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SUMMARY

The paper presents an approach to recommend a ranked list of expert developers to assist in the imple-
mentation of software change requests (e.g., bug reports and feature requests). An Information Retrieval
(IR)-based concept location technique is first used to locate source code entities, e.g., files and classes,
relevant to a given textual description of a change request. The previous commits from version control
repositories of these entities are then mined for expert developers. The role of the IR method in selectively
reducing the mining space is different from previous approaches that textually index past change requests
and/or commits. The approach is evaluated on change requests from three open-source systems: ArgoUML,
Eclipse, and KOffice, across a range of accuracy criteria. The results show that the overall accuracies of
the correctly recommended developers are between 47 and 96% for bug reports, and between 43 and 60%
for feature requests. Moreover, comparison results with two other recommendation alternatives show that
the presented approach outperforms them with a substantial margin. Project leads or developers can use
this approach in maintenance tasks immediately after the receipt of a change request in a free-form text.
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1. INTRODUCTION

It is a common, but by no means trivial task, in software maintenance for technical leads to delegate
the responsibility of implementing change requests (e.g., bug fixes and new feature requests) to
the developers with the right expertise. This task typically involves project or even organization-
wide knowledge, and the balancing of many factors; all of which if handled manually can be
quite tedious [1]. The issue is particularly challenging in large-scale software projects with several
years of development history and developed collaboratively with hundreds of contributors, often
geographically distributed (e.g., open-source development environments). It is not uncommon in
such projects to receive numerous change requests daily that need to be resolved in an effective
manner (e.g., within time, priority, and quality factors).

Therefore, assigning change requests to the developers with the right implementation expertise
is challenging, but certainly a needed activity. For example, one straightforward practice is to
e-mail the project team or developers, or discuss via issue-tracking system, and rely on them
for suggestions or advice on who has helpful knowledge about a certain part of source code,
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a bug, or a feature. Clearly, this activity is reactive and may not necessarily yield an effective
or efficient answer. An active developer of ArgoUML, where this activity is manual, stated that
they would welcome any tool that would lead to more enjoyable and efficient job experience,
and is not perceived as a hindrance. In open-source software development, where much relies
on volunteers, it could serve as a catalyst if there was a tool that automatically mapped change
requests to appropriate developers. That is, developers do not have to wade through the numerous
change requests to seek for what they can contribute to; they are presented a ‘filtered’ set of change
requests that suits their palates instead. Both help seekers and sustained software evolution in such
a situation would greatly benefit from a proactive approach that automatically recommends the
appropriate developers based solely on information available in textual change requests. Change
requests are typically specified in a free-form textual description using natural language (e.g., a
bug reported to the Bugzilla system of a software project).

The core research philosopy is that the present+past of a software system leads to its better
future evolution [2]. Here, the umbrella term concept refers to the textual description of the change
request irrespective of its specific intent (e.g., a new feature request or a bug report). An information
retrieval (IR) technique, specifically Latent Semantic Indexing (LSI) [3, 4], is first used to locate
the relevant units of source code (e.g., files and classes) that implement the concept of interest in
a single version (e.g., KOffice 2.0-Beta 2) in which a bug is reported. The past commits (e.g., from
Subversion repositories) of only the relevant units of source code are then analyzed to recommend
a ranked list of candidate developers [5]. Therefore, our approach not only recommends a list of
developers who should resolve a particular change request, but also the potentially relevant source
code to it. The same ArgoUML developer mentioned above commented that pinpointing the source
code associated with a problem (i.e., involved in a bug) is also interesting, which is exactly what
our approach provides, as an intermediate step.

The core research philosophy is that the present+past of a software system leads to its better
future evolution [6]. This combined approach integrates several latent opportunities in the rich
set of actual changes that is left behind in the system’s development history (otherwise perceived
as a challenge and largely ignored in conventional development tools). We can now ask for
developer recommendations at the textual change request level instead of at the source code level,
as in our previous work [5]. For example, our approach correctly recommended a ranked list
of developers, [jaham, boemann], knowledgeable in source code files related to a bug, from its
description ‘splitting views duplicates the tool options docker’, in KOffice‡, an open-source office
productivity suite.

The key contribution of our work is the first use of a concept location technique combined with a
technique based on Mining Software Repositories (MSR) for the expert developer recommendation
task. This combined approach is different from other previous approaches, including those using
IR, for expert developer recommendations that rely solely on the historical account of past change
requests and/or source code changes [1, 5, 7–9]. Our approach does not need to mine past change
requests (e.g., history of similar bug reports to resolve the bug request in question), but does
require source code change history. The single-version analysis with IR is employed to reduce the
mining space of the source code change history to only selected entities. The paper includes a
comprehensive evaluation of the approach (which was not reported in [2]) on a number of change
requests spanning across bug reports, feature requests, and even refactorings, from KOffice, and
also a number of releases and commit history periods of ArgoUML and Eclipse. The accuracy of
the developer recommendations is rigorously assessed across various criteria. The results indicate
that our approach fares very well with accuracies of 80% for bug reports and 42% for feature
requests in KOffice, for example.

The remainder of the paper is organized as follows. Section 2 describes our approach to devel-
oper recommendation. Sections 3 and 4 present a systematic evaluation and analysis of three

‡KOffice is an integrated office suite for K Development Environment and is available at http://www.koffice.org/
(verified on 10/21/09).
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open-source systems. Section 5 is devoted to threats to validity. Section 6 discusses the related
literature and conclusions are presented in Section 7.

2. OUR APPROACH TO EXPERT DEVELOPER RECOMMENDATIONS

Our approach to recommending expert developers to assist with a given change request consists
of the following two steps:

(1) Given a concept description, we use LSI to locate a ranked list of relevant units of source
code (e.g., files, classes, and methods) that implement that concept in a version (typically
the version in which an issue is reported) of the software system.

(2) The version histories of units of source code from the above step are then analyzed to
recommend a ranked list of developers that are the most experienced and/or have substantial
contributions in dealing with those units (e.g., classes).

2.1. Locating concepts with information retrieval

Concept refers to a human-oriented expression of the intent of implemented software or its parts
[10]. Concepts are typically expressed in natural language with terms from application and/or
problem domains. Examples include spell checking in a word processor or drawing a shape in a
paint program. Concept location is a widely studied problem in software engineering and includes
many flavors such as feature identification and concern location. In short, a typical concept location
technique identifies the relevant units of a software system (e.g., classes or methods in C++) that
implement a specific concept that originates from the domain of interest [11]. Existing approaches
to concept location use different types of software analyses. They can be broadly classified based
on their use of static, dynamic, and/or combined analysis.

In software engineering, LSI has been used for a variety of tasks such as software reuse [12, 13],
identification of abstract data types [14], detection of high-level concept clones [15, 16], recovery
of traceability links between software artifacts [17–20], identifying topics in source code [21],
classifying and clustering software [22], measuring cohesion [23] and coupling [24], browsing
relevant software artifacts [25], and tracing requirements [26, 27].

Using advanced IR techniques, such as those based on LSI [4, 28], allows users to capture
relations between terms (words) and documents in large bodies of text. A significant amount of
domain knowledge is embedded in the comments and identifiers present in source code. Using
IR methods, users are able to index and effectively search this textual data by formulating natural
language queries, which describe the concepts they are interested in. Identifiers and comments
present in the source code of a software system form a language of their own without a grammar or
morphological rules. LSI derives the meanings of words from their usage in passages, rather than
a predefined dictionary, which is an advantage over existing techniques for text analysis that are
based on natural language processing [29]. Marcus et al. [4] introduced a methodology to index
and search source code using IR methods. Subsequently, Poshyvanyk and Marcus [28] refined the
methodology and combined it with dynamic information to improve its effectiveness.

In our approach, the comments and identifiers from the source code are extracted and a corpus
is created. In this corpus, each document corresponds to a user-chosen unit of source code (e.g.,
class) in the system. LSI indexes this corpus and creates a signature for each document. These
indices are used to define similarity measures between documents. Users can originate queries
in natural language (as opposed to regular expressions or some other structured format) and the
system returns a list of all the documents in the system ranked by their semantic similarity to the
query. This use is analogous to many existing web search engines.

(1) Creating a corpus of a software system: The source code is parsed using a developer-defined
granularity level (i.e., methods, classes, or files) and documents are extracted from the source
code. A corpus is created so that each method (and/or class) will have a corresponding
document in the resulting corpus. Only identifiers and comments are extracted from the
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Table I. Top five classes extracted and ranked by the concept location tool
that are relevant to the description of bug # 173881 reported in KOffice.

Rank Class names Similarity

1 KoDockerManager 0.66
2 ViewCategoryDelegate 0.54
3 ViewListDocker 0.51
4 KisRulerAssistantToolFactory 0.49
5 KWStatisticsDocker 0.46

source code. In addition, we also created the corpus builder for large C++ projects, using
srcML [30] and Columbus [31].

(2) Indexing: The corpus is indexed using LSI and its real-valued vector subspace representation is
created. Dimensionality reduction is performed in this step, capturing the important semantic
information about identifiers and comments in the source code, and their relationships. In
the resulting subspace, each document (method or class) has a corresponding vector. The
steps 1 and 2 are usually performed once, while the others are repeated until the user finds
the desired parts of the source code.

(3) Formulating a query: A set of terms that describe the concept of interest constitutes the
initial query, e.g., the short bug description of a bug or a feature described by the developer
or reporter. The tool spell-checks all the terms from the query using the vocabulary of the
source code (generated by LSI). If any word from the query is not present in the vocabulary,
then the tool suggests similar words based on edit distance and removes the term from the
search query.

