readability model,
with significant difference when compared to the other models. The statistical tests also confirm that
using only textual features is not the best choice for a code readability model.

Regarding individual features, we investigated the most relevant features for each combination
dataset-model. Table VII reports the importance (i.e., weight) of single features, using the ReliefF
attribute selection algorithm [55, 56]. Specifically, we report the three best features for each pair
dataset-model, specifying also their ranking in the complete list of features for the same dataset and
their importance weight. The textual features that, overall, show the best ReliefF values (i.e., weight
and ranking) are Comments Readability, Textual Coherence and Number of Concepts, since they are
in the top-three positions for the three datasets. Besides, the ranking values confirm what Table IV
previously hinted, i.e., that textual features are useful in Dorn’s dataset and in the new dataset, but
they are less useful in Buse and Weimer’s dataset; indeed, besides CR, the other features have a
low ReliefF value. Finally, Figure 9 shows the average attribute importance weight of all the textual
features: it is clear that Comments Readability is the best predictor of code readability among the
textual features, achieving an average ReliefF which is higher than the double of the second best
predictor (i.e., TCmin).

Summary for RQ2. A comprehensive model of code readability that combines structural and
textual features is able to achieve a higher accuracy than all the state-of-the-art models. The
magnitude of the difference, in terms of accuracy, is mostly medium-to large when considering
structural and textual models. The minimum improvement is of 6.2% and, the difference is
statistically significant when compared to the other models (i.e., Buse and Weimer, Postnet et al.,
Dorn, and Textual features).

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 19

Table VII. RQ2: Evaluation of the single features using ReliefF.

Db&w Ddorn Dnew

Rank Feature Weight Rank Feature Weight Rank Feature Weight
B

W
F 5 #identifiersmax 0.07 3 #commentsavg 0.05 19 Indentation lengthavg 0.02

8 #identifiersavg 0.06 8 #identifiersmax 0.03 27 Identifiers lengthmax 0.02
11 Line lengthmax 0.05 14 #operatorsavg 0.02 31 #commentsavg 0.02

PF

10 Volume 0.05 9 Entropy 0.03 8 Lines 0.02
26 Entropy 0.03 18 Volume 0.02 10 Volume 0.02
36 Lines 0.02 50 Lines 0.01 58 Entropy 0.01

D
F

2 Area (Strings/Comments) 0.08 2 #comments (Visual Y) 0.05 1 #comments (Visual Y) 0.04
3 Area (Operators/Comments) 0.08 5 #numbers (Visual Y) 0.03 3 #conditionals (DFT) 0.04
4 Area (Identifiers/Comments) 0.08 6 #comments (Visual X) 0.03 5 #numbers (DFT) 0.03

T
F

1 CR 0.09 1 CR 0.09 2 TCmin 0.04
38 TCavg 0.02 4 ITIDavg 0.03 4 CR 0.04
39 NOC 0.02 12 TCmax 0.02 7 NOC 0.02

Fe
at

ur
e

Im
p

or
ta

nc
e

W
ei

gh
t

0

0.02

0.04

0.06

0.08

CR
TCmin

TCavg
TCmax

NOC
ITIDavg

CICsyn avg

CICmax

NMImax

NMavg

CICavg

NMmax

NMIavg

NOCnorm

CICsyn max

NMImin

ITIDmin

Figure 9. Average importance weights (computed with the ReliefF methods) of all the textual features.

5. CASE STUDY 2: PREDICTION OF QUALITY WARNINGS

This second study is a replication of the study performed by Buse and Weimer [8], in which
the authors used readability as a proxy for quality, in particular, using warnings reported by the
FindBugs tool * as an indicator of quality. Specifically, the goal of the second study is to understand
if the model which achieves the best accuracy in readability prediction (i.e., the All-features model)
can predict FindBugs warnings with a higher accuracy compared to the model originally proposed
by Buse and Weimer [8]. It is worth noting that we are not directly using the metrics defined in
Section 3 as predictors of FindBugs warnings: instead, we first use some of the features previously
defined to predict readability, and then we use readability to predict warnings. It is not the goal of this
study to assess the FindBugs warnings prediction power of the metrics used to predict readability.
The quality focus is to improve the prediction of quality warnings by considering readability metrics,
while the perspective of the study is of a researcher interested in analyzing whether the proposed
approach can be used for the prediction of quality problems in source code.

5.1. Research question and study context

In the context of the second study we formulated the following research question:

• RQ3: Is the combined readability model able to improve the prediction accuracy of quality
warnings? With this question we want to understand if a higher accuracy in readability

∗http://findbugs.sourceforge.net/

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

http://findbugs.sourceforge.net/

20 S. SCALABRINO ET AL.

Figure 10. Workflow followed to predict readability by relying on FindBugs warnings.

prediction helps to improve the correlation between FindBugs warnings and readability. In
other words, we want to re-assess the FindBugs warnings prediction power of readability
models.

