
CRC to Journal of Software Maintenance and Evolution: Research and Practice

Feature Location in Source Code:
A Taxonomy and Survey

Bogdan Dit, Meghan Revelle, Malcom Gethers, Denys Poshyvanyk
The College of William and Mary
__

Feature location is the activity of identifying an initial location in the source code that
implements functionality in a software system. Many feature location techniques have
been introduced that automate some or all of this process, and a comprehensive overview
of this large body of work would be beneficial to researchers and practitioners. This
paper presents a systematic literature survey of feature location techniques. Eighty-nine
articles from 25 venues have been reviewed and classified within the taxonomy in order
to organize and structure existing work in the field of feature location. The paper also
discusses open issues and defines future directions in the field of feature location.

Keywords: Feature location, concept location, program comprehension, software
maintenance and evolution

__

1. INTRODUCTION

In software systems, a feature represents a functionality that is defined by requirements
and accessible to developers and users. Software maintenance and evolution involves
adding new features to programs, improving existing functionalities, and removing bugs,
which is analogous to removing unwanted functionalities. Identifying an initial location
in the source code that corresponds to a specific functionality is known as feature (or
concept) location [Biggerstaff'94, Rajlich'02]. It is one of the most frequent maintenance
activities undertaken by developers because it is a part of the incremental change process
[Rajlich'04]. During the incremental change process, programmers use feature location
to find where in the code the first change to complete a task needs to be made. The full
extent of the change is then handled by impact analysis, which starts with the source code
identified by feature location and finds all the code affected by the change.
Methodologically, the two activities of feature location and impact analysis are different
and are treated separately in the literature and in this survey.

Feature location is one of the most important and common activities performed by
programmers during software maintenance and evolution. No maintenance activity can
be completed without first locating the code that is relevant to the task at hand, making
feature location essential to software maintenance since it is performed in the context of
incremental change. For example, Alice is a new developer on a software project, and
her manager has given her the task of fixing a bug that has been recently reported. Since
Alice is new to this project, she is unfamiliar with the large code base of the software
system and does not know where to begin. Lacking sufficient documentation on the
system and the ability to ask the code’s original authors for help, the only option Alice
sees is to manually search for the code relevant to her task.

Alice’s situation is one faced by many software developers needing to understand and
modify an unfamiliar codebase. However, a manual search of a large amount of source
code, even with the help of tools such as pattern matchers or an integrated development

2 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

environment, can be frustrating and time-consuming. Recognizing this problem,
software engineering researchers have developed a number of feature location techniques
(FLTs) to come to aid programmers in Alice’s position. The various techniques that have
been introduced are all unique in terms of their input requirements, how they locate a
feature’s implementation, and how they present their results. Thus, even the task of
choosing a suitable feature location technique can be challenging.

The existence of such a large body of feature location research calls for a
comprehensive overview. Since there currently is no broad summary of the field of
feature location, this paper provides a systematic survey and operational taxonomy of this
pertinent research area. To the best of our knowledge, Wilde et al. [Wilde'03] is the only
other survey, which in contrast to our survey, compares only a few feature location
techniques. Our survey includes research articles that introduce new feature location
approaches; case, industrial, and user studies; and tools that can be used in support of
feature location. The articles are characterized within a taxonomy that has nine
dimensions, and each dimension has a set of attributes associated with it. The dimensions
and attributes of the taxonomy capture key facets of typical feature location techniques
and can be useful to both software engineering researchers and practitioners
[Marcus'05b]. Researchers can use this survey to identify what has been done in the area
of feature location and what needs to be done; that is, they can use it to find related work
as well as opportunities for future research. Practitioners can use this overview to
determine which feature location approach is most suited to their needs.

This survey encompasses 89 articles (60 research articles and 29 tool and case study
papers) from 25 venues published between November 1992 and February 2011. These
research articles were selected because they either state feature/concept location as their
goal or present a technique that is essentially equivalent to feature location. The tool
papers include tools developed specifically for feature location as well as program
exploration tools that support feature location. The case study articles include industrial
and user studies as well as studies that compare existing approaches.

There are several research areas that are closely related to feature location, such as
traceability link recovery, impact analysis, and aspect mining. Traceability link recovery
seeks to connect different types of software artifacts (e.g., documentation with source
code), while feature location is more concerned with identifying source code associated
with functionalities, not specific sections of a document. Impact analysis is the step in
the incremental change process performed after feature location with the purpose of
expanding on feature location’s results, especially after a change is made to the source
code. Feature location focuses on finding the starting point for that change. The main
goal of aspect mining is to identify cross-cutting concerns and determine the source code
that should be refactored into aspects, meaning the aspects themselves are not known a
priori. By contrast, in the contexts in which feature location is used, the high-level
descriptions of features are already known and only the code that implements them is
unknown. Therefore, articles and research from these related fields are not included here
as they are beyond the scope of this focused survey.

The work presented in this paper has two main contributions. The first is a systematic
survey of feature location techniques, relevant case studies, and tools. The second is the
taxonomy derived from those techniques. An online appendix1 lists all of the surveyed
articles classified within the taxonomy. Section 2 presents the systematic review process.
Section 3 introduces the dimensions of the taxonomy, and Section 4 provides brief
descriptions of the surveyed approaches. Section 5 overviews the feature location tools

1 http://www.cs.wm.edu/semeru/data/feature-location-survey/ (accessed and verified on 03/01/2011)

Feature Location in Source Code: A Taxonomy and Survey 3

CRC to Journal of Software Maintenance and Evolution: Research and Practice

and studies, and Section 6 provides an analysis of the taxonomy. Section 7 discusses open
issues in feature location and Section 8 concludes.

2. SYSTEMATIC REVIEW PROCESS

In this paper we perform a systematic survey of the feature location literature in order
to address the following research questions (RQ):

 RQ1: What types of analysis are used while performing feature location?
 RQ2: Has there been a change in types of analysis used to identify features in source

code employed by recent feature location techniques?
 RQ3: Are there any limitations to current strategies for evaluating various feature

location techniques?
In order to answer these research questions, we conducted a systematic review of the

literature using the following process (see Figure 1):
 Search: the initial set of articles to be considered during the selection process is

determined by identifying pertinent journals, conferences and workshops.
 Article Selection: using inclusion and exclusion criteria the initial set of articles

is filtered and only relevant articles are considered beyond this step.
 Article Characterization: articles, which meet the selection criteria, are

classified according to the set of attributes that capture important characteristics
of feature location techniques.

 Analysis: using the resulting taxonomy and systematic classification of the
papers, the research questions are answered and useful insights about the state of
feature location research and practice are outlined.

2.1. Search

An initial subset of papers of interest was obtained by manually evaluating articles that
appear in different venues considered during our preliminary exploration. We select
venues where feature location research is within their respective scope. Also, choosing
such venues ensures that selected articles meet some standard (e.g., the papers went
through a rigorous peer review process).

2.2. Article Selection

To adhere to the properties of systematic reviews [Kitchenham'04] we define the
following inclusion and exclusion criteria. In order to be included in the survey, a paper
must introduce, evaluate, and/or complement the implementation of a source code based
feature location technique. This includes papers that introduce novel feature location
techniques, evaluate various existing feature location techniques, or present tools
implementing existing or new approaches to feature location. The papers, which focused
on improving the performance of underlying analysis techniques (e.g., dynamic analysis,
Information Retrieval), as opposed to the feature location process were excluded.

2.3. Article Classification

The authors read and categorized each article according to the taxonomy and the
attributes presented in Section 3. The process of classifying the articles was followed by
four authors individually. Using initial classifications produced by the authors we
identified papers that had some disagreements and further discussed those papers. The
set of attributes was extracted and defined by two of the authors. Having all four authors
characterize the articles allows us to verifying the quality of the taxonomy, minimizing
potential bias. In certain cases disagreements served as an indication that our taxonomy
and attributes or their corresponding descriptions required refinement. Through this

4 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

process we were able to improve the quality of our taxonomy and attribute set as well as
improve their descriptions.

2.4. Analysis

Following the process of classifying research papers our final step includes analysis the
results, answers to the research questions as well as an outline of future directions for
researchers and practitioners investigating feature location techniques. In order to
complete this step we analyzed the trends in our resulting taxonomy and observed
interesting co-occurrences of various attributes across feature location techniques. We
also investigated characteristics that rarely apply to the set of techniques considered as
well as characteristics which are currently emerging in the research literature.

3. DIMENSIONS OF THE SURVEY

The goal of this survey is to provide researchers and practitioners with a structured
overview of existing research in the area of feature location. From a methodical
inspection of the research literature we extracted a number of key dimensions2. These
dimensions objectively describe different techniques and offer structure to the surveyed
literature. The dimensions are as follows:

 The type of analysis: What underlying analyses are used to support feature
location?

 The type of user input: What does a developer have to provide as an input to the
feature location technique?

 Data sources: What derivative artifacts have to be provided as an input for the
feature location technique?

2 Some of these dimensions were discussed at the working session on Information Retrieval Approaches

in Software Evolution at 22nd IEEE International Conference on Software Maintenance (ICSM’06):
http://www.cs.wayne.edu/~amarcus/icsm2006/

Figure 1 Systematic review process

Feature Location in Source Code: A Taxonomy and Survey 5

CRC to Journal of Software Maintenance and Evolution: Research and Practice

 Output: What type of the results and how are they provided back to the user?

 Programming language support: On which programming languages was this
technique instantiated?

 The evaluation of the approach: How was this feature location technique
evaluated?

 Systems evaluated: What are the systems that were used in the evaluation?
The order in which these dimensions are presented does not imply any explicit priority or
importance.

Each dimension has a number of distinct attributes associated with it. For a given
dimension, a feature location technique may be associated with multiple attributes. These
dimensions and their attributes were derived by examining an initial set of articles of
interest. They were then refined and generalized to succinctly characterize the properties
that make feature location techniques unique, and can be used to evaluate and compare
them. The goal of the taxonomy’s dimensions and attributes it to allow researchers and
practitioners to easily locate the feature location techniques that are most suited to their
needs. The dimensions and their associated attributes that are used in the taxonomy of
the surveyed articles are listed in Table 1. These dimensions and attributes are discussed
in the remainder of this section. The attributes are highlighted in italics.

3.1. Type of Analysis

A main distinguishing factor of feature location techniques is the type, or types of
analyses they employ to identify the code that pertains to a feature. The most common
types of analyses include dynamic, static, and textual. While these are not the only types
of analysis possible, they are the ones utilized by the vast majority of feature location
techniques, and some approaches even leverage more than one of these types of analysis.
In Section 4, descriptions of all the surveyed articles are given, and the section is
organized by the type(s) of analysis used.

Dynamic analysis refers to examining a software system’s execution, and it is often
used for feature location when features can be invoked and observed during runtime.
Feature location using dynamic analysis generally relies on a post-mortem analysis of an
execution trace. Typically, one or more feature-specific scenarios are developed that
invoke only the desired feature. Then, the scenarios are run and execution traces are
collected, recording information about the code that was invoked. These traces are
captured either by instrumenting the system or through profiling. Once the traces are
obtained, feature location can be performed in several ways. The traces can be compared
to other traces in which the feature was not invoked to find code only invoked in the
feature-specific traces [Eisenbarth'03, Wilde'95]. Alternatively, the frequency of
execution portions of code can be analyzed to locate a feature’s implementation
[Antoniol'06, Eisenberg'05, Safyallah'06]. Using dynamic analysis for feature location is
a popular choice since most features can be mapped to execution scenarios. However,
there are some limitations associated with dynamic analysis. The collection of traces can
impose considerable overhead on a system’s execution. Additionally, the scenarios used
to collect traces may not invoke all of the code that is relevant to the feature, meaning
that some of the feature’s implementation may not be located. Conversely, it may be
difficult to formulate a scenario that invokes only the desired feature, causing irrelevant
code to be executed. Dynamic feature location techniques are discussed in Section 4.2.

Static analysis examines structural information such as control or data flow
dependencies. In manual feature location, developers may follow program dependencies
in a section of code they deem to be relevant in order to find additional useful code, and

6 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

this idea is used in some approaches to feature location [Chen'00]. Other techniques
analyze the topology of the structural information to point programmers to potentially
relevant code [Robillard'08]. While using static analysis for feature location is very close
to what a developer searching for code may do, it often overestimates what is pertinent to
a feature and is prone to returning many false positive results. Static approaches to
feature location are summarized in Section 4.3.

Textual approaches to feature location analyze the words used in source code. The
idea is that identifiers and comments encode domain knowledge, and a feature may be
implemented using a similar set of words throughout a software system, making it
possible to find a feature’s relevant code textually. Textual analysis is performed using
three main techniques: pattern matching, Information Retrieval (IR) and natural language
processing (NLP). Pattern matching usually involves a textual search of source code
using a utility, such as grep3. Information Retrieval techniques, such as Latent Semantic
Indexing (LSI) [Deerwester'90], Latent Dirichlet Allocation (LDA) [Blei'03] and Vector
Space Model (VSM) [Salton'86], are statistical methods used to find a feature’s relevant
code by analyzing and retrieving identifiers and comments that are similar to a query
provided by a user. A good overview of applications of IR techniques in Software
Development, Maintenance and Evolution can be found in [Binkley'10a, b]. NLP
approaches can also exploit a query, but they analyze the parts of speech of the words
used in source code. Pattern matching is relatively robust, but not very precise because
of the vocabulary problem [Furnas'87]; the chances of a programmer choosing query
terms that matches the vocabulary of unfamiliar source code are relatively low. On the
other hand, NLP is more precise than pattern matching but much more expensive.
Information Retrieval lies between the two. No matter the type of textual analysis used,
the quality of feature location is heavily tied to the quality of the source code naming
conventions and/or the user-issued query. Textual feature location techniques are
reviewed in Section 4.4.

Feature location is not limited to just dynamic, static, or textual analysis. Many
techniques draw on multiple analysis methods to find a feature’s implementation, and
some do not use any of these types of analyses. Existing approaches that combine two or
more types of analysis do so with the goal of using one type of analysis to compensate for
the limitations of another, thus achieving better results than standalone techniques. The
unique ways in which multiple types of analysis are combined for feature location are
described in Sections 4.5 through 4.8. Other approaches do not rely on dynamic, static,
or textual analysis. For instance, two feature location techniques rely on historical
analysis to mine version control systems in order to identify lines of code [Chen'01a] or
artifacts related to a feature [Cubranic'05]. Another technique examines the code visible
to a programmer during a maintenance task and tries to infer what was important
[Robillard'03a]. These alternative approaches are explained in Section 4.9.

3.2. Types of User Input

A FLT ultimately assists developers during software maintenance tasks. This
dimension describes the type of input that a developer has to provide for the FLT. The
input can be a query, an execution scenario, a source code artifact, or a combination of
these. The query can be a set of words that describe a bug or a feature that the developer
is attempting to locate. The query can be generated in several ways. It can be compiled
by the developer, it can be suggested by the FLT supporting automatic query expansion,
or it can be extracted from the description of the feature report or some other

3 http://www.gnu.org/software/grep/ (accessed and verified on 03/01/2011)

Feature Location in Source Code: A Taxonomy and Survey 7

CRC to Journal of Software Maintenance and Evolution: Research and Practice

documentation artifacts. The execution scenario is a set of steps, which the developer has
to perform on an instrumented software system in order to exercise a feature of interest,

8 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Table 1 Dimensions and attributes of the feature location taxonomy. The attributes are
highlighted in bold, and their description is given after the colon separator

Dimension Attribute: Description
Type of
analysis

Dynamic: Dynamic analysis is used to locate features
Static: Static analysis is used to locate features
Textual: Textual analysis is used to locate features
Historical: Information from software repositories is used to locate features
Other: Another type of analysis is used to locate features

User input Natural Language Query: A textual description of a feature (or a bug report description) or a
user specified query is used as an input

Execution Scenario: The developer uses a scenario in order to exercise a feature (or reproduce
a bug) of interest in order to collect execution traces

Source Code Artifact: A software artifact is used as a starting point (or seed) for the feature
location technique

Data sources
(derivative
inputs)

Source code:
 Compilable/executable: An executable program is used as an input to extract

derivative information
 Non-compilable: A source code that may or may not contain errors that prevent it to

be compliable is used as an input to extract derivative information
Derivative analysis data from source code:

 Dependence Graph: The dependence graph can be derived directly from the source
code (i.e., static) or it can be derived from execution information (i.e.,
dynamic)

 Execution Trace: A set of methods that were executed when exercising a scenario
 Historical Information: Historical information from source code repositories about

the changes in the source code. This information includes log messages and
actual changes

 Other: Another source of information is used for feature location
Output Source code:

 File/class: The results produced by the FLT are at file/class level granularity
 Method/function: The results produced by the FLT are at method/function level

granularity
 Statement: The results produced by the FLT are at statement level granularity

Non-source code artifact: The output produced by the FLT is a non-source code artifact – e.g.,
bug report

Presentation of the results:
 Ranked: The results produced by the feature location technique have scores that can

be used to rank the results based on their relevance to the user input
 Visualization: The results produced by the feature location technique are presented

using an advanced way of visualizing information
Programming
language
support

Java: The approach supports feature location in software written primarily in Java
C/C++: The technique can find features for software systems written in C/C++
Other: Feature location in some other language is supported, e.g., Fortran, Cobol

Evaluation Preliminary: The evaluation is on small systems or small datasets or only preliminary evidence
is given (i.e., proof of concept)

Benchmark: The evaluation uses a dataset that was published by other authors or the dataset
used in this evaluation is later used by other researchers

Human subjects:
 Academic: Students or non-professional developers participated in evaluation
 Professional: Professional developers participation in evaluation of the results

Quantitative: The results were evaluated via comparative metrics such as precision, recall, etc.
Qualitative: The paper discusses details about the characteristics of the technique/tool and/or

some aspects of the results
Comparison with other approaches: Comparisons of the author’s approach with existing

solutions
Unknown/none: There is no evaluation performed, or the details are not available

Systems
evaluated

The software systems upon which the FLT has been applied are listed

Feature Location in Source Code: A Taxonomy and Survey 9

CRC to Journal of Software Maintenance and Evolution: Research and Practice

 with the purpose of collecting execution information about the system (i.e., execution
trace). The source code artifact can be any artifact, such as a class or method, which the
developer chooses as a starting point for the feature location technique. The rationale is
that the FLT will perform some analysis starting from that artifact (e.g., a method in
source code) and it will return other artifacts (e.g., source code methods) related to it. As
mentioned before, based on the FLT, the developer has to provide as an input any of
these types of inputs, or a combination of these.

3.3. Data Sources (Derivative Inputs from Software)

In addition to the type of user input, the FLT might require other sources of information
such as the source code or derivative data from source code. Some techniques require the
source code to be compilable or executable, in order to extract static dependencies or
execution information, whereas other techniques that use textual information could use as
input source code that contains errors and therefore may not necessarily be compilable.
On the other hand, some techniques require artifacts derived from source code, such as
dependence graphs, execution traces, and historical information from source code
repositories concerning source code changes (i.e., change log messages and concrete
source code changes). We also include the attribute other for the information extracted
from bug repositories, forums, documentation, test cases, etc. In addition, the attribute
other can denote the fact that the technique requires some feedback from the developer.
Typically, the sources of utilized information reflect the type of analysis that can be
employed. Dynamic analysis uses execution traces captured when a feature is executed.
Different representations of source code, such as a program dependence graph, can be
used by static analysis FLTs. Source code and documentation can be leveraged in textual
analysis to find words that are relevant to a feature. Analysis applied on change history
data uses version control systems, issue trackers, communication archives, etc., in order
to leverage past changes in software, as a way of supporting feature location.

3.4. Output

Once a FLT identifies candidate software artifacts for a given feature, those results must
be presented to the developer. The results can have different granularity levels and
different presentations.

The types of granularities are classes/files, methods or functions, and statements (i.e.,
basic blocks, lines of code, variables, etc.). Throughout this survey, we refer to portions
of source code at any level of granularity as program elements. The more fine-grained
the program elements located by a technique, the more specific and expressive the feature
location technique is. For instance, when the results are presented at the statement level
granularity all the basic blocks or variables may be relevant, but when results are
presented at class level granularity, not all the methods from the class may pertain to the
feature. Some approaches may be applicable to multiple levels of granularity, but only
those program elements that are actually shown to be supported in an article are reported
in this survey. On the other hand, some FLTs may produce artifacts that are not part of
the source code, such as bugs, documentation, etc. We categorize these results in the non-
source code artifacts attribute.

In this survey we also distinguish among different ways the results can presented to
software developers. For example, one option is to present a list of candidate program
elements ranked by their relevance to the feature [Antoniol'06, Eisenberg'05, Liu'07,
Marcus'04, Robillard'08]. We use the attribute ranked to denote such a presentation of the
results. Another way in which feature location results are presented is as an unordered
set of program elements [Eaddy'08a, Eisenbarth'03, Wilde'95]. In other words, a set of

10 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

elements is identified as being relevant to a feature, but no notion of their degree of
relevance is provided. If the ranked attribute is not specified, we assume that a FLT
presents the results in this way. Another form of presenting the results is by using
visualization to highlight relevant program elements [Bohnet'07b, Walkinshaw'07,
Xie'06]. Note that the ranked and visualization attributes are not mutually exclusive.
Finally, some feature location techniques do not automatically identify relevant program
elements but describe a process that a programmer can follow to manually search for a
feature’s implementation [Chen'00]. Since different feature location techniques present
their results in different ways, comparing approaches that use dissimilar reporting styles
can be challenging.