(4) Ranking documents: Similarities between the user query and documents from the source code
(e.g., methods or classes) are computed. The similarity between a query reflecting a concept
and a set of data about the source code indexed via LSI allows for the generation of a ranked
list of documents relevant to the concept. All the documents are ranked by the similarity
measure in descending order (i.e., the most relevant at the top and the least relevant at the
bottom).

LSI offers many unique benefits when compared to other natural language processing techniques,
among which are included the robustness of LSI with respect to outlandish identifier names and
stop words (which are eliminated), and no need of a predefined vocabulary or morphological rules.
The finer details of the inner workings of LSI used in this work are similar to its previous usages;
we refer the interested readers to [4, 28].

Here, we demonstrate the working of the approach using an example from KOffice. The change
request or concept of interest is the bug# 173881§ that was reported to the bug-tracking system
(maintained by Bugzilla) on 2008-10-30. The reporter described the bug as follows:

splitting views duplicates the tool options docker.

We consider the above textual description as a concept of interest. We collected the source code
of KOffice 2.0-Beta 2 from the development trunk on 2008-10-31 (the bug was not fixed as of this
date). We parsed the source code of KOffice using the class-level granularity (i.e., each document
is a class). After indexing with LSI, we obtained a corpus consisting of 4756 documents and
containing 19 990 unique words. We formulated a search query using the bug’s textual description,
which was used as an input to LSI-based concept location tool. The partial results of the search
(i.e., a ranked list of relevant classes) are summarized in Table I.

§http://bugs.kde.org/show bug.cgi?id=173881 (verified on 10/21/09).
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Figure 1. Part of a KOffice subversion log message.

2.2. Recommending developers from mining software repositories

We use the xFinder approach to recommend expert developers by mining version archives of a
software system [5]. The basic premise of this approach is that the developers who contributed
substantial changes to a specific part of source code in the past are likely to best assist in its
current or future changes. More specifically, past contributions are analyzed to derive a mapping
of the developers’ expertise, knowledge, or ownership to particular entities of the source code—a
developer–code map. Once a developer–code map is obtained, a list of developers who can assist
in a given part of the source code can be acquired in a straightforward manner.

Our approach uses the commits in repositories that record source code changes submitted
by developers to the version-control systems (e.g., Subversion¶ and CVS). Commits’ log entries
include the dimensions author, date, and paths (e.g., files) involved in a change-set. Figure 1 shows
a log entry from the Subversion repository of KOffice. A log entry corresponds to a single commit
operation. In this case, the changes in the file koffice/kword/part/frames/KWAnchorStrategy.cpp
are committed by the developer zander on the date/time 2008-11-14T17:22:26.488329Z.

We developed a few measures to gauge developer contributions from commits [5]. We used the
measures to determine developers that were likely to be experts in a specific source code file, i.e.,
developer–code map. The developer–code map is represented by the developer–code vector DV
for the developer d and file f .

DV(d, f ) =〈C f , A f , R f 〉, where:
• C f is the number of commits, i.e., commit contributions that include the file f and are
committed by the developer d.

• A f is the number of workdays, i.e., calendar days, in the activity of the developer d with
commits that include the file f .

• R f is the most recent workday in the activity of the developer d with a commit that includes
the file f .

Similarly, the file-change vector FV representing the change contributions to the file f , is shown
below:

FV( f ) =〈C ′
f , A

′
f , R

′
f 〉, where

• C ′
f is the total number of commits, i.e., commit contributions, that include the file f .

• A′
f is the total number of workdays in the activity of all developers that include changes to

the file f .
• R′

f is the most recent workday with a commit that includes the file f .

¶Subversion is an open-source version control system and is available at http://subversion.tigris.org/ (verified on
10/21/09).
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The measuresC f , A f , and R f are computed from the log history of commits that is readily available
from source code systems, such as CVS and Subversion. More specifically, the dimensions author,
date, and paths of log entries are used in the computation. The dimension date is used to derive
workdays or calendar days. The dimension author is used to derive the developer information.
The dimension path is used to derive the file information. Similarly, the measures C ′

f , A
′
f , and

R′
f are computed. The log entries are readily available in the form of XML and straightforward

XPath queries were formulated to compute the measures.
The contribution or expertise factor, termed xFactor, for the developer d and the file f is

computed using a similarity measure of the developer–code vector and the file-change vector. For
example, we use the Euclidean distance to find the distance between the two vectors (for the details
on computing this measure refer to [5]). Distance is the opposite of similarity, thus lesser the
value of the Euclidean distance, greater the similarity between the vectors. xFactor is an inverse
of distance and is given as follows,

xFactor(d,v) = 1

|DV (d, f )−FV ( f )|

xFactor(d,v) = 1√
(C f −C ′

f )
2+(A f −A′

f )
2+(R f −R′

f )
2

We use xFactor as a basis to suggest a ranked list of developers to assist with a change in a given
file. The developers are ranked based on their xFactor values. The ranking is directly proportional
to the xFactor values. That is, the developer with the highest value is ranked first, one with the
second highest value is ranked second, and so forth. Multiple developers with the same values are
given the same rank. Now, some files may have not changed in a very long time or added for the
very first time. As a result, there will not be any recommendation at the file level. To overcome
this problem, we look for developers who are experts in a package that contains the file, and
recommend them instead. If no package expert can be identified, we turn to the idea of system
experts as a final option. By doing so, we strive for guaranteed recommendation from our tool.

Package here means the immediate directory that contains the file, i.e., we consider the physical
organization of source code. We define the package expert as the one who updated the largest
number of unique files in a specific package.We feel the package experts are a reasonable choice and
a developer with experience in several files of a specific package can most likely assist in updating a
specific file in that package. As a final option, if no package expert can be identified, we turn to the
idea of a system expert. The systemmeans a collection of packages. It can be a subsystem, a module,
or a big project (e.g., kspread, KOffice, and gcc). The system or project expert is the person(s) who
is involved in updating the largest number of different (unique) files in the system. The person who
updated the most files should have more knowledge about the system. In this way, we move from
the lowest, most specific expertise level (file) to the higher, broader levels of expertise (package then
system). According to this approach, we guarantee that the tool always gives a recommendation,
unless this is the very first file added to the system. The procedure for the suggested approach is
given in Figure 2. The integer parameter maxExperts, i.e., the maximum of developer recommen-
dations desired from the tool, is user defined. The number of recommendations follow the property
maxFileExperts+maxPackageExperts+maxSystemExperts<=maxExperts, i.e., the total number
of recommendations possible from all the three levels collectively is less than or equal to the
user-specified value. To help understand the process we now present a detailed example/scenario
of using our approach.

Now, we demonstrate the working of the second step of our approach, i.e., xFinder, using the
KOffice bug example from Section 2.1. The classes from Table I, given by concept location, are
fed to the xFinder tool. The files in which these classes are implemented are first identified. In
our example, it turned out that each class was located in a different file; however, it is possible
that multiple classes are implemented in a single file. xFinder is used to recommend developers
for one file at a time. Here, we limit our discussion to a single file, i.e., the file containing the
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def Recommender (f, p, maxExperts, h)
# f: the file name
# p: the package name that contains f
# maxExperts: maximum number of recommended developers
# h: the period of history
for each developer d in h:

if xFactor(f,d) > 0: fileList.add(d)
#descending sort for developers in fileList by xFactor values
sort(fileList, xFactor, reverse=true)
#print the first maxFileExperts developer
printList(fileList,maxExperts)
if fileList.size( ) >= maxExperts: Exit
for each developer d in h:

#no. of files in package p updated by d
if fileCount (p,d) > 0: packageList.add(d)

# descending sort for developers in fileList by fileCount values
sort(packageList,fileCount, reverse=false)
#print the first maxExperts- fileList.size( ) developer
printList(packageList,maxExperts- fileList.size( ))
If maxExperts- fileList.size( )=0: Exit
for each developer d in h:

#no. of files in the whole system updated by d
if fileCount (d) > 0: sysList.add(d)

# descending sort for developers in sysList by fileCount values
sort(sysList,fileCount,reverse=false)
#print the first maxSysExperts developer
printList(fileList, maxExperts- packageList.size() - fileList.size( ))

Figure 2. The procedure used in xFinder to give a ranked list of developer candidates to
assist with a given source code entity.

Table II. Candidate expert developers recommended by xFinder to the
KoDockerManager.cpp file in KOffice.

Rank File experts Package experts

1 jaham mpfeiffer
2 boemann jaham
3 zander

top most class obtained from our concept location step. The file guiutils/KoDockerManager.cpp
contains the top-ranked class KoDockerManager. xFinder started with KOffice 2.0-Beta 2 from
the development trunk version on 2008-10-31 and worked its way backward in the version history
to look for recommendations for the file guiutils/KoDockerManager.cpp. We configured xFinder
to recommend a maximum of five developers. The ranked list of developer user IDs that xFinder
recommended at file and package levels are provided in Table II. Further details on xFinder are
provided in our previous work on this topic [5].

The bug# 173881 was fixed on 2008-11-02 by a developer with the user id jaham and the
patch included the file KoDockerManager.cpp. As can be clearly seen, both the appropriate file
and developer were ranked first in the respective steps of our approach. Next, we systematically
assess the accuracy of our approach.

3. CASE STUDY

We conducted a case study to empirically assess our approach according to the design and reporting
guidelines presented in [32].
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3.1. Design

The case of our study is the event of assigning change requests to developers in open-source
projects. The units of analysis are the bug and feature requests considered from three open-source
projects. The key objective is to study the following research questions (RQs):

RQ1 : How accurate are the developer recommendations when applied to the change requests
of real-world systems?

RQ2 : What is the impact on accuracy with different amounts of training data, i.e., commits?
RQ3 : How do the accuracy results compare when the original descriptions of bug/feature

requests and their sanitized versions are formulated as LSI queries?
RQ4 : How does our approach compare to alternate sources for developer recommendations

(e.g., wild/educated guesses)? In particular, we posit the following two sub-questions:
RQ4.1 : Are the developers recommended by our approach more accurate than randomly selected

developers?
RQ4.2 : Are the developers recommended by our approach more accurate than the maintainers,

an obvious first choice, that are typically listed as the main points of contact in open-source
projects?

The first two research questions related to the explanatory purpose, i.e., positivist prospective,
of our study, as to what is the correlation of the developer recommendations from our approach
with the developers who actually address change requests in open-source projects (see the rest of
Section 3). The last two research questions relate to the comparative part of the study, as to how
our approach compares with alternative methods (see the rest of Section 4).

We collected a fixed set of qualitative data, i.e., change and bug requests, from the software
archives found in bug and source code repositories. We used a data triangulation approach to
include a variety of data sources from three open-source subject systems, such as, ArgoUML,
Eclipse, and KOffice that represent different main implementation languages (e.g., C/C++ and
Java), sizes, and development environments.

KOffice is an application suite, which is about 911 KLOC. It includes several office productivity
applications, such as word processing (KWord), spread sheet (KSpread), presentation (KPresenter),
and drawing/charting (KChart) tools. KOffice closely follows the KDE (K Desktop Environment)
development model and has component dependencies (e.g., core KDE libraries), but has an inde-
pendent release cycle. We considered the release 2.0 series (different version cycles from KDE’s).
Eclipse‖ is an open-source integrated development environment, which is used in both research and
industry, and provides a good representation for a large software system. We considered its releases
2.0, 3.0, and 3.3.2. Version 2.0 was released on 27 June 2002, version 3.0 was released on 25 June
2004, and 3.3.2 was released on 21 February 2008. For each version we studied the change history
before the release date. Eclipse project contains millions of lines of code and tens of developers.
For example release 3.0 contains 1 903 219 lines of code with 84 committers. ArgoUML∗∗ is an
open-source tool that provides a UML modeling environment. It has gone through eleven releases,
and the latest stable version is 0.28. We used version 0.26.2 in our evaluation. The commit history
from version 0.20 to candidate release version 0.26.1 was used and had contributions from a total
of 19 developers.

Guided by the Goal-Question-Metric (GQM) method, the main goal of the first part of our study
is to assess the accuracy effectiveness of our approach, asking how accurate are the developer
recommendations when applied to the change requests of real systems? That is, investigate the
research questions RQ1 and RQ2. The main focus is on addressing different viewpoints, i.e., theory
triangulation, of recommendation accuracy:

(1) Request-Level Accuracy: Does the approach include among the recommended developers the
ones that actually contribute changes needed for a given change request?

‖http://www.eclipse.org/ (verified on 10/21/09).
∗∗http://argouml.tigris.org/ (verified on 10/21/09).
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(2) Expertise-Granularity Accuracy: How does the recommendation accuracy vary across
different levels of granularity, i.e., file, package, and system, considered for developer
expertise?

(3) Ranking Effectiveness: How many files (from a ranked list relevant to a concept) need to
be queried for developer recommendations to get to the first accurate recommendation, i.e.,
effectiveness of the ranking?

The metrics corresponding to the above three questions are discussed in Sections 3.3, 3.4, and 3.5.
These metrics enable a quantitative analysis of the results obtained in our study.

3.2. Evaluation procedure and protocol

The bug/issue tracking and source code changes in software repositories, i.e., commits, are used
for evaluation purposes. Our general evaluation procedure consists of the following steps:
(1) Select a change request (e.g., a bug or feature/wish) from the bug-tracking system that is

resolved as fixed (or implemented).
(2) Select a development version on or before the day, e.g., a major or minor release or snapshot

of the source code repository, at which the selected change request was reported (but not
resolved) and apply concept location to get a ranked list of relevant source code classes and
files given its textual description.

(3) Use xFinder to collect a ranked list of developers for the classes from step 2.
(4) Compare the results of step 3 with the baseline. The developers who resolved the issue, e.g.,

contributed patches or commits that fixed a bug, are considered the baseline.
(5) Repeat the above steps for N change requests.

We first show the evaluation of our approach on KOffice, as a primary aid to highlight the details,
and take a result-oriented view of the other two systems. The development of the release 2.0 series
started after the second maintenance release 1.6.3 in July 2007. Thereafter, over 90 developers
have contributed source code changes. In the 2.0 series timeframe:

• The soft-freeze (no new feature/functional requirement addition except those planned), after
the development period of about a year, was announced in mid July 2008.

• The first beta version, after the hard-freeze (no new feature/functional requirement addition
permitted), was released in mid September 2008.

• Beta 2 and Beta 3 were released in October 2008 and November 2008, respectively.
• The latest beta release, Beta 4, rolled out in early December 2008. The beta versions are
primarily focused on corrective or perfective maintenance issues, such as bug fixes, feature
improvements, and user interface issues, and user feedback/testing.

We sampled 18 bugs (out of 128 total) from KOffice that were fixed during the period between the
releases soft-freeze and Beta 04. The resulting sample was checked to include representatives via
consideration of factors such as priority, severity, and description of the bug (similar to stratified
sampling). These bugs were reported to the KOffice issue-tracking system, which is managed by
Bugzilla. A bug report typically includes a textual description of the reported problem. Besides the
status of the sampled bugs marked as resolved or fixed in Bugzilla, there were patches/commits
contributed toward these bugs in the source code repository. In this way, we ascertained that the
sampled bugs were considered fixed with source code contributions.

For each bug from our sampled set, we applied our concept analysis tool to the source code in
the release Alpha 10, which was the most recent version before the soft-freeze. The short textual
descriptions of the bugs, i.e., change requests, were directly used as LSI queries with respect to
the features or bugs that we were locating (see Tables IV and V). We configured the tool to report
only the top ten relevant source code files. Our previous work on the analysis of commits that are
associated with bug fixes guided the choice of this particular cut point [33]. This satisfies steps 1
and 2 of our evaluation procedure.

In the second part of our approach, each file that contains the relevant classes from concept
location in the first part is fed to xFinder to recommend a maximum of a total of ten developers at
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the file, package, and system levels collectively. xFinder was configured to use only the commits
in the source control repository before the release Alpha 10. This satisfies step 3 of our evaluation
procedure.

A common policy or heuristic that developers follow in KOffice, like several other open-source
projects, is to include keywords, such as the bug id of a reported bug (in Bugzilla) and FEATURE
or new feature for features, in the text message of the commits that are submitted with the purpose
to fix/implement it. We used this information from commits to further verify that these bugs were
actually (or at least attempted to be) fixed. Furthermore, we also know the specific developer(s)
who contributed to these bug-fix commits. In this way, we can find the exact developer(s) who
contributed to a specific bug fix. Such developers for the sampled bugs and features are used as a
baseline for evaluating our approach.

Let the sampled evaluation set of change requests be:
CR Eval={b1,b2, . . .,bn}, where each bi is one of the n resolved, fixed, or implemented

requests chosen for evaluation.
The baseline, BL, is then a set of pairs of an issue and a set of developers, who contributed

source code changes to this issue:
GT ={(bt , {dt})|bug id(bt )∈ct∧d ∈ct}, where bt is the change request and dt is the developer

who contributed at least one commit, ct , that includes the bug id of bt or submitted a patch to the
bug-tracking system. Next, we compare the developer recommendations from our approach with
the baseline and assess the three questions discussed at the beginning of Section 3.1. This suffices
step 4 of our evaluation procedure.

Additionally, we also sampled five features and one refactoring request. For feature requests, we
used textual descriptions of implemented features, which were recorded in the svn commit logs.
We treated the developer-specified textual messages of the commits that implemented features (or
refactorings) as LSI queries and such commits were excluded from the history used for xFinder.
That is, the goal was to see how well our approach would have performed if these commit messages
were used as change requests? For example, Table V shows the commit# 832876 from KOffice
that was contributed after the release Alpha 10. The textual description ‘rudimental authentication
support to test out pion net authentication features’ was formulated as an LSI query to locate the
relevant class (files) in the release Alpha 10. xFinder used these files to recommended developers
from the commit history before the release Alpha 10, which were compared with the actual
developer who contributed the commit # 832876 to compute accuracy. It should be noted that
this view of a feature is different from what is submitted as a feature request or a wish in the
issue-tracking system.

3.3. Request-level accuracy

Request-level accuracy is the percentage of change requests for which there was at least one
developer recommendation from our approach that matched their established baselines (similar to
the widely used recall metric in IR, i.e., what percentage of the considered change requests had
correct developers recommended?). In other words, did our approach find the correct developer
for a given change request? We separately compute this level of accuracies for the 18 bugs, five
features, and one refactoring sampled from KOffice. For example, the pair (bug# 167009, {zander})
was found in the baseline of the bug# 167009†† taken from our sample of the KOffice’s Bugzilla
system. For this bug, there was at least one recommendation from our approach that included the
developer zander. Therefore, we consider that this developer was correctly recommended from the
perspective of the request-level accuracy.

There was at least one correct recommendation for 11, 15, and 13 bugs at the file, package,
and system levels of developer expertise considered by xFinder. This gives request-level accuracy
of 61% (11/18), 83% (15/18), and 72% (13/18) at the three respective levels. There was at
least one correct recommendation for each of 16 bugs. This gives the request-level accuracy of

††http://bugs.kde.org/show bug.cgi?id=167009 (verified on 10/21/09).
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# Procedure: Compute accuracy of recommendation
# for a given change request
def rec_accuracy(bs)

# File, package, system, and overall accuracies
bs_acc = (facc, pacc, sacc, oacc) = (0, 0, 0, 0)
rcs = conceptLSI(bs, rcs_size = 10)
for class in rcs:

f = file(class)
(fexp, pexp, sexp = xFinder( f, dmax=(10,10,10) )

# Match: checks if the developers in the baseline 
# are covered in the recommendation lists

if ( bs, set(fexp)) in GT: fc =T, bs_acc [0]+=1
if ( bs, set(pexp))in GT: pc =T, bs_acc [1]+=1
if (bs,set(sexp)) in GT: sc = T, bs_acc [2]+=1
if fc or pc or sc: bs_acc [3]+=1

# Accuracy in terms of percentages
def bs_acc_perct (x): return x*100/size(rcs)

return map(bas_acc_perct, bs_acc)

# Procedure: Compute accuracy of recommendation
# for the sampled change requests
def sample_accuracy()

for bs in CR_Eval:
acc = rec_accuracy(bs)

Figure 3. Procedure for computing recommendation accuracy of the approach in the evaluation process
on the KOffice application suite (Python-like code).

88.89% (16/18). That is, when request-level accuracy is looked at irrespective of the granularity
of expertise from xFinder, the approach was able to provide at least one correct recommendation
for each of 16 bugs (and there was not a single correct recommendation for the remaining two
bugs). This is because there were cases where one level of granularity correctly recommended the
developer for a bug and another level did not.

3.4. Expertise-granularity accuracy

Our approach provides expert developer recommendations for every retrieved class (file) that is
identified as relevant via concept location. We investigated how many of these recommendations
matched with the established baseline in the above discussion. This also helps us to see how the
accuracy varies with the number of relevant classes (and files) used for recommendation (similar
to the widely used precision metric in IR, i.e., how many recommendations are false positives for a
change request?). In our evaluation on KOffice, we considered only the top ten relevant classes for
each change request. Thus, we get ten sets of recommendations from xFinder. A recommendation
set for a given bug or a feature is considered accurate if it includes the developers who are
recorded in the baseline of that bug. The accuracy is further examined at file, package, and system
levels of detail. The procedure used to compute the accuracies for sampled change requests is
detailed in Figure 3.

We explain the accuracy computation with the help of the bug# 167009, shown in Table III.
This bug is described as ‘kword crashes after deleting not existing page’. We used the textual
description of this bug as an LSI query (see Table IV) and obtained the top ten relevant source code
files from the release Alpha 10. Examining the Subversion repository, we found that the developer
zander contributed a commit for this bug, i.e., the bug# was mentioned in the commit message.
(The same author id was found in the Bugzilla repository.) The pair (bug# 167009, {zander}) was
formed as the baseline for this bug. Table III shows the accuracy of the recommendations for
this bug on the files that contain the top ten relevant classes. In this case, our approach obtained
accuracies of 40% (4/10), 100% (10/10), and 100% (10/10) at the file, package, and system
levels respectively. That is, the correct developer appeared in the candidate list at the file-level
expertise for files containing four relevant classes, whereas, it did not appear for files for the
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Table III. Accuracies of developer recommendations for bug# 167009 from KOffice at the File, Package
(Pack), System (Sys), and overall (Ovl) levels. Value 1 (0) indicates that the actual developer was (not)

in the list of recommendations.

Recommendation coverage

Files with relevant classes File Pack Sys Ovl

TestBasicLayout.cpp 0 1 1 1
KWPageTextInfo.cpp 0 1 1 1
KWPageManager.cpp 1 1 1 1
KWPageManager.cpp 1 1 1 1
TestPageManager.cpp 0 1 1 1
KWPageManagerTester.cpp 0 1 1 1
KWPageInsertCommand.cpp 1 1 1 1
KWPageSettingsDialog.cpp 1 1 1 1
KPrMasterPage.cpp 0 1 1 1
KPrPageEffectSetCommand.cpp 0 1 1 1
Accuracy (%) 40 100 100 100

six relevant classes (i.e., all the recommended developers were false positives, i.e., not the ones
who actually fixed the bug). At the package and system levels of expertise, i.e., the package or
system, containing the relevant class, did not have any false positives in this case. Our approach is
considered overall accurate, if there is at least one file, package, or system-level recommendation
that is correct. This result again shows that our approach can recommend developers with a high
accuracy.

Tables IV and V show the expertise-granularity accuracies for the bugs and features+refactoring
change requests, respectively. The accuracies at the different levels of granularities are computed
according to the bug# 167009 example described above. None of the granularity levels indepen-
dently show a particularly high accuracy; however, the overall accuracies are 80% and 43% for
the two types of change requests, higher than any of the file, package, and system expertise. This
further suggests that different levels of granularities need to be taken into account for accurate
recommendations, which was exactly done in our approach. Also, the accuracy of features is less
than that of bugs (further discussion in Section 3.5).

3.5. Ranking effectiveness

Ranking effectiveness determines how many files in the ranked list that are retrieved by the concept
location tool need to be examined before xFinder obtains the first accurate recommendation (i.e.,
finds the correct expert developer). This issue directly corresponds to the amount of change history
that is needed and analyzed. If fewer relevant files are needed to get the correct developer then a
smaller subset of change history is needed. It is desirable to have an approach that needs only a
change history of a single class/file to function accurately (compared to another that requires a
change history of more than one classes/files). Next, we see how manually selected values of ten
classes fare with regard to the recommendation accuracy? Obviously, it is desirable to have the
classes/files that give the best recommendation accuracy appear sooner than later.

We explain the computation of ranking effectiveness for different granularities with the help of
the results presented in Table IV. As mentioned in Section 3.3, the correct recommendations are
generated for 11, 15, and 13 bugs at the file, package, and system levels of developer expertise.
Thus, the ranking effectiveness for the ranked list of ten files is 61%, 83%, and 72% at the three
respective granularity levels.

We explored in how many cases different granularities (e.g., file, package, system, and overall)
return relevant files that produce correct developer recommendations within the top 1, 3, 5, and
10 results, as well as cases when no correct recommendation is found in the top ten results.
We analyzed ranking effectiveness of different granularities for bugs and features separately (see,
Tables VI and VII). On average across the three different granularities, which also includes overall
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Table VI. Automatic queries: Summary of an average ranking effectiveness for bugs of
KOffice using different granularities (file (R f ), package (Rp), system (Rs), and overall

(Ro)) for top 1, 3, 5, 10 recommendations.

Average ranking effectiveness for bugs

Top 1 (%) Top 3 (%) Top 5 (%) Top 10 (%) No rec. (%)

R f 11.11 27.78 33.33 61.11 38.89
Rp 38.89 66.67 83.33 83.33 16.67
Rs 72.22 72.22 72.22 72.22 27.78
Ro 77.78 83.33 88.89 88.89 11.11
Avg 50.00 62.50 69.44 76.39 23.61

Table VII. Automatic queries: summary of an average ranking effectiveness for features
of KOffice using different granularities (file (R f ), package (Rp), system (Rs ), and overall

(Ro)) for top 1, 3, 5, 10 recommendations.

Average ranking effectiveness for features

Top 1 (%) Top 3 (%) Top 5 (%) Top 10 (%) No rec. (%)

R f 50.00 50.00 50.00 66.67 33.33
Rp 33.33 50.00 50.00 66.67 33.33
Rs 33.33 33.33 33.33 33.33 66.67
Ro 50.00 50.00 50.00 66.67 33.33
Avg 41.67 45.83 45.83 58.33 41.67

accuracies of three granularities, in 50% of cases the first relevant file is found in the first position
of the ranked list. These results are quite encouraging and support the previous results in the
literature [11] that IR-based concept location approach is robust in identifying the first relevant
method to a feature of interest. It should be noted that the system granularity gives the highest
ranking effectiveness (i.e., 72.22%), whereas the file granularity produces the lowest (i.e., 11.11%)
for the topmost recommendation. We also observed that the system-level granularity has the highest
ranking effectiveness across the considered ranked lists of different sizes. It should also be noted
that the accuracies for file and package granularities improve drastically with the increase in the size
of the ranked list (i.e., the ranking effectiveness for the top ten list is 61.11% as opposed to 11.11%
for the top one list). The logical OR overall accuracy of three granularities (Ro) has consistently
high-ranking effectiveness values ranging between 77.78% and 88.89% for the resulting lists of
various sizes.

The results for the analyzed features are more encouraging in terms of identifying the first
relevant file for the file-level expertise granularity. In 50% of cases the relevant file appears in the
first position; however, the overall ranking effectiveness is also relatively high (66.67%) for the
ranked lists containing ten files. For features, we observed somewhat different patterns of ranking
effectiveness for different granularity levels. For example, we observed that the file granularity
performs the same as, or better than, both package and system granularities in all the cases. It
should be noted that the file granularity for features performed better than the file granularity
for the bug reports. On the contrary, the ranking effectiveness results for package and system
levels of granularity were consistently higher across resulting recommendation lists of various
sizes for the bug reports than those for features. Overall, the results clearly indicate that our
approach can recommend relevant files, and thus, correct developers, with high effectiveness for
both bugs and features. We also observed the potential value in using granularities finer than
the system level, such as file and package granularities, as they did contribute to the overall
increase in ranking effectiveness.
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3.6. Accuracy and history periods

Another factor that could affect our approach is the amount of history period. Here, we repeated
the setup of Section 3.1 for 18 bugs; however, with a different set of commit histories of KOffice.
In other words, what is the impact on accuracy if different amounts of previous commits are
considered? An answer to this question helps us gain insight into how much history is neces-
sary for our approach to function well in practice. Table XI shows the results of our accuracy
assessment for periods of 17 days, 1 month, 2 months, 4 months, and entire duration. That is,
xFinder was configured to consider only the most recent commits for the duration considered from
the time the issue was reported. The overall accuracy results suggest that the recommendation
accuracies at all the expertise levels increase with the increase in the history duration. We noticed
that the commit history in the order of weeks was necessary to get correct recommendations.
For example, the file-level granularity in KOffice began to show accurate recommendations with a
history period of 17 days. The overall accuracies in KOffice crossed the 50% mark with at least a
month history. As can also be seen in KOffice, the best accuracies were obtained when its entire
commit histories were considered. We did not record a single instance where there was a decline
in accuracy with the increase in the commit history. In some instances, the increase in accuracy
was rather small, especially when the increment was in the order of months. This behavior is
seemingly obvious due to the natural evolution of the systems, i.e., the development phases into
the next release than the previous, and therefore the immediate previous history may not be that
relevant.

Now that we have presented the three views of accuracy assessment with an in-depth discussion
on KOffice, we turn to the results obtained on the two other systems. Table XI shows the average
accuracy and ranking effectiveness results for the three different releases of Eclipse and different
xFinder configurations on ArgoUML. The bugs used in the evaluation were sampled based on
similar criteria used for KOffice (see online appendix). The accuracies at the different levels of
expertise granularities and ranking effectiveness were computed using the same process described
for KOffice. Table XI shows only the average accuracy results, which correspond, for example, to
the last rows in Tables IV and Table VIII. The accuracy results of Eclipse releases 2.0 and 3.0
(e.g., overall accuracies of 75% and 82%) are comparable to that of KOffice (80%); especially
when its entire commit history is considered. Also, we observed an improved ranking effectiveness
performance for Eclipse in particular. We achieved the best accuracy results of 95% in ArgoUML,
when xFinder was configured to recommend the maximum of ten developers; however, we did
notice a decline in accuracy when this number was reduced to five developers. Also, we have to
be careful as ArgoUML had the least number of active developers among our considered subject
systems. Overall, our assessment results suggest that our approach can yield an equivalent accuracy
across different systems and releases of the same system.

The above discussion provides empirical answers to the research questions RQ1 and RQ2 of
our case study. Thus, concludes the first half of our study.

4. COMPARATIVE STUDY ON KOffice

4.1. Effectiveness of automatic versus manual LSI queries

The ranked lists of files generated by LSI are somewhat sensitive to the input query [4, 34, 35].
In Section 3, the original textual descriptions from the bug reports were automatically used as
LSI queries. Here, we investigate the impact of different formulations of the queries by different
developers (e.g., different choices of words or simply without typographical errors—a situation
not uncommon in collaborative environments such as the open-source development). Here, we
consider the short descriptions of the bugs taken verbatim from the bug/issue repositories or
commit messages for LSI queries as automatic queries. We repeated our evaluation with the same
bugs and features; however, their textual descriptions were sanitized by one of the authors, which
we refer to as manual queries.
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Table VIII. Summary of developer recommendation accuracies for 18 KOffice bugs at the File, Package
(Pkg), System (Sys), and Overall (Ovl) levels using the manually formed queries. For each bug, the
accuracy values are provided for files with the top ten relevant classes. The ranks for the first relevant
recommendation on file (R f ), package (Rp), system (Rs ), and overall (Ro) levels are provided. A ‘—’

is specified if none of the files in the top ten list generates a correct recommendation.

Accuracy (%) Ranking effectiveness

Bug # Sanitized LSI query File Pkg Sys Ovl R f Rp Rs Ro

124527 Number value scientific format 20 20 0 20 5 5 — 5
125306 Insert calendar undo 0 30 70 100 — 2 1 1
130922 Import xls excel 0 0 90 90 — — 1 1
137639 Karbon inverted radial gradient color 20 60 0 60 1 1 — 1
140603 Formula equal not cell 0 10 50 60 — 4 1 1
141536 New layer image srcobject select 0 70 20 80 — 1 1 1
156754 Rotate image 0 50 0 50 — 2 — 2
162872 Filter paintop pixel transparency 10 50 90 100 2 1 1 1
164688 Selection select tool 0 60 20 70 — 1 2 1
166966 Close document save discard 10 10 0 20 8 10 — 8
167009 Delete document 90 100 20 100 1 1 5 1
167247 Tooltip resource chooser 60 70 0 90 1 1 — 1
169696 Load shape path 40 90 40 100 2 1 4 1
171969 Selection decorator shape rotate 50 90 40 100 1 1 3 1
173354 Presentation slide show slide custom 20 50 50 100 1 1 2 1
173630 Format page layout view 10 70 30 100 10 2 1 1
173882 Splitter orientation horizontal vertical 50 70 30 90 1 1 1 1
176278 Load image 20 40 30 60 6 3 5 3

Average 22.2 52.2 32.2 77.2 3.3 2.1 2.2 1.8

Table IX. Summary of developer recommendation accuracies for five (5) feature requests and one
(1) refactoring using the manually formed queries at the File, Package (Pkg), System (Sys), and
overall (Ovl) levels from KOffice. For each feature, the accuracy values are provided for files with
the top ten relevant classes. The ranks for the first relevant recommendation on file (R f ), package
(Rp), system (Rs ) and overall (Ro) levels are provided as well. A ‘—’ is specified if none of the

files in the top-ten-list generates a correct recommendation.

Accuracy (%) Ranking effectiveness

Feature # Sanitized LSI query File Pkg Sys Ovl R f Rp Rs Ro

846840 Page style master header footer page layout 40 20 0 50 2 3 — 2
881241 Lens distortion oldrawdata use counter deform brush 10 10 90 100 5 5 1 1
847576 Input device angle rotation 4D mouse tilt tablet pen 0 0 0 0 — — — —
832876 Authentication security login pion net 0 0 0 0 — — — —
868014 Kwpage setpagenumber style page number 40 90 10 100 1 1 9 1
835741 Presenter slide show custom enable presentation view 50 20 0 50 3 7 — 3

Accuracy 28 28 20 60 2.8 4 5 1.8

The setup in Section 3 was repeated; however, with manually revised queries by one of the
authors. The queries were designed to be self-descriptive and sanitized from typographical errors
(see, Tables VIII and IX).

There was at least one correct recommendation for 12, 17, and 13 bugs at file, package, and
system level of developer expertise considered by xFinder. This gives request-level accuracy of
66.67% (12/18), 94% (17/18), and 72.2% (13/18) at the three respective levels. When a request-
level accuracy is looked at irrespective of the granularity of expertise from xFinder, the approach
was able to provide at least one correct recommendation for all of the 18 bugs. This again shows
that our approach can recommend developers with a very high accuracy and the potential value in
considering granularities finer than the system level. Similar accuracy was observed for the feature
requests.
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Table X. Manual queries: summary of an average ranking effectiveness for bugs and
features in KOffice using different granularities (file (R f ), package (Rp), system (Rs ), and

overall (Ro)) for top 1, 3, 5, 10 recommendations.

Top 1 (%) Top 3 (%) Top 5 (%) Top 10 (%) No rec. (%)

Average ranking effectiveness for bugs
R f 27.27 36.36 40.91 54.55 45.45
Rp 45.45 68.18 77.27 81.82 18.18
Rs 31.82 45.45 59.09 59.09 40.91
Ro 63.64 72.73 77.27 81.82 18.18
Avg 42.05 55.68 63.64 69.32 30.68

Average ranking effectiveness for features
R f 16.67 50.00 66.67 66.67 33.33
Rp 16.67 33.33 50.00 66.67 33.33
Rs 16.67 16.67 16.67 33.33 66.67
Ro 33.33 66.67 66.67 66.67 33.33
Avg 20.83 41.67 50.00 58.33 41.67

Tables VIII and IX show the expertise-granularity accuracies for the bugs and features+refactoring
change requests, respectively. None of the granularity levels independently show a particularly
high accuracy; however, the overall accuracies are 77% and 60% for the two types of change
requests, higher than any of the file, package, and system expertise. This further suggests that
different levels of granularities need to be taken into account for accurate recommendations,
which was exactly done in our approach.

We again explored in how many cases different granularities (e.g., file, package, system, and
overall) return relevant files within the top 1, 3, 5, and 10 results, as well as when no correct recom-
mendation is found in the top ten. We analyzed the ranking effectiveness of different granularities
for bugs and features separately (see, Table X). The analysis of the results for 18 bugs shows that
in 42% of cases, on average the first relevant file is found in the first position of the ranked list
across all granularities. The results also indicate that in 69% of cases the relevant file is found
in the top ten recommendations. Moreover, the ranking effectiveness is 82%, meaning that only
in 18% of cases the correct recommendation was not found. In only 30.6% of cases the ranked
lists of results (i.e., the top ten) do not contain any relevant methods. We also observed that the
package granularity has the highest effectiveness for top one (45.45%), top three (68.18%), top five
(77.27%), and top ten (81.82%) results. The package granularity also has the lowest percentage
of cases when no correct recommendation is returned within top ten (18.18%). We also observed
that the system granularity consistently outperformed the file granularity for all list sizes in the
bug requests.

The results for the analyzed features are slightly less encouraging in terms of identifying the
first relevant file immediately. On average, only in 20.82% of cases did the relevant file appear
in the first position across all the three granularities; however, the overall effectiveness is also
relatively high (58.33%) for the ranked lists containing ten files. For the features, we observed
somewhat different patterns in terms of granularity effectiveness. For example, we observed that
file granularity performs better in case of the top three and top five results; however, it performs
similar to the package granularity for the top one and top ten. Similar to the package granularity,
the file granularity does not return any relevant files in 33.33% cases.

We attribute some of the differences in ranking effectiveness for bugs and features to the fact
that we used words directly from bug reports, whereas we used words from commit messages for
features. In our case, we found that the descriptions of the bug reports were more expressive and
complete than the commit messages, which only briefly summarized the implemented features.
This could have impacted the choice of words for LSI queries and thus, the ranking effectiveness
in the results in Table X.

In summary, the accuracies of our approach using two querying techniques, i.e., automatic and
user-refined queries, are generally comparable. These are very encouraging results, as the proposed
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approach does not impose additional overhead on users in terms of constructing queries and more
than that, does not require prior knowledge of change requests nor the project, which makes it
attractive not only for experienced contributors, but also to newcomers. The descriptions in the
issue/bug repositories can be directly used without much impact on accuracy.

For bug reports, the manual queries improved the average accuracy by 6.6% over the automatic
queries at the file-level granularity. However, accuracies at the package and system granularities
are higher for automatic queries: 55% versus 52.2% and 72.2% versus 32.2%. Automatic queries
also improve the overall accuracy over manual queries by 2.8% (80% versus 77.2%). On the other
hand, the ranking effectiveness is better for manual queries at the file-level granularity (3.3 for
manual versus 5.1 for automatic). These results indicate that manual queries on average obtain the
correct recommendation quicker (fewer files need to be examined) than automatic queries, which
is not surprising, given the fact that users formulate the queries (and the human time involved
therein). The ranking effectiveness for the overall, package, and system granularities is generally
comparable for automatic and manual queries.

The comparison of accuracies between manual and automatic queries for features across the
file, package, and system granularities yielded the following results. The revised queries, as in
the results for the bugs, outperform automatic queries by 4.7% (28% versus 23.3%) at the file-
level granularity. We also observed that the package-level accuracy is higher for manual queries
(28% versus 23.3%), whereas the system-level accuracy yields better results for automatic queries
(33% versus 20%). Overall accuracy is higher for manual queries (60% versus 43.3%), whereas
the overall accuracy was higher for automatic queries in the case of bugs. In terms of ranking
effectiveness (the number of files that have to be explored before the correct recommendation is
obtained), automatic queries outperform manual queries across all granularities, i.e., file, package,
and system. While using automatic queries, fewer files on average are used from the ranked list
to obtain the pertinent recommendations.

While analyzing average ranking effectiveness for manual versus automatic queries using ranked
lists of different sizes (1, 3, 5, and 10), we observed similar patterns as in the case of default
size of the ranked list (i.e., top ten). For bugs, automatic queries outperform manual queries in
terms of the average ranking effectiveness for ranked lists of sizes 1, 3, and 5 for the overall
accuracy. The results for the features are slightly different. Overall, the average ranking effectiveness
for automatic queries outperforms manual queries at the ranked list sizes for one (50% versus
33%); however, degrades for three and five, while being equivalent for ten. Based on the analysis
of the results of accuracies at different levels of granularity, we can conclude that automatic
queries perform, at least, as well as manually revised queries, even noticeably better in some
cases.

In order to obtain more insights into distinctions between manual and automatic queries, we
also explored the differences among the resulting ranked lists of relevant files for both automatic
and manual queries. We analyzed the resulting ranked lists of different sizes ranging from top
ten to 100 relevant files. We used Jaccard similarity coefficient‡‡ to compare the similarity and
diversity of the files appearing in the ranked lists of results for manual and automatic queries. In
our case, the Jaccard index is computed as follows. Given two sets of files in the ranked list of
the results, A (obtained using automatic queries) and B (obtained using manual queries), Jaccard
index is computed as J (A, B)=|A∩B|/|A∪B|.

We report the average Jaccard measure for the ranked lists of various sizes, separately for bugs
and features. Our analysis of the results suggests that the resulting ranked lists for automatic and
manual queries for bugs and features are quite different, which is not surprising as some of the
revised queries were quite different. However, the Jaccard measure values tend to increase as the
size of the ranked list increases. Figure 4 indicates that the highest average Jaccard similarity
coefficients for bugs and features are 0.33 and 0.56. In other words, the results indicate that on
average ranked lists for manual and automatic queries contain more similar files for features than
for bugs. Again, these observations strengthen our conclusions that our approach works comparably

‡‡http://en.wikipedia.org/wiki/Jaccard index (verified on 10/21/09).
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Figure 4. Comparing the similarity and diversity of files for automatic and manual queries
obtained from concept location in KOffice.

well for automatic and manual queries even though they might produce different relevant files.
This observation also leads to the conjecture that in order to produce pertinent recommendations
(i.e., identify relevant expert developers) we do not need to locate ‘exact’ files that have been
changed in order to locate the correct expert. We posit that locating conceptually (i.e., textually)
similar files also have the potential to generate the correct recommendations, as it is reasonable to
conjecture that the developers change related files throughout software evolution, as captured by
contribution measures in our xFinder approach. We are planning an in-depth exploration of this
phenomenon as our future work.

4.2. Accuracy effectiveness with alternate recommendations

We investigated how the accuracy of our approach compares to some straightforward recommen-
dation approaches. Here, we focus our discussion on KOffice (partially because it contained the
largest number of developers among the data sets considered).

To answer question RQ4.1, we randomly selected ten developers for each of the same 18 bugs
considered in our evaluation. That is, 18 samples of ten developers each. The value ten was
chosen to match with the number of maximum developers chosen for our approach. The same
history period used in xFinder for recommendations was used to obtain the total number of active
developers (i.e., 93 developers who contributed at least one commit—the sample space). A bug was
considered to have an accurate recommendation, if the correct developer, i.e., the one who ended
up fixing the bug, was one of the ten randomly chosen developers. A request level accuracy of
22% (four correctly recommended/18 total bugs) was obtained from this random developer model.
Comparing this result with the request-level accuracies in Section 3.3 shows that our approach
provides substantially better accuracy as compared to a random selection method (approximately
thrice accurate). We repeated a similar experiment to see how the results compared when a random
selection was made for each pair of a bug and a relevant file obtained using LSI (essentially the
same setup is used in our approach to obtain the results). We obtained an accuracy of 22% for
overall expertise-level granularity (refer Section 3.4). Once again, a comparison of this result with
the KOffice results in Table XI shows that our approach achieves substantially better accuracy
as compared to a random selection method for each history period considered (approximately
thrice accurate). None of the six features had the correct developer recommended from the random
selection sets (i.e., a 0% accuracy). We realize that comparing our approach with a random method
is probably not sufficient or a realistic depiction; however, we believe that it is a reasonable litmus
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Table XI. Summary of developer recommendation average accuracies obtained using automatic
queries for all systems at the File, Package (Pkg), System (Sys), and Overall (Ovl) levels. The
average accuracy values are obtained from the accuracy values of all of the bugs evaluated in
the particular system. The average ranks for the first relevant recommendation on file (R f ),

package (Rp), system (Rs ) and overall (Ro) levels are provided.

Average Accuracy Average Ranking
(%) Effectiveness

xFinder: Max Num Num of
System of Dev Bugs File Pkg Sys Ovl R f Rp Rs Ro

KOffice (17 days history) 10 18 1.1 12.8 16.7 22.2 3 3.5 1 3.1
KOffice (1 month history) 10 18 2.8 25.6 33.3 42.2 6.5 2.9 1 2.1
KOffice (2 months history) 10 18 4.4 36.7 55.6 61.1 6 2.4 1 1.3
KOffice (4 months history) 10 18 5.0 39.4 55.6 62.8 6 2.6 1 1.6
KOffice (All history) 10 18 15.6 55.0 72.2 80.0 5.1 2 1 1.3

Eclipse 2.0 10 14 13.6 34.3 57.1 75.0 3.5 2.9 1 1.4
Eclipse 3.0 10 14 15.7 27.1 35.7 47.1 3.4 2.7 1 1.8
Eclipse 3.3.2 10 14 27.9 36.4 71.4 82.1 2.9 2.9 1 1.6
ArgoUML 0.26.2 5 15 23.3 59.3 20.0 64.7 3.4 1.7 1 1.7
ArgoUML 0.26.2 10 23 17.4 75.2 69.1 95.7 3.6 1.3 1.4 1

test. After all, this test provides an answer to why need a sophisticated method when a random
works equally well or even better?

To answer question RQ4.2, we first collected the maintainers listed for every KOffice
application§§ . In order to get the ‘best’ accuracy, we did not restrict the recommendations to only
the maintainer of the application (e.g., KWord) in which a given bug was reported (and fixed). We
considered all the maintainers. That is, any maintainer is equally likely to fix any given bug in any
application of KOffice. The setup was similar to that of the first question above except that now the
maintainers were recommended as potential bug fixers (and not the randomly selected developers).
A bug was considered to have an accurate recommendation, if the correct developer, i.e., the
one who ended by fixing the bug, was one of the recommended maintainers. A request-level
accuracy of 33% (six correctly recommended/18 total bugs) was obtained from this maintainer
model. Comparing this result with the request-level accuracies in Section 3.3 shows that our
approach provides substantially better accuracy than a random selection method (approximately
twice as accurate). We observed similar results for overall expertise-level granularity accuracy.
Two of the six features had the correct developer recommended from the maintainer set. Overall,
our approach outperformed both randomly selected and maintainer-based methods of developer
recommendations on the considered KOffice data set by a substantial margin.

The details of the bug and accuracy data for ArgoUML, Eclipse, and KOffice corresponding to
Table XI are available at http://www.cs.wm.edu/semeru/data/jsme09-bugs-devs/ and excluded here
for brevity.

The above discussion provides empirical answers to the research questions RQ3 and RQ4 of
our case study. Thus, concludes the second half of our study.

5. THREATS TO VALIDITY

We discuss some threats that may affect the construct, internal, external validities, and reliability
of the approach and the case study conducted for its evaluation.

§§http://wiki.koffice.org/index.php?title=Junior Jobs.
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5.1. Construct validity

We discuss threats to construct validity that concerns the means that are used in our method and
its accuracy assessment as a depiction of reality. In other words, do the accuracy measures and
their operational computation represent correctness of developer recommendations?

Our developer recommendation method does not entirely reflect the true reality of real systems:
We realize that the activity or process of who resolves the change requests, and histories of

even simple bugs, is dependent on social, organizational, and technical knowledge that cannot
be automatically extracted from solely software repositories [36]. In our case studies we had
access only to the qualitative and quantitative data from the bug tracking and revision control
systems. We did contact some of the developers (contact persons for components or specific project
parts listed on the project web sites) of the three systems considered in our study to gain an
understanding of their current practices and potential benefits of our method. We requested them
to respond to a questionnaire we prepared (see, Appendix A). We received only a single response
in which it was stated that the current practice of change requests to developer matching was
largely manual. The response also stated that an automatic method that could save time and is
not a deterrent would be useful. Also, it should be noted that the bug history databases have been
used in the literature for validating the accuracy of developer recommendations. For example,
using the developer-related information in the ‘fixed’ bug report to compare with the recommended
developers by a given approach [37]. In the sense, the accuracy assessment procedure that we used
in our study is not uncommon.

Concept location may not find source code exactly relevant to the bug or feature:
In a few cases, the concept location tools did not exactly return the classes (files) that were

found in the commits related to the bug fixes or feature implementations. However, it is interesting
to note from the accuracy results that the classes that were recommended were either relevant (but
not involved in the change that resolved the issue) or conceptually related (i.e., developers were
also knowledgeable in these parts). This point is elaborated in Section 4.1.

Accuracy measures may not precisely measure the correctness of developer recommendations:
A valid concern could be a single measure of accuracy may not provide a comprehensive picture,

i.e., an incomplete and monolithic view of accuracy from the considered data set. To mitigate this
concern, we defined three different viewpoints of accuracy that assess the core components of our
method and analyzed the data from the prospective of each of these viewpoints on the studied
systems. The three corresponding measures are discussed at length in Sections 3.3–3.5.

5.2. Internal validity

We discuss threats to internal validity that concerns with factors that could have influenced our
results.

Factors other than expertise are responsible for the developers ending up in resolving the change
requests:

In our case study, we showed that there is a positive relationship between the developers
recommended with our approach to work on change requests and the developers entered as the
ones who fixed them in the software repositories (i.e., considered baseline). Therefore, the basic
premise of our approach, i.e., relevant source code with LSI and developer’s contributions to it in
the form of past changes, was found to hold well. However, we do not claim that past contributions
or expertise alone is a necessary and sufficient condition to correctly assigning developers to
change requests. At best, our results allude to a strong correlation between the recommendations
and the baseline, and not causality. It is possible that other factors, such as schedule, work habits,
technology fade or expertise, and project policy/roles are equally effective or better. A definitive
answer in this regard would require another set of studies.

Developer Identities could have influenced the accuracy results:
xFinder uses the committer ID, which represents the developer’s identity. We do not exactly

know from the repository data who changed the file, but only who committed. Also, if the developer
has more than one ID [38], the accuracy of the result will be affected. In our evaluation, we came
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across several cases where developers had one form of identification in the Bugzilla repository
(names or email addresses) and another (username) in the source code repository, and even a
manual examination could not conclusively assert that they were the same developers. It should
be noted that such cases were discarded from our accuracy computation. This identity issue is one
of the main reasons why we did not report the accuracy for all the bug reports submitted and only
considered samples during the evaluation periods in our assessment study.

Specific query formulation could have influenced the accuracy results:
It should also be noted that the LSI queries to retrieve initial files used in the study to compare

manual and automatic queries were formulated by one of the authors. While the automatic queries
were solely based on the words from the actual change requests, a different choice of words for
the manual queries could have produced a different set of ranking results. Nonetheless, automatic
queries provide a reliable, realistic, non-biased assessment on the lower bound of possible accuracy
measure results. For example, in the true spirit of the open-source development model, one cannot
and should not police as to what is being reported and risk discouraging project participation and
success. There are bound to be variations in the textual description due to the diverse backgrounds
and skills of project participants.

User-specified parameters could influence the accuracy results:
Another potential issue is the variation in the accuracy with the change in the number of relevant

classes and maximum number of developer recommendations, both of which are user specified.
We found that the values used in our evaluation were sufficient to provide a reasonable level of
accuracy. In fact, the average number of developers recommended at the file and package levels
in our evaluated systems was well within the specified maximum limits, which suggests that the
value ten is a reasonable upper bound.

History periods could influence the accuracy results:
Our tool needs source code version history in order to give recommendations. If there is no

‘good’ portion of development history, it will most likely not be able to function with a high
accuracy (or in the worst case provide no recommendation, e.g., a new developer to a project
making the first contribution to a bug fix). The accuracy of the recommended list seems to improve
with an increase in the training set size (also observed in our conducted evaluation results); however,
not to a conclusively significant limit. This could be attributed to the fact that when open source
projects evolve, their communities also evolve [39, 40], so the relationship between the length of
the historical period of time and the accuracy of the recommendation is not very succinct and
decisive. In other related studies [41, 42] in the mining software repositories community, it was
observed that recent history was a ‘better’ predictor of the future.

5.3. External validity

We discuss threats to external validity that concerns with factors that are associated with general-
izing the validity of our results to data sets other than considered in our study.

Assessed systems are not representative:
The accuracy was assessed on three open-source systems, which we believe are good represen-

tatives of large-scale, collaboratively developed software systems. However, we cannot claim that
the results presented here would equally hold on other systems (e.g., closed source).

Sampled sets of change requests are not sufficient:
The evaluation was performed on randomly chosen bug reports, features, and even a refactoring

change that fit our sampling criteria. While the bug reports and feature requests used are repre-
sentatives of the considered software systems used in the evaluation (we picked them from more
than one release, history period), similar studies on other systems are necessary to confirm that
conclusions would hold in general.

The size of the evaluation sample and the number of systems remain a difficult issue, as there
is no accepted ‘gold standard’ for the problem of the developer recommendation problem, i.e.,
how many change requests and systems are considered to be a sufficient evaluation data set? The
approach of ‘more, the better’ may not necessarily yield a rigorous evaluation, as they are known
issues of bug duplication [43] and other noisy information in bug/issue databases. Not accounting
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for such issues may lead to biased results positively or negatively or both. The considered sample
sizes in our evaluation, however, are not uncommon, for example, Anvik et al. [1] also considered
22 bug reports from Firefox in their evaluation. Nonetheless, this topic remains an important part
of our future work.

Accuracy offered by our method may not be practical:
We compared the accuracy results of our approach with two obvious null models that use a

random set of developers and a maintainer list available in project documentation. But we certainly
do not claim that these two models define the gold standard for comparison. We plan to pursue
avenues such as a case study on the use of our approach in the actual triage process of the considered
open-source projects and the actual developers’ feedback (on arguably non-trivial tasks).

5.4. Reliability

We discuss threats that would risk the replication of our evaluation study.
Data set not available: One of the main difficulties in conducting empirical studies is the

access (or lack of it) to the data set of interest. In our study, we used open-source data sets
that are publicly available. Also, we detailed the specifics of change requests that we used.
The details of the bug and accuracy data for ArgoUML, Eclipse, and KOffice are available at
http://www.cs.wm.edu/semeru/data/jsme09-bugs-devs/. We also provide the appropriate context to
our study, e.g., parameters used for xFinder and concept location tools. Therefore, our case studies
can be reliably reproduced by other researchers.

Evaluation protocol not available:
A concern could be that the lack of sufficient information about the evaluation procedure and

protocol may limit the replicability of the study. We believe that our accuracy measures along with
the evaluation procedure are sufficiently documented to enable replication on the same or even
different data sets.

Instruments not available:
Lack of access to the instruments and tools used in the study could limit the replication of the

study. The concept location tool uses LSI-based algorithm, which is available in many statistical
open-source packages, and xFinder tool uses well-documented mining methods, which should
allow for easy implementation and/or access. We are working on making an open-source version
of our tool chain available in the near future.

6. RELATED WORK

Our work falls under two broad areas: concept location and recommendation systems. Here, we
succinctly discuss the related work in both of these fields.

6.1. Concept location

Wilde et al. [44] were the first to address the problem of feature location using the Software
Reconnaissance method, which uses dynamic information. Several researchers recently revisited
this approach with the goal of improving its accuracy and provided new methods for analyzing
execution traces [45] and selecting execution scenarios [46]. Biggerstaff et al. [10] introduced the
problem of concept assignment in the context of static analysis. They extracted identifiers from the
source code and clustered them to support the identification of concepts. The most straightforward
and commonly used static technique for searching the source code is based on regular expression
matching tools, such as the Unix utility grep. IR techniques [4, 28, 35, 47] bring a significant
improvement over regular expression matching and related techniques, and allow more general
queries and rank the results to these queries. Latent Dirichlet Allocation and independent component
analysis have been recently applied to locate concepts [48] and bugs [49], categorize software
systems [50], and measure software cohesion [51]. Natural language processing techniques have
been recently utilized to augment concept location approaches [29, 52].
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Chen et al. [53] proposed a static-based technique for concept location that is based on the
search of abstract system dependence graphs. This approach has been recently improved by
Robillard [54]. Zhao et al. [55] proposed a technique that combines IR with branch-reserving
call-graph information to automatically assign features to respective elements in the source code.
Gold et al. [56] proposed an approach for binding concepts with overlapping boundaries to
the source code, which is formulated as a search problem and uses genetic and hill climbing
algorithms.

Eisenbarth et al. [57] combined static dependencies and dynamic execution traces to identify
features in programs and used Formal Concept Analysis (FCA) to relate features together. Salah
et al. [58, 59] use static and dynamic data to identify feature interaction in Java source code.
Kothari et al. [60] use dynamic and static analyses for identifying canonical feature sets in software
systems. Greevy et al. used dynamic analysis to analyze evolving features throughout software
evolution [61]. Hill et al. [62] combined static and textual information to expedite traversal of
program dependence graphs for impact analysis. Poshyvanyk et al. [11, 34] combined an IR-
based technique with a scenario-based probabilistic ranking of the execution traces to improve the
precision of feature location. Eaddy et al. [63] combined static, dynamic, and textual analyses to
trace requirements (concepts) to target source code elements.

A comparison of different approaches for feature location is presented in [64]. Summaries of
static, dynamic, and other approaches are available in [34, 45, 65, 66], while an overview of
industrial feature location tools is available in [67]. To the best of our knowledge, no other
work besides ours [2] has applied concept location techniques to the problem of expert developer
recommendation.

6.2. Developer contributions and recommendation

McDonald and Ackerman [68] developed a heuristic-based recommendation system called the
Expertise Recommender (ER) to identify experts at the module level. Developers are ranked
according to the most recent modification date. When there are multiple modules, people who
touched all the modules are considered. Vector-based similarity is also used to identify technical
support. For each request, three query vectors (symptoms, customers, and modules) are created.
These vectors are then compared with the person’s profile. This approach depends on user profiles
that need to be explicitly collected upfront. This approach has been designed for specific organi-
zations and not tested on open-source projects.

Mino and Murphy [69] produced a tool called Emergent Expertise Locator (EEL). Their work
is adopted from a framework to compute the coordination requirements between developers given
by Cataldo et al. [70]. EEL helps to find the developers who can assist in solving a particular
problem. The approach is based on mining the history of how files have changed together and
who has participated in the change. In our approach, we also include the activities, i.e., days on
which they contributed changes, of the developers and identify experts at the package and system
levels, and not only at the file level.

Expertise Browser (ExB) [71] is another tool to locate people with the desired expertise. The
elementary unit of experience is the Experience Atom (EA). The number of these EAs in a specific
domain measures the developer experience. The smallest EA is a code change that has been made
on a specific file. In our approach, the number of EAs corresponds to the commit contributions.
Again, we included more than one parameter in determining file experts. We also used two different
measures to identify experts: one measure for file experts and another for package and system
experts.

Anvik and Murphy [72] did an empirical evaluation of two approaches to locate expertise. As
developers work on a specific part of the software, they accumulate expertise. They term this
expertise as implementation expertise. The two approaches are based on mining the source and
bug repositories. The first approach examines the check-in logs for modules that contain the fixed
source files. Recently, active developers who did the changes are selected and filtered. In the second
approach, the bug reports from bug repositories are examined. The developers are selected from
the CC lists, the comments, and those who fixed the bug. They found that both approaches have
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relative strengths in different ways. In the first approach, the most recent activity date is used to
select developers. This study focuses on identifying experts to fix bugs or to deal with bug reports.

A machine-learning technique is used to automatically assign a bug report to the right developer
who can resolve it [1]. The classifier obtained from the machine-learning technique analyzes the
textual contents of the report and recommends a list of developers. Another text-based approach
is used to build a graph model called ExpertiseNet for expertise modeling [73]. A recent approach
to improve bug triaging uses graph-based model based on Markov chains, which capture bug
reassignment history [74]. Our approach uses expertise measures that are computed in a straight-
forward manner from the commits in source code repositories and does not employ any machine
learning like techniques. In another recent work, Matter et al. [75] used the similarity of textual
terms between source code changes (i.e., word frequencies of the diff given changes from source
code repositories) and the given bug report to assign developers. Their approach does not require
indexing of past bug reports, one of the rare ones similar to ours; however, it is purely text based.
Our approach does not use textual analysis of source code changes and is based on a number of
non-text-based contribution measures.

There are also works on using MSR techniques to study and analyze developer contributions.
German [76] described in his report some characteristics of the development team of PostgreSQL.
He found that in the last years only two persons were responsible for most of the source code.
Tsunoda et al. [77] analyzed the developers’ working time of open-source software. The e-mail
sent time was used to identify developers’ working time. Bird et al. [78] mined e-mail archives to
analyze the communication and co-ordination activities of the participants. Del Rosso [79] used
collaborations and interactions between knowledge-intensive software developers to build a social
network. By analyzing this network, he tries to understand the meaning and implications to software
and software development. Some implications are locating developers with a wide expertise on
the project and determining where the expertise is concentrated in the software development team.
Ma et al. [80] proposed an approach for identifying developers using implementation expertise (i.e.,
using functionality by calling API methods). Yu and Ramaswamy [81] mined CVS repositories to
identify developer roles (core and associate). The interaction between authors is used as clustering
criteria. The KLOC and the number of revisions are used to study the development effort for
the two groups. Weissgerber et al. [82] analyze and visualize the check-in information for open-
source projects. The visualization shows the relationship between the lifetime of the project and
the number of files and the number of files updated by each author. German [83] studied the
modification records (MRs) of CVS logs to visualize who are the people who tend to modify certain
files. Fischer et al. [84] analyzed and related bug report data for tracking features in software.

In summary, to the best of our knowledge, no other work besides ours has used a combination of
a concept location and mining software repositories techniques to address the problem of assigning
expert developers to change requests. Also, our approach does not need to mine past change
requests (e.g., history of similar bug reports to resolve the bug request in question), but does
require source code change history. The single-version source code analysis with IR (and not the
past reports in the issue repositories) is employed to reduce the mining space of the source code
change history of only selective entities.

7. CONCLUSIONS AND FUTURE WORK

The main contribution of our work is the first use of a concept location technique combined
with a technique based on MSR for the expert developer recommendation task. While both these
techniques have been investigated and used independently before, their combined use for tasks
such as the one studied here has not been systematically investigated. We showed the application
of a concept location technique beyond merely concept or feature location in source code. Also,
our work provides an interesting horizon to bring together single-version analysis of traditional
software engineering (i.e., concept location) with multi-version analysis based on mining software
repositories.
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The results of our systematic evaluation on KOffice, Eclipse and ArgoUML indicate that our
approach can identify relevant developers to work on change requests with fairly high accuracy
and in an effective ranked order. We recorded the highest overall accuracies of 95%, 82%, and 80%
in ArgoUML, Eclipse, and KOffice when all the prior commit histories were considered (and the
lowest of 22% overall accuracy with only about two weeks of commit history in KOffice). These
results are comparable to other approaches in the literature. For example, Anvik et al. [1] reported
the precision of their approach as 57% and 64% on Eclipse and Firefox systems (although a
different experiment setup and execution). At the very least, the presented approach did outperform
two straightforward first choices that maybe as readily available to recommend developers to work
on change requests. Our approach required mining histories of only between top three and five
ranked files relevant to a concept to get the first accurate developer recommendations on the
evaluated systems. We make our evaluation data publicly available (see online appendix¶¶ and
hope that these data, including the specific bugs used, will provide the first steps toward creating
a benchmark for evaluating developer recommendation approaches. Also, we show the value of
the package and system levels of expertise considered by xFinder in developer recommendations.
We believe that our approach has merits in time, effort, and quality improvements when dealing
with change requests during software maintenance (a rigorous validation of which would require
a field case study, and is a subject of future work).

Our immediate future work includes assessing the accuracy impact of analyzing developer
expertise at finer granularity than system, package, and file levels (e.g., class and method). We
believe that this work would result in improved accuracy of recommendations. Another area of
investigation is the use of other similarity measures for vectors (e.g., Cosine orManhattan distance)
for computing the xFactor values and their impact on the recommendation accuracy. We are also
investigating ways of integrating existing approaches [85–87] for automatically classifying change
requests based on their types into our approach. We are also evaluating our approach on other
open-source systems such as Apache httpd and jEdit and conducting empirical studies comparing
of our approach with other pure history-based approaches. We are also developing open-source
plug-ins for popular environments such as Eclipse and KDevelop. Finally, we are planning on
integrating existing approaches for identifying duplicate bug reports [43] for effectively triaging
similar bug reports that have been previously addressed.

APPENDIX A

Questions posed to the developers of ArgoUML, Eclipse, and KOffice:

(1) What is the current practice/process of allocating bug reports/feature requests to
developers?

(2) Is the current practice/process mostly manual or involves automatic tool support?
(3) What are the specific manual and automatic parts of the process?
(4) What are the criteria, if any, used in the current process?
(5) Would it be potentially useful to your project or contributing developers in your opinion to

have a tool that automatically identifies and favors developers who have previously contributed
source code related to a bug request (or a feature request) in question to work on?

(6) Would it be potentially useful to your project or contributing developers in your opinion to
have a tool that favors developers who have previously worked on similar bugs (or features)
to a bug request (or a feature request) in question to work on?

(7) Do you have any comments or suggestions or advise about our work that you would like to
share?

¶¶http://www.cs.wm.edu/semeru/data/jsme09-bugs-devs/ (created and verified on 10/21/09)).
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