
Mining Android App Usages for Generating
Actionable GUI-based Execution Scenarios

Mario Linares-Vásquez, Martin White, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshyvanyk
The College of William and Mary, Williamsburg, VA, USA
{mlinarev, mgwhite, cebernal, kpmoran, denys}@cs.wm.edu

Abstract—GUI-based models extracted from Android app
execution traces, events, or source code can be extremely useful
for challenging tasks such as the generation of scenarios or test
cases. However, extracting effective models can be an expensive
process. Moreover, existing approaches for automatically deriving
GUI-based models are not able to generate scenarios that include
events which were not observed in execution (nor event) traces.
In this paper, we address these and other major challenges in our
novel hybrid approach, coined as MONKEYLAB. Our approach is
based on the Record→Mine→Generate→Validate frame-
work, which relies on recording app usages that yield execution
(event) traces, mining those event traces and generating execution
scenarios using statistical language modeling, static and dynamic
analyses, and validating the resulting scenarios using an interac-
tive execution of the app on a real device. The framework aims at
mining models capable of generating feasible and fully replayable
(i.e., actionable) scenarios reflecting either natural user behavior
or uncommon usages (e.g., corner cases) for a given app. We
evaluated MONKEYLAB in a case study involving several medium-
to-large open-source Android apps. Our results demonstrate that
MONKEYLAB is able to mine GUI-based models that can be used
to generate actionable execution scenarios for both natural and
unnatural sequences of events on Google Nexus 7 tablets.

Index Terms—GUI models, mobile apps, mining execution
traces and event logs, statistical language models

I. INTRODUCTION

The mobile handset industry has been growing at an un-
precedented 23% compound annual growth rate in revenue
since 2009 [51], and the growth between 2012 and 2016 is
expected to be around 28% [50]. This global app economy
with millions of apps (1.3M+ Android and 1.2M+ iOS apps),
2.3M developers, and billions of devices and users has been
a tremendous success [52]. Many of these mobile apps have
features that rival their desktop counterparts and belong to sev-
eral domain categories spanning from games to medical apps.
Mobile platforms enable user interaction via touchscreens and
sensors (e.g., accelerometer, ambient temperature, gyroscope)
that present new challenges for software testing. Furthermore,
mobile developers and testers face other emerging challenges
such as rapid platform/library evolution and API instability
[12], [36], [37], [42], platform fragmentation [25], continuous
pressure from the market for frequent releases [28], [31], and
limited availability/adequacy of testing tools for mobile apps
[32], [34], among many other challenges.

Although several tools are available to support automated
execution of Android apps for validation purposes, in practice,
testing is still performed mostly manually as recent survey
study results show [32]. Limited testing time during the
development process tends to prohibit the use of data from

these manually generated scenarios for different devices [32]
in a continuous development fashion, especially taking into
account that some apps may have users coming from as many
as 132 unique devices [34]. A significant amount of work is
required to generate replay scripts that are coupled to screen
dimensions for a single device (i.e., one script is required
for each target device). Consequently, these scripts become
quickly outdated when significant changes are made to the
app’s GUI [24], [32].

Existing research tackled some of these issues by deriving
models that represent the GUI and behavior of apps. These
models are abstract representations that can be decoupled from
device dimensions and event locations and can still remain
valid when small changes are done to the app (e.g., button
location change). For instance, some representative approaches
for deriving such models use either dynamic [8], [11], [15],
[39], [44], [45], [48], [49] or static analyses [10], [13], [19],
[30], [43], [46]. However, current approaches fall short in (i)
generating scenarios that are representative of natural (i.e., typ-
ical end-user) application usages [49], (ii) taking into account
the context which exists in an app’s execution history [18],
[49], (iii) generating sequences with previously unseen (i.e.,
not available in artifacts used to derive the model) but feasible
events. Moreover, utilizing model-based testing techniques for
GUI-based testing in industrial contexts may be particularly
challenging because creating such models requires specialized
expertise and using these models (for manual and automated
testing) assumes a logical mapping between the model and the
actual system that was modeled [7].

In practice, developers constantly test their apps manually
by exercising apps on target devices. In fact, manual testing is
usually preferred over automated approaches for testing mobile
apps [32]. However, oftentimes this execution data is simply
thrown on the ground and never used when an app needs
to be retested. Our key hypothesis is that all this data that
is produced from regular app usages by developers, testers,
or even end-users can be effectively recorded and mined to
generate representative app usage scenarios (as well as the
corner cases) that can be useful for automated validation
purposes. Furthermore, our intuition is that the models mined
from execution (event) traces can be augmented with static
analysis information to include unseen but feasible events.