3.5. Programming Language Support

The programming language in which a software system is written can play a factor in the
types of feature location techniques that can be applied to it. Textual and historical
analyses are programming language agnostic at the file level, but require parsers if
applied at fine granularity levels (e.g., method level granularity). Static and dynamic
analyses may be limited due to tool support for a given platform or a programming
language. In this survey, all programming languages on which a technique has been
applied are reported. The majority of existing feature location approaches have been
exercised on Java or C/C++ systems since ample tool support is available for these
languages. Other programming languages that have been supported include FORTRAN
and COBOL. Knowing the languages under which an approach works can help
researchers and practitioners select an appropriate technique, though the fact that an
approach has not been used on a certain programming language does not imply that it is
not applicable to systems implemented in that language.

3.6. Evaluation

The way in which a feature location technique is evaluated provides researchers and
practitioners with useful information on the approach’s quality, effectiveness, robustness,
and practical applicability. Evaluating a feature location technique is difficult because
defining the program elements that are relevant to a feature may be subjective at times.
Despite this difficulty, researchers have devised a number of approaches to assess feature
location techniques. Evaluations of traditional software engineering techniques are
classified as survey, experiment, case study and none [Wohlin'99]. However, this
standard categorization does not apply to our taxonomy for two reasons. First, due to the
fact that the feature location field is not as matured as other software engineering fields,
there are no papers that fall into the categories survey and experiment. In addition, most
of the papers evaluate their approaches using case studies or they only have a basic (i.e.,
preliminary) evaluation, which means that according to the standard categories, all the
papers would be categories as either case studies or none. Our second reason is that we
wanted to categorize the papers in our survey using finer grained attributes, which would
give more insights into the evaluation used in the papers. Thus, we choose the attributes
preliminary, benchmark, human subjects, quantitative, qualitative, comparison with other
approaches and unknown/none, which are described next. Once again, by using these
attributes we wanted to distinguish as much as possible between different evaluations in
different papers.

The most simplistic evaluations are preliminary in nature and involve small systems
or a few data points, and their purpose is to provide an anecdotal evidence that the
approach works (i.e., proof of concept).

Feature Location in Source Code: A Taxonomy and Survey 11

CRC to Journal of Software Maintenance and Evolution: Research and Practice

More advanced evaluations use benchmarks that contain detailed information and
datasets that could be used by other researchers in their evaluation. These datasets could
contain a list of features, textual description or documentation about the features,
mappings between features or bugs and program elements that are relevant to fixing the
bug or implementing the feature (referred to as gold sets in the literature), patches
submitted to an issue tracker, etc. Benchmarks carry more weight than anecdotal
evaluation, because they can be used by other researchers in other approaches and the
results could be compared in a fair way. In other words, if two approaches are applied on
the same dataset, their results could be easily compared to establish which technique
produces more accurate results, for instance. However, if the two techniques are
evaluated on different datasets (even if these datasets are part of the same software
system), the comparison of the results is biased by the difference in those datasets. In this
survey we categorize papers as using benchmarks if their evaluation is using the same
datasets or a subset of these datasets, which were made available by other authors. We
also categorize the evaluation of papers that initially used that dataset and made it
available as benchmarks.

One of the difficulties in using benchmarks in the evaluations is that very few of them
are made available up to date. One of the reasons is that constructing benchmarks
requires substantial efforts and the results are not guaranteed to be one hundred percent
correct and complete. For example, if benchmarks are constructed from source code
repositories or from patches extracted from issue repositories, there is no assurance that
they contain all the information required to implement the feature or fix the bug (unless
this information is verified by the original designers and developers of the software
system). They might contain noise, or they may only pertain to a small portion of the
feature and not touch all of its program elements. Another way to evaluate a feature
location approach is to have system experts or even non-experts assess the results, which
is an evaluation method often used by IR-based search engines. When multiple experts
or non-experts are used, the intersection of their subjective evaluations can be used to
create a benchmark. However, the agreement among programmers as to what program
elements are relevant to a feature has been shown to be low in some cases
[Robillard'07b].

In this survey we also distinguish between evaluations that use human subjects. These
developers could have an academic background, such as undergraduate or graduate
students, or they could be professional developers that come from industry. Other ways
to differentiate the evaluations is based on their qualitative and/or quantitative results. In
a quantitative evaluation, the technique is evaluated in terms of some metrics, such as
precision, recall, effectiveness, etc., whereas a qualitative evaluation provides details
about some particular aspect of the technique or the results. Papers which do not contain
any evaluation, or for which the details are not known are marked as unknown/none. It is
important to note that these evaluation attributes are not mutually exclusive. In other
words, one approach could have both a qualitative and a quantitative evaluation, whereas
others could have only one of them. Or for example, one evaluation could be preliminary,
but it could contain some qualitative information. One of the most important attributes of
this dimension is comparison with other approaches. Ideally, when new feature location
techniques are introduced, they should be directly compared with existing approaches in
order to demonstrate their (expected) superior performance. Articles that include
comparisons of feature location techniques are very useful to researchers and
practitioners because they highlight the advantages and limitations of the compared
approaches in certain settings. Feature location techniques that appear frequently in
comparisons are Abstract System Dependence Graphs (ASDG) [Chen'00], Dynamic

12 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Feature Traces (DFT) [Eisenberg'05], Formal Concept Analysis-based feature location
(FCA) [Eisenbarth'03], LSI-based feature location [Lukins'08, Marcus'04], Probabilistic
Ranking of Methods based on Execution Scenarios and Information Retrieval
(PROMESIR) [Poshyvanyk'07a], software reconnaissance [Wilde'95], and Scenario-
based Probabilistic Ranking (SPR) [Antoniol'06]. UNIX grep is also another popular
point of comparison because programmers often use it to search for relevant code.

3.7. Software Systems used for Evaluation

A wide variety of software systems have been studied in feature location research, and
the size and type of systems used in a case study reflect, to a degree, the applicability of a
technique. By reviewing the software systems that have previously been used for feature
location, some patterns emerge. Some of the more popular systems are web browsers
like Mozilla4, Firefox5, Mosaic, and Chimera6. Other systems that have been investigated
frequently are Eclipse7, jEdit8, and JHotDraw9. For some of these systems, there are a
few datasets that are repeatedly used, but the majority of papers evaluate their techniques
on datasets extracted from these systems, and which are never used in other evaluations.
In other words, there is no de facto benchmark proposed and we argue that there should
be one. Beside these popular systems, an abundance of other software systems have been
studied. The systems on which a feature location technique has been applied are listed in
the taxonomy. Having a comprehensive list of the software systems studied for feature
location allows researchers to identify good candidates for systems to use in their own
evaluations, or even better, to build benchmarks for these systems and make them
publicly available. In addition, it allows practitioners to recognize approaches that may
be successfully applied to their own software if the program they wish to apply a feature
location technique to is similar to a system on which the approach has already been used.

3.8. Other Attributes not Included in the Taxonomy

While classifying the papers based on this taxonomy, we initially considered including
the dimensions, such as tool availability and reproducibility, each with their two binary
attributes yes and no. For example, if the paper introduces a new tool that is made
publicly available for others to use, we would mark that attribute accordingly. Similarly,
if the evaluation provided enough details about the design of the study so that other
researchers could reproduce it, we would mark the evaluation of the paper as
reproducible. However, it turned out that actual categorization was quite subjective, and
there was a considerable amount of disagreement between the authors of the survey, that
we decided to exclude these dimensions. In order to categorize the papers based on these
dimensions a panel of experts should evaluate these artifacts (e.g., steps towards this
model have been already done for accepted research papers at ESEC/FSE 201110 by
Artifact Evaluation Committee).

4. SURVEY OF FEATURE LOCATION TECHNIQUES

This section describes in detail the systematic process used to survey the literature as well
as summarizes the 89 articles reviewed for this survey.

4 http://www.mozilla.org/ (accessed and verified on 03/01/2011)
5 http://www.mozilla.org/firefox (accessed and verified on 03/01/2011)
6 http://www.chimera.org/ (accessed and verified on 03/01/2011)
7 http://www.eclipse.org/ (accessed and verified on 03/01/2011)
8 http://www.jedit.org/ (accessed and verified on 03/01/2011)
9 http://www.jhotdraw.org/ (accessed and verified on 03/01/2011)
10 http://2011.esec-fse.org/cfp-research-papers (accessed and verified on 03/08/2011)

Feature Location in Source Code: A Taxonomy and Survey 13

CRC to Journal of Software Maintenance and Evolution: Research and Practice

4.1. Performing Systematic Review Process

In this section we provide details on how we performed the systematic review process to
institute our survey. We start this process with an initial search phase which includes the
identification of highly relevant venues. More specifically, we selected journals,
conferences, and workshops papers where research on feature location is within their
respective scopes. Table 2 lists the abbreviations and names of the venues.

After performing our preliminary search for relevant venues, in the article selection
phase, we manually identified literature which meets our inclusion criteria while filtering
articles using our exclusion criteria (see Section 2.2). Titles, abstracts, keywords and
entire articles were cautiously inspected to determine whether or not they should be
included in the survey. The two authors of this paper were responsible for identifying
suitable articles using the selection criteria, however, the selections were later confirmed
during the article classification phase by all the authors.

Figure 2 shows the distribution of articles across the venues. The height of the bars
represents the number of feature location articles published. Venues at which only one
surveyed paper was published are grouped together in the “Other” bar. Filled bars
represent journals, and gray bars denote conferences and workshops.

Using the taxonomy presented in the previous section the selected articles were
classified. During the article classification phase all four authors separately classified
each of the selected research papers. For each dimension, the authors identified whether
or not the attributes of the taxonomy were applicable to the research papers. Attribute
selection for a given dimension is not exclusive. That is, multiple attributes may apply to
a given dimension while classifying a particular paper. Following the categorization of
the papers by all the authors an agreement was computed. Initially there were a few
disagreements between author's classifications, however, following a meeting in which

Table 2 Venues which have published the articles included in this survey

Type Acronym Description

Journal JSME

JSS
TOSEM
TSE

Journal on Software Maintenance and Evolution: Research and
Practice
Journal on Systems and Software
ACM Transactions on Software Engineering and Methodology
IEEE Transactions on Software Engineering

Conference AOSD
APSEC
ASE
CSMR

ESEC/FSE

ICSE
ICSM
IWPC/ICPC

VISSOFT

WCRE

Aspect-Oriented Software Development
Asia Pacific Software Engineering Conference
International Conference on Automated Software Engineering
European Conference on Software Maintenance and
Reengineering
European Software Engineering Conference/ACM SIGSOFT
Symposium on the Foundations of Software Engineering
International Conference on Software Engineering
International Conference on Software Maintenance
International Workshop/Conference on Program
Comprehension
International Workshop on Visualizing Software for
Understanding and Analysis
Working Conference on Reverse Engineering

14 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

authors discussed their reasoning we were able to reach a consensus on the classification
of all the papers. Additionally, the discussion helped revising some details of the
taxonomy and description of the attributes by identifying ambiguous descriptions.

The remainder of Section 4 is devoted to summarizing the feature location techniques
using the taxonomy as a means of structuring the discussion. More specifically, the
dimension type of analysis is used to organize the remaining subsections. When
summarizing the feature location techniques and multiple articles (i.e., conference and
journal versions) describe a given approach and share identical classifications, both are
cited but the summary primarily pertains to the latest version. The articles are classified
by the types of analysis used for feature location, and other dimensions of the taxonomy
are mentioned whenever applicable. The type of analysis/analyzes employed is the most
distinguishing characteristic of feature location approaches, so it is a logical choice for
decomposing the survey. In the subsections below, the surveyed articles are categorized
by their use of one or more types of analysis: dynamic; static; textual; dynamic and static;
dynamic and textual; static and textual; dynamic, static, and textual; and other. The
discussion for each paper includes a brief characterization of the approach, distinguishing
features from other approaches, tool support, and some details of the evaluation. Table 3,
Table 4 and Table 5 (located after the references) present the articles and their
classification within the dimensions of the taxonomy. Table 3 and Table 4 present the
approaches, whereas Table 5 presents the tools and the case studies.

4.2. Dynamic Feature Location

Dynamic feature location relies on collecting information from a system during runtime.
Dynamic analysis has a rich research history in the area of program comprehension
[Cornelissen'10], and feature location is one subfield in which it is used. A number of
dynamic approaches exist that deal with feature interactions [Egyed'07, Salah'04,
Salah'06], feature evolution [Greevy'05, '06], hidden dependencies among features
[Fischer'03], as well as identifying a canonical set of features for a given software system
[Kothari'06]. These techniques are beyond the scope of this survey which focuses only

Figure 2 Distribution of the surveyed articles. Black bars represent journals and gray bars
denote conferences. The values above the bars represent the number of feature location

papers published in that venue

Feature Location in Source Code: A Taxonomy and Survey 15

CRC to Journal of Software Maintenance and Evolution: Research and Practice

on approaches that seek to identify candidate program elements that implement a feature.
This subsection summarizes articles that achieve this goal using dynamic analysis.

Software reconnaissance [Wilde'92, Wilde'95] is one of the earliest feature location
techniques, and it relies solely on dynamic information. Two sets of scenarios or test
cases are defined, such that some scenarios activate the feature and the other scenarios do
not, and then execution traces of all the scenarios are collected. For example in a word
processor, if the feature to be located is spell checking, feature-specific scenarios would
activate the spell checker and the other scenarios would not. Feature location is then
performed by analyzing the two sets of traces and identifying the program elements
(methods) that only appear in the traces that invoked the feature, using both Deterministic
and Probabilistic Formulations. This idea of comparing traces from scenarios that do and
do not invoke a feature has been heavily used and extended by other researchers in the
field. The software reconnaissance approach has been implemented in tools such as
RECON2 and RECON311. This approach was evaluated on small C systems, using a
small number of scenarios, and the results show that the software reconnaissance is useful
in indicating small portions of code where developers should look at. A study involving
professional developers [Wilde'95] showed evidence that software reconnaissance could
be easily adopted by professional developers. In terms of potential limitations of this
technique, the results produced are heavily influenced by the quality of the scenario and
traces provided. In addition, approach can be used in finding a subset of the artifacts that
correspond to a particular feature, but it cannot guarantee in finding all of the related
artifacts for a feature. In other words, it provides a very good starting point. Finally, this
technique cannot be applied for finding features that are always present in the program,
and for which there are no test cases that can and cannot exercise that feature.

An extension of the software reconnaissance approach is Dynamic Feature Traces
(DFT) [Eisenberg'05], which works as follows. The developer provides several scenarios
or test cases that exercise the features in order to collect execution traces. Next, all pairs
of method callers and callees are extracted from the traces, and each method is assigned a
rank for the feature. The rank is based on the average of three heuristics: multiplicity,
specialization, and depth. Multiplicity is the percentage of a feature’s tests that exercise a
method compared to the percentage of methods in each non-feature’s set of tests.
Specialization is the degree to which a method was only executed by a feature and no
others. Depth measures how directly a set of tests exhibits a feature compared to the
other test sets. This approach was implemented in a prototype tool. This paper also
presents a preliminary evaluation on three Java systems where DFT and the software
reconnaissance technique were compared. The results of this study revealed that software
reconnaissance is not as effective as DFT in finding relevant code. Since this technique is
an extension of software reconnaissance, its limitations are similar.

Wong et al. [Wong'99] proposed a technique based on execution slices, which is able
to produce results at a finer level of granularity, such as statements, basic blocks,
decisions or variable uses, as opposed to producing results at method level-granularity.
This technique requires as input a few test cases that exercise and a few test cases that do
not exercise the feature of interest. The dynamic information extracted from the
instrumented system, on which the test cases were run, consists of the statements that
were executed, as opposed to a list of methods. Using this information, this technique is
able to distinguish between code that is unique to a feature and code that is common to
several features. The tool that implements this approach is called χVue [Agrawal'98], and
it supports program instrumentation and collecting execution information. In addition it
provides a visualization of the statements relevant to a feature. The evaluation of this

11 http://www.cs.uwf.edu/~recon/ (accessed and verified on 03/01/2011)

16 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

technique based on execution slices was performed on five feature of a small C system
called SHARPE [Sahner'86]. The results of the evaluation indicate that the output
produce by the technique can be used by developers as a starting point for analyzing the
feature of interest. In addition, based on a qualitative analysis of the results, the authors
hypothesize that using static information might enhance the results.

Eisenbarth et al. [Eisenbarth'01b, Eisenbarth'01c] introduced a technique for
generating feature component maps utilizing dynamic information. Given execution
traces resulting from various usage scenarios (covering a set of features of a system)
concept analysis is applied to reveal relationships between features and components in
addition to feature to feature relationships. Based on the resulting concept lattice a feature
component map is derived and used to identify components of interest given a particular
feature. Additionally, a case study is performed on using Xfig as the subject software
system demonstrating the value of their approach for generating feature component maps.

Safyallah and Sartipi [Safyallah'06] introduced an approach that applies a data mining
technique on the execution traces. This technique consists of analyzing using sequential
pattern mining a set of execution traces, which are collected from a set of feature specific
scenarios. This technique is able to identify continuous fragments of execution traces,
called execution patterns, which appear in at least a given number (i.e., MinSupport)
among all the execution traces. These execution patterns undergo a set of refinements
based on adjusting the MinSupport threshold. The results of this approach are a set of
continuous fragments of execution traces which correspond to a particular feature. A
preliminary case study was performed on a medium size C system, called Xfig12, and the
results show that this approach is able to identify a set of core methods that are specific to
the input feature. This technique has the advantage of reducing the complexity of
analyzing large traces, by identifying their relevant parts. In addition, the sequence of
operations from the trace is not altered, and this approach is even able to locate execution
patterns specific for less visible features, such as mouse pointer handling, canvas view
updating, and other. An extension of their approach [Sartipi'10] allows the extracted
execution patterns to be distributed over a concept lattice, in order to distinguish the
common group of functions from the feature-specific group of functions. The advantage
of using the concept lattice is that it provides developers the chance of identifying a
family of closely related features in the source code. An evaluation of this new approach
on two C programs, Xfig and Pine13, showed promising results for identifying feature
specific functions, as well as common functions.

A feature location technique designed specifically for distributed systems is
introduced by Edwards et al. [Edwards'06]. This technique aims at reducing the
imprecision that tends to be associated with existing dynamic FLTs applied on
multithreaded or distributed systems. The imprecision of existing techniques stems from
the stochastic nature of distributed systems, and from the inability of the technique to
identify correctly the order and the time events happen. To overcome this problem,
Edwards et al. proposes a definition of time intervals based on causal relationships among
events (messages). For example, events are order temporally in a single process, and the
events from different processes are causally ordered by message passing. The technique
not only requires execution information about the system as input, but it also requires the
developer to identify the first and last event associated with a feature. The technique
identifies all the events that causally follow or precede a feature’s starting and ending
events, respectively. This sequence of events is called an interval. The output produced

12 http://www.xfig.org/ (accessed and verified on 03/01/2011)
13 http://www.washington.edu/pine/(accessed and verified on 03/01/2011)

Feature Location in Source Code: A Taxonomy and Survey 17

CRC to Journal of Software Maintenance and Evolution: Research and Practice

by the technique is a ranked list of program elements which are assigned a component
relevance index, which is the proportion of executions of that element which occur during
a feature’s interval. A preliminary evaluation on a large scale distributed system indicate
that the technique is able to distinguish between feature related code and not feature
related code, based on the component relevance index associated with each program
element. The technique is useful for any distributed system for which the program
instrumentation does not significantly alter their behavior.

Bohnet et al. [Bohnet'08b] proposed a technique that allows developers to visualize
various characteristics of the execution information in order to gain insight into how
features are implemented in the code. The developer provides as input a scenario that
triggers a feature of interest in the system in order to collect an execution trace. The
execution trace is used as an input for an analysis tool and various characteristics of the
execution trace are presented to the developer using advanced visualization views. These
views are synchronized among each other, which mean they allow to simultaneously
present the same information extracted from the trace from different perspectives. For
example, the portions of the trace that are highlighted by the developer and which have a
correspondence in the source code are also highlighted. A change in a view updates the
information in the other views. The approach was compared against grep in a preliminary
evaluation involving a large C/C++ software system. In this evaluation, grep was shown
to be unpractical, because it returned too many results, whereas using the tool a developer
was able to locate the concept of interest in less than half an hour and without having
prior knowledge about the system. The advantage of this technique is that the advanced
visualization allows the developer to manage the complexity associated with a large
execution traces.

One of the main shortcomings of FLTs based on dynamic analysis is in the overhead
it imposes on a system’s execution. In distributed and time-sensitive systems, the use of
dynamic analysis can be prohibitive. Edwards et al. [Edwards'09] report on their
experiences using dynamic analysis to perform feature location in time-sensitive systems.
Instrumenting a software system in order to collect execution traces of the program
elements that are invoked affects the system’s runtime performance. Edwards et al.
developed a minimally intrusive instrumentation technique called minist that reduced the
number of instrumentation points while still keeping test code coverage high. For an
initial evaluation, Apache’s httpd14 and several large in-house programs were used, and
minist was compared to uninstrumented executions as well as several other tools for
collecting traces. The minist approach increased execution time by only 1% on httpd,
while the other tracing tools caused increases of 7% to over 2,000%.