The context of this study is comprised of 20 Java programs: 11 of the 15 systems analyzed by Buse
and Weimer [8] and nine systems introduced in study. We did not include four of the 15 system cited
in the study by Buse and Weimer [8] (i.e., Gantt Project, SoapUI, Data Crow and Risk) because the
snapshots of the specific versions of those systems were not available at the time when this study
was performed. In order to select the nine new systems, we first randomly chose from SourceForge
some software categories which were not represented by the other systems and, for each of them,
we chose one of the most downloaded ones. We started from the most downloaded project, and we
selected the first one which had the following characteristics:

• developed in Java: this was necessary because FindBugs is only able to analyze bytecode
binaries, resulting from the compilation of Java and few other languages;

• source code was available, i.e., there was a public repository or it was released as a zip file:
this was necessary in order to compute the readability score of the methods;

• either a build automation tool was used, such as Ant, Maven or Gradle, or it was available as
a compiled jar file of the exact same version of the source code: this was necessary to have a
reasonably easy way to provide FindBugs with compiled programs to analyze.

Table VIII depicts the selected systems, which accounts for 103,000 methods and about 3 million
lines of code.

In order to answer RQ3, we followed the process depicted in Figure 10. First, we trained a
Logistic classifier on the dataset defined in our previous study [18] and we computed the readability
score of all the methods of all the systems using our combined model. The readability score is
defined as the probability that a method belongs to the class “readable” according to the classifier.
Such a value ranges between 0 (surely unreadable) and 1 (surely readable). For each method,
we also computed the unreadability score, which is the probability that a snippet belongs to the
class “unreadable”. Such a score is computed as unreadability(M) = 1− readability(M). As
a second step, we ran the FindBugs tool on all the compiled versions of the analyzed systems.
Then, we extracted from the FindBugs report only the warnings reported at method level: indeed,
FindBugs warnings can also concern lines of code which belong to other parts of a class (e.g., field

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 21

Table VIII. Software systems analyzed. The star symbol indicates software systems added in this study.
“Methods with warnings” indicates the number of methods with at least a warning.

Project name LOC Methods analyzed Methods with warnings SourceForge category

Azureus: Vuze 4.0.0.4 651k 30,161 2,508 Internet file sharing
JasperReports 2.04 269k 11,256 367 Dynamic content
StatSVN 0.7.0 * 244k 441 21 Documentation
aTunes 3.1.2 * 216k 11,777 501 Sound
Hibernate 2.1.8 189k 4,954 192 Database
jFreeChart 1.0.9 181k 7,517 410 Data representation
FreeCol 0.7.3 167k 4,270 283 Game
TV Browser 2.7.2 162k 7,517 862 TV guide
Neuroph 2.92 * 160k 2,067 179 Frameworks
jEdit 4.2 140k 5,192 518 Text editor
Logisim 2.7.1 * 137k 5,771 232 Education
JUNG 2.1.1 * 74k 3,559 156 Visualization
Xholon 0.7 61k 3,489 338 Simulation
DavMail 4.7.2 * 52k 1,793 80 Calendar
Portecle 1.9 * 27k 532 37 Cryptography
Rachota 2.4 * 23k 791 112 Time tracking
JSch 0.1.37 18k 603 170 Security
srt-translator 6.2 * 8k 103 26 Speech
jUnit 4.4 5k 660 18 Software development
jMencode 0.64 3k 253 80 Video encoding

Total 3M 103k 7k

declarations). We discarded such warnings, so that we have a readability score (computed at method
level) for each warning.

Given a system S having a set X of methods, we split X in two sub-sets: Xb, methods with at
least a warning, and Xc, warning-free methods. In order to avoid the bias derived from the different
size of the sets, we sub-sample Xb and Xc: we consider m = min(|Xb|, |Xc|) and we randomly
pick, from each set, m elements. At the end, we have two sets Xbs ⊆ Xb and Xcs ⊆ Xc, so that
|Xbs| = |Xcs|. This sub-sampling procedure was the same applied by Buse and Weimer [8].

Finally, we used the unreadability score (unreadability(M)) to predict FindBugs warnings. In
order to evaluate how accurate is the unreadability score to predict FindBugs warnings we first
plotted the Receiving Operating Curve (ROC) obtained using unreadability as a continuous predictor
of warning/no warning: such a curve shows the true-positive rate (TFP) against the false-positive rate
(FPR) considering different thresholds for the predictor (unreadability). Then, we computed the area
under such a curve (Area Under the Curve - AUC). We preferred AUC over F-measure, originally
used by Buse and Weimer [8], because AUC does not require the choice of a threshold, which may
not be the same for all the models. To answer RQ3, we compared three readability models: (i) the
original model proposed by Buse and Weimer trained on their dataset (R〈BWF 〉 ◦BW)‡; (ii)
the model by Buse and Weimer trained on the new dataset (R〈BWF 〉 ◦New); (iii) our model
containing all the features trained on the new dataset (R〈 All-features 〉 ◦New). We included the
first model as a sanity check and we used the tool provided by the authors to compute the readability
score; then we trained both R〈BWF 〉 and R〈 All-features 〉 on the same dataset, so that there is no
bias caused by the different training set.