In this paper, we propose a novel hybrid approach

*This work is supported by NSF CCF-1218129 and CCF-1253837 grants.
grants. Any opinions, findings, and conclusions expressed herein are the
authors and do not necessarily reflect those of the sponsors.

1

for mining GUI-based models from event logs col-
lected during routine executions of Android apps. Our
approach (MONKEYLAB) derives feasible and fully re-
playable GUI-based event sequences for (un)natural app
usage scenarios (i.e., actionable scenarios) based on the
novel Record→Mine→Generate→Validate frame-
work. MONKEYLAB provides stakeholders with an automated
approach for scenario generation that can be as powerful as
manual testing. MONKEYLAB mines event traces and gener-
ates execution scenarios using statistical language modeling,
static analysis, and dynamic analysis. To generate (un)natural
event sequences, our novel approach (i) augments the vo-
cabulary of events mined from app usages with feasible
events extracted statically from the app’s source code and
(ii) exploits a space of possible events and transitions with
different flavors of language models capable of modeling
and generating combinations of events representing natural
scenarios (i.e., those observed relatively frequently in app
usages) and corner cases (i.e., those sequences that were
observed relatively infrequently or not observed at all).

We evaluated MONKEYLAB on several medium-to-large
Android apps from Google Play and compared MONKEY-
LAB to other commonly used approaches for generating GUI-
based event scenarios. The results demonstrate that MONKEY-
LAB is able to generate effective and fully replayable scenar-
ios. Moreover, MONKEYLAB is able to generate scenarios that
differ from observed executions enabling it to explore other
paths that could trigger unexpected app crashes.

In summary, the paper provides the following contributions:
• A Record→Mine→Generate→Validate frame-

work for generating actionable scenarios for Android
apps. We designed MONKEYLAB to be independent from
specific Android devices or API platform versions.

• A novel mechanism for generating actionable scenarios
that is rooted in mining event traces, generating execution
scenarios via statistical language modeling, static and
dynamic analyses, and validating these resulting scenarios
using interactive executions of the app on a real device
(or emulator). In particular, we explore interpolated n-
grams and back-off models, and we propose three dif-
ferent flavors (i.e., up, down, and strange) for generating
(un)natural scenarios.

• A thorough empirical evaluation and comparison of
MONKEYLAB to competitive approaches on Android de-
vices (Google Nexus 7 tablets). Experimental data, videos
of the generated scenarios, and other accompanying tools
are available in our online appendix [38].

II. BACKGROUND AND RELATED WORK

Automatic generation of GUI-based scenarios (event se-
quences) has applications not only in automated testing but
also in creating app usage documentation [53]. In general,
event sequences can be generated automatically by relying on
models built (i) statically from app source code, (ii) dynam-
ically from interactive app executions (e.g., GUI ripping) or
from execution traces, (iii) manually defined by programmers,

or (iv) approaches using random chains of events without any
knowledge of the app such as the widely used Android UI
monkey [23]. Once the model is defined, it can be used to
generate sequences of feasible (in theory) events.

Models derived from the app source code rely on static
analysis [46], symbolic [13], [30] and concolic execution [10]
techniques. Rountev et al. [46] proposed a method for stati-
cally extracting GUI components, flows of GUI object refer-
ences and their interactions. The concolic-based testing model
proposed by Anand et al. [10] generates single events and
event sequences by tracking input events from the origin to
the point where they are handled.

Models derived using dynamic analysis are mostly based on
interactive execution of the app for systematically identifying
the GUI components and transitions (i.e., GUI ripping). The
execution is usually done heuristically by using some strategy
(e.g., depth-first search (DFS) or a non-uniform distribution).
Examples of approaches and tools relying on systematic
exploration are the work by Takala et al. [48], the tools
VanarSena [45], AndroidRipper [8], A3E [11], Dynodroid [39],
SwiftHand [15], OME∗ [44], and MobiGUITAR [9] that
extracts a state-based model of the GUI, which is used to
generate JUnit test cases.

Dynamic analysis has also been used for collecting real
execution traces and inferring some grammar-based rules or
statistical models describing observed events. Representative
approaches of models extracted from execution traces col-
lected apriori include SwiftHand [15], which uses statistical
models extracted from execution traces, and the approach by
Elbaum et al. [19] which generates test cases from user-
session data. TAUTOKO [17] mines typestate models from
test suite executions and then mutates the test cases to cover
previously unobserved behavior. Recent work by Tonella et
al. [49] derives language models from execution traces.

Hybrid models, such as ORBIT [54], have also been
proposed, which combine static analysis and GUI ripping.
Moreover, Collider [30] combines GUI models and concolic
execution to generate test cases that end at a target loca-
tion. EvoDroid [40] extracts interface and call graph models
automatically, and then generates test cases using search-
based techniques. Yeh et al. [13] track the execution paths
of randomly generated input events by using symbolic exe-
cution. Afterward, the paths are used for detecting faults and
vulnerabilities in the app.

Event sequences can also be generated by relying on random
distributions. For instance, the Android UI monkey [23] is
widely used for generating random input events without prior
knowledge of the app’s GUI. Although a tool like monkey
helps automate testing, it is not robust since it is prone to
providing a high ratio of invalid inputs. Dynodroid [39] also
includes a strategy for generating GUI and system level events
via a uniform distribution where available GUI events are
discovered interactively using GUI ripping.

Regardless of the underlying analyses to build the model,
model-based GUI testing is inherently difficult, because the
current state of an app (available components and possible

2

actions) can change continually as new GUI events are ex-
ecuted. For example, consider a state machine-based GUI
model in which each node (state) is a screen (i.e., activity)
of an Android app, and the transitions are actions on specific
GUI components (e.g., click the OK button). Some of the
real transitions are feasible under certain conditions (e.g.,
delete a task in a non-empty list of a TODO app), and some
states that are reachable only after executing natural (and
unnatural) sequences of GUI events (e.g., customized scroll
behavior on an empty list) are hard to model using state
machines. In addition, although systematic-based exploration
techniques could execute events on all of the GUI components
of the app, the execution follows a predefined heuristic on
the GUI (e.g., DFS) that neither represents natural execution
scenarios nor considers execution history. Existing approaches
also assume a high rate of generated event sequences that are
simply infeasible [18], [49]. For instance, some events in
the sequence can be infeasible in the context of a given test
case (e.g., an invalid action on a component or an action on
a component that is not displayed in the current GUI state).
Another issue, which is pertinent to the models extracted from
execution traces, is their inability to generate sequences with
unseen (i.e., not observed in the traces) but feasible events.

III. MINING AND GENERATING ACTIONABLE EXECUTION
SCENARIOS WITH MONKEYLAB

Given that manual execution of Android apps for testing
purposes is still preferred and relied upon over automated
methods [32], we set out to build a system for generating
inputs (event sequences) to mobile apps on Android that would
simulate the convenience, naturalness, and power of manual
testing (and utilize all the data that is produced during these
app usages) while requiring little effort from developers. Also,
we identified a set of four key goals that we felt such a system
must satisfy in order to be useful:

1) The solution for generating executable scenarios needs to
resemble manual testing, where the process of collecting
test scripts allows developers/testers to interact with the
app naturally by using gestures and/or GUI-based actions.
One solution to this issue is represented by the event
log collection capability used by RERAN [20]. However,
RERAN replays only what it records and does not allow
an arbitrary recombination of events for replay; moreover,
scripts recorded with RERAN cannot be easily deciphered
by testers since they are low-level, hardware-specific
events that are coupled to screen locations (e.g., events
collected on a Nexus 4 will not work on a Galaxy S4).

2) The solution should have context awareness of an app’s
execution history, where current possible actions are
generated and executed as event streams to facilitate the
highest possible testing coverage. In this regard, our key
insight is to rely on statistical language models (n-grams)
to generate event sequences by using program structure
and previous executions of an app. Our motivation be-
hind using language models (LMs) is in their capacity
to represent event streams while maintaining contextual

awareness of the event history. MONKEYLAB uses LMs
for representing sequences of events as tokens (more
specifically, Object:Action lexemes) that can be extracted
statically from the app and also mined from the app’s
execution. Extracting the tokens only from execution
traces carries the risk of missing possible feasible events
that are not observed in traces. Therefore, combining
static and dynamic information may further augment
the vocabulary used by LMs in such a way that some
unnatural (those that did not appear in traces) but feasible
tokens are included in the model, effectively taking into
account both the execution history and unobserved events.

3) The solution should be able to generate actionable sce-
narios as streams of events that can be reproduced auto-
matically on a device running the app. These scenarios
should not be low-level event streams but rather human
readable streams that developers can easily comprehend
and are not coupled to locations in a screen. This goal
can be met by translating high-level readable tokens (e.g.,
click OK button) to low-level event streams that can be
executed automatically on a target device. These high-
level readable tokens are derived from language models
formulated by mining from app usages and source code.

4) The solution should not impose significant instrumen-
tation overhead on a device or an app in order to be
able to reproduce automatically generated scenarios. In
order to meet this goal, we rely on the replay capability
provided by the input commands for remote execution in
Android [5]. However, any framework for remote execu-
tion of GUI events can be used such as Robotium [4].