Another systematic survey of feature location approaches utilizing execution
information can be found in a comprehensive survey of approaches to program
comprehension via dynamic analysis [Cornelissen'10].

4.3. Static Feature Location

In contrast to dynamic feature location, static feature location does not require execution
information about a software system. Instead, its source code is statically analyzed and its
dependencies and structure are explored manually or automatically. Some static FLTs
leverage several types of control and data dependencies. Other static techniques use the
structure of a software system’s dependencies. In general, the static FLTs require not
only a dependence graph, but also a set of software artifacts which serve as a starting
point for the analysis in order to generate program elements relevant to the initial set. The
initial set of artifacts is usually specified by the developer.

14 http://httpd.apache.org/ (accessed and verified on 03/01/2011)

18 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Chen and Rajlich [Chen'00] introduced the concept of Abstract System Dependence
Graphs (ASDG), which are based on abstracting the System Dependence Graphs (SDG).
The nodes of an ASDG are either functions or global variables, and the edges between
nodes represent either control dependencies between functions or data flow between
variables. The static concept location technique that uses ASDGs require as input a
statically built dependence graph as well as a starting node which is selected by the
developer. The starting node can be a program element relevant to the feature, which is a
priori known by the developer, or it can be a randomly selected node, or it can be the
node corresponding to the main method. This FLT requires at each step feedback from
the developer, which investigates a node and decides if it is relevant to the feature or not.
The FLT keeps track of the search graph (i.e., visited components and their neighbors)
and based on the developer’s feedback about the relevant and irrelevant nodes, it updates
and expands the search graph and tries to propose only relevant nodes. This process
continues until the developer has found all the program elements related to the
maintenance task. The tool that supports this static FLT based on ASDGs is called
Ripples [Chen'01b]. Ripples is not only able to generate the ASDG from the source code
of C programs, but it also visualizes the graphs and allows the developer to input her
feedback about which node is relevant. Another tool implementation of this static FLT is
called JRipples [Buckner'05]. This tool is an Eclipse plug-in, which supports feature
location on Java systems. Unlike Ripples, JRipples does not have visualization, but it
provides support for impact analysis and change propagation. The static FLT introduced
by Chen and Rajlich [Chen'00] was evaluated on the Mosaic web browser. The results
show that among the 984 functions in Mosaic, the developer performing concept location
on a maintenance task was able to partially comprehend the system by investigating only
22 (2%) of the functions.

Robillard and Murphy [Robillard'02, '07a] developed the Concern Graphs
representation, which allows the representation of a concern (or feature) in an abstract
way. This abstraction allows creating and storing mappings between features and source
code. A Concern Graph encapsulates a subset of program elements and a set of relations
between them. These relations are based on the static dependencies between the program
elements. The tool that was implemented to support Concern Graphs is called FEAT
(Feature Exploration and Analysis Tool). FEAT allows developers to visualize the
Concern Graphs, to explore the Concern Graph and examine the source code associated
with the program elements of the graph, and to allow developers to alter the Concern
Graph by adding or removing program elements and relations. In an evaluation involving
developers that were required to locate a concern in a Java system, the Concern Graphs
representation was shown to be appropriate for expressing the concerns during
maintenance tasks, as well as for manipulation or analysis of the concerns. In addition,
Concern Graphs are easy and intuitive to use even by unfamiliar developers, and they can
be used even for industrial-sized systems.

Robillard [Robillard'05a, Robillard'08] introduced an approach that analyses the
topology of structural dependencies in a program in order to propose relevant program
elements for the developer to investigate. One of the differences between this approach
and ASDGs is that it requires less interaction from the developer. Robillard’s approach
takes as input a set I of program elements which are marked as relevant by the developer.
The approach examines the structural dependencies of the elements in I and the rest of
the system and produces a suggestion set S. Both the input and output sets are fuzzy sets,
which means that a program element is part of that set with only a degree of certainty. In
other words each element from the set has associated a value that signifies its relevance.
The relevance values are based on two metrics, namely specificity and reinforcement. A

Feature Location in Source Code: A Taxonomy and Survey 19

CRC to Journal of Software Maintenance and Evolution: Research and Practice

program element’s specificity measure is inversely proportional with the number of
program elements related to it. In other words, a program element is more specific than
other if it has fewer program elements related to it. A program element’s reinforcement
measure is directly proportional with the number of elements of interest related to it. A
tool that supports tool the management of concerns which are scattered throughout the
code is called ConcernMapper15 [Robillard'05b]. This Eclipse plug-in can be used by
programmers to specify the initial set of interest relevant to a task. The tool that actually
implements the FLT via topology analysis is called Suade16 [Weigand-Warr'08]. An
evaluation on a few medium-size java systems show that given an initial set of program
elements, the approach is able to return a ranked list of program elements, where the top
entries are highly relevant to the initial program elements. In other words, the approach is
able to suggest program elements worthy of investigation to developers and at the same
time it can avoid suggesting less interesting (irrelevant) ones.

Saul et al. [Saul'07] introduced FRAN (Finding with RANdom walks), an approach
that recommends a set of related program elements (e.g., methods) given a specific
starting point as an input. FRAN only uses the structural information about a system (e.g.,
method call graph) and conceptually FRAN generalizes Robillard’s approach
[Robillard'05a]. This is because FRAN also takes as an input a program element e that
has some interest to the developer, and builds a program dependence graph of the
neighborhood of e. The main difference is that FRAN uses a larger set of related program
elements and ranks them using the scores produced by applying a random walk algorithm
[Kleinberg'99] to the program dependence graph (as opposed to ranking the elements
using the specificity and reinforcement metrics). An evaluation on the Apache HTTPD
system was performed and FRAN was compared against Suade and FRIAR (Frequent
Itemset Automated Recommender), an approach inspired from Association Rule Mining
which ranks program elements based on the support values. The results showed that
FRAN produced better results (in terms of returning relevant methods) than FRIAR and
Suade.

While ASDGs and topology analysis use both control and data dependencies to some
extent, Trifu [Trifu'08] introduced an approach to feature location based only on static
dataflow analysis. The input for this approach is a set of variables, called information
sinks, that are selected by the developer and which are used as starting points to identify
all the parts of the source code where the values from the variables propagate. This is
done by tracking the dataflow dependencies in the code. Because the granularity of the
input program elements is more fine grained (i.e., variables), the results are also more
fine grained than other FLTs. The tool that implements this approach is called CoDEx
(Concern Discrimination and Explorer), which allows developers to mark the variables of
interests and presents the parts of the source code which are related to the input variables.
An initial evaluation was performed on JHotDraw. For this evaluation, the information
sinks selected were all the variables with no outgoing dataflow paths, and the approach
grouped the 6,049 variables into 310 concerns (features). A manual inspection of a few of
these concerns revealed that program elements grouped under the same concern are
highly relevant to that concern (feature). Trifu [Trifu'09] improved this dataflow based
concern identification approach by introducing the concept of information sources, which
define boundaries for a concern.

15 http://www.cs.mcgill.ca/~martin/cm/ (accessed and verified on 03/01/2011)
16 http://www.cs.mcgill.ca/~swevo/suade/ (accessed and verified on 03/01/2011)

20 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

4.4. Textual Feature Location

Source code comments and identifiers are embedded within textual information about
features of the systems. Feature location techniques based on textual analysis are aiming
at establish a mapping between the textual description of a feature given by the developer
and the parts of the source code where that feature is implemented. The approaches to
establish the mapping between the description of the feature and the source code include
textual search with grep [Petrenko'08], Information Retrieval [Cleary'09, Gay'09,
Marcus'04, Poshyvanyk'07b], and natural language processing [Hill'09, Shepherd'07].

One simple way of searching for code that is relevant to a task is by using a textual
search that describes that task. For example, developers formulate a query that describes
the feature they are looking for and then use a tool such as grep to find and investigate
lines of code that match the query. Petrenko et al. [Petrenko'08] developed a feature
location technique based on grep and ontology fragments. The ontology fragments store
partial domain knowledge about a feature. The hypothesis of this approach is that
ontology fragments help developers formulate queries and guide their investigation of the
results, which would increase the effectiveness of the feature location. As programmers
gain more knowledge of the system, the ontology fragments can be refined and expanded.
The tool used to support the management of the ontology fragments is called Protégé17.
An exploratory study on two large systems, Eclipse and Mozilla, showed that for locating
a bug in the code, ontology fragments required, on average, a few source code methods in
Mozilla and Eclipse to be inspected. These results were comparable to other feature
location techniques [Liu'07, Poshyvanyk'06a] in which programmers also only had to
examine about ten methods.

Wilson [Wilson'10] extended Petrenko et al.’s approach, by introducing a systematic
approach for formulating queries based on ontology fragments, which represent partial
knowledge about the system. Using an ontology fragment, the developer can formulate a
query based on the terms that are present in the ontology fragment, and it can provide that
query as an input for grep. A preliminary evaluation involving four developers that were
required to perform concept location on the Mozilla and Eclipse systems reveal the fact
that only a small and partial knowledge about the system is sufficient for successfully
locating a concept in the code.

Information Retrieval (IR) is a more advanced technique that can be used instead of
the traditional grep pattern matching. Marcus et al. [Marcus'04] use Latent Semantic
Indexing [Deerwester'90] to map the feature descriptions expressed in natural language
by developers to source code. LSI is an advanced IR technique that infers relations
between words and passages in large bodies of text. A corpus is created from extracting
all identifiers and comments from the source code of a system. The corpus is
preprocessed by splitting compound identifiers based on common naming conventions.
The corpus is partitioned into documents representing all terms associated with a program
element. Documents can be of different granularities, such as classes or methods. The
corpus is then transformed into an LSI subspace through Singular Value Decomposition
(SVD). After SVD, each document in the corpus has a corresponding vector. To search
for code relevant to a feature, a programmer formulates a query consisting of terms which
describe the feature. The query is also transformed into a vector, and a similarity
measure between the query vector and all the document vectors is used to rank
documents by their relevance to the query. The similarity measure is known as the cosine
similarity because it computes the cosine between the query and document vectors. The

17 http://protege.stanford.edu/ (accessed and verified on 03/01/2011)

Feature Location in Source Code: A Taxonomy and Survey 21

CRC to Journal of Software Maintenance and Evolution: Research and Practice

output produced by this FLT is a list of methods ranked by their textual similarity with
the developer input query. The approach was evaluated on the Mosaic web browser,
using the same feature used in the study by Chen and Rajlich [Chen'01b]. The new
approach was compared against grep and ASDGs, and several advantages were found.
LSI is as easy to use as grep, yet it produces better results. Also, LSI was able to identify
some relevant program elements missed by ASDGs. Recently, LDA has been applied for
bug localization [Lukins'08, Lukins'10]. The proposed approach was compared to LSI
and has been shown to be an effective alternative to using LSI for concept location.

Poshyvanyk and Marcus [Poshyvanyk'07b] added Formal Concept Analysis (FCA) to
the feature location that uses LSI. FCA takes as input a matrix specifying objects and
their associated attributes and then produces clusters, called concepts, of the objects
based on their shared attributes. These concepts can be organized hierarchically in a
concept lattice. In this case, the objects are methods and the attributes are words that
appear in the source code of those methods. To combine the two types of analyses, LSI’s
ranked results are clustered using FCA. The top k attributes of the first n methods ranked
by LSI are used to construct FCA’s input matrix and create a lattice. Nodes in the lattice
have associated attributes (terms) and objects (methods), and programmers can focus on
the nodes with attributes similar to their query to find feature-relevant methods. The new
feature location technique based on FCA was compared against the FLT that uses LSI
alone on two maintenance tasks of Eclipse, and the results show that the new approach is
able to group relevant information using concept lattices, which means that developers
can locate a concept in code by analyzing fewer methods, as opposed to the case where
the results are presented as a ranked list.

Cleary and Exton [Cleary'07, Cleary'09] also use IR for feature location, but their
solution incorporates non-source code artifacts, such as bug reports, mailing lists,
external documentation, etc. Their approach, called cognitive assignment, considers
indirect correspondences between query and document terms so that relevant source code
can be retrieved even if it does not contain any of the query terms. Queries are expanded
by analyzing term relationships from both source code and non-source code artifacts.
This approach was implemented by extending the cognitive assignment Eclipse plug-in
[Cleary'06] to incorporate the expansion queries mechanism. A case study was conducted
on Eclipse in which cognitive assignment was compared to other IR techniques, such as
language modeling [Zhai'04], dependency language model [Gao'04], vector space model
[Salton'86], and LSI. The results show that cognitive assignment matches the
performance of the other IR techniques and in some cases it outperforms them.

The results of any textual feature location technique are heavily influenced by the
quality of the queries used. In other words, a textual FLT could produce more accurate
results if the developer formulates more accurate queries, by refining or modifying
existing ones. Gay et al. [Gay'09] introduce the notion of relevance feedback into textual
feature location with IR. Relevance feedback incorporates user input to improve IR
results. After IR returns a ranked list of program elements relevant to a query, the
developer rates the top n results as relevant or irrelevant. Then a new query which
incorporates the developer feedback is automatically formulated and new results are
returned, and the process repeats. A case study was performed in which a single
developer was asked to use IR and relevance feedback to locate the source code
associated with change requests (representing features) in Eclipse, jEdit, and
Adempiere18. Each change request had associated with it a patch that was used to
implement the change request, and these patches were used to generate the gold set of

18 http://sourceforge.net/projects/adempiere/ (accessed and verified on 03/01/2011)

22 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

methods used in the evaluation. The results indicate that relevance feedback is more
effective and efficient than a pure IR-based approach.

Similarly to Information Retrieval, Independent Component Analysis (ICA)
[Comon'94] can examine source code text to identify features and their implementations
[Grant'08]. ICA is a signal analysis technique that separates a set of input signals into
statistically independent components. To apply ICA for feature location, a term by
document matrix is constructed in which the rows correspond to methods, columns
represent terms, and cells contain the frequency of a term in a method. ICA factors the
matrix into two new matrices. The first new matrix, called the source signal matrix,
stores independent signals which can be thought of as features. The second new matrix,
the mixing matrix, holds information about how relevant each signal is to a method.
Unlike feature location with LSI, feature location with ICA does not need a query for a
specific feature since it seeks to identify multiple independent signals (features) at once.
A preliminary evaluation on a medium size C program showed that ICA was able to
identify a few key concepts from the code.

Textual feature location techniques are not limited to using IR only. Shepherd et al.
[Shepherd'06] proposed a technique that leverages information about the use of verbs and
their direct objects (nouns) in source code identifiers to create a natural language
representation of the code called an Action-Oriented Identifier Graph (AOIG). In the
AOIG, all the verb-direct object (verb-DO) pairs are extracted from the code and a
mapping between each verb-DO and the code is kept. An Eclipse plug-in called
ViRMoVis was created to implement this approach. The developer formulates a query in
the form of a verb, and ViRMoVis suggests a set of direct objects associated with that
verb. The developer then selects the appropriate direct objects (i.e., refines the query),
and the tool displays all the uses of the selected verb-DO pairs. An exploratory study on
the Java JHotDraw system revealed that using ViRMoVis a developer was able to locate
a feature by examining only a small number of classes and methods.

Hill et al. [Hill'09] also used NLP and the idea of query expansion and refinement in
their approach to feature location based on contextual searching. Instead of focusing on
verbs and direct objects, their analysis centers on three types of phrases: noun phrases,
verb phrases, and prepositional phrases. The phrases are extracted from method and field
names and additional phrases are generated by also looking at a method’s parameters.
Once the phrases are extracted, they are grouped into a hierarchy based on partial phrase
matching. The phrases are linked to the source code from which they were extracted. An
Eclipse plug-in and a PHP script were created to implement this approach. A user looking
for a particular feature formulates a query and the tool searches the extracted phrases for
matches. The result returned to the user is a hierarchy of phrases and the method
signatures associated with them, giving some context to the results. This approach was
evaluated on Rhino, on a subset of features from the benchmark created by Eaddy et al.
[Eaddy'08b], as well as on a subset of features used in the evaluation by Shepherd et al.
[Shepherd'07]. For the evaluation, 22 developers (17 of them with 1 to 9 years of industry
experience) assessed the two approaches, and the results show that contextual search has
been shown to significantly outperform the verb-direct object approach both in terms of
effort (number of queries needed) and effectiveness (f-measure).

Abebe and Tonella [Abebe'10] introduced an approach that extract concepts from
source code by applying NLP techniques. The identifiers from the program elements are
extracted and candidate sentences that use those identifiers are formed. Some of the
sentences that do not follow certain rules are eliminated, and the remaining sentences are
used as an input for creating ontologies that capture the concepts and the relations from
the source code. The identifiers represent the concepts, and the semantics of the sentences

Feature Location in Source Code: A Taxonomy and Survey 23

CRC to Journal of Software Maintenance and Evolution: Research and Practice

establish the relations in the ontology. A preliminary evaluation on the WinMerge system
revealed that enhancing the queries using information from the ontologies increases the
precision of concept location, by allowing developers to formulate more precise queries
and by reducing the search space. Approach by Abebe and Tonella’s is relevant to
Petrenko et al.’s [Petrenko'08] approach, but the main difference is that the former
approach automatically generates the ontologies, whereas for the latter approach the
ontologies were generated manually by developers.

Würsch et al. [Würsch'10] leveraged static analysis and semantic web-based
technologies to provide users with a natural language guided query interface to answering
program comprehension questions. More specifically, Resource Description Framework
(RDF) is used to model source code entities and their properties/relationships resulting in
RDF graphs. The Web Ontology Language (OWL) is used to model an ontology for
source code. This allows developers to query source code with some natural language
guided vocabulary within their IDE. Developers can form questions such as "What
method calls ...?" and "What attributes have the type ...?". The authors conducted a case
study with JFreeChart to demonstrate the usefulness of their technique. With that, the
authors provided some first evidence that their technique is capable of answering
questions in natural language form.

4.5. Combined Dynamic and Static Feature Location

The combination of dynamic and static analysis is a well-known and powerful
combination in other areas of research such as testing and program analysis [Dufour'07,
Ernst'03]. This combination has also been applied for feature location. Dynamic analysis
can be used to reduce the search space to only those program elements that were executed
in a trace, and then static analysis can work on the smaller set of program elements to
rank them or find additional relevant elements.

Eisenbarth et al. [Eisenbarth'01a, '03] proposed an approach that clusters the
execution information collected about the system using concept analysis. Several
execution traces that exercise different features are collected from the instrumented
system. The information from the traces is extracted and used as an input for concept
analysis, which treats the methods as objects and the features invoked during the
execution scenario as attributes. The result of concept analysis is a concept lattice which
can be investigated by the developer in order to identify candidate program elements that
are solely relevant to a feature or contribute to a feature but are also used by other
features. The program elements located by this approach are only a subset related to a
feature (i.e., a starting point), and developers seeking additional relevant code can follow
an approach similar to ASDGs. In a preliminary evaluation on two C browsers, Mosaic
and Chimera, the approach was able to recover a partial description of the software
architecture responsible to implement the set of features used as input. The results also
show that out of the large number of methods from the browsers, very few methods
needed to be inspected manually. Koschke and Quante [Koschke'05] adapted this
approach to collect input traces at statement level granularity, which means the approach
is able to locate features at the level of basic blocks (as opposed to method-level
granularity). An evaluation conducted on two compilers, sdcc and cc1, confirmed the
findings of the previous approach, and proved that this FLT could be used in practice.
The advantage of combining concept analysis with dynamic information is that the
concept lattice will handle the differences among the traces that arise during the
invocation process.

To overcome the imprecision and noise associated with collecting dynamic data,
Antoniol and Guéhéneuc [Antoniol'05, Antoniol'06] introduced the Scenario-based

24 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Probabilistic Ranking (SPR) approach, which combines both dynamic and static data for
identifying a feature’s relevant program elements (methods). The idea behind SPR is to
assign for each event from an execution trace a probability of that event being associated
with a feature and then rank all the events. In SPR, similar to software reconnaissance,
two sets of scenarios are defined, scenarios that do and do not exercise a feature, and
method-level execution traces are collected for each scenario. Intervals correspond to a
subsequence of contiguous events (method calls) from the traces, where I is an interval
from a relevant scenario, and I’ is an interval from an irrelevant scenario. Events are
classified as relevant to a feature or not by determining if their frequency in interval I is
greater than their frequency in interval I’. For any interval, an event’s frequency is
computed as the ratio of the number of times the event appears in an interval over the
total number of events in the interval. Essentially, determining whether an event is
relevant to a feature or not is a statistical hypothesis test. The null hypothesis is that an
event’s frequency in the two types of intervals is the same. A threshold, Θ, is chosen,
and if an event is classified as relevant to a feature more than Θ times, the null hypothesis
is rejected with a confidence level α. Events are also ranked by their relevance to a
feature using a relevance index score that is computed from the number of times an event
appears in relevant intervals versus the number of times it appears in irrelevant intervals.
The source code is represented as an Abstract Object Language (AOL) using static
analysis. This format that represents the program’s architecture is used for highlighting
the ranks of the elements identified using the dynamic analysis. The elements that appear
in the trace that exercised or not the feature of interest will highlight the program
architecture differently, which means it will be easy to compare these architecture to find
out which program elements are part of the feature. SPR has been applied to a number of
systems including Mozilla, Firefox, Chimera, ICEBrowser, JHotDraw, and Xfig. Case
studies have compared SPR directly to feature location using grep, and the concept
analysis based approach [Eisenbarth'01a, '03]. The results show that because SPR ranks
its results, it is successful at reducing the amount of data that a programmer needs to
investigate. In addition, SPR allows developers to visualize the micro architectures of the
system.

Rohatgi et al. [Rohatgi'07, Rohatgi'08, Rohatgi'09] introduced an approach that
locates features in source code at class level granularity. More specifically, their
technique takes as input an execution trace and a class or component dependency graph
(CDG) for feature location based on impact analysis. Distinct classes are extracted from
a feature-specific execution trace, and then the CDG is used to rank the classes by the
impact a change to them would have on the software system. The hypothesis of this
technique is that classes with the least amount of impact are most likely related to the
feature. In a preliminary evaluation on two Java systems, Weka19, a machine learning
tool and Checkstyle20, a tool for formatting source code, the approach was able to identify
and rank appropriately classes relevant to the feature. However, in few cases, the relevant
classes were not ranked correctly.

Walkinshaw et al. [Walkinshaw'07] developed a feature location technique based on
call graph slicing, which uses the concepts of landmarks and barriers. The first step of the
approach is to identify landmark and barrier methods in a static call graph, where a
landmark is a method that contributes to a feature and barriers are irrelevant methods.
Direct paths between landmark nodes, known as hammock graphs, are found, and
additional dependencies are obtained via backward slicing. Barriers and their

19 http://www.cs.waikato.ac.nz/ml/weka/ (accessed and verified on 03/01/2011)
20 http://checkstyle.sourceforge.net/ (accessed and verified on 03/01/2011)

Feature Location in Source Code: A Taxonomy and Survey 25

CRC to Journal of Software Maintenance and Evolution: Research and Practice

dependencies are removed from the call graph to prevent exploration of irrelevant
methods. The output of this approach is a pruned call graph. The technique was evaluated
on NanoXML21, Freemind22, and JHotDraw, finding that the landmark and barrier
technique substantially reduces the size of the call graph that a programmer has to
investigate.

4.6. Combined Dynamic and Textual Feature Location

Dynamic and textual analyses are very synergistic when it comes to their use in feature
location. Dynamic analysis generally yields good recall, while textual analysis has good
precision. Their combination may lead to improved results over individual techniques.
Both analyses can be used to rank program elements by their relevance to a feature, so a
logical next step is to combine both of the rankings produced by these techniques.
Another combination of dynamic and textual analyses is to use dynamic analysis to filter
the program elements for textual analysis instead of ranking all the program elements in a
software system.

Poshyvanyk et al. [Poshyvanyk'06a, '07a] introduced the Probabilistic Ranking of
Methods based on Execution Scenarios and Information Retrieval (PROMESIR)
approach, which performs feature location by combining “expert” opinions from two
existing feature location techniques. The first is Scenario based Probabilistic Ranking
(SPR) [Antoniol'05, Antoniol'06] and the second is information retrieval with LSI
[Marcus'04]. Both approaches rank program elements according to their relevance to the
feature of interest. Those rankings are combined through an affine transformation to
produce PROMESIR’s results. The weight given to SPR or LSI can be varied to reflect
the amount of confidence that should be assigned to each of the experts. An evaluation on
Eclipse and Mozilla indicate that PROMESIR outperforms the two techniques on which
it is based. It is interesting to note that one of the datasets used in the evaluation was
exactly the same as the one used by Antoniol et al. in their evaluation of SPR.

Similar to PROMESIR, the Single Trace and Information Retrieval (SITIR) [Liu'07]
approach is a feature location technique that applies information retrieval on the
execution information collected from exercising a single scenario relevant to the feature.
In other words, the technique takes as an input a developer query and a scenario relevant
to the feature and produces a list of methods which are ranked based on the similarity
with the query. The novelty of this approach is that it ranks only the methods that appear
in the execution trace, as opposed to ranking all the methods from the system. This
innovation reduces dramatically the search space and yields better results. An Eclipse
plug-in that supports this approach, FLAT3 [Savage'10b], was later developed. An
evaluation on jEdit and Eclipse compared SITIR against the IR based FLT, SPR and
PROMESIR. The results showed that in general, SITIR ranked the relevant methods
higher than the other approaches.

Asadi et al. [Asadi'10] proposed a feature location technique that identifies cohesive
and decoupled fragments from execution traces which are related to concepts. The
approach takes as input a scenario that exercises a feature of interest in order to collect
the execution trace. The trace is preprocessed in order to remove irrelevant methods to
the feature (e.g., mouse tracking methods) and to compress the trace (i.e., remove
repetition of methods) for an easier analysis. The preprocessed trace is used as an input
for a genetic algorithm that separates the trace into fragments that contain methods that
are highly cohesive and which are highly decoupled with other fragments. The fitness
function used in the genetic algorithm is based on the conceptual cohesion metric defined

21 http://devkix.com/nanoxml.php (accessed and verified on 03/01/2011)
22 http://freemind.sourceforge.net/ (accessed and verified on 03/01/2011)

26 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

by Marcus and Poshyvanyk [Marcus'05a]. A preliminary evaluation on two Java systems,
ArgoUML and JHotDraw showed that the approach was able to locate concepts with high
precision. One of the drawbacks of this technique observed in the evaluation was that
precision tended to drop for different features that used similar sequences of methods.

Revelle et al. [Revelle'10] proposed a feature location technique that combines textual
information with the results produced by applying advanced link analysis algorithms on
execution information. The approach takes as an input a query and an execution scenario
that exercises a feature. A program dependence graph is generated from the execution
trace by using the caller and callees methods as nodes and the relations between them as
edges. Two link analysis algorithms (i.e., PageRank [Brin'98] and HITS [Kleinberg'99])
are applied on the program dependence graph, which associate for each node in the graph
(i.e., method from trace) a score, based on the nodes relative importance in the graph.
Any of the PageRank scores, the HITS Authorities or the HITS Hubs scores could be
used to rank the methods from the execution trace. We refer to this novel FLT as WM.
An alternative is to filter the methods that are ranked on top or bottom using the link
analysis scores from the methods that appear in the execution trace, and after that to rank
the remaining methods using the textual similarity between the methods and the
developer’s query. We refer to this novel FLT as IRLSIWM. The evaluation of this
approach was performed on two Java systems, namely Eclipse and Rhino. The Rhino
data used in the evaluation represents a subset of features from the benchmark created by
Eaddy et al. [Eaddy'08b]. In the evaluation the WM and the IRLSIWM approaches were
compared against each other as well as against the LSI based FLT [Marcus'04] and the
SITIR [Liu'07] approach. The results showed that WM produced more accurate results
than the LSI approach, but did not perform as good as the SITIR approach. On the other
hand, the IRLSIWM outperformed all the other approaches.

Hayashi et al. [Hayashi'10a] proposed iFL, an approach that combines static and
dynamic analysis, along with relevance feedback to identify source code entities which
comprise a feature of interest. The paper claims that the iterative approach leads to
improved query formulation by end users and the evaluation of relevance during the
iterative process enhances a users understanding of features implemented in a given
software system. iFL requires as input source code, a test case (used to derive dynamic
dependencies), a query, and hints (relevance feedback) and returns to the user source
code entities ordered by their respective evaluation scores. Evaluation of the tool is
performed using five change requirements of Sched and two change requirements of
JDraw systems. The results, which compare the interactive and non-interactive versions
of the approach, indicate that the iterative technique is capable of reducing the
understanding cost (based on improvement of lowest ranked relevant method).

4.7. Combined Static and Textual Feature Location

Several researchers have combined static and textual analyses for feature location. This
combination is a natural choice because either textual analysis can be used to reduce the
overestimation that static analysis is prone to produce or static analysis can be used to
find additional candidate program elements given a starting set of highly relevant ones
from textual analysis. Thus, combining these two types of analysis has the potential to
yield better results than either static or textual analysis alone.

A static, non-interactive approach to feature location (SNIAFL) is introduced by Zhao
et al. [Zhao'04, '06]. SNIAFL uses Information Retrieval in conjunction with a branch-
reserving call graph (BRCG), essentially an expanded version of a call graph with branch
information. An initial set of program elements (i.e., methods) specific to the feature is
located using information retrieval, and then additional relevant elements are found using

Feature Location in Source Code: A Taxonomy and Survey 27

CRC to Journal of Software Maintenance and Evolution: Research and Practice

the BRCG. The initial set is produced by using the vector space model to obtain and
rank methods by their similarity to a query. A gap threshold technique is used to find the
largest difference between the similarities of consecutive ranked methods. The methods
above this gap are considered to be the initial elements specific to the feature. From the
initial set, the BRCG is pruned to remove branches that are not in the initial set. Also, the
relevance of branches that are included in the initial set is propagated through the graph’s
dependencies, essentially generating a static pseudo-execution trace. In case studies on
two pieces of GNU software, SNIAFL had better precision and recall than both a pure IR
approach and a purely dynamic approach, lending evidence to the fact that combining
static and textual analyses is more successful than using them as standalone approaches.

Similar to the SNIAFL approach, Dora [Hill'07] combines static and textual analysis
to perform feature location. Programmers formulate a query which is used to compute a
method relevance score that is based on the term frequency-inverse document frequency
of words that appear in the name and body of the method. Then, starting from a seed
method selected by the developer, Dora follows static caller/callee edges to identify
additional relevant methods using the relevance score. Dora was evaluated on a number
of open source Java systems and compared to Suade and two naïve textual and static
approaches. The datasets for these systems were created via a user study [Robillard'07b]
in which programmers were asked to locate the implementations of several features.
Dora was found to be the most successful technique in the evaluation.

In Dora and SNIAFL, one type of analysis is used to prune another. Shao and Smith
[Shao'09] combine information retrieval and static control flow information in a different
manner for feature location. First, LSI is used to rank all the methods in a software
system by their relevance to a query. Then, for each method in the ranked list, a call
graph is constructed. A method’s call graph is inspected to assign it a call graph score.
The call graph score counts the number of a method’s direct neighbors that also appears
in LSI’s ranked list. Finally, the method’s cosine similarity from LSI and its call graph
score are combined using an affine transformation, and a new ranked list is produced. A
preliminary evaluation compared the technique against LSI on a C++ program called
iVistaDesktop, which simulates Microsoft’s Windows Vista operating system.

Ratiu and Deissenboeck [Ratiu'06, '07] introduced an approach that recovers the
mapping between the real world concepts and the relevant parts of the source code. Their
approach is not explicitly aimed at feature location but at interpreting programs from the
point of view of the domain knowledge they implement, which could be features. They
developed a framework that describes semantic defects caused by improper naming and
an algorithm to recover the mappings between ontology elements and program elements.
The algorithm maps concepts and program elements via graph matching. Concepts are
represented in the ontology and programs are abstracted as graphs. The framework and
algorithm have been applied to the Java standard library, finding actual examples of
semantic defects.

Shepherd et al. [Shepherd'07] employ natural language processing in conjunction with
static analysis for feature location. The premise of their approach involves the
observation that in source code, actions are represented by verbs, and nouns correspond
to objects. Their approach, which is implemented in the tool Find-Concept, has the
following steps: initial query formulation, query expansion, and a search of the action-
oriented identifier graph model (AOIG). The developer creates a query consisting of a
verb and a direct object. Then, Find-Concept expands the query using NLP and its
knowledge of the terms used within the software’s source code to recommend new
queries. Once the user refines the query, the tool locates nodes in the AOIG that contain
a verb and direct object from the query and returns the methods to which they are

28 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

mapped. Find-Concepts uses program analysis to identify any dependencies between the
methods returned by the AOIG search and then presents the user with a visualization of
the results as a graph. In a user study, Find-Concept’s verb-direct object approach was
compared to the lexical search provided by the Eclipse IDE and Google Eclipse Search
[Poshyvanyk'06c] on a suite of open-source Java systems and overall was found to be the
most effective search technique, without requiring additional effort from the users.

Hayashi et al. [Hayashi'10b] combined textual analysis and static analysis with
domain ontologies to link user specified sentences to source code fragments. Their
approach returned ordered functional call-graphs (i.e., methods and their invocations of
the input source code) extracted for the initial call graph of the software system under
investigation. Given the source code of a software system, a sentence, and an ontology
(i.e., directed relations between words) the proposed technique obtains a call graph of the
system using static analysis, extracts the terms from the source code and the sentence,
and subsequently traverses the call graph in search of functional call graphs.
Identification of function call graphs involves using terms of the sentence to identify root
nodes. Following the identification of root nodes, paths to traverse are determined by
locating entities which contain terms from the user provided sentence. The resulting
functional call graphs are prioritized according to the importance determined by their
name, using relations in the ontology, and the ratio of words in the input sentence.
Evaluation of the technique was performed using seven features of JDraw. A comparison
of precision and recall indicated that the use of an ontology provided better results than
the case where the ontology was not used.

4.8. Combined Dynamic, Static, and Textual Feature Location

Cerberus [Eaddy'08a] is a feature location technique that utilizes three types of analysis:
dynamic, static, and textual. Currently, it is the only approach that leverages all three
types of analysis. At the core of Cerberus is a technique called prune dependency
analysis (PDA), whereby a relationship between a program element and a feature exists if
the program element should be removed or modified if the feature were to be pruned
from the software system. Given an initial set of relevant elements to be pruned, PDA
infers additional relevant elements. Cerberus uses PROMESIR to combine rankings of
program elements from execution traces with rankings from information retrieval to
produce seeds for PDA. Cerberus’ authors created a large benchmark for Rhino23, an
open source Java implementation of JavaScript, in which the code for over 400 features
defined in the system’s documentation were manually located. This benchmark was used
to evaluate and compare Cerberus to software reconnaissance, SPR, DFT, LSI, finding
that combining the three types of analysis was the most effective approach.

4.9. Other Feature Location Techniques

CVSSearch [Chen'01a] is a feature location technique that uses textual and historical
information from CVS repositories. CVS comments generally describe the change made
to the lines of code which are being committed, and those comments typically hold true
for many future revisions of the software. The tool maps the lines of code that were
changed during CVS commits with the CVS comments associated with those commits.
This means that if a line of code was changed in multiple commits, it will have associated
all the CVS comments from those commits. The tool requires as input a query, and
CVSSearch24 returns all lines of code whose associated comments contain at least one of

23 http://www.mozilla.org/rhino/ (accessed and verified on 03/01/2011)
24 http://cvssearch.sourceforge.net/ (accessed and verified on 03/01/2011)

Feature Location in Source Code: A Taxonomy and Survey 29

CRC to Journal of Software Maintenance and Evolution: Research and Practice

the query words. The textual search is done using grep. Each returned line also has a
score indicating how well it matches the developer query. In a user study involving 74
students that were required to performed concept location on a few programs from the
KDE suite, CVSSearch was compared against grep. The results of the evaluation showed
that even though the CVS comments are a valuable source of information, the
CVSSearch tool that exploits them complements the traditional grep technique, but it
does not replace it.

Hipikat [Cubranic'03, Cubranic'05] is a feature location tool that also makes use of
archival information for feature location, but instead of identifying candidate program
elements, Hipikat recommends artifacts from a project’s archives such as online
documentation, versions, bugs, or communications. Hipikat forms a group memory from
a project’s history as recorded in source code repositories, issue trackers, communication
channels, and web documents [Cubranic'04]. Links between these artifacts are inferred
using IR. For example, a source code version can be linked to a bug report if the bug’s id
is included in a repository commit log message. This history is used to find relevant
artifacts in response to a user query. The query consists of an artifact, potentially a
program element, for which the user wants recommendations of related artifacts. Hipikat
responds with a list of artifacts ranked by their relevance. The tool has been used in two
case studies. In the first, Hipikat was validated on AVID25, and in the second, it was used
to aid programmers performing a change task on Eclipse.

Robillard and Murphy [Robillard'03a] propose a unique approach to feature location
that automatically analyses a transcript of a program investigation session in an integrated
development environment. The transcript records which program elements were visible
to a developer during a maintenance task and how they were accessed: through a code
browser, following a cross-reference, recalling an open window or tab, scrolling, or
keyword search. For each event in the transcript, all visible program elements are
determined. Then, for each visible element, a probability that it is the element in which
the programmer was interested in is assigned to it. The probabilities are based on weights
associated with each event type. Next, a correlation metric is calculated between all pairs
of program elements. The correlation is based on how closely two elements were
accessed in the transcript. Finally, concerns (features) are generated by clustering
program elements, and the concerns can be named and saved for later retrieval.

Similarly to CVSSearch, Ratanotayanon et al. [Ratanotayanon'10] implemented
Kayley, a tool that utilized historical and textual information for the task of feature
location. Ratanotayanon et al. introduced the concept transitive change-set which is used
to enrich the set of source code entities associated with a commit of a version control
system. Transitive change-sets are generated by analyzing dependencies and other
relations in order to identify other elements related to items in a given commit. Such a
process allows linking of program elements at various levels of abstraction. Given a user
query, related commits are identified based on the textual relationship of the user query
and comments of the commits, and the associated set of program elements is augmented
using the concept of transitivity which is subsequently returned to the user.

5. FEATURE LOCATION TOOLS AND STUDIES

In addition to the many research articles that introduce feature location techniques, there
are numerous articles describing feature location tools, case studies, industrial studies,
and user studies. This section summarizes these tools and studies.

25 http://people.cs.ubc.ca/~murphy/AVID/ (accessed and verified on 03/01/2011)

30 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

5.1. Tools

Tool support for feature location removes much of the manual burden associated with
searching for a feature’s program elements. In addition to providing an overview of
existing feature location techniques, this survey also describes tools that can be used for
feature location. Some of the techniques summarized in Section 4 have prototype tools
that are not available; therefore they are not listed here. Also, some tools are not directly
associated with any particular approach, but they can be used for feature location, to
document features, or program exploration, so they are included here.

5.1.1. Tools for Dynamic Feature Location

TraceGraph [Lukoit'00] is a feature location tool that allows for the visualization of
execution traces. As a software system is running, TraceGraph analyzes the execution
and visualizes which program elements were invoked during a time interval. The
visualization is essentially a matrix in which the rows represent program elements, the
columns correspond to time intervals, and the cells indicate if the program elements were
called during that time interval or not. Additionally, the first invocation of a program
element is highlighted in the visualization. TraceGraph was evaluated on the Mosaic web
browser as well as the Joint Surveillance Target Attack Radar Subsystem (Joint STARS),
a proprietary system developed by Northop Grumman for the United States Air Force.
The tool’s visualization was useful for feature location because it emphasized the first
time an element was called, which often corresponded to a feature being triggered.
TraceGraph was also applied in an industrial case study on feature location [Simmons'06]
where it was used for trace differencing and identifying code uniquely executed by a
feature, and in another study on distributed simulation software [Wilde'02].

STRADA (Scenario-based TRAce Detection and Analysis) [Egyed'07] is a tool
developed to help programmers uncover the mappings between features and code during
testing, which is based on trace analysis research [Egyed'03, Egyed'04, '05a, Egyed'05b].
Given a set of test cases for a feature, STRADA observes the code that is executed during
testing, initially identifying all the executed code as relevant to the feature. However,
since not all of the invoked code actually pertains to the feature, STRADA analyzes the
traces using logical constraints to exclude irrelevant program elements. The tool
visualizes its knowledge of feature-to-code mappings in a matrix. It has been evaluated
on ArgoUML26, GanttProject27, and a video-on-demand player28.

Olszak and Jørgensen proposed the tool Featureous [Olszak'10] for locating feature
implementation in legacy software. The tool is implemented as a plug-in for the
NetBeans IDE and allows developers to specify a feature, a scenario, and to collect
execution traces that exercise the feature. The execution traces are analyzed and results
are presented using advanced visualization views. Furthermore, the developer can
navigate through the traceability links established through dynamic analysis. From an
experience with JHotDraw, Featureous is reported to be able to support both top-down
and bottom-up comprehension strategies using its visualization views.

5.1.2. Tools for Static Feature Location

Ripples [Chen'01b] is a tool that implements the ASDG approach to feature location.
The tool extracts an ASDG from C code and visualizes it for the programmer who can

26 http://argouml.tigris.org/ (accessed and verified on 03/01/2011)
27 http://www.ganttproject.biz/ (accessed and verified on 03/01/2011)
28 http://peace.snu.ac.kr/dhkim/java/MPEG/ (accessed and verified on 03/01/2011)

Feature Location in Source Code: A Taxonomy and Survey 31

CRC to Journal of Software Maintenance and Evolution: Research and Practice

mark relevant nodes. JRipples29 [Buckner'05] is an Eclipse plug-in and its functionality
is similar to Ripples’s tool, except that it is used on Java systems and it does not provide
the visualization component. Both tools can also be used for impact analysis and change
propagation by tracking and monitoring the status of program elements.

Suade [Weigand-Warr'08], is an Eclipse plug-in that performs feature location using
static analysis. It implements the topology analysis approach discussed in Section 4.3.
Suade has been used in a case study comparing several program exploration tools [de
Alwis'07], and it has also been directly compared to Dora [Hill'07], another static feature
location technique.

5.1.3. Tools for Textual Feature Location

Google Eclipse Search30 (GES) [Poshyvanyk'06c] is an Eclipse plug-in that facilitates
efficient source code searching and browsing by integrating Google Desktop Search
(GDS)31 and Eclipse. GSD is an off-the-shelf component that uses information retrieval.
It allows users to search for files on their desktops similar to the way they would search
for information on the Internet via natural language queries. By integrating GDS with
Eclipse, programmers can search source code in a similar fashion. One advantage of
using GDS is it unobtrusively re-indexes the search space when the source code changes.
In a preliminary evaluation on the Java system Violet32, GES was show to produce
accurate results. In addition, while compared against Eclipse file search functionality,
GES is considerably faster in producing the results.

IRiSS [Poshyvanyk'05] and JIRiSS [Poshyvanyk'06b] are both tools for textual
feature location. IRiSS implements information retrieval-based feature location as an
add-on to MS Visual Studio .NET, while JIRiSS is an Eclipse plug-in. Both tools work
like a development environment’s built-in search functionality, but instead of only
displaying the lines of code that match a query, those lines’ corresponding classes and
methods are also listed. This allows a programmer to sort the results by different levels
of granularity and to visit the classes or methods with the most matches. Also, since IR is
used, the results returned from a query can be ranked by their relevance. JIRiSS is an
extension to IRiSS that also includes fragment-based searches, software vocabulary
extraction, query spell checking, and word suggestions to improve queries.

Xie et al. [Xie'06] developed a tool that supports textual analysis through
visualization, by combining IRiSS [Poshyvanyk'05] and sv3D [Marcus'03]. IRiSS
performs feature location via IR and sv3D (source viewer 3D) creates 3D renderings of
the results, showing poly-cylinders that represent program elements. The colors of the
poly-cylinders correspond to the elements’ similarity to the query following a pre-defined
color scheme. The height of the poly-cylinders represent browsing history, so the taller
the cylinder, the more times the program element was visited in the past. The
combination of these two tools allows a developer to have a visual representation of the
results, as opposed to examine a ranked list of results.

Cleary and Exton implemented an Eclipse plug-in that supports the cognitive
assignment technique [Cleary'06]. The tool allows a developer that is unfamiliar with a
system to generate and store a set of links between the problem domain concepts stored
in a cognitive map and the relevant parts of the source code. The developer can select a
concept (i.e., feature) which wants to investigate, and based on the textual description of
the feature the tool provides a set of results which the developer should investigate, and

29 http://jripples.sourceforge.net/ (accessed and verified on 03/01/2011)
30 http://ges.sourceforge.net/ (accessed and verified on 03/01/2011)
31 http://desktop.google.com/ (accessed and verified on 03/01/2011)
32 http://www.horstmann.com/violet/ (accessed and verified on 03/01/2011)

32 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

add them to the concept if they are relevant. The program elements suggested by the tool
are the result of an analysis of links between words, using a Bayesian classifier.

5.1.4. Other Tools for Feature Location

In this subsection we discuss several tools that use multiple types of information in
their analysis. Some of the tools use only a particular type of information, and they could
be presented in different sections, but because they are highly related to one another, we
present them in this section. For example, FEAT uses static analysis, and ConcernMapper
uses textual analysis, but we present these tools in this subsection because these tools are
highly related.

The motivation behind the following tools is that once a feature’s relevant program
elements have been found using feature location, they should be saved so that they could
be easily accessed in the future. Features and their relevant program elements can be
documented in Concern Graphs [Robillard'02, '07a], a model that describes which
program elements pertain to a feature. An Eclipse plug-in that supports the Concern
Graphs approach is FEAT33 (Feature Exploration and Analysis Tool) [Robillard'03b].
ConcernMapper [Robillard'05b] is also an Eclipse plug-in that supports Concern Graphs,
and it evolved from FEAT. One of the improvements of ConcernMapper over FEAT is
that it supports a fuzzy and less rigid model for representing concerns, which is more
appropriate for programmers. ConcernTagger34 is another Eclipse plug-in build on top of
ConcernMapper, which provides the ability to compute a number of concern-specific
metrics. The Feature Location and Textual Tracing Tool35 (FLAT3) [Savage'10b] also
extends ConcernMapper by adding support for the textual and dynamic feature location
technique namely SITIR [Liu'07]. In each of these tools, programmers can define and
name features and then associate entire or partial classes, methods, and fields with them.
The tools leave feature location as a manual task and focus on documenting the features
and their related elements once they are found. However, once the features and their
program elements are documented, they can be saved and retrieved at a later time, thus
avoiding the need to repeat searches.

Savage et al. [Savage'10a] developed TopicXP, an Eclipse plug-in that supports
developers during maintenance tasks by analyzing the unstructured information
embedded in the source code identifiers and comments using an advanced information
retrieval technique, that is Latent Dirichlet Allocation [Blei'03]. LDA extracts a set of
topics from the source code, which could be considered as concepts or features. The
topics generated are mapped to the source code, and the relationship between the topics is
determined by examining the static dependencies from the code. Using an interactive
visualization view, the developer is able to navigate through these topics or to access the
source code associated with them. In a preliminary study involving four graduate
students, who were required to perform concept location on two Java systems, jEdit and
muCommander36, using Eclipse with TopicXP or using the just the Eclipse IDE. The
results showed that TopicXP is a functional tool, which provides comparable results to
Eclipse IDE, and in some cases it even produces better results.

Bohnet and Döellner [Bohnet'06a, b, '07a, b, '08a] visually explore dynamically
extracted information, but in this case, as a call graph. Since a call graph can be large, in
order to reduce the search space for the user, the tools provide clues to identify code
relevant to the feature of interest. The tools also provide a number of different types of

33 http://www.cs.mcgill.ca/~swevo/feat/ (accessed and verified on 03/01/2011)
34 http://www.cs.columbia.edu/~eaddy/concerntagger/ (accessed and verified on 03/01/2011)
35 http://www.cs.wm.edu/semeru/flat3/ (accessed and verified on 03/01/2011)
36 http://www.mucommander.com/ (accessed and verified on 03/01/2011)

Feature Location in Source Code: A Taxonomy and Survey 33

CRC to Journal of Software Maintenance and Evolution: Research and Practice

visualizations. In one prototype, the most important view, the graph exploration view,
shows other methods that pass control flow to or receive control flow from a given
method. In this view, the tool only shows methods in a neighborhood if they are judged
to be relevant based on execution time, while another tool has textual and 3D landscape
views. These tools effectively extract dynamic call graph information and guide
programmers during navigation.

5.1.5. Other Tools not Included in the Survey

Program exploration tools support developers when performing a variety of maintenance
tasks. Since feature location is central to many maintenance activities, we mention some
of the program exploration tools which are somewhat out of scope of this survey.

JQuery [Janzen'03], an Eclipse plug-in, is a source code browsing tool designed to
help programmers when dealing with features that have scattered implementations. The
tool combines navigation based on relationships (as in a hierarchical browser) with the
flexibility of query languages. Program exploration in JQuery begins with a query and a
list of variables. The query determines which elements to show in the browser, and the
variables establish how to organize them into a tree. The query defines the type of
program element to search for given some parameters such as its name or a type of
relationship. The results of the query are returned in a hierarchical tree, and users can
further explore the tree with additional queries that expand nodes into sub-trees. The tool
aims to reduce the burden of program investigation on developers. It helps them remain
oriented by not having to switch between multiple views, and it records their exploration
path in the tree format.

Ferret [de Alwis'08] is a tool for answering conceptual queries, which are questions
about a software system a programmer may have. The Ferret model is based on the
composition and integration of different sources of information into a query-able
knowledge-base. A source of information is known as a sphere, and examples include
static, structural relationships in source code, dynamic call information from an execution
trace, and revision history recorded in a software repository. Ferret supports 36 different
conceptual queries such as “What calls this method?”, “What are this class’ subclasses?”,
“What are all the fields declared by this type?”, and “What transactions changed this
element?” These types of queries represent questions programmers may have when
investigating a software system in order to locate a feature’s implementation.

Instead of relying on dynamic information, AspectBrowser [Shonle'04] is a tool that
assumes that features follow the idea of information transparency [Griswold'01]; design
decisions that cannot be encapsulated in a single module use a common signature or
terminology that can easily be exploited by search tools. The AspectBrowser tool37
allows users to search a code base using pattern matching and then visualizes the results
in two ways. All query matches can be highlighted in the source code, and the
programmer can browse to find them. Alternatively, programmers can use a global view
to see how a feature is scattered throughout the system. In the view, each line of code is
represented by a row of pixels, and highlighted rows indicate lines of code that match the
query. Multiple search results can be viewed at once to understand the interaction
between several features.

5.2. Case Studies

A number of case studies involving feature location have been performed, ranging from
comparisons of existing techniques, industrial case studies, and user studies. Each type
of the study is valuable to advance this research area. Comparisons evaluate few feature

37 http://cseweb.ucsd.edu/~wgg/Software/AB/ (accessed and verified on 03/01/2011)

34 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

location techniques on the same systems and features, making it easier for researchers
and practitioners to understand the strengths and weaknesses of each approach. Industrial
case studies show the applicability of an approach in non-trivial settings. Finally, user
studies provide insight into how programmers understand and search for code, and these
insights can be incorporated into feature location techniques and tools.

5.2.1. Comparison of Feature Location Techniques using Case Studies

RECON, RECON2, and RECON3 are tools that implement the software
reconnaissance approach to feature location. Wilde and Casey [Wilde'96] report on
applying RECON to industrial software. In their study on using software reconnaissance
for program exploration, Wilde and Casey found the tool to be very selective because it
never marked more than 13 methods for a feature. They also observed that the tool
seemed to find code that was near relevant program elements. In the second part of their
study, they examined using software reconnaissance for traceability to build a large
mapping of multiple features to code. The tool was used to run a large set of test cases
that were marked with the features they exhibited, and then the collected traces were
analyzed to find traceability relations that mapped features to code. With this traceability
knowledge, a programmer modifying a program element is aware of the other features
implemented in that program element.

When a new feature location technique is introduced, it is often directly compared
with similar existing approaches as part of its evaluation. Some articles related to feature
location focus solely on case studies comparing several techniques. Wilde et al.
[Wilde'01, Wilde'03] compare software reconnaissance, ASDG, and grep in a case study
to locate two features in legacy Fortran code. The system, CONVERT3, is part of a suite
of geometric modeling programs and is used to convert models to formats required by
other tools. For the study, three teams each used one of the feature location techniques to
find the code for two features of CONVERT3. The software reconnaissance and ASGD
teams were able to gain sufficient understanding of the source code, but the team using
grep was not. The authors concluded that grep was the least reliable approach but it is
very quick and can locate features that cannot be explicitly invoked dynamically. After
grep, software reconnaissance was deemed to be the next fasted method of feature
location. However, its results may not present a user with enough context to be
comprehensible. The ASDG approach was the most difficult to apply but the most
systematic and allows for the best understanding of the relevant code.

Ibrahim et al. [Ibrahim'03] also report on their experiences applying RECON2 the
Generate Index (GI) project. Their findings echo the conclusions of the previous study.
Software reconnaissance is based on test cases, but selecting appropriate scenarios to
execute can be difficult. However, only a few test cases are generally needed for a
feature. After the analysis, software reconnaissance is good at locating a starting point
for feature location, but further investigation for additional relevant program elements
should be performed.

Early feature location techniques were applied in the era of procedural programming
paradigm. After object-oriented programming gained popularity, Marcus et al.
[Marcus'05c] studied whether feature location was still needed since object-oriented code
is supposed to be structured such that classes help implement well-defined problem
domain concepts. They compared the performance of three static feature location
techniques: pattern matching with grep, a depth-first dependency search, and information
retrieval using LSI. Three programmers, each assigned to a different technique,

Feature Location in Source Code: A Taxonomy and Survey 35

CRC to Journal of Software Maintenance and Evolution: Research and Practice

participated in a case study to locate features in Art of Illusion38, a 3D modeling studio
written in Java, and in Doxygen39, a source code documentation generator written in C++.
They concluded that object-orientation does not always allow for quick and easy
identification of the program elements relevant to a feature. Therefore, feature location
techniques are still needed for object-oriented systems.

Revelle and Poshyvanyk [Revelle'09] performed an exploratory study evaluating
several feature location techniques that return ranked lists of program elements
(methods). The approaches they compared were Information Retrieval (LSI-based
feature location), Information Retrieval plus dynamic analysis (SITIR), and Information
Retrieval plus dynamic and static analysis (similar to Cerberus). For IR, they assessed
user-formulated queries as well as method seed queries in which the text of a method
already known to be relevant to a feature was used as the query. For dynamic analysis,
they used both full execution traces and marked traces in which only the portion of a
system’s execution when a feature is invoked was traced. Dynamic analysis was
combined with IR by pruning unexecuted methods from the ranked list. When all three
types of analyses were combined in IR + Dyn + Static, a program dependence graph was
traversed starting from a seed by following dependencies only if they were executed and
had textual similarities to the query that were above a given threshold. Most feature
location techniques that return a ranked list are evaluated in terms of where the first
relevant element appears on the list. This case study aimed to evaluate these approaches
in terms of how well they find near-complete implementations of features, meaning how
well they find as many relevant program elements as possible. Their conclusions were
that none of these approaches perform particularly well in that regard since feature
location is usually used to find a starting point and impact analysis tools are used to find
more complete implementations. They observed that marked traces generally
outperformed full traces and that the method seed queries, which can be automatically
generated, performed just as well as user formulated queries.

De Alwis et al. [de Alwis'07] performed a comparative study in which programmers
used three tools (JQuery, Ferret, and Suade) to plan complex maintenance tasks. Eclipse
was used as a baseline for comparison. They hypothesized that programmers (i) would
find it easier to complete a task using a tool as opposed to Eclipse, (ii) need to examine
less code as compared to using Eclipse, and (iii) would identify more important elements
using the tool as opposed to Eclipse. The participants in the study were 18 professional
programmers, and they were asked to investigate two change tasks in jEdit. In the first
task, they used only Eclipse, and in the second task, they used one of the exploration
tools. The order of the tasks and choice of tools was randomized. An instrumented
version of Eclipse captured all events the programmers performed during their
investigation. Additionally, the participants recorded the relevant elements they found in
an Eclipse view built for the study. The NASA Talk Load Index (TLX) was used to
assess task difficulty, and distance profiles were used to gauge the degree to which the
participants remained on-task. The TLX scores showed no difference in task difficulty
that could be attributed to using a tool or not. Similarly, the distance profiles did not
indicate that the tools had any strong effect on the tasks. Overall, the authors concluded
that program exploration tools had little effect, and that the behavior of the developers
seemed more impacted by the tasks performed. In addition, there was evidence that
individual programmers’ strategies caused them to be more or less efficient.

38 http://aoi.sourceforge.net (accessed and verified on 03/01/2011)
39 http://www.stack.nl/~dimitri/doxygen/ (accessed and verified on 03/01/2011)

36 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

5.2.2. Industrial Case Studies

Most feature location case studies focus on open source software. However, case studies
carried out on industrial software give a sense of a technique’s real world applicability.
Unfortunately, only a few such studies have been performed, and more are needed. As
previously discussed, TraceGraph was used in an industrial setting [Lukoit'00], and
Wilde et al. [Wilde'03] compared a number of approaches on industrial software. In
addition to these studies, Van Geet and Demeyer [Van Geet'09] report on their
experiences of applying Eisenbarth et al.’s [Eisenbarth'03] formal concept analysis of
execution traces feature location technique in an industrial setting. The context was a
pre-study phase for the migration of a banking system written in COBOL. Scenarios for
two features were executed using a web interface, and three separate iterations of the
approach were conducted. Each iteration aimed at reducing the number of modules
considered by using different combinations of scenarios that did and did not invoke the
feature. A domain expert provided the modules relevant to each feature for evaluation
purposes, and in two out of three iterations of the approach, all the relevant modules were
in the generated concept lattice. Three additional relevant modules were also identified
that had not previously been named by the domain expert.

5.2.3. User Studies

Studies that focus on how programmers search and comprehend source code are
important to feature location research. These types of studies provide insights on how
developers find a feature’s implementation or gain understanding of a system. In turn,
these insights can be incorporated into feature location research in order to develop
approaches that are organic and easy for programmers to use. Four relevant user studies
are discussed below, and while this is not a complete list of user studies related to feature
location, even more studies are necessary to advance the state of the art.

LaToza et al. [LaToza'07] performed a user study in which 13 participants worked for
three hours on understanding and improving the design of two features in jEdit. The
participants’ activities were recorded using think-aloud, video, and Eclipse
instrumentation. The goal of the study was to answer questions about how programmers’
experience affects the changes they make to code, how it affects how they work, and how
they reason about design during coding tasks. LaToza et al. found that the more
experienced programmers addressed the causes of problems, while beginners focused on
the symptoms and that the experienced programmers identified relevant methods and
implemented changes more quickly than novices. They also discovered that the
participants’ activities centered on fact finding. The programmers sought facts relevant
to their task, so they investigated certain methods and learned facts about the software
system, and as they learned enough facts, they were able to propose design changes.
Therefore, feature location techniques should not only help identify relevant program
elements, but they should also aid in fact finding and program comprehension.

Robillard et al. [Robillard'04] also conducted a study on how programmers explore
source code when performing a change task. Five programmers were asked to modify
jEdit so that users can explicitly disable the auto-save functionality and given five
requirements for their solution. The data collected included artifacts produced or
modified by the participants as well as video recordings of their screens. The
programmers’ success was judged in terms of time to complete the task and the quality of
their change to the source code in terms of how many of the task’s requirements they
successfully implemented. Robillard et al. analyzed the behavior of each participant by
transcribing the screen videos into events. Each event records the time it occurred, the

Feature Location in Source Code: A Taxonomy and Survey 37

CRC to Journal of Software Maintenance and Evolution: Research and Practice

method being examined at that time, how the method was accessed (scrolling, browsing,
searching, etc), and whether the method was modified. Based on their observations, they
conclude that a methodical, ordered investigation of a system’s source code is more
effective than a systematic, opportunistic one. They found that programmers should
follow a plan when exploring a program, that they should perform focused searches in the
context of their plan, and that they should keep record of their findings. Based on these
results, feature location techniques should facilitate orderly program exploration.

Revelle et al. [Revelle'05] undertook an exploratory study on how programmers
identify features and their implementations in source code. In the first study, the features
of GNU sort40 plus their relevant source code was found manually by one programmer
and then compared to those of Carver and Griswold [Carver'99]. In the second study,
two programmers manually located features and their implementations for a Java
implementation of the Minesweeper game. Revelle et al. compared the actual concepts
recognized as features as well as the code associated with those features, looking for
common trends in how developers identify and locate features. Based on their
observations, they developed a set of guidelines for how to identify and recognize the
existence of a feature and how to record feature’s associated code in a tool called
Spotlight [Coppit'07]. The guidelines suggest relying on both static and textual
information and flexible mappings of features to program elements of various levels of
granularity.

Ko et al. [Ko'05, Ko'06] performed an exploratory study to investigate developers’
strategies for understanding unfamiliar code. Ten participants worked using Eclipse on
five maintenance tasks associated with the Paint41 application. Screen-capture videos
recorded the developers’ work during the study. To simulate a more realistic working
environment, the programmers were interrupted every 2.5 to 3.5 minutes and required to
answer a multiplication question. Monetary incentives were offered for correctly
completing the tasks, and penalties were inflicted for ignoring or incorrectly answering
the multiplication questions. The study found that programmers interleave three
activities when exploring source code: searching for relevant code either manually or
with tools, following the dependencies of found relevant code, and collecting relevant
code and information in Eclipse’s interface (i.e., package explorer, tabs, and scroll bars).
However, searches often failed, Eclipse’s navigation tools imposed overhead when
following dependencies, and developers lost track of relevant code in the interface. On
average, 35% of a developer’s time was spent reviewing search results and on navigation.
Based on the observations of this study, the authors make a number of suggestions for
future tool development. First, tools need to provide better relevance cues so
programmers do not miss important code or misinterpret irrelevant code. Second,
dependency searches need to be more practical, such as by highlighting the dependencies
of the currently selected program element. Third and finally, programmers need a better
way to collect, organize and view the relevant information they find, such as being able
to see all relevant information for a given task at once. These recommendations may help
programmers find task-relevant code more quickly and efficiently and were used in the
design of a new debugging tool [Ko'08].

6. ANALYSIS OF THE TAXONOMY

Using the taxonomy we are able to address the research questions:
RQ1: What types of analysis are used when performing feature location? Results

of our systematic survey point out that feature location techniques primarily use dynamic,

40 http://www.gnu.org/software/coreutils/ (accessed and verified on 03/01/2011)
41 http://www.cs.cmu.edu/~marmalade/studies.html (accessed and verified on 03/01/2011)

38 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

static and textual information to locate features in source code. However, analysis
techniques for feature location are not limited to dynamic, static, or textual analysis as
techniques which combine various types of analysis as well as those which utilize history
based analysis are also prevalent in the literature. For a detailed discussion of the various
types of analysis see Section 3.1. Likewise, discussion classifying the various feature
location techniques according to their respective type of analysis appears in Section 4.

RQ2: Has there been a change in types of analysis used to identify features in
source code employed by recent feature location techniques? Our survey reveals that,
in recent years, there has been an increase in the number of papers published that
introduce feature location techniques based on textual information as well as historical
data (see Section 4). This can be observed in Figure 3 (dotted line), which displays the
cumulative number of feature location techniques that use different types of information
per year. We choose this cumulative visual representation of approaches, as opposed to a
direct scattering of the number of approaches per year because the graph is much easier
to understand. In addition to the emergence of new analysis techniques our survey
indicates that a growing number of researchers have demonstrated the benefits of
combining multiple analysis techniques to leverage the complementary strengths of each
analysis mechanism (see solid lines in Figure 3).

RQ3: Are there any limitations to current strategies for evaluating various
feature location techniques? Two observations that can be made from our feature
location survey include (1) limited comparison of proposed techniques with existing
techniques and, more notably, (2) limited use of benchmarks in evaluations. Comparison
of proposed approaches to other existing techniques should be common practice while
introducing new feature location techniques. However, only 22 of the 58 papers (38%)
that present FLTs (see Section 4, Table 3 and Table 4) compared their approaches with a
limited number of existing approaches. In rare instances existing techniques may not be
relevant to be used during evaluation. Nevertheless, researchers ought to compare their
new techniques against those that appear in the literature. The apparent lack of
comparison may be attributed to the low number of techniques which provide a
corresponding publicly available tool. Without tools for each of the existing techniques
researchers need to implement both the proposed technique as well as relevant techniques

Figure 3 Cumulative number of FLTs from Table 3 and Table 4 per year

Feature Location in Source Code: A Taxonomy and Survey 39

CRC to Journal of Software Maintenance and Evolution: Research and Practice

which should be compared against the proposed one. Such a process is time consuming
and also introduces a threat to validity (possibility of erroneous implementation of
existing feature location techniques). As it stands direct comparison of approaches are
limited, however, may be increased if researchers produce publicly available tools. The
second observed limitation is the lack of evaluation on benchmarks. In fact, only 3 of the
58 papers (5%) that present FLTs (see Section 4, Table 3 and Table 4) used benchmarks
in their evaluation. If benchmarks were readily available for researchers to evaluate their
approaches, availability of publicly available tools would not be such a significant
problem, since researchers would have been able to directly compare their results to the
results, which appear on the same datasets.

7. DISCUSSION AND OPEN ISSUES

Feature location is an essential aspect of many software maintenance tasks, and because it
can be challenging to perform manually, researchers have introduced many techniques to
lessen the burden of searching for a feature’s relevant code. Even with these numerous
approaches and advancements, open issues remain in the field of feature location. One
question that is unanswered is, “What is the best way to perform feature location?” This
question cannot be easily answered without an extensive comparison of analysis-specific
issues and a comparison of existing approaches. Note that while addressing RQ3 we
observed that comparisons of existing approaches are simply missing from most
evaluations in the feature location literature. This means that even though different
approaches used in their evaluations the same systems (e.g., Eclipse, JHotDraw, jEdit,
Mozilla, etc.), they did not use the same datasets (e.g., version, source code, gold set,
etc.) for those systems. In addition, the approaches were not restricted to use the same
evaluation metrics (e.g., precision, recall, effectiveness, etc.), which makes comparison
between approaches even more difficult. Such a comparison could be facilitated by well-
established benchmarks, but currently, there is no commonly accepted set of features
associated with the code that implements them that could be used to compare feature
location techniques. The issue of benchmarks was identified as we addressed RQ3 using
our systematic survey. Such a benchmark is needed in the research area. Additionally,
while there are various techniques that support feature location, not all approaches have
publicly available tools, and the tools that are available do not support both locating and
documenting a feature’s implementation. Other open issues are usability studies of
feature location techniques and integrating feature location into software engineering
courses. The remainder of this section discusses these open issues and their associated
avenues for future research. While this discussion brings to light these important topics,
more panels and workshops, like the one on the “Identifications of concepts, features, and
concerns in source code” held at the 21st IEEE International Conference on Software
Maintenance (ICSM2005), are necessary to resolve many of these issues.

7.1. Comparisons

Given a wide variety of existing techniques, developers that need to perform feature
location have many options, but which approach is the best for a specific situation? What
parameters should be used for a certain type of analysis? Which type of analysis yields
the best results, or is a combination of analyses the best? Some case studies have been
performed comparing multiple feature location techniques, but they only have a few data
points, which impede the ability to draw statistically significant generalizations from their
results. These studies are also limited in the number of examined approaches, focusing on
a subset of approaches that present results in a similar fashion. An obstacle to comparing
techniques is the presentation of their results. How does one evaluate one result set that

40 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

ranks program elements to another that does not? Determining the best way to directly
compare the performance of feature location techniques remains an open issue.

Not only does there need to be a comparison of techniques based on different types of
analysis, but there also needs to be an evaluation of the best configuration of each type of
analysis. For instance, dynamic analysis has many possible options for collecting traces.
The granularity of execution traces can be classes, methods, or even lines of code. In
addition, the entire execution can be logged from start up to shut down, or only select
portions of the run can be captured. With static analysis, like with dynamic, granularity
is also a parameter. Additionally, the type of dependencies (control or data) to take into
account is another issue to consider. With textual analysis, preprocessing options, such
as stemming and stop word removal, are commonly used, but their effect on feature
location has not been fully studied. Also, textual analysis can be achieved through
Information Retrieval methods or through natural language processing. While the varied
IR methods have been compared, the effectiveness of IR and NLP has not been compared
in the context of feature location. A comparison would determine if the extra expense
associated with NLP is worth the precision, or if the less expensive IR methods are
sufficient. Thorough investigations comparing these different configurations of each type
of analysis would reveal the most favorable settings for feature location.

There are many other open feature location issues that could potentially be resolved
through comparisons. The main types of analyses are dynamic, static, and textual;
although historical analysis has also been used, but not in conjunction with any other
analysis. It remains to be seen if combining historical analysis with any of the others is a
viable approach to feature location. Just as three types of analysis comprise the majority
of exiting techniques, two programming languages dominate the area of feature location.
Most existing approaches have been applied to Java or C/C++. However, feature location
should branch out to support more programming languages.

7.2. Benchmarks

The comparison of feature location techniques should be facilitated by the existence of
benchmarks that could be used to consistently evaluate the approaches. Currently, there
are a number of systems that have been used in the evaluation of many feature location
techniques such as Eclipse, JHotDraw, jEdit, Mozilla, and Firefox, but sets of features
used for the evaluation are not consistent. Even if two approaches are evaluated on the
same system, if different features are used, comparing two techniques is difficult.
Another problem with assessing feature location is in knowing the “gold set” of program
elements that implement a feature. The most commonly used method for determining the
source code relevant to a feature is to mine bug tracking systems. However, the code
associated with a feature may be incomplete if a bug fix only touches part of a feature’s
implementation. In the presence of these issues, the field of feature location research
needs to establish solid standards for validation. The best solution may be benchmarks
that can facilitate easy comparison of FLT approaches. The benchmarks should include a
set of features from a software system or several systems. Each feature needs to be
mapped to the source code implementing that. Preferably, the benchmarks should be
defined at various granularities to support different approaches that identify relevant
classes, methods, or statements. Robillard et al. [Robillard'07b], Eaddy et al.
[Eaddy'08b], Revelle et al. [Revelle'10] took a step in this direction, making their data
sets available in which programmers, who were not necessarily systems experts, mapped
features to classes, methods, and fields in open source Java applications. Still, well-
established and complete benchmarks for systems from a variety of domains and
languages will make the evaluation and comparison of feature location techniques easier.

Feature Location in Source Code: A Taxonomy and Survey 41

CRC to Journal of Software Maintenance and Evolution: Research and Practice

In this survey, we make a step towards solving this problem by making a set of
benchmarks publicly available for several systems that were used frequently in case
studies. The purpose of making these datasets available to researchers is twofold. First,
we want to facilitate the evaluation of new approaches on larger and diverse datasets, in
order to make the approach more generalizable. Second, we want to ease the comparison
between different FLTs. Using the same datasets, a new approach can be
straightforwardly compared against an existing approach, which could provide a great
indication about the value of the proposed technique. We were encouraged to make
available the benchmark by observing the success of Eaddy et al.’s [Eaddy'08b]
benchmark. The Rhino dataset from that benchmark was used in several evaluations and
even by different research groups as well [Eaddy'08a, Eaddy'08b, Hill'09, Revelle'10].

The benchmarks that we make available could be downloaded from the website
http://www.cs.wm.edu/semeru/data/benchmarks/. The website contains detailed
instructions about the format of the datasets and the process used to generate them.
These benchmarks include gold sets (i.e., mappings between source code and features) at
method level granularity, description of the features from bug reports and in some cases
even execution traces. In the near future, we plan to generate more benchmarks and add
them to this website, but for now we are making available the following datasets.

The first benchmark is for jEdit version 4.3 and it contains 272 features that have
associated gold sets and issues from the issue tracking system, which can be used to
extract the textual descriptions of the features/bugs. In addition, 150 features have
associated execution traces that were generated by following the steps to reproduce
enumerated in the issue description. The gold sets were generated via analysis of the
SVN commits submitted between releases 4.2 and 4.3. The issue identifiers from the
SVN logs were extracted, and were mapped to issues from the issue tracking system. On
the other hand, the changes from the SVN commits were mapped to the methods from the
source code that were modified by that commit.

The second benchmark we make available is for ArgoUML version 0.22 and it
contains 132 features that have gold sets and issues from the issue tracking system
respectively. In addition, 91 features have associated execution traces that were
generated by following the steps to reproduce described in the issue description. The
process of generating the gold sets is similar to the one used for generating the
benchmark for jEdit system.

The third benchmark we make available is for muCommander version 0.8.5 and it
contains 92 features that have gold sets, issues from the issue tracking system as well as
execution traces. The process of gathering the data for this benchmark is similar to
ArgoUML’s process.

The fourth benchmark is for JabRef42 version 2.6 and it contains 39 features that have
associated gold sets, issues as well as execution traces. The data collection process is
similar to ArgoUML’s.

The fifth benchmark we provide is for Eclipse version 3.0 and it contains 45 features
represented by bug reports submitted to Eclipse’s issue tracking system. Unlike for the
jEdit and ArgoUML datasets, the gold sets were generated by examining the patches
submitted in the bug reports, which contain information about the code that was changed
to fix the bug. We also provide 45 execution traces with this dataset, which were
collected by following the steps to reproduce from the description of the bugs. The
Eclipse benchmark was used in the evaluation by Revelle et al. [Revelle'10].

7.3. Tools

42 http://jabref.sourceforge.net/ (accessed and verified on 03/01/2011)

42 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Even though this survey encompasses many tools that support feature location (see
Section 5.1), the majority of feature location techniques do not have a publicly available
tool, meaning that programmers wanting to apply such an approach may need to recreate
the technique’s methodology. Additionally, some tools are useful for investigating a
program and locating features, while others can be used to store the mappings between
features and source code, but there are currently no tools that perform both. Combining
the functionalities of finding features’ implementations and being able to save them is a
logical next step for tool development. Finally, de Alwis et al.[de Alwis'07] found that
existing tools have little effect on programmer’s efficiency, so further research needs to
be done to improve usability of the tools.

7.4. User Studies

While there have been several user studies investigating how programmers search and
explore source code during maintenance, these studies are conducted with a relatively
small number of developers. Further studies are needed with more programmers to be
able to derive conclusive and statistically significant results. Additionally, there has been
a lack of empirical studies examining usability aspects of feature location. Do existing
feature location techniques reduce the amount of time and effort developers spend on
maintenance? What are the practical benefits and costs of using different types of
approaches? For instance, collecting execution traces for an approach that uses dynamic
analysis requires overhead in terms of the time spent to develop scenarios or test cases
and capture traces. Information Retrieval involves indexing the source code, which can
be rather time-consuming for large software systems. Studies are needed to determine
whether or not the overhead of collecting traces or (re)indexing a corpus yields improved
feature location results and is worth the cost.

7.5. Feature Location and Education

Given that feature location is such an extensive area of research and also an important
part of software maintenance, it should be taught in software engineering courses at
universities and colleges. Petrenko et al. [Buchta'06, Petrenko'07] have argued for the
inclusion of software maintenance and evolution in software engineering courses along
with traditional development. Teaching maintenance exposes students to more realistic
experiences since in industry, 70% or more of programmers’ time is devoted to
maintenance [Schach'01, Somerville'01]. Feature location is a significant part of the
maintenance phase because before changes can be made to a system, the relevant
program elements must be found. Therefore, feature location should be introduced as a
topic in software engineering courses to better prepare students.

8. CONCLUSION

Through a comprehensive examination of 89 feature location articles encompassing
research, tool, and case, industrial, and user studies, this survey has presented a taxonomy
that classifies the literature along nine key dimensions. The taxonomy facilitates the
comparison of existing feature location techniques and illuminates possible areas of
future research. Researchers can use the taxonomy and survey as a basis for advancing
the field, while practitioners can use it to identify techniques and tools that are well-
suited to their needs. This survey has also shed light on open issues in feature location,
such as the need for comparisons and benchmarks. By structuring the research area of
feature location, this taxonomy and survey contribute well-defined organization to the
field and should aid in resolving some of the open issues. This systematic survey should

Feature Location in Source Code: A Taxonomy and Survey 43

CRC to Journal of Software Maintenance and Evolution: Research and Practice

serve not only academic researchers but also industrial professionals, aiming at adopting
feature location tools within their organizations and development processes.

9. ACKNOWLEDGEMENTS

We are grateful to the anonymous JSME reviewers for their relevant and useful
comments and suggestions, which helped us in significantly improving the earlier
versions of this taxonomy, the survey and the paper in general. We would also like to
thank Andrian Marcus for his useful and stimulating suggestions on the earlier drafts of
this survey paper. We would also like to express our gratitude to some of the authors
whose work is discussed in this survey for their insightful feedback in preparing the
camera ready version of this paper. This work is supported by NSF CCF-0916260 and
NSF CCF-1016868 grants. Any opinions, findings, and conclusions expressed herein
are the authors’ and do not necessarily reflect those of the sponsors.

REFERENCES

[Abebe'10] Abebe, S. L. and Tonella, P., (2010), "Natural Language Parsing of Program

Element Names for Concept Extraction", in Proceedings of 18th IEEE
International Conference on Program Comprehension (ICPC'10), Braga,
Portugal, June 30 - July 2, pp. 156-159.

[Agrawal'98] Agrawal, H., Alberi, J. L., Horgan, J. R., Li, J. J., London, S., Wong, W.
E., Ghosh, S., and Wilde, N., (1998), "Mining System Tests to Aid Software
Maintenance", Computer, vol. 31, no. 7, July 1998, pp. 64-73.

[Antoniol'05] Antoniol, G. and Guéhéneuc, Y., (2005), "Feature Identification: A Novel
Approach and a Case Study", in Proceedings of 21st IEEE International
Conference on Software Maintenance (ICSM'05), Budapest, Hungary,
September 25, pp. 357-366.

[Antoniol'06] Antoniol, G. and Guéhéneuc, Y. G., (2006), "Feature Identification: An
Epidemiological Metaphor", IEEE Transactions on Software Engineering,
vol. 32, no. 9, pp. 627-641.

[Asadi'10] Asadi, F., Di Penta, M., Antoniol, G., and Guéhéneuc, Y. G., (2010), "A
Heuristic-based Approach to Identify Concepts in Execution Traces", in
Proceedings of 14th European Conference on Software Maintenance and
Reengineering (CSMR'10), Madrid, Spain, March.

[Biggerstaff'94] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., (1994), "The
Concept Assignment Problem in Program Understanding", in Proceedings of
15th IEEE/ACM International Conference on Software Engineering (ICSE'94)
May 17-21, pp. 482-498.

[Binkley'10a] Binkley, D. and Lawrie, D., (2010a), "Information Retrieval Applications
in Software Development", in Encyclopedia of Software Engineering, P.
Laplante, Ed.: Taylor & Francis LLC.

[Binkley'10b] Binkley, D. and Lawrie, D., (2010b), "Information Retrieval Applications
in Software Maintenance and Evolution", in Encyclopedia of Software
Engineering, P. Laplante, Ed.: Taylor & Francis LLC.

[Blei'03] Blei, D. M., Ng, A. Y., and Jordan, M. I., (2003), "Latent Dirichlet Allocation",
Journal of Machine Learning Research, vol. 3, pp. 993-1022.

[Bohnet'06a] Bohnet, J. and Döellner, J., (2006a), "Analyzing Feature Implementation
by Visual Exploration of Architecturally-Embedded Call-Graphs", in
Proceedings of International Workshop on Dynamic Systems Analysis
(WODA'06), Shanghai, China, pp. 41-48.

[Bohnet'06b] Bohnet, J. and Döellner, J., (2006b), "Visual Exploration of Function Call
Graphs for Feature Location in Complex Software Systems", in ACM
Symposium on Software Visualization (SOFTVIS'06). Brighton, United
Kingdom, pp. 95-104.

[Bohnet'07a] Bohnet, J. and Döellner, J., (2007a), "CGA Call Graph Analyzer - Locating
and Understanding Functionality within the Gnu Compiler Collection's
Million Lines of Code", in Proceedings of 4th IEEE International Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT'07),
Banff, Alberta, Canada, June 25-26, pp. 161-162.

44 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

[Bohnet'07b] Bohnet, J. and Döellner, J., (2007b), "Facilitating Exploration of
Unfamiliar Source Code by Providing 2½D Visualizations of Dynamic Call
Graphs", in Proceedings of 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT'07), Banff, Alberta,
Canada, June 25-26, pp. 63-66.

[Bohnet'08a] Bohnet, J. and Döellner, J., (2008a), "Analyzing Dynamic Call Graphs
Enhanced with Program State Information for Feature Location and
Understanding", in Proceedings of 30th IEEE/ACM International Conference
on Software Engineering (ICSE'08), Leipzig, Germany, May 10-18, pp. 915-
916.

[Bohnet'08b] Bohnet, J., Voigt, S., and Dollner, J., (2008b), "Locating and
Understanding Features of Complex Software Systems by Synchronizing
Time-, Collaboration- and Code-Focused Views on Execution Traces", in
Proceedings of 16th IEEE International Conference on Program
Comprehension (ICPC'08), Amsterdam, The Netherlands, June 10-13, pp.
268-271.

[Brin'98] Brin, S. and Page, L., (1998), "The Anatomy of a Large-Scale Hypertextual
Web Search Engine", in Proceedings of 7th International Conference on
World Wide Web, Brisbane, Australia, pp. 107-117.

[Buchta'06] Buchta, J., Petrenko, M., Poshyvanyk, D., and Rajlich, V., (2006),
"Teaching Evolution of Open Source Projects in Software Engineering
Courses", in Proceedings of 22nd IEEE International Conference on Software
Maintenance (ICSM'06), pp. 136-144.

[Buckner'05] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V., (2005), "JRipples: A
Tool for Program Comprehension during Incremental Change", in
Proceedings of 13th IEEE International Workshop on Program
Comprehension (IWPC'05), St. Louis, Missouri, USA, May 15-16, pp. 149-
152.

[Carver'99] Carver, L. and Griswold, W. G., (1999), "Sorting Out Concerns", in
Proceedings of OOPSLA'99 Workshop on Multi-Dimensional Separation of
Concerns.

[Chen'01a] Chen, A., Chou, E., Wong, J., Yao, A. Y., Zhang, Q., Zhang, S., and Michail,
A., (2001a), "CVSSearch: searching through source code using CVS
comments", in Proceedings of IEEE International Conference on Software
Maintenance (ICSM'01), Nov., pp. 364-373.

[Chen'00] Chen, K. and Rajlich, V., (2000), "Case Study of Feature Location Using
Dependence Graph", in Proceedings of 8th IEEE International Workshop on
Program Comprehension (IWPC'00), Limerick, Ireland, June pp. 241-249.

[Chen'01b] Chen, K. and Rajlich, V., (2001b), "RIPPLES: Tool for Change in Legacy
Software", in Proceedings of International Conference on Software
Maintenance (ICSM'01), Florence, Italy, November 07 - 09, 2001, pp. 230-
239.

[Cleary'06] Cleary, B. and Exton, C., (2006), "The Cognitive Assignment Eclipse Plug-
in", in Proceedings of 14th IEEE International Conference on Program
Comprehension (ICPC'06), Athens, Greece, June 14-17, pp. 241-244.

[Cleary'07] Cleary, B. and Exton, C., (2007), "Assisting Concept Location in Software
Comprehension", in Proceedings of 19th Psychology of Programming
Workshop, pp. 42-55.

[Cleary'09] Cleary, B., Exton, C., Buckley, J., and English, M., (2009), "An empirical
analysis of information retrieval based concept location techniques in software
comprehension", Empirical Software Engineering, vol. 14, no. 1, pp. 93-130.

[Comon'94] Comon, P., (1994), "Independent component analysis, a new concept?",
Signal Process., vol. 36, no. 3, Apr. 1994, pp. 287-314.

[Coppit'07] Coppit, D., Painter, R., and Revelle, M., (2007), "Spotlight: A Prototype
Tool for Software Plans", in Proceedings of International Conference on
Software Engineering (ICSE'07), pp. 754-757.

[Cornelissen'10] Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., and
Koschke, R., (2010), "A Systematic Survey of Program Comprehension
through Dynamic Analysis", IEEE Trans. on Software Engineering.

[Cubranic'03] Cubranic, D. and Murphy, G. C., (2003), "Hipikat: Recommending
pertinent software development artifacts", in Proceedings of 25th International

Feature Location in Source Code: A Taxonomy and Survey 45

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Conference on Software Engineering (ICSE'03), Portland, OR, May, pp. 408-
418.

[Cubranic'04] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S., (2004),
"Learning from project history: a case study for software development", in
Proceedings of ACM Conference on Computer Supported Cooperative Work
(CSCW'04), Chicago, Illinois, USA, pp. 82-91.

[Cubranic'05] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S., (2005),
"Hipikat: A Project Memory for Software Development", IEEE Transactions
on Software Engineering, vol. 31, no. 6, June, pp. 446-465.

[de Alwis'08] de Alwis, B. and Murphy, G. C., (2008), "Answering conceptual queries
with Ferret", in Proceedings of Proceedings of the International Conference on
Software Engineering (ICSE'08), Leipzig, Germany, pp. 21-30.

[de Alwis'07] de Alwis, B., Murphy, G. C., and Robillard, M., (2007), "A Comparative
Study of Three Program Exploration Tools", in Proceedings of 15th IEEE
International Conference on Program Comprehension, pp. 103-112.

[Deerwester'90] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., (1990), "Indexing by Latent Semantic Analysis", Journal of the
American Society for Information Science, vol. 41, pp. 391-407.

[Dufour'07] Dufour, B., Ryder, B. G., and Sevitsky, G., (2007), "Blended Analysis for
Performance Understanding of Framework-based Applications", in
Proceedings of International Symposium on Software Testing and Analysis
(ISSTA'07), London, United Kingdom, pp. 118-128.

[Eaddy'08a] Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, Y. G., (2008a),
"CERBERUS: Tracing Requirements to Source Code Using Information
Retrieval, Dynamic Analysis, and Program Analysis", in Proceedings of 16th
IEEE International Conference on Program Comprehension (ICPC'08),
Amsterdam, The Netherlands, pp. 53-62.

[Eaddy'08b] Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G.,
Nagappan, N., and Aho, A. V., (2008b), "Do Crosscutting Concerns Cause
Defects?", IEEE Transaction on Software Engineering, vol. 34, no. 4, July-
August, pp. 497-515.

[Edwards'06] Edwards, D., Simmons, S., and Wilde, N., (2006), "An approach to feature
location in distributed systems", Journal of Systems and Software, vol. 79, no.
1, Jan. 2006, pp. 57-68.

[Edwards'09] Edwards, D., Wilde, N., Simmons, S., and Golden, E., (2009),
"Instrumenting Time-Sensitive Software for Feature Location", in
Proceedings of International Conference on Program Comprehension
(ICPC'09), Vancouver, British Columbia, pp. 130-137.

[Egyed'03] Egyed, A., (2003), "A Scenario-Driven Approach to Trace Dependency
Analysis", IEEE Transactions on Software Engineering (TSE), vol. 29, no. 2,
February, pp. 116 - 132.

[Egyed'07] Egyed, A., Binder, G., and Grunbacher, P., (2007), "STRADA: A Tool for
Scenario-Based Feature-to-Code Trace Detection and Analysis", in
Proceedings of IEEE/ACM 29th International Conference on Software
Engineering (ICSE'07), pp. 41-42.

[Egyed'04] Egyed, A. and Grünbacher, P., (2004), "Identifying Requirements Conflicts
and Cooperation", IEEE Software, vol. 21, no. 6, Nov. 2004, pp. 50-58.

[Egyed'05a] Egyed, A. and Grünbacher, P., (2005a), "Supporting SOftware
Understanding with Automated Traceability", International Journal of
Software Engineering and Knowledge Engineering, vol. 15, no. 5, Oct. 2005,
pp. 783-810.

[Egyed'05b] Egyed, A., Heindl, M., Biffl, S., and Grünbacher, P., (2005b), "Determining
the Cost-Quality Trade-off for Automated Software Traceability", in
Proceedings of International Conference on Automated Software Engineering
(ASE'05), Long Beach, CA, pp. 360-363.

[Eisenbarth'01a] Eisenbarth, T., Koschke, R., and Simon, D., (2001a), "Aiding Program
Comprehension by Static and Dynamic Feature Analysis", in Proceedings of
International Conference on Software Maintenance (ICSM01), Florence, Italy,
November 7-9, pp. 602-611.

[Eisenbarth'01b] Eisenbarth, T., Koschke, R., and Simon, D., (2001b), "Derivation of
Feature Component Maps by means of Concept Analysis", in Proceedings of
European Conference on Software Maintenance and Reengineering
(CSMR'01), pp. 176-179.

46 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

[Eisenbarth'01c] Eisenbarth, T., Koschke, R., and Simon, D., (2001c), "Feature-Driven
Program Understanding Using Concept Analysis of Execution Traces", in
Proceedings of International Workshop on Program Comprehension
(IWPC'01), pp. 300-309.

[Eisenbarth'03] Eisenbarth, T., Koschke, R., and Simon, D., (2003), "Locating Features
in Source Code", IEEE Transactions on Software Engineering, vol. 29, no. 3,
March, pp. 210 - 224.

[Eisenberg'05] Eisenberg, A. D. and De Volder, K., (2005), "Dynamic Feature Traces:
Finding Features in Unfamiliar Code", in Proceedings of 21st IEEE
International Conference on Software Maintenance (ICSM'05), Budapest,
Hungary, September 25-30, pp. 337-346.

[Ernst'03] Ernst, M., (2003), "Static and Dynamic Analysis: Synergy and Duality", in
Proceedings of ICSE Workshop on Dynamic Analysis (WODA'03), Portland,
OR, May, pp. 24-27.

[Fischer'03] Fischer, M., Pinzger, M., and Gall, H., (2003), "Analyzing and Relating Bug
Report Data for Feature Tracking.", in Proceedings of IEEE Working
Conference on Reverse Engineering (WCRE'03), pp. 90-101.

[Furnas'87] Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T., (1987),
"The Vocabulary Problem in Human-System Communication",
Communications of the ACM, vol. 30, no. 11, pp. 964-971.

[Gao'04] Gao, J., Nie, J.-Y., Wu, G., and Cao, G., (2004), "Dependence Language Model
for Information Retrieval", in Proceedings of International ACM SIGIR
Conference on Research and Development in Information Retrieval, Sheffield,
United Kingdom, pp. 170-177.

[Gay'09] Gay, G., Haiduc, S., Marcus, M., and Menzies, T., (2009), "On the Use of
Relevance Feedback in IR-Based Concept Location", in Proceedings of 25th
IEEE International Conference on Software Maintenance (ICSM'09),
Edmonton, Canada, September, pp. 351-360.

[Grant'08] Grant, S., Cordy, J. R., and Skillicorn, D. B., (2008), "Automated Concept
Location Using Independent Component Analysis ", in Proceedings of 15th
Working Conference on Reverse Engineering (WCRE'08), Antwerp, Belgium,
October 15-18, pp. 138-142.

[Greevy'05] Greevy, O., Ducasse, S., and Girba, T., (2005), "Analyzing Feature Traces
to Incorporate the Semantics of Change in Software Evolution Analysis", in
Proceedings of 21st IEEE International Conference on Software Maintenance
(ICSM'05), pp. 347-356.

[Greevy'06] Greevy, O., Ducasse, S., and Girba, T., (2006), "Analyzing software
evolution through feature views", Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, no. 6, November, pp. 425 - 456.

[Griswold'01] Griswold, W. G., (2001), "Coping with Crosscutting Software Changes
Using Information Transparency", in Proceedings of 3rd International
Conference on Metalevel Architectures and Separation of Crosscutting
Concerns, Kyoto, Japan, September.

[Hayashi'10a] Hayashi, S., Sekine, K., and Saeki, M., (2010a), "iFL: An interactive
environment for understanding feature implementations", in Proceedings of
26th IEEE International Conference on Software Maintenance (ICSM'10),
Timisoara, Romania, Sept 12 -18, pp. 1-5.

[Hayashi'10b] Hayashi, S., Yoshikawa, T., and Saeki, M., (2010b), "Sentence-to-Code
Traceability Recovery with Domain Ontologies", in Proceedings of 17th Asia-
Pacific Software Engineering Conference (APSEC'10), Sydney, Australia,
Nov 30 - Dec 3, pp. 385-394.

[Hill'07] Hill, E., Pollock, L., and Vijay-Shanker, K., (2007), "Exploring the
Neighborhood with Dora to Expedite Software Maintenance", in Proceedings
of 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE'07), November, pp. 14-23.

[Hill'09] Hill, E., Pollock, L., and Vijay-Shanker, K., (2009), "Automatically Capturing
Source Code Context of NL-Queries for Software Maintenance and Reuse", in
Proceedings of 31st IEEE/ACM International Conference on Software
Engineering (ICSE'09), May 16-24.

[Ibrahim'03] Ibrahim, S., Idris, N. B., and Deraman, A., (2003), "Case study:
Reconnaissance techniques to support feature location using RECON2", in

Feature Location in Source Code: A Taxonomy and Survey 47

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Proceedings of Asia-Pacific Software Engineering Conference (APSEC'03),
pp. 371-378.

[Janzen'03] Janzen, D. and Volder, K., (2003), "Navigating and querying code without
getting lost", in Proceedings of 2nd International Conference on Aspect-
Oriented Software Development (AOSD'03), pp. 178-187.

[Kitchenham'04] Kitchenham, B., (2004), "Procedures for Performing Systematic
Reviews", vol. TR/SE-0401, I. 1353-7776, Ed. Keele, UK: Keele University.

[Kleinberg'99] Kleinberg, J. M., (1999), "Authoritative Sources in a Hyperlinked
Environment", Journal of the ACM, vol. 46, no. 5, pp. 604-632.

[Ko'05] Ko, A. J., Aung, H. H., and Myers, B. A., (2005), "Eliciting design requirements
for maintenance-oriented ides: a detailed study of corrective and perfective
maintenance tasks", in Proceedings of 27th IEEE/ACM International
Conference on Software Engineering (ICSE'05), May 15-21, pp. 126-135.

[Ko'08] Ko, A. J. and Meyers, B. A., (2008), "Debugging reinvented: asking and
answering why and why not questions about program behavior", in
Proceedings of International Conference on Software Engineering (ICSE'08),
Leipzig, Germany, pp. 301-310.

[Ko'06] Ko, A. J., Myers, B. A., Coblenz, M. J., and Aung, H. H., (2006), "An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks", IEEE Transactions on
Software Engineering (TSE) vol. 32, no. 12, December, pp. 971-987.

[Koschke'05] Koschke, R. and Quante, J., (2005), "On dynamic feature location", in
Proceedings of 20th IEEE/ACM International Conference on Automated
Software Engineering (ASE'05), Long Beach, CA, USA, pp. 86-95.

[Kothari'06] Kothari, J., Denton, T., Mancoridis, S., and Shokoufandeh, A., (2006), "On
Computing the Canonical Features of Software Systems", in 13th IEEE
Working Conference on Reverse Engineering (WCRE'06). Benevento, Italy.

[LaToza'07] LaToza, T. D., Garlan, D., Herbsleb, J. D., and Myers, B. A., (2007),
"Program Comprehension as Fact Finding", in Proceedings of The 6th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The foundations of Software Engineering, pp. 361 -
370.

[Liu'07] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., (2007), "Feature Location
via Information Retrieval based Filtering of a Single Scenario Execution
Trace", in Proceedings of 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE'07), Atlanta, Georgia, November 5-9,
pp. 234-243.

[Lukins'08] Lukins, S., Kraft, N., and Etzkorn, L., (2008), "Source Code Retrieval for
Bug Location Using Latent Dirichlet Allocation", in Proceedings of 15th
Working Conference on Reverse Engineering (WCRE'08), Antwerp, Belgium,
pp. 155-164.

[Lukins'10] Lukins, S. K., Kraft, N. A., and Etzkorn, L. H., (2010), "Bug localization
using Latent Dirichlet Allocation", Information and Software Technology, vol.
52, no. 9, pp. 972-990.

[Lukoit'00] Lukoit, K., Wilde, N., Stowell, S., and Hennessey, T., (2000), "TraceGraph:
Immediate Visual Location of Software Features ", in Proceedings of 16th
IEEE International Conference on Software Maintenance (ICSM'00),
Washington DC, USA, pp. 33-39.

[Marcus'03] Marcus, A., Feng, L., and Maletic, J. I., (2003), "3D Representations for
Software Visualization", in Proceedings of 1st ACM Symposium on Software
Visualization (SoftVis'03), San Diego, CA, June 11-13, pp. 27-36.

[Marcus'05a] Marcus, A. and Poshyvanyk, D., (2005a), "The Conceptual Cohesion of
Classes", in Proceedings of 21st IEEE International Conference on Software
Maintenance (ICSM'05), Budapest, Hungary, September 25-30, pp. 133-142.

[Marcus'05b] Marcus, A. and Rajlich, V., (2005b), "Panel Summary: Identifications of
Concepts, Features, and Concerns in Source Code", in Proceedings of 21st
IEEE International Conference on Software Maintenance (ICSM'05),
Budapest, Hungary, September 25-30, pp. 718.

[Marcus'05c] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and Sergeyev, A.,
(2005c), "Static Techniques for Concept Location in Object-Oriented Code",
in Proceedings of 13th IEEE International Workshop on Program
Comprehension (IWPC'05), St. Louis, Missouri, USA, pp. 33-42.

48 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

[Marcus'04] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., (2004), "An
Information Retrieval Approach to Concept Location in Source Code", in
Proceedings of 11th IEEE Working Conference on Reverse Engineering
(WCRE'04), Delft, The Netherlands, November 9-12, pp. 214-223.

[Olszak'10] Olszak, A. and Jørgensen, B. N., (2010), "Featureous: A Tool for Feature-
Centric Analysis of Java Software", in Proceedings of 18th IEEE International
Conference on Program Comprehension (ICPC'10), Braga, Portugal, June 30 -
July 2, pp. 44-45.

[Petrenko'07] Petrenko, M., Poshyvanyk, D., Rajlich, V., and Buchta, J., (2007),
"Teaching Software Evolution in Open Source", IEEE Computer, vol. 40, no.
11, pp. 25-31.

[Petrenko'08] Petrenko, M., Rajlich, V., and Vanciu, R., (2008), "Partial Domain
Comprehension in Software Evolution and Maintenance", in International
Conference on Program Comprehension.

[Poshyvanyk'06a] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and
Rajlich, V., (2006a), "Combining Probabilistic Ranking and Latent Semantic
Indexing for Feature Identification", in Proceedings of 14th IEEE
International Conference on Program Comprehension (ICPC'06), Athens,
Greece, pp. 137-146.

[Poshyvanyk'07a] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and
Rajlich, V., (2007a), "Feature Location using Probabilistic Ranking of
Methods based on Execution Scenarios and Information Retrieval", IEEE
Transactions on Software Engineering, vol. 33, no. 6, June, pp. 420-432.

[Poshyvanyk'06b] Poshyvanyk, D., Marcus, A., and Dong, Y., (2006b), "JIRiSS - an
Eclipse plug-in for Source Code Exploration", in Proceedings of 14th IEEE
International Conference on Program Comprehension (ICPC'06), Athens,
Greece, June 14-17, pp. 252-255.

[Poshyvanyk'05] Poshyvanyk, D., Marcus, A., Dong, Y., and Sergeyev, A., (2005),
"IRiSS - A Source Code Exploration Tool", in Proceedings of 21st IEEE
International Conference on Software Maintenance (ICSM'05), Budapest,
Hungary, September 25-30, pp. 69-72.

[Poshyvanyk'07b] Poshyvanyk, D. and Marcus, D., (2007b), "Combining Formal
Concept Analysis with Information Retrieval for Concept Location in Source
Code", in Proceedings of 15th IEEE International Conference on Program
Comprehension (ICPC'07), Banff, Alberta, Canada, June, pp. 37-48.

[Poshyvanyk'06c] Poshyvanyk, D., Petrenko, M., Marcus, A., Xie, X., and Liu, D.,
(2006c), "Source Code Exploration with Google ", in Proceedings of 22nd
IEEE International Conference on Software Maintenance (ICSM'06),
Philadelphia, PA, pp. 334 - 338.

[Rajlich'04] Rajlich, V. and Gosavi, P., (2004), "Incremental Change in Object-Oriented
Programming", in IEEE Software, pp. 2-9.

[Rajlich'02] Rajlich, V. and Wilde, N., (2002), "The Role of Concepts in Program
Comprehension", in Proceedings of IEEE International Workshop on Program
Comprehension (IWPC'02), pp. 271-278.

[Ratanotayanon'10] Ratanotayanon, S., Choi, H. J., and Sim, S. E., (2010), "Using
Transitive changesets to Support Feature Location", in Proceedings of 25th
IEEE/ACM International Conference on Automated Software Engineering
(ASE'10), Antwerp, Belgium, Sept 20-24, pp. 341-344.

[Ratiu'06] Ratiu, D. and Deissenboeck, F., (2006), "How Programs Represent Reality
(and How They Don’t)", in Proceedings of 13th Working Conference on
Reverse Engineering (WCRE'06), pp. 83 - 92.

[Ratiu'07] Ratiu, D. and Deissenboeck, F., (2007), "From Reality to Programs and (Not
Quite) Back Again", in Proceedings of 15th IEEE International Conference on
Program Comprehension (ICPC'07), Banff, Canada, pp. 91-102.

[Revelle'05] Revelle, M., Broadbent, T., and Coppit, D., (2005), "Understanding
Concerns in Software: Insights Gained from Two Case Studies", in
Proceedings of 13th IEEE International Workshop on Program
Comprehension (IWPC'05), St. Louis, Missouri, USA, May, pp. 23-32.

[Revelle'10] Revelle, M., Dit, B., and Poshyvanyk, D., (2010), "Using Data Fusion and
Web Mining to Support Feature Location in Software", in Proceedings of 18th
IEEE International Conference on Program Comprehension (ICPC'10), Braga,
Portugal, June 30 - July 2, pp. 14-23.

Feature Location in Source Code: A Taxonomy and Survey 49

CRC to Journal of Software Maintenance and Evolution: Research and Practice

[Revelle'09] Revelle, M. and Poshyvanyk, D., (2009), "An Exploratory Study on
Assessing Feature Location Techniques", in Proceedings of 17th IEEE
International Conference on Program Comprehension (ICPC'09), Vancouver,
British Columbia, Canada, May 17-19, pp. 218-222.

[Robillard'05a] Robillard, M., (2005a), "Automatic Generation of Suggestions for
Program Investigation", in Proceedings of Joint European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Lisbon, Portugal, September, pp. 11 - 20

[Robillard'08] Robillard, M. P., (2008), "Topology Analysis of Software Dependencies",
ACM Transactions on Software Engineering and Methodology, vol. 17, no. 4,
August, pp. 1-36.

[Robillard'04] Robillard, M. P., Coelho, W., and Murphy, G. C., (2004), "How effective
developers investigate source code: an exploratory study", IEEE Transactions
on Software Engineering (TSE), vol. 30, no. 12, pp. 889- 903.

[Robillard'02] Robillard, M. P. and Murphy, G. C., (2002), "Concern Graphs: Finding
and describing concerns using structural program dependencies", in
Proceedings of International conference on software engineering, pp. 406–
416.

[Robillard'03a] Robillard, M. P. and Murphy, G. C., (2003a), "Automatically Inferring
Concern Code from Program Investigation Activities", in Proceedings of 18th
International Conference on Automated Software Engineering (ASE'03), Linz,
Austria, October, pp. 225-234.

[Robillard'03b] Robillard, M. P. and Murphy, G. C., (2003b), "FEAT a tool for locating,
describing, and analyzing concerns in source code", in Proceedings of 25th
International Conference on Software Engineering (ICSE03), Portland, OR,
May 3-10, pp. 822-823.

[Robillard'07a] Robillard, M. P. and Murphy, G. C., (2007a), "Representing concerns in
source code", ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 16, no. 1.

[Robillard'07b] Robillard, M. P., Shepherd, D., Hill, E., Vijay-Shanker, K., and Pollock,
L., (2007b), "An Empirical Study of the Concept Assignment Problem".
Montreal, Quebec, Canada: McGill University.

[Robillard'05b] Robillard, M. P. and Weigand-Warr, F., (2005b), "ConcernMapper:
Simple View-Based Separation of Scattered Concerns", in Proceedings of
Eclipse Technology Exchange at OOPSLA (ETX'05), pp. 65-69.

[Rohatgi'07] Rohatgi, A., Hamou-Lhadj, A., and Rilling, J., (2007), "Feature Location
Based on Impact Analysis", in Proceedings of International Conference on
Software Engineering and Applications (SEA'07).

[Rohatgi'08] Rohatgi, A., Hamou-Lhadj, A., and Rilling, J., (2008), "An Approach for
Mapping Features to Code Based on Static and Dynamic Analysis", in
Proceedings of 16th IEEE International Conference on Program
Comprehension (ICPC'08), Amsterdam, The Netherlands, pp. 236-241.

[Rohatgi'09] Rohatgi, A., Hamou-Lhadj, A., and Rilling, J., (2009), "An Approach for
Solving the Feature Location Problem by Measuring the Component
Modification Impact", IET Software, vol. 3, no. 4, August, pp. 292-311.

[Safyallah'06] Safyallah, H. and Sartipi, K., (2006), "Dynamic Analysis of Software
Systems using Execution Pattern Mining", in Proceedings of 14th IEEE
International Conference on Program Comprehension (ICPC'06), Athens,
Greece, June 14-17, pp. 84-88.

[Sahner'86] Sahner, R. A. and Trivedi, K. S., (1986), ""SHARPE: Symbolic Hierarchical
Automated Reliability And Performance Evaluator, introduction and guide for
users,"". Durham, NC: Duke University.

[Salah'04] Salah, M. and Mancoridis, S., (2004), "A hierarchy of dynamic software
views: from object-interactions to feature-interactions", in Proceedings of 20th
IEEE International Conference on Software Maintenance (ICSM'04),
Chicago, IL, September 11-14, pp. 72-81.

[Salah'06] Salah, M., Mancoridis, S., Antoniol, G., and Di Penta, M., (2006), "Scenario-
driven dynamic analysis for comprehending large software systems", in
Proceedings of 10th IEEE European Conference on Software Maintenance
and Reengineering (CSMR'06), March 22-24, pp. 71-80.

[Salton'86] Salton, G. and McGill, M., (1986), Introduction to Modern Information
Retrieval, New York, NY, USA, McGraw-Hill.

50 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

[Sartipi'10] Sartipi, K. and Safyallah, H., (2010), "Dynamic Knowledge Extraction from
Software Systems using Sequential Pattern Mining", International Journal of
Software Engineering and Knowledge Engineering (IJSEKE), vol. 20, no. 6,
September, pp. 761-782.

[Saul'07] Saul, M. Z., Filkov, V., Devanbu, P., and Bird, C., (2007), "Recommending
Random Walks", in Proceedings of 11th European Software Engineering
Conference held jointly with 15th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE'07), Dubrovnik, Croatia,
pp. 15-24.

[Savage'10a] Savage, T., Dit, B., Gethers, M., and Poshyvanyk, D., (2010a), "TopicXP:
Exploring Topics in Source Code using Latent Dirichlet Allocation", in
Proceedings of 26th IEEE International Conference on Software Maintenance
(ICSM'10), Timişoara, Romania, September 12-18, pp. 1-6.

[Savage'10b] Savage, T., Revelle, M., and Poshyvanyk, D., (2010b), "FLAT^3: Feature
Location and Textual Tracing Tool", in Proceedings of 32nd ACM/IEEE
International Conference on Software Engineering (ICSE'10), Cape Town,
South Africa, pp. 255-258.

[Schach'01] Schach, S., (2001), Object-Oriented and Classical Software Engineering, 5
ed., New York, McGraw-Hill Higher Education.

[Shao'09] Shao, P. and Smith, R. K., (2009), "Feature location by IR modules and call
graph", in Proceedings of ACM Annual Southeast Regional Conference,
Clemson, South Carolina.

[Shepherd'07] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-Shanker, K.,
(2007), "Using Natural Language Program Analysis to Locate and Understand
Action-Oriented Concerns", in Proceedings of 6th International Conference on
Aspect Oriented Software Development (AOSD'07), pp. 212-224.

[Shepherd'06] Shepherd, D., Pollock, L., and Vijay-Shanker, K., (2006), "Towards
Supporting On-Demand Virtual Remodularization Using Program Graphs", in
Proceedings of International Conference on Aspect-Oriented Software
Development (AOSD'06), Bonn, Germany, pp. 3-14.

[Shonle'04] Shonle, M., Neddenriep, J., and Griswold, W., (2004), "AspectBrowser for
Eclipse: a case-study in plug-in retargeting", in Proceedings of OOPSLA
workshop on eclipse technology eXchange, pp. 78-82.

[Simmons'06] Simmons, S., Edwards, D., Wilde, N., Homan, J., and Groble, M., (2006),
"Industrial tools for the feature location problem: an exploratory study",
Journal of Software Maintenance: Research and Practice, vol. 18, no. 6, pp.
457-474.

[Somerville'01] Somerville, I., (2001), Software Engineering, Sixth ed., New Work,
Addison-Wesley.

[Trifu'08] Trifu, M., (2008), "Using Dataflow Information for Concern Identification in
Object-Oriented Software Systems", in Proceedings of European Conference
on Software Maintenance and Reengineering (CSMR'08), pp. 193-202.

[Trifu'09] Trifu, M., (2009), "Improving the Dataflow-Based Concern Identification
Approach", in Proceedings of European Conference on Software Maintenance
and Reengineering (CSMR'09), pp. 109-118.

[Van Geet'09] Van Geet, J. and Demeyer, S., (2009), "Feature Location in COBOL
Mainframe Systems: an Experience Report", in Proceedings of International
Conference on Software Maintenance (ICSM'09), pp. 361-370.

[Walkinshaw'07] Walkinshaw, N., Roper, M., and Wood, M., (2007), "Feature Location
and Extraction using Landmarks and Barriers", in Proceedings of International
Conference on Software Maintenance (ICSM'07), Paris, France, pp. 54-63.

[Weigand-Warr'08] Weigand-Warr, F. and Robillard, M. P., (2008), "Suade: Topology-
Based Searches for Software Investigation", in Proceedings of International
Conference on Software Engineering, May, pp. 780-783.

[Wilde'01] Wilde, N., Buckellew, M., Page, H., and Rajlich, V., (2001), "A Case Study
of Feature Location in Unstructured Legacy Fortran Code", in Proceedings of
European Conference on Software Maintenance and Reengineering
(CSMR'01), pp. 68-76.

[Wilde'03] Wilde, N., Buckellew, M., Page, H., Rajlich, V., and Pounds, L., (2003), "A
Comparison of Methods for Locating Features in Legacy Software", Journal
of Systems and Software, vol. 65, no. 2, February 15, pp. 105-114.

Feature Location in Source Code: A Taxonomy and Survey 51

CRC to Journal of Software Maintenance and Evolution: Research and Practice

[Wilde'96] Wilde, N. and Casey, C., (1996), "Early Field Experience with the Software
Reconnaissance Technique for Program Comprehension", in Proceedings of
International Conference on Software Maintenance (ICSM'96), pp. 270.

[Wilde'92] Wilde, N., Gomez, J. A., Gust, T., and Strasburg, D., (1992), "Locating User
Functionality in Old Code", in Proceedings of IEEE International Conference
on Software Maintenance (ICSM'92), Orlando, FL, November, pp. 200-205.

[Wilde'95] Wilde, N. and Scully, M., (1995), "Software Reconnaissance: Mapping
Program Features to Code", Journal of Software Maintenance: Research and
Practice, vol. 7, pp. 49-62.

[Wilde'02] Wilde, N., Simmons, S., Edwards, D., and Pounds, L., (2002), "But Where
Does it DO That? Locating Features in a Distributed Simulation", in
Proceedings of Fall Simulation Interoperability Workshop, Orlando, Florida.

[Wilson'10] Wilson, L. A., (2010), "Using Ontology Fragments in Concept Location", in
Proceedings of 26th IEEE International Conference on Software Maintenance
(ICSM'10), Timisoara, Romania, Sept 12-18, pp. 1-2.

[Wohlin'99] Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnel, B., and
Wesslen, A., (1999), Experimentation in Software Engineering: An
Introduction, Amsterdam, Kluwer Academic Press.

[Wong'99] Wong, W. E., Gokhale, S. S., Horgan, J. R., and Trivedi, K. S., (1999),
"Locating program features using execution slices", in Proceedings of IEEE
Symposium on Application-Specific Systems and Software Engineering and
Technology (ASSET'99), March 24-27, pp. 194-203.

[Würsch'10] Würsch, M., Ghezzi, G., Reif, G., and Gall, H. C., (2010), "Supporting
developers with natural language queries", in Proceedings of 32nd
ACM/IEEE International Conference on Software Engineering (ICSE'10),
Cape Town, South Africa, May 2-8, pp. 165-174.

[Xie'06] Xie, X., Poshyvanyk, D., and Marcus, A., (2006), "3D Visualization for
Concept Location in Source Code", in Proceedings of 28th IEEE/ACM
International Conference on Software Engineering (ICSE'06), Shanghai,
China, May 20-28, pp. 839-842.

[Zhai'04] Zhai, C. and Lafferty, J., (2004), "A Study of Smoothing Methods for
Language Models Applied to Information Retrieval", ACM Transactions on
Information Systems, vol. 22, no. 2, Apr. 2004, pp. 179-214.

[Zhao'04] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., (2004), "SNIAFL:
Towards a Static Non-Interactive Approach to Feature Location", in
Proceedings of 26th International Conference on Software Engineering
(ICSE'04), May, pp. 293-303.

[Zhao'06] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., (2006), "SNIAFL:
Towards a Static Non-interactive Approach to Feature Location", ACM
Transactions on Software Engineering and Methodologies (TOSEM), vol. 15,
no. 2, pp. 195-226.

52 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Table 3 Classification of approaches and techniques from Section 4.2 to Section 4.9
within our taxonomy (refer to our online appendix for references and the list of systems

evaluated)

Input Derivative Output
Prog.
Lang.

Evaluation

Approach

Q
u

er
y

S
ce

n
ar

io

P
ro

g.
 E

le
m

.

S
C

 c
om

p
il

ab
le

S
C

 n
on

-c
om

p
.

D
ep

. g
ra

ph

E
xe

c.
 t

ra
ce

H
is

to
ri

ca
l i

n
f.

O
th

er

F
il

e/
cl

as
s

M
et

h
od

S
ta

te
m

en
t

N
on

-S
C

 a
rt

if
ac

t

R
an

k
ed

V
is

ua
li

za
ti

on

Ja
va

C
/C

+
+

O
th

er

P
re

li
m

in
ar

y

B
en

ch
m

ar
k

A
ca

d
em

ic

P
ro

fe
ss

io
na

l

Q
u

an
ti

ta
ti

ve

Q
u

al
it

at
iv

e

C
om

pa
ri

so
n

U
n

k
no

w
n

/n
on

e

Dynamic
[Wilde'95] . ● . ● . . ● . ● . ● ● . ● . . ● ● ● . .
[Wilde'92] . ● . ● . . ● . ● . ● ● . ● ● . .
[Eisenberg'05] . ● . ● . . ● . ● . ● . . ● ● ● . . ● . . . ● ● ● .
[Wong'99] . ● . ● . . ● ● . . ● . ● . ● . . . ● ● . .
[Eisenbarth'01b] . ● . ● . . ● . . ● ● ● . ● ● . ● . ● ● . .
[Eisenbarth'01c] . ● . ● . . ● . . ● ● ● . ● ● . ● . ● ● . .
[Safyallah'06] . ● . ● . . ● . ● . ● ● . ● ● . .
[Sartipi’10] . ● . ● . . ● . ● . ● . . . ● . ● . ● ● . .
[Edwards'06] . ● . ● . . ● . ● . ● . . ● . . ● ● ● ● . .
[Bohnet'08b] . ● . ● . . ● . ● . ● . ● . ● . ● . ● . ● . . ● ● .

Static
[Chen'00] . . ● ● . ● ● ● . ● . ● . . ● . .
[Robillard'02] . . ● ● . ● . . ● ● ● ● . . ● . ● ● ● ● . .
[Robillard'07a] . . ● ● . ● . . ● ● ● ● . . ● . ● . . ● . .
[Robillard'05a] . . ● ● . ● ● ● . ● . ● . . ● . . . ● ● . .
[Robillard'08] . . ● ● . ● ● . . ● . ● . . ● . ● . ● ● . .
[Saul’07] . . ● ● . ● ● . . ● . . ● . ● . . . ● ● ● .
[Trifu'08] . . ● . . ● ● ● . . ● ● . .
[Trifu'09] . . ● . . ● ● ● . . ● . . . ● ● ● .
Textual
[Petrenko'08] ● . . . ● . . . ● . ● ● ● . ● . ● . . ● . .
[Wilson'10] ● . . . ● . . . ● . ● ● ● . ● . ● . ● ● . .
[Marcus'04] ● . . . ● ● . . ● . . ● . ● . ● . ● ● ● .
[Poshyvanyk'07b] ● . . . ● . . . ● . ● . . ● ● ● . . ● . ● . ● ● . .
[Cleary'07] ● . . . ● . . . ● . ● . . ● . ● . . ● . . . ● . ● .
[Cleary'09] ● . . . ● . . . ● . ● . . ● . ● . . ● . . . ● ● ● .
[Gay'09] ● . . . ● . . . ● . ● . . ● . ● . . ● . ● . . ● ● .
[Grant'08] ● . . . ● . ● . . ● . . ● . ● ● . .
[Shepherd'06] ● . . . ● . . . ● ● ● ● . . ● . ● . . ● . .
[Hill'09] ● . . . ● . . . ● . ● . . ● . ● . . . ● . ● ● ● ● .
[Abebe'10] ● . . . ● . . . ● ● . . . ● . . ● . ● . ● . ● ● . .
[Würsch'10] ● . . . ● . . . ● . ● ● . . ●
Dynamic + Static
[Eisenbarth'01a] . ● . ● . ● ● . . . ● . . ● ● . ● . ● ● . .
[Eisenbarth'03] . ● . ● . ● ● ●
[Koschke'05] . ● . ● . . ● . ● . ● ● . ● ● . ● . ● . . . ● ● . .
[Antoniol'05] . ● . ● . . ● . ● ● ● . . ● ● . ● . ● . . . ● ● ● .
[Antoniol'06] . ● . ● . . ● . ● ● ● . . ● ● ● ● . ● . . . ● ● ● .
[Rohatgi'07] . ● . ● . ● ● . . ● . . . ● . ● . . ● ● . .
[Rohatgi'08] . ● . ● . ● ● . . ● . . . ● . ● . . ● ● . .
[Rohatgi'09] . ● . ● . ● ● . . ● . . . ● . ● . . ● ● . .
[Walkinshaw'07] . ● . ● . ● ● . ● . ● . . . ● ● . . ● . . . ● ● . .
Dynamic + Textual
[Poshyvanyk'06a] ● ● . ● ● . ● . . . ● . . ● . . ● . ● . . . ● ● ● .
[Poshyvanyk'07a] ● ● . ● ● . ● . . . ● . . ● . ● ● . ● . . . ● ● ● .
[Liu'07] ● ● . ● ● . ● . . . ● . . ● . ● . . ● . ● . ● ● ● .
[Asadi'10] . ● . ● ● . ● . . . ● ● . . ● . . . ● ● . .
[Revelle'10] ● ● . ● ● ● ● . ● . ● . . ● . ● . . . ● . . ● ● ● .
[Hayashi'10a] ● . . ● ● . ● . ● . ● . . ● . ● . . ● . . . ● ● . .

Feature Location in Source Code: A Taxonomy and Survey 53

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Table 4 Classification of approaches and techniques from Section 4.2 to Section 4.9
within our taxonomy (continued)

Input Derivative Output
Prog.
Lang.

Evaluation

Approach

Q
u

er
y

S
ce

n
ar

io

P
ro

g.
 E

le
m

.

S
C

 c
om

p
il

ab
le

S
C

 n
on

-c
om

p
.

D
ep

. g
ra

ph

E
xe

c.
 t

ra
ce

H
is

to
ri

ca
l i

n
f.

O
th

er

F
il

e/
cl

as
s

M
et

h
od

S
ta

te
m

en
t

N
on

-S
C

 a
rt

if
ac

t

R
an

k
ed

V
is

ua
li

za
ti

on

Ja
va

C
/C

+
+

O
th

er

P
re

li
m

in
ar

y

B
en

ch
m

ar
k

A
ca

d
em

ic

P
ro

fe
ss

io
na

l

Q
u

an
ti

ta
ti

ve

Q
u

al
it

at
iv

e

C
om

pa
ri

so
n

U
n

k
no

w
n

/n
on

e

Static + Textual
[Zhao'04] ● . ● ● ● ● . . ● . ● . ● . . . ● . ● . . . ● ● ● .
[Zhao'06] ● . . ● ● ● . . ● . ● . ● . . . ● . ● . . . ● ● ● .
[Hill'07] ● . ● ● ● ● ● . . ● ● ● . . ● . . . ● . ● .
[Shao'09] ● . . ● ● ● ● . . ● . . ● . ●
[Ratiu'06] . . . ● ● . . ● ● . . ● . . ● ● . .
[Ratiu’07] . . ● ● ● ● . . ● . ● ● ● . . ● . . ● . . . ● ● . .
[Shepherd'07] ● . . ● ● ● . . ● . ● . . . ● ● . . ● . ● ● ● ● ● .
[Hayashi'10b] ● . . ● ● . ● . . ● ● ● . . ● . . . ● ● . .
Dynamic + Static + Textual
[Eaddy'08a] ● . . ● ● ● ● . ● . ● . . ● . ● . . . ● . . ● ● ● .
Other
[Chen'01a] ● . . . ● . . ● ● ● . ● . . ● . ● . ● . ● . . ● ● .
[Cubranic'03] ● . ● . ● . . ● ● ● ● . ● ● . ● . . ● . ● . . ● ● .
[Cubranic'05] ● . ● . ● . . ● ● ● ● . ● ● . ● . . ● . ● ● ● ● . .
[Cubranic'04] ● . ● . ● . . ● ● ● ● . ● ● . ● . . ● . ● ● . ● ● .
[Robillard'03a] . . . ● ● . ● ● . . . ● . . ● . ● . . ● . .
[Ratanotayanon'10] ● . ● ● . ● . ● ● ● ● . . ● . ● ●

54 B. Dit M. Revelle M. Gethers and D. Poshyvanyk

CRC to Journal of Software Maintenance and Evolution: Research and Practice

Table 5 Classification of tools and case studies

Input Derivative Output
Prog.
Lang.

Evaluation

Approach

Q
ue

ry

S
ce

na
ri

o

P
ro

g.
 E

le
m

.

S
C

 c
om

pi
la

bl
e

S
C

 n
on

-c
om

p.

D
ep

. g
ra

ph

E
xe

c.
 tr

ac
e

H
is

to
ri

ca
l i

nf
.

O
th

er

F
il

e/
cl

as
s

M
et

ho
d

S
ta

te
m

en
t

N
on

-S
C

 a
rt

if
ac

t

R
an

ke
d

V
is

ua
li

za
ti

on

Ja
va

C
/C

+
+

O
th

er

P
re

li
m

in
ar

y

B
en

ch
m

ar
k

A
ca

de
m

ic

P
ro

fe
ss

io
na

l

Q
ua

nt
it

at
iv

e

Q
ua

li
ta

ti
ve

C
om

pa
ri

so
n

U
nk

no
w

n/
no

ne

Tools for Dynamic FL
[Lukoit'00] . ● . ● . . ● . ● . ● ● . . ● . ● . ● ● . .
[Egyed'07] . ● . ● . . ● . . . ● . . . ● ● ● . ●
[Olszak'10] . ● . ● . . ● . ● . ● . . . ● ● ●
Tools for Static FL
[Chen'01b] . . ● ● . ● ● . . . ● . ● . ● . ● . ● ● ● .
[Buckner'05] ● ● ● . ●
[Weigand-Warr'08] . . ● ● . ● ● . . ● . ● . . ● ● . .
Tools for Textual FL
[Poshyvanyk'06c] ● . . . ● ● . . . ● . ● . . ● . ● . ● ● ● .
[Poshyvanyk'05] ● . . . ● ● ● ●
[Poshyvanyk'06b] ● . . . ● ● ● ●
[Xie'06] ● . . . ● ● . . . ● . ● ●
[Cleary'06] . . . ● ● ● ● . . ● . ● ●
Other Tools for FL
[Robillard'03b] . . ● ● . ● . . ● ● ● ● ●
[Robillard'05b] ● . . . ● . . . ● . ● ● ●
[Savage'10b] ● ● . ● ● . ● . . . ● . . ● ● ● ●
[Savage'10a] ● . . ● . ● . . . ● ● . . ● ● ● . . ● . ● . ● ● ● .
[Bohnet'06b] . ● . ● . ● ● . ● . ● . . . ● . ● ● . .
[Bohnet'06a] . ● . ● . ● ● . ● ● ● . ● ●
[Bohnet'08a] . ● ● ● . ● ● . . . ● . . . ● . ● ●
[Bohnet'07b] ●
[Bohnet'07a] . ● . ● ● . . . ● . ● ● . ●

Case Studies
[Wilde'96] . ● . ● . . ● . ● . ● . . ● . . ● . ● ● . .
[Wilde'01] ● ● ● ● ● ● ● . ● . ● . . ● ● . . ● ● . ● ● . ● ● .
[Wilde'03] . ● ● ● . ● ● . ● . ● . . ● ● . . ● ● . ● ● . ● ● .
[Ibrahim'03] . ● . ● . . ● . ● . ● . . ● . . ● . ● ● . .
[Marcus'05c] ● . ● ● ● ● ● ● . . . ● ● . ● . ● . ● ● . .
[Revelle'09] ● ● ● ● ● ● ● . . . ● . . ● . ● . . ● . ● . . ● ● .
[Simmons'06] . ● . ● . ● ● . . . ● . . . ● . ● . ● . ● . ● ● . .
[Van Geet'09] . ● . ● . . ● . ● . ● ● . ● ● ● . .
[Revelle'05] . . ● . ● . . . ● . . ● . . . ● ● . ● . ● . ● . ● .