5.2. RQ3: Improvement of the prediction of quality warnings

Figure 11 shows the AUC achieved by the three readability models on all the analyzed systems. R〈
All-features 〉 ◦New is able to predict FindBugs warnings more accurately than the baselines on 12
systems out of 20. The AUC achieved by such a model ranges between 0.573 (Neuroph) and 0.900
(aTunes). Figure 12 shows three box plots which indicate, for each model, the AUC achieved on

‡We use the operator ◦ to denotate that a model M is trained with dataset X: M ◦X

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

22 S. SCALABRINO ET AL.

A
U

C

0.5

0.6

0.7

0.8

0.9

1

JUNG
Vuze

Logisim

Rachota

Freecol

jM
encode

Xholon

StatSVN

srt-
tra

nslator
jUnit

Hibernate

DavMail
jEdit

Neuroph

aTunes
jSch

jFreeChart

TV Browser

Porte
cle

JasperR
eports

R<BWF>◦BW
R<BWF>◦New
R<All-features>◦New

Figure 11. AUC achieved using readability models to predict FindBugs warnings for each system.

A
U
C

0.4

0.5

0.6

0.7

0.8

0.9

1

R<BWF>◦BW R<BWF>◦New R<All-features>◦New

Figure 12. Box plots showing the AUC achieved using readability models to predict FindBugs warnings.

A
U
C

0.4

0.5

0.6

0.7

0.8

0.9

1

R<BWF>◦BW R<BWF>◦New R<All-features>◦New

Figure 13. Box plots showing the AUC achieved using readability models to predict FindBugs warnings,
only on projects also considered in the original experiment by Buse and Weimer.

the 20 systems analyzed. Here it is clear that R〈 All-features 〉 ◦New generally achieves a higher
AUC as compared to the other models. Specifically, the mean AUC achieved by R〈BWF 〉 ◦BW is
0.717, the AUC achieved by R〈BWF 〉 ◦New is 0.724 while the AUC achieved by R〈 All-features
〉 ◦New is 0.770. We also report in Figure 13 the box plot relative only to the 11 projects also
considered in the original experiment by Buse and Weimer [8].

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 23

●

●

●

0.65 0.70 0.75 0.80

AUC (mean and CIs)

BWF on BW

BWF on New

ALL

Figure 14. Mean accuracy and confidence intervals (CIs) with 95% of confidence for the AUC of each one
of the models analyzed for RQ3

Furthermore, we checked if the difference is statistically significant (p=0.05) performing a paired
Wilcoxon test [49] with p-values adjusted using the Holm’s correction procedure for multiple
pairwise comparisons [50]: the adjusted p-values resulting from such a test are 0.006 (comparison
with R〈BWF 〉 ◦BW) and 0.004 (comparison with R〈BWF 〉 ◦New) with a medium effect size
(0.375 and 0.360 correspondingly), which suggest that R〈 All-features 〉 ◦New has a significantly
higher AUC compared to the two baselines. Figure 14 illustrates the difference in the AUC achieved
with each model by using the mean AUC and confidence intervals (CIs). The CIs show how there
is overlap between the three models, however there is a region of the CI of R〈 All-features 〉 ◦New
that is higher than the other CIs, which confirms the medium effect size of the significant difference
between R〈 All-features 〉 ◦New and the other two models. There is a 95% of confidence that the
mean AUC achieved by R〈 All-features 〉 ◦New.

The results suggest that the answer to RQ3 is positive: an improvement in the prediction accuracy
of readability results in a better prediction of FindBugs warnings. Such a result further corroborates
the findings by Buse and Weimer [8] about the correlation between readability and FindBugs
warnings.

Furthermore, we wanted to understand which categories of FindBugs warnings correlated with
readability the most. We selected a set of six categories of FindBugs warnings, i.e., “Performance”,
“Correctness”, “Bad Practices”, “Malicious code”, “Dodgy code” and “Internationalization”.
Categories described on the official FindBugs website§, which are not represented for many of
the analyzed systems, such as “Security”, were excluded.

Figure 16 shows the AUC achieved by the best model (the R〈 All-features 〉 ◦New) on different
categories of FindBugs warnings. “Dodgy code” is the best predicted category for seven systems
out of 20, “Correctness” is the best one for seven systems out of 20, while the others are the best
predicted more rarely (“Internationalization” and “Performance” for 5 systems and “Bad practice”
for four systems). “Malicious code” is the category with the lowest prediction accuracy.

Analyzing the results more in depth, Figure 17 shows the box plots of the AUC achieved by
R〈 All-features 〉 ◦New on the analyzed categories of FindBugs warnings. Except for “Malicious
code”, for which the mean AUC is 0.470, the warning belonging to all the other categories are
predicted with a mean AUC above 0.7. The main reason why “Malicious code” is not correlated
with readability is that the most frequent warnings belonging to such a category can be found
in very short snippets. Figure 15 shows an example of method with the warning “May expose
internal representation by returning reference to mutable object”. Such a warning is raised when
“Returning a reference to a mutable object value stored in one of the object’s fields exposes the

§http://findbugs.sourceforge.net/bugDescriptions.html

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

http://findbugs.sourceforge.net/bugDescriptions.html

24 S. SCALABRINO ET AL.

1 public class KeyParameter
2 implements CipherParameters
3 {
4 private byte[] key;
5
6 [...]
7
8 public byte[] getKey()
9 {

10 return key;
11 }
12 }

Figure 15. Excerpt of a class with a method (getKey) for which FindBugs raises a “Malicious code” warning.

A
U

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

JUNG
Vuze

Logisim

Rachota

Freecol

jM
encode

Xholon

StatSVN

srt-
tra

nslator
jUnit

Hibernate

DavMail
jEdit

Neuroph

aTunes
jSch

jFreeChart

TV Browser

Porte
cle

JasperR
eports

Bad Practice
I18n
Dodgy c.
Performance
Malicious c.
Correctness

Figure 16. AUC achieved using readability models to predict different categories of FindBugs warnings for
each system.

internal representation of the object.”. In many cases this warning can be found in “getter” methods,
such as the one in the example, which have, obviously, a higher level of readability.

Therefore, the first finding is that possible malicious/vulnerable code, but specifically code which
involve the exposure of internal representation, is not correlated with readability and, on the other
hand, all other kind of possible programming mistakes detected by FindBugs, like stylistic issues or
performance problems, could be predicted reasonably well with readability. The differences between
the means of the AUC achieved on all the categories is not significant. Nevertheless, if we take into
account the minimum AUC achieved for each category, “Dodgy code” is the category more reliably
predicted by readability. The minimum AUC achieved for such a category is 0.667 (the only case in
which it is less than 0.7) on jUnit, but, on the same system, all other categories are predicted with a
very low AUC.

While the correlation between unreadability and FindBugs warnings is strong and the former can
be used to predict the latter, it is not trivial to understand why FindBugs warnings are more frequent
in methods with lower readability. Indeed, it is worth noting that, in some cases, it is possible to
rearrange the code so that it is more readable and it still has the same FindBugs warning.

The cause of the correlation could be that unreadable code is more likely to have hidden mistakes,
which may not be fixed until the system fails or a tool warns the developers about it. Consider
the snippet in Figure 18. FindBugs shows a warning belonging to the category “Dodgy code”,
specifically “Useless object created”. According to the official documentation, this warning is
reported when an object is “created and modified, but its value never go outside of the method
or produce any side-effect.”. In this case, the variable declared in line 6 is used in lines 13, 26, 38
and 49, but it has no effect on the outside of the method, so it can be removed, together with the lines
in which it is used. Noticing this kind of issues on an unreadable method such as the one proposed
in the example could be very hard, and this may be the reason why it is introduced and it remains
in the code. In readable code, instead, such warnings may be less frequent because they would be
clearly visible either to the developer who writes it or to any other developer who maintains the
source code.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 25

A
U
C

0

0.2

0.4

0.6

0.8

1

Bad Practice I18n Dodgy c. Performance Malicious c. Correctness

Figure 17. Box plots showing the AUC achieved using readability models to predict different categories of
FindBugs warnings.

Table IX. Accuracy achieved by All-Features, TF, BWF, PF, and DF in the three data sets with different
machine learning techniques.

ML Technique BWF PF DF TF All-Features

D
b
&
w

BayesNet 76.0% 76.0% 68.0% 52.0% 74.0%
ML Perceptron 76.0% 77.0% 78.0% 72.0% 83.0%
SMO 82.0% 78.0% 79.0% 74.0% 77.0%
RandomForest 78.0% 78.0% 73.0% 70.0% 75.0%

D
d
o
r
n

BayesNet 75.0% 68.1% 74.7% 68.1% 75.8%
ML Perceptron 74.2% 70.3% 72.5% 69.4% 76.9%
SMO 79.7% 71.9% 76.7% 71.7% 83.6%
RandomForest 75.8% 68.9% 71.7% 74.2% 76.4%

D
n
e
w

BayesNet 63.5% 70.5% 64.0% 69.5% 71.5%
ML Perceptron 67.5% 67.0% 68.5% 71.5% 74.0%
SMO 65.5% 66.0% 72.5% 73.0% 82.0%
RandomForest 65.5% 60.0% 63.0% 65.5% 74.5%

Summary for RQ3. Our study confirms that the correlation between warnings and readability is
high and it suggests that a model which predicts readability with an higher accuracy is also able to
predict FindBugs warnings better. Specifically, all the categories of warnings taken into account are
well-predicted, except for “Malicious code”, which is more frequent in small and readable methods,
like “getter” methods.

6. THREATS TO VALIDITY

Possible threats to validity for the first study are related to the methodology in the construction of the
new data set, to the machine learning technique used and to the feature selection technique adopted.
The threats to validity for the second study are mainly related to the analyzed systems and to the
metrics used to evaluate the correlation between readability and FindBugs warnings. In this section
we discuss such threats, grouping them into construct, internal and external validity.

6.1. Construct Validity

The main threat is the choice of the metrics used for evaluating (i) the readability models and the
correlation between readability and FindBugs warnings and (ii) to the machine learning technique

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

26 S. SCALABRINO ET AL.

1 static protected LocaleUtilDecoderCandidate[] getTorrentCandidates(TOTorrent torrent)
2 throws TOTorrentException, UnsupportedEncodingException {
3 long lMinCandidates;
4 byte[] minCandidatesArray;
5
6 Set cand_set = new HashSet();
7 LocaleUtil localeUtil = LocaleUtil.getSingleton();
8
9 List candidateDecoders = localeUtil.getCandidateDecoders(torrent.getName());

10 lMinCandidates = candidateDecoders.size();
11 minCandidatesArray = torrent.getName();
12
13 cand_set.addAll(candidateDecoders);
14 TOTorrentFile[] files = torrent.getFiles();
15
16 for (int i = 0; i < files.length; i++) {
17 TOTorrentFile file = files[i];
18 byte[][] comps = file.getPathComponents();
19
20 for (int j = 0; j < comps.length; j++) {
21 candidateDecoders = localeUtil.getCandidateDecoders(comps[j]);
22 if (candidateDecoders.size() < lMinCandidates) {
23 lMinCandidates = candidateDecoders.size();
24 minCandidatesArray = comps[j];
25 }
26 cand_set.retainAll(candidateDecoders);
27 }
28 }
29
30 byte[] comment = torrent.getComment();
31
32 if (comment != null) {
33 candidateDecoders = localeUtil.getCandidateDecoders(comment);
34 if (candidateDecoders.size() < lMinCandidates) {
35 lMinCandidates = candidateDecoders.size();
36 minCandidatesArray = comment;
37 }
38 cand_set.retainAll(candidateDecoders);
39 }
40
41 byte[] created = torrent.getCreatedBy();
42
43 if (created != null) {
44 candidateDecoders = localeUtil.getCandidateDecoders(created);
45 if (candidateDecoders.size() < lMinCandidates) {
46 lMinCandidates = candidateDecoders.size();
47 minCandidatesArray = created;
48 }
49 cand_set.retainAll(candidateDecoders);
50 }
51
52 List candidatesList = localeUtil.getCandidatesAsList(minCandidatesArray);
53 LocaleUtilDecoderCandidate[] candidates;
54 candidates = new LocaleUtilDecoderCandidate[candidatesList.size()];
55 candidatesList.toArray(candidates);
56
57 Arrays.sort(candidates, new Comparator() {
58 public int compare(Object o1, Object o2) {
59 LocaleUtilDecoderCandidate luc1 = (LocaleUtilDecoderCandidate) o1;
60 LocaleUtilDecoderCandidate luc2 = (LocaleUtilDecoderCandidate) o2;
61 return (luc1.getDecoder().getIndex() - luc2.getDecoder().getIndex());
62 }
63 });
64
65 return candidates;
66 }
67

Figure 18. Unreadable code with a “Dodgy code” warning.

used for evaluating the readability models. For the first study, we used accuracy and AUC achieved
when using logistic regression as the underlying classifier for the readability models, while for the
second study we used AUC for evaluating the prediction power of readability to predict warnings;
for both the studies, we could have used different metrics (e.g., F-measure) and for the first study
we could have used different machine learning techniques (e.g., BayesNet or neural networks).
We chose accuracy and AUC because they are widely used in the literature for the evaluation
of classifiers. Specifically, we used AUC for the second study because other metrics would have
implied the use of a specific threshold, while we wanted to compute the inherent correlation between
a continuous metric (readability) and a discrete value (presence of FindBugs warnings).

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 27

In addition, in the first study, the results could depend on the machine learning technique used
for computing the accuracy of each model. Table IX shows the accuracy achieved by each model
using different machine learning techniques. While different techniques achieve different levels of
accuracy, some results are still valid when using other classifiers, e.g., the combined model achieves
a better accuracy than any other model on all the data sets, except for the data set by Buse and
Weimer when using BayesNet and RandomForest.

6.2. Internal validity

To mitigate the over-fitting problem of machine learning techniques, we used 10-fold cross-
validation, and we performed statistical analysis (Wilcoxon test, effect size, and confidence
intervals) in order to measure the significance of the differences among the accuracies of different
models. Also, feature selection could affect the final results on each model. Finding the best set of
features in terms of achieved accuracy is infeasible when the number of features is large. Indeed,
the number of subsets of a set of n elements is 2n; while an exhaustive search is possible for models
with a limited number of features, like BWF, PF and TF, it is unacceptable for DF and All-Features.
Such a search would require, respectively, 1.2× 1018 and 3.2× 1034 subset evaluations. Thus, we
used a linear forward selection technique [48] in order to reduce the number of evaluations and to
obtain a good subset in a reasonable time.

Comparing models obtained with exhaustive search to models obtained with a sub-optimal search
technique could lead to biased results; therefore, we use the same feature selection technique for all
the models to perform a fairer comparison. It is worth noting that the likelihood of finding the best
subset remains higher for models with less features.

Another threat to internal validity is the use of data sets of different sizes: Buse and Weimer
involved 120 participants and they collected 12,000 evaluations; Dorn involved over 5,000
participants and he collected 76,741 evaluations (each snippet was evaluated, on average, by about
200 participants); we involved nine participants and we collected 1,800 evaluations. Besides, each
data set implies also its own risks. The main problem of the data set by Buse and Weimer is that it
contains also not compilable snippets; one of the textual features we introduced, Textual Coherence,
can only be computed on syntactically correct snippets. In the data set by Dorn, each participant
evaluated a small subset of snippets, 14/360 on average; in this case, there could be the risk that the
difference in rating is a matter of the difference among evaluators more than the difference among
snippets. Finally, the main threat to validity related to our data set is the small number of evaluators.
Therefore, since each data set complements the others, to reduce the risks we report the results on
all of them. However, since the number of evaluators are different, we compare the models on the
three data sets separately.

6.3. External validity

In the first study, in order to build the new data set, we had to select a set of snippets that human
annotators would evaluate. The set of snippets selected may not be representative enough and, thus,
could not help to build a generic model. We limited the impact of such a threat by selecting the set
of the most distant snippets as for the features used in this study through a greedy center selection
technique. Other threats regarding the human evaluation of the readability of snippets, also pointed
out by Buse and Weimer [8], are related to the experience of human evaluators and to the lack
of a rigorous definition of readability. However, the human annotators for Dnew showed a high
agreement on the readability of snippets.

In the second study, we had to select a set of systems for computing the correlation between
readability and FindBugs warnings. We selected a subset of the systems analyzed in the previous
study by Buse and Weimer [8] and we introduced new systems for such a study. The main threats
are that (i) the systems may not be representative enough and (ii) some of the systems may use
FindBugs, and thus the use of such a tool may influence the natural correlation with readability. We
limited the first threat by selecting systems belonging to different categories and having different
sizes in terms of methods and lines of code. Besides, we limited the second threat by checking if the
number of FindBugs warnings was not too low (e.g., similar to 0) on each system.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

28 S. SCALABRINO ET AL.

7. CONCLUSION

State-of-the-art code readability models mostly rely on structural metrics, and as of today they
do not consider the impact of source code lexicon on code readability. In this paper we present
a set of textual features that are based on source code lexicon analysis and aim at improving the
accuracy of code readability models. The proposed textual features measure the consistency between
source code and comments, specificity of the identifiers, usage of complete identifiers, among the
others. To validate our hypothesis, stating that combining structural and textual features improves
the accuracy of readability models, we used the features proposed by the state-of-the art models
as a baseline, and measured (i) to what extent the proposed textual-based features complement the
structural features proposed in the literature for predicting code readability, and (ii) the accuracy
achieved when including textual features into the state-of-the-art models. Our findings show that
textual features complement structural ones, and the combination (i.e., structural+textual) improves
the accuracy of code readability models. Furthermore, we replicated a study by Buse and Weimer on
the correlation between readability and FindBugs warnings, in order to check if an improvement in
readability prediction causes an improvement in the correlation with FindBugs warnings. The results
confirm our hypothesis: the model with the highest readability prediction accuracy also predicts
FindBugs warnings more accurately than the other models. We conclude that unreadable code is
more prone to having issues, which may be also bugs, and it is more likely that such problems
would stay in the code, as it is more difficult to notice and correct them.

REFERENCES

1. L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Professional, vol. 2, no. 3, pp. 17–23, May 2000.
2. K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: A roadmap,” in Proceedings of the

Conference on The Future of Software Engineering, 2000, pp. 73–87.
3. V. Rajlich and P. Gosavi, “Incremental change in object-oriented programming,” IEEE Softw., vol. 21, no. 4, pp.

62–69, Jul. 2004.
4. D. Poshyvanyk and D. Marcus, “Combining formal concept analysis with information retrieval for concept location

in source code,” in ICPC’07, 2007.
5. R. C. Martin, Clean Code: A Handbook of Agile Sofware Craftsmanship. Prentice Hall, 2009.
6. A. Oram and G. Wilson, Eds., Beautiful Code: Leading Programmers Explain How They Think. O’reilly, 2007.
7. K. Beck, Implementation Patterns. Addison Wesley, 2007.
8. R. P. L. Buse and W. Weimer, “Learning a metric for code readability,” IEEE TSE, vol. 36, no. 4, pp. 546–558,

2010.
9. D. Posnett, A. Hindle, and P. T. Devanbu, “A simpler model of software readability.” in MSR’11, 2011, pp. 73–82.

10. J. Dorn, “A general software readability model,” Master’s thesis, University of Virginia, Department of Computer
Science, https://www.cs.virginia.edu/˜weimer/students/dorn-mcs-paper.pdf, 2012.

11. D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier names for comprehension and memory.” ISSE,
vol. 3, no. 4, pp. 303–318, 2007.

12. ——, “What’s in a name? a study of identifiers,” in ICPC’06, 2006.
13. B. Caprile and P. Tonella, “Restructuring program identifier names,” in ICSM, 2000, pp. 97–107.
14. F. Deissenbock and M. Pizka, “Concise and consistent naming,” 2005.
15. D. Lawrie, H. Feild, and D. Binkley, “Syntactic identifier conciseness and consistency,” in SCAM’06, 2006, pp.

139–148.
16. E. Enslen, E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Mining source code to automatically split identifiers for

software analysis,” in MSR’09.
17. A. Takang, P. Grubb, and R. Macredie, “The effects of comments and identifier names on program

comprehensibility: an experiential study,” Journal of Program Languages, vol. 4, no. 3, pp. 143–167, 1996.
18. S. Scalabrino, M. L. Vásquez, D. Poshyvanyk, and R. Oliveto, “Improving code readability models with textual

features,” in 24th IEEE International Conference on Program Comprehension, ICPC 2016, Austin, TX, USA, May
16-17, 2016, 2016, pp. 1–10.

19. E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling readability to improve unit tests,” in
ESEC/FSE’15, 2015, pp. 107–118.

20. A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual cohesion of classes for fault prediction in object-
oriented systems,” vol. 34, no. 2, pp. 287–300, 2008.

21. D. Poshyvanyk and A. Marcus, “The conceptual coupling metrics for object-oriented systems,” in ICSM’06, 2006,
pp. 469–478.

22. G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Recovering traceability links between code and
documentation,” IEEE TSE, vol. 28, no. 10, pp. 970–983, 2002.

23. J. L. Elshoff and M. Marcotty, “Improving computer program readability to aid modification,” CACM, vol. 25,
no. 8, pp. 512–521, 1982.

24. T. Tenny, “Program readability: procedures versus comments,” IEEE TSE, vol. 14, no. 9, pp. 1271–1279, 1988.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

A COMPREHENSIVE MODEL FOR CODE READABILITY 29

25. D. Spinellis, Code Quality: The Open Source Perspective. Adobe Press.
26. D. Binkley, H. Feild, D. J. Lawrie, and M. Pighin, “Increasing diversity: Natural language measures for software

fault prediction.” Journal of Systems and Software, vol. 82, no. 11, pp. 1793–1803, 2009.
27. W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan, “On the relationship between comment update

practices and software bugs,” Journal of Systems and Software, vol. 85, no. 10, pp. 2293–2304, 2012.
28. B. Fluri, M. Würsch, and H. Gall, “Do code and comments co-evolve? on the relation between source code and

comment changes,” in WCRE’07.
29. M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk, “How do developers document database usages in

source code?” in ASE’15, 2015.
30. B. Li, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and N. Kraft, “Automatically documenting unit test

cases,” in ICST’16, 2016.
31. M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk, “Documenting database usages and schema

constraints in database-centric applications,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, ser. ISSTA 2016. New York, NY, USA: ACM, 2016, pp. 270–281. [Online]. Available:
http://doi.acm.org/10.1145/2931037.2931072

32. M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk, “Changescribe: A tool for automatically
generating commit messages,” in Proceedings of the 37th International Conference on Software Engineering
- Volume 2, ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 709–712. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2819009.2819144

33. L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk, “On automatically generating commit
messages via summarization of source code changes,” in Proceedings of the 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation, ser. SCAM ’14. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 275–284. [Online]. Available: http://dx.doi.org/10.1109/SCAM.2014.14

34. F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Software Quality Journal, vol. 14, no. 3, pp.
261–282, 2006.

35. S. Haiduc and A. Marcus, “On the use of domain terms in source code,” in ICPC’08, 2008, pp. 113–122.
36. D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To CamelCase or Under score,” in ICPC’09, 2009.
37. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison-Wesley, 1999.
38. M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137, 1980.
39. A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella, “Labeling source code with information

retrieval methods: an empirical study,” EMSE, vol. 19, no. 5, pp. 1383–1420, 2014.
40. V. Arnaoudova, L. M. Eshkevari, R. Oliveto, Y. Guéhéneuc, and G. Antoniol, “Physical and conceptual identifier

dispersion: Measures and relation to fault proneness,” in ICSM’10, 2010, pp. 1–5.
41. G. A. Miller, “Wordnet: A lexical database for english,” vol. 38, no. 11, pp. 39–41, 1995.
42. R. Flesch, “A new readability yardstick.” Journal of applied psychology, vol. 32, no. 3, p. 221, 1948.
43. Collins american dictionary. [Online]. Available: http://www.collinsdictionary.com/dictionary/american/syllable
44. B. Ujhazi, R. Ferenc, D. Poshyvanyk, and T. Gyimothy, “New conceptual coupling and cohesion metrics for

object-oriented systems,” in Proceedings of the 2010 10th IEEE Working Conference on Source Code Analysis
and Manipulation, ser. SCAM ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 33–42. [Online].
Available: http://dx.doi.org/10.1109/SCAM.2010.14

45. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial
databases with noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

46. J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering in spatial databases: The algorithm
gdbscan and its applications,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 169–194, Jun. 1998. [Online]. Available:
http://dx.doi.org/10.1023/A:1009745219419

47. J. Kleinberg and É. Tardos, Algorithm design. Pearson Education India.
48. M. Gütlein, E. Frank, M. Hall, and A. Karwath, “Large-scale attribute selection using wrappers,” in CIDM’09,

2009, pp. 332–339.
49. S. D.J., Handbook of Parametric and Nonparametric Statistical Procedures (fourth edition). Chapman & All,

2007.
50. S. Holm, “A simple sequentially rejective Bonferroni test procedure,” Scandinavian Journal on Statistics, vol. 6,

pp. 65–70, 1979.
51. R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical approach, 2nd ed. Lawrence Earlbaum

Associates, 2005.
52. S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk, “Online appendix.”

https://dibt.unimol.it/report/readability.
53. J. Cohen, “The earth is round (p<.05),” American Psychologist, vol. 49, no. 12, pp. 997–1003, 1994.
54. L. L. Harlow, S. A. Mulaik, and J. H. Steiger, What if there were no significance tests? Psychology Press, 1997.
55. K. Kira and L. A. Rendell, “A practical approach to feature selection,” in Proceedings of the ninth international

workshop on Machine learning, 1992, pp. 249–256.
56. I. Kononenko, E. Šimec, and M. Robnik-Šikonja, “Overcoming the myopia of inductive learning algorithms with

relieff,” Applied Intelligence, vol. 7, no. 1, pp. 39–55, 1997.

Copyright © 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

http://doi.acm.org/10.1145/2931037.2931072
http://dl.acm.org/citation.cfm?id=2819009.2819144
http://dx.doi.org/10.1109/SCAM.2014.14
http://www.collinsdictionary.com/dictionary/american/syllable
http://dx.doi.org/10.1109/SCAM.2010.14
http://dx.doi.org/10.1023/A:1009745219419

	1 Introduction
	2 Background and related work
	2.1 Software quality and source code lexicon
	2.2 Source code readability models

	3 Text-based Code Readability Features
	3.1 Comments and Identifiers Consistency (CIC)
	3.2 Identifier Terms in Dictionary (ITID)
	3.3 Narrow Meaning Identifiers (NMI)
	3.4 Comments Readability (CR)
	3.5 Number of Meanings (NM)
	3.6 Textual Coherence (TC)
	3.7 Number Of Concepts (NOC)
	3.8 Readability vs understandability

	4 Case Study 1: Improving readability estimation
	4.1 Data Collection
	4.2 Analysis Method
	4.3 Replicability
	4.4 RQ1: Complementarity of readability features
	4.5 RQ2: Accuracy of readability model

	5 Case Study 2: Prediction of quality warnings
	5.1 Research question and study context
	5.2 RQ3: Improvement of the prediction of quality warnings

	6 Threats to Validity
	6.1 Construct Validity
	6.2 Internal validity
	6.3 External validity

	7 Conclusion