Having these goals in mind, the proposed approach for
generating actionable scenarios is described by the following
framework: (i) developers/testers use the app naturally; the
event logs representing scenarios executed by the develop-
ers/testers are Recorded; (ii) the logs are Mined to ob-
tain event sequences described at GUI level instead of low-
level events; (iii) the source code of the app and the event
sequences are Mined to build a vocabulary of feasible events;
(iv) language models are derived using the vocabulary of
feasible events; (v) the models are used to Generate event
sequences; (vi) the sequences are Validated on the target
device where infeasible events are removed for generating
actionable scenarios (i.e., feasible and fully reproducible).
The framework and the architecture are depicted in Figure
1 as well as real examples of event logs collected in the
Record phase, event sequences derived after the Mine and
Generate phases, and actionable scenarios generated with
the Validate phase, for the Android app (Mileage). In the
following subsections, we describe each step of the framework
and the components required for each step.

A. Record: Collecting Event Logs from the Crowd
Collecting event logs from developers/testers should be

no different from manual testing (in terms of experience
and overhead). Therefore, developers/testers using MONKEY-
LAB rely on the getevent command for collecting event

3

Developers/Testers Device

1. APP

2. getevent
 command

3. GUI events

a. Record

b. Mine 5. getevent logs

4. getevent logs

Data Collector

ADB

hierarchyviewe
r2lib.jar

Events
Clusterer

uiautomator
Input

commands
generator

Device

APP

View
Server

GUI tree

6. Event-sequence

7. Tokens
vocabulary
(dynamic)

d. Validate

Model
generator/extractor

Sequences
generator

11. Model
12. Event-
sequences

14. Input
commands

APP

Chimp

Input
commands
generator

ADB uiautomator

hierarchyvie
wer2lib.jar

GUI tree

APK Analyzer

8. APP (APK file)

9. Tokens
vocabulary
 (static)

dex2jar Procyon apktool

srcML

Actionable
scenarios

APP

Device

APP

View
Server

[13331.457322] /dev/input/event0: 0003 0039 000007d1
[13331.457353] /dev/input/event0: 0003 0030 0000000a
[13331.457383] /dev/input/event0: 0003 003a 00000015
[13331.457383] /dev/input/event0: 0003 0035 000002bf
[13331.457383] /dev/input/event0: 0003 0036 0000007e
[13331.457414] /dev/input/event0: 0000 0000 00000000
..................
..................
..................
[13340.831651] /dev/input/event0: 0003 003a 00000017
[13340.831651] /dev/input/event0: 0003 0035 0000035a
[13340.831651] /dev/input/event0: 0003 0036 00000147
[13340.831681] /dev/input/event0: 0000 0000 00000000

TaskListActivity.Main.id/editor_action_cancel#CLICK.android-widget-TextView
EditTaskActivity.Main.id/text1#CLICK.android-widget-EditText
EditTaskActivity.Keyboard.id/keyboard_view#CLICK.com-android-inputmethod-keyboard-...
TaskListActivity.id/content#CLICK.android-widget-FrameLayout
ViewTaskActivity.Main.id/editor_action_cancel#CLICK.android-widget-TextView
EditTaskActivity.Main.id/button1#CLICK.android-widget-Button
EditTaskActivity.Main.id/numberpicker_input#SWIPE-DOWN-LEFT.android-widget-EditText
EditTaskActivity.Main.id/delete_task#CLICK.android-widget-TextView

.......

.......

adb shell input tap 29 308
adb shell input tap 5 167
adb shell input tap 29 308
adb shell input text 'h5'
adb shell input keyevent 4
adb shell input tap 5 167
adb shell input tap 5 167
adb shell input touchscreen swipe 1195 1824 5 167 0
adb shell input keyevent 4
adb shell input tap 684 167
adb shell input tap 308 167

......
EditTaskActivity.Main.id/content#CLICK.android-widget-FrameLayout
EditTaskActivity.Main.id/text1#CLICK.android-widget-EditText
EditTaskActivity.Keyboard.id/keyboard_view#CLICK.com-android-inputmethod...
EditTaskActivity.Main.BACK_MODAL#CLICK
EditTaskActivity.Main.id/content#CLICK.android-widget-FrameLayout
EditTaskActivity.Main.id/content#CLICK.android-widget-FrameLayout
EditTaskActivity.Main.id/content#SWIPE-UP-LEFT.android-widget-FrameLayout
EditTaskActivity.Main.BACK_MODAL#CLICK
.....

10. Vocabulary +
Event-sequence

c. Generate

Timestamp Input method Action Prop. Value

Fig. 1. MonkeyLab architecture and the Record→Mine →Generate→Validate framework
sequences, similar to RERAN [20]. The getevent command
produces logs that include low-level events (see getevent
log example in Fig. 1), representing click-based actions as
well as simple (e.g., swipe) and complex gestures; those logs
are collected during an app execution. After MONKEYLAB is
enabled, developers/testers exercise/test the app as in manual
testing. After having executed the app, the logs are generated
with the getevent command and copied to the logs repos-
itory. Since our log collection approach poses no overhead
on developers/testers (they just use apps as usual), this setup
permits collecting logs on a large scale. In fact, this log
collection approach can be easily crowd-sourced, where logs
are collected from daily app usages by ordinary users.

B. Mine: Extracting Event Sequences from Logs and the App

The goal of the Mine phase is to extract the vocabulary
of events (i.e., feasible events) and translate the getevent
logs required to build the language models. The vocabulary of
events is extracted from the source code of the app and also
from the event logs. However, the low-level events are coupled
to specific locations on the screen and do not describe the
GUI components in the app; in addition, a single GUI event
is represented by multiple lines in a log (see Fig. 1). A line in
a getevent log has a timestamp, input method (e.g., screen
or physical keyboard), an action (e.g., 003 = click), a
property related to the action (e.g., 0035 = x-axis position),
and the property value. Therefore, to eliminate the dependency
of the actions on the screen coordinates in specific devices,
we translated the getevent logs to a GUI-based level
representation: we model an event ei—represented by multiple
lines in a getevent log—as the tuple ei :=<Activityi,

Windowi, GUI-Componenti, Actioni, Component-Classi> (see
examples of event sequences in Fig. 1). We included the
Window element to distinguish actions on the activity (i.e.,
screen) and actions on the displayable Android keyboard. For
the Action element, we included click, long-click, and
swipe. This representation considers the fact that Android
apps are composed mostly of Activities representing screens of
the application. Each Activity is composed of GUI components
that are rendered dynamically according to the app’s state.
Thus, the number of GUI components that are visible in an
activity can be different across time. Additionally, the set of
feasible actions for each component depends on the component
type. For instance, click and long-click event handlers
can be attached to a button but not to a swipe gesture
handler. The Component-Class field is necessary to validate
GUI-components in the app at runtime. This representation of
ei tuples is used for both generating the vocabulary of events
from app code and event sequences from getevent logs.

1) Mining GUI events statically from APKs (APK Ana-
lyzer): The APK-Analyzer component (Fig. 1-b) uses static
analysis to extract from the app source code a list of feasible
GUI events. The list is used to augment the dynamically
built vocabulary from user event streams. To achieve this,
GUI components are extracted from decompiled APKs before
links between these components to activities, windows, and
actions/gestures are constructed. To extract this information,
the APK-Analyzer (i) uses the dex2jar [2] and Procyon [47]
tools for decompilation and (ii) converts the source files to an
XML-based representation using srcML [6]. We also rely on
apktool [1] to extract the resource files from the app’s APK.

4

The ids, types, and hierarchy of the GUI components were
extracted from the XML files of the APK resources.

The next major step in building the static vocabulary is
linking each GUI component to its respective actions/gestures.
Rather than parsing the source code to determine which
gestures are instantiated, the APK-Analyzer assigns inherent
gestures to the types of GUI components. For standard An-
droid component types, the linking is done with expected
gestures, e.g., Button would be linked with click and
long-click. For custom components, the APK-Analyzer
parses source code to determine gesture handlers and event
listeners, which are attached to the custom components. After
linking actions/gestures and types to the components is com-
plete, the APK-Analyzer links the components to the Activities
in which they appear. The list of events extracted statically
from the app is represented by a set of tuples ei. It should
be noted that the APK Analyzer cannot generate a static
vocabulary from obfuscated code nor code where components
are instantiated dynamically.

2) Mining GUI events from event logs (Data Collector):
The ei tuples require high-level information (i.e., activity, GUI
component, window) that is not provided by the getevent
logs. Thus, we implemented a component (Data collector in
Fig. 1-b), which is able to translate getevent logs into
sequences of ei tokens. The Data collector replays the logs
in a ripping mode in order to dynamically collect the GUI
information related to the event. The sentences (i.e., lines)
in a log Lk are grouped to identify individual GUI events.
Then each group of sentences (c) representing a GUI event is
translated into a natural language description (e.g., <click,
{x = 10, y = 200}>). For identifying the corresponding
component in the GUI, we queried the Android View
Server running on the device. The View Server provides
a tree representation of the GUI components with some
attributes such as the top-left location of a component and
the dimensions. Given the event location, we traversed the
GUI tree looking for the component area (top-left corner plus
dimensions) that contains the event’s location. For identifying
the current activity we used the adb shell dumpsys
window windows command, and then we looked for the
property mCurrentFocus|mFocusedApp. For identifying
whether the keyboard is displayed, we queried the list of
current windows in the View Server. With the ei tuple,
we built an input event command [5] that can be remotely
executed using the Android Debugger Bridge (e.g.,
adb shell input tap x y). Finally, we executed the
input command to update the app state and continued with
the next group c. The output of the procedure is the list Tk

of ei tuples extracted from the Lk getevent log. The Tk

sequences and unique ei tuples are copied to the sequence and
token repositories, respectively.

C. Generate: Event Sequences with Language Models
The vocabulary of event tokens extracted from the app code

and the event logs, both represented as GUI-level events, are
the universe of feasible events in the app and are natural use

cases respectively. They represent the GUI model of the app
including activities, components, feasible actions, and natural
transitions. This data can be used to build statistical models
for generating streams of events as execution scenarios of the
app. In fact, the Generate phase of our framework uses LMs
[16], [29], [33] to generate (un)natural sequences of events for
that purpose. These LMs are trained with the vocabulary and
event sequences extracted in the Mine phase.

Our motivation behind using LMs is their capacity to
represent event streams while maintaining a contextual aware-
ness of the event history. Hindle et al. [26] demonstrated
the usefulness of applying LMs to software corpora because
real programs written by real people can be characterized
as natural in the sense that they are even more repetitive
than natural languages (e.g., English). Tonella et al. [49]
exploited this interpretation of naturalness by casting it to
streaming events as test cases. Our hypothesis is that event-
sequences extracted from getevent logs emit a natural set
of event streams, which map to core functionality, as well as
an unnatural set of event streams. Language models inherently
capture natural behavior, but we also consider the complement
of this natural space, thereby improving the interpretive power
of these statistical models. Our novel interpretation of software
LMs systematically segments the domain of a LM over dy-
namic traces and imputes testing semantics to each segment.
For example, a sampling engine may select tokens from the
natural space to improve coverage, yet it may sample from the
unnatural space to crash the app. In the following subsections
we provide formal definitions behind LMs, LM flavors that
we defined in the context of our work as well as details on
using LMs for generating event sequences.

1) Language Models: A statistical language model is
a probability distribution over units of written/spoken lan-
guage,which measures the probability of a sentence s = wm

1 =
w1w2...wm based on the words (a.k.a., tokens) probabilities:

p(s) = p(wm
1) =

m�

i=1

p(wi|wi−1
1) ≈

m�

i=1

p(wi|wi−1
i−n+1) (1)

In Eq. (1), the Markov assumption approximates the joint
distribution by measuring the conditional probabilities of token
subsequences known as n-grams. After “discounting” the
model’s maximum likelihood estimates, there are generally
two methods for distributing the probability mass gleaned from
the observed n-grams: back-off and interpolation. The Katz
back-off model [33] takes the form

pB(wi|h) =
�
α(wi|h) c(hwi) > k

β(h)pB(wi|wi−1
i−n+2) otherwise

(2)

where h = w
i−1
i−n+1 is the history, α(wi|h) is the discounted

maximum likelihood estimate of word wi given h, β(h) is the
back-off weight, c(hwi) is the number of times hwi appears in
the training corpus, and k is a constant, which is typically zero.
If the history was observed in training, then a back-off model
says the conditional probability of a word given its history is
equal to the discounted estimate of the n-gram, where α(wi|h)
is computed using a smoothing technique such as Good-Turing

5

estimation [21]. Otherwise, the model truncates the history and
recursively computes the probability. Back-off models only
consider lower-order n-grams when c(hwi) = 0 for every wi

in the vocabulary V . On the other hand, interpolation considers
lower-order n-grams whether or not c(hwi) > 0. The general
interpolated model takes the form

pI(wi|h) = α(wi|h) + β(h)pI(wi|wi−1
i−n+2) (3)

where α(wi|h) is computed using a smoothing technique such
as modified Kneser-Ney estimation [14].

2) Language Model Flavors: Back-off (BO) and interpola-
tion (INTERP) are different approaches for computing proba-
bilities, but each LM is a way to characterize the naturalness
of a sentence. Moreover, we propose that each model can
be used to generate unnatural sentences as well, and these
unnatural sentences have clear software testing semantics.
Parenthetically, both BO and INTERP can be decomposed to
different flavors—up, down, and strange—that are simple
transformations for driving a sampling engine to specific
segments of the language model’s domain.
up corresponds to the natural distribution over tokens, but

there are subtle differences in the implementation depending
on whether the language model uses BO or INTERP. For
example, suppose we are given the following conditional
probabilities from a LM: θ = {α(wa|h) : 0.20,α(wb|h) :
0.50,α(wc|h) : 0.10,α(wd|h) : 0.10}. For BO models, up
will sample a uniform variate using the cumulative sum of
the smoothed estimates. If c(hw) = 0, then up will back-
off to the next lowest order and repeat the procedure, where
unigram probabilities serve as the base case in the recursion.
By construction, interpolation mixes input from every n-gram
that can be sliced from hw, so up recurses on the order
through the unigrams to compute p(wi|h)∀wi ∈ V using
Eq. (3). Naturally, while the probability mass is concentrated
on expected transitions, INTERP-up models are able to reach
any transition in the vocabulary of transitions at any point in
time. This is not the case for BO-up models.
down corresponds to the unnatural distribution. For exam-

ple, suppose we are given the same conditional estimates θ. For
BO models, down will normalize the estimates, sort the tokens
according to their probabilities and then reverse the proba-
bilities over the tokens to produce the following distribution:
{p(wc|h) : 0.55, p(wd|h) : 0.22, p(wa|h) : 0.11, p(wb|h) :
0.11}. In cases where two tokens have the same probabil-
ity, down will randomly arrange the tokens, so {p(wc|h) :
0.55, p(wd|h) : 0.22} and {p(wc|h) : 0.22, p(wd|h) : 0.55}
are equally likely. According to the training log, tokens wc

and wd are unnatural given the context, but down seeks the
unnatural transitions when it generates samples. For INTERP
models, down will build a categorical distribution over V
using Eq. (3). Therefore, as with up, we sort the tokens
in V according to their probabilities and then reverse the
probabilities over the sample space. INTERP down models
marshal uncharacteristic transitions in V given the context into
the natural space, replacing frequently observed transitions.

strange linearly interpolates up and down, which likely
has the effect of increasing the entropy of p(w|h). When
the entropy of the natural distribution over tokens is low
and the mixture coefficient λ ≈ 0.5, strange distributions
can take an interesting form where the probability mass is
simultaneously concentrated on very (un)natural events. This
strange case describes a scenario where the generative model
produces a stream of natural tokens, yet at any point in time
is ”equally” likely to choose a corner case in the execution.

3) Generating Event Sequences: The generation engine
estimates two n-gram language models—one BO and one
INTERP— using the vocabulary extracted in the Mine phase.
The default order and smoother for both models are three
and modified Kneser-Ney [14], respectively. Tokens in the
vocabulary that are not in the event-sequence repository are
factored into the models’ unigram estimates. Clients (i.e.,
instances of the Chimp component in Fig. 1) can communicate
with the Sequence Generator by sending JSON requests and
reading JSON responses. A request includes: model, flavor,
history, and length. The model field can take one of two values:
BO or INTERP. The flavor field can take one of three values:
up, down or strange. The history field contains the initial
prefix as an array of strings. If the client does not have a
prefix, then the history field is the empty string. When the
client does not have a history (or the length of the history
is suboptimal), then the Sequence Generator will essentially
bootstrap the history to length n−1, where n is the order of the
model(s). When the client gives a history that is longer than
n, the Sequence Generator will apply the Markov assumption,
so the history will be sliced according to the order before
querying the language model. The length field governs the
length of the sequence to query from the language model
(i.e., number of events in the test case). This enables us to
use the Sequence Generator in serial mode (e.g., requesting
a sequence with 100 events) or in interactive mode (i.e., only
one event is requested at a time).

D. Validate: Filtering Actionable Scenarios
The streams of events generated by the Sequence Generator

are expressed at GUI level, which decouples the sequence from
device-specific locations. Thus, the Chimp component (Fig. 1-
d) understands the events and Validates them dynamically
on a device. The validation can be performed in a serial (as
in Tonella et al. [49]) or with MONKEYLAB interactive mode.

In the serial mode, the Chimp requests a sequence that is
validated iteratively following the procedure in Alg. 1. For
each event e in the event sequence S, the Chimp searches
for the component (in the event tuple) in the Hierarchy
View (i.e., GUI tree) of the current GUI displayed in the
target device. If the component is not in the GUI or the
current activity is not the same as in the tuple e (line 5),
then the Chimp discards the event (line 7); otherwise the
Chimp queries the View Server (line 8) in the device to
identify the location of the component. Afterward, it generates
an input command by using the location <x, y> of the
component and the action in the tuple e (line 9). Then the

6

Algorithm 1: Validating Event Sequences: Serial Mode
Input: S
Output: AS

1 begin
2 i = 1, ATC = ∅;
3 startAppInDevice();
4 foreach e ∈ S do
5 feasible = queryV S(e.component, e.action);
6 if !feasible then
7 continue with next event;

8 < x, y >= searchV S(e.component);
9 cmdi = getInputCmd(e.action,< x, y >);

10 addEvent(AS,< e, cmdi >);
11 executeInputCmd(cmdi);
12 i = i+ 1;

Algorithm 2: Validating Sequences: Interactive Mode
Input: k
Output: AS

1 begin
2 ATC = ∅, history = ∅;
3 startAppInDevice();
4 for i ∈ 1 : k do
5 e = queryEvent(history)

feasible = queryV S(e.component, e.action);
6 if !feasible then
7 e = getEvent(randComponent());

8 < x, y >= searchV S(e.component);
9 cmdi = getInputCmd(e.action,< x, y >);

10 addEvent(AS,< e, cmdi >);
11 history = e;
12 executeInputCmd(cmdi);
13 i = i+ 1;

event e and its corresponding input command are added to
the actionable scenario (line 10). Finally, the command cmdi

is executed on the GUI to update the app state. This serial
model is similar to the one proposed in [49], however we are
proposing three different flavors for the interpolated n-grams
and the back-off model (Sec. III-C1 and Sec. III-C2) and we
automatically validate the sequences on a target device.

In the interactive mode (Alg. 2), the Chimp requests single
events until the target length k is exhausted. Our motivation
for this mode is the possibility of having infeasible events in
a sequence (i.e., in serial model) that can influence further
events. We are augmenting the vocabulary used to train
the models, with individual tokens extracted statically from
the source code. So, it is possible that unseen—but also
infeasible—events appear in a sequence. For example, in the
sequence e1e2...t1ekek+1...t2t3elel+1, tokens t1, t2, and t3 are
infeasible, which leads to the following issues: (i) the inclusion
of events ek, ek+1, el, el+1 into the sequence is influenced
by the infeasible tokens t1, t2, and t3; and (ii) once the first

infeasible token is read by the Chimp, the further events in
the sequence can also be infeasible in the GUI. This is why,
in the serial mode, we opted to skip infeasible events and
continue reading until the sequence is exhausted, which drives
to sequences with less events than the target k.

Therefore, as a second option, we opted for requesting
single events and executing only feasible events. This is how
the interactive mode operates. The Chimp in interactive mode
asks for a single token (similarly to code suggestion problem
[26]) until a target number of feasible events (lines 4 and
5 in Alg. 2) is executed on the device. To avoid infeasible
events and loops because of chains of infeasible events (i.e.,
the returned token is always infeasible), we execute a random
feasible event—queried from the current GUI state— (line 7)
when the component and action in event e are not feasible (line
6). This guarantees that the Chimp always executes a feasible
event, and that event is the history for the next one (line 11).
The interactive mode relies on the language model extracted
from the event logs and the source code, and takes advantage
of the current GUI state to reduce the rate of infeasible-events
produced by the model. In summary, our interactive mode
combines static and dynamic analyses as well as GUI ripping.

IV. EMPIRICAL STUDY DESIGN

Our main hypothesis is that models derived with MON-
KEYLAB are able to produce event sequences for natural
scenarios and corner cases unseen in the scenarios executed
by stakeholders. Therefore, event sequences generated with
MONKEYLAB should not only include events from scenarios
used to derive the models (i.e., scenarios collected from users)
but also events not observed in those scenarios. To test our
hypothesis, we performed a case study with five free Android
apps and unlocked/rooted Nexus 7 [22] Axus tablets each
having a 1.5GHz Qualcomm Snapdragon S4 Pro CPU and
equipped with Android 4.4.2 (kernel version 3.4.0-gac9222c).

We measured statement coverage of sequences generated
with (i) MONKEYLAB, (ii) a random-based approach (i.e.,
Android GUI monkey), (iii) GUI ripping using a DFS
heuristic, and (iv) manual execution. We also compared the
GUI events in the sequences to identify events that were
executed only by one approach when compared to another
(e.g., GUI events in sequences from MonkeyLab but not in
the users’ traces). In summary, the study aimed at investigating
the following research questions (RQs):
RQ1: Which language model-based strategy is more suitable
for generating effective (un)natural scenarios?
RQ2: Do scenarios generated with MONKEYLAB achieve
higher coverage as compared to Android UI monkey?
RQ3: How do scenarios generated with MONKEYLAB com-
pare to a DFS-based GUI ripper in terms of coverage?
RQ4: Do MONKEYLAB scenarios achieve higher coverage
than manual executions used to train the models?

A. Data Collection
Tab. I lists the Android apps used in the study, lines of

code (excluding third party libraries), number of Activities,

7

TABLE I
ANDROID APPS USED IN OUR STUDY. THE STATS INCLUDE THE NUMBER

OF ACTIVITIES, METHODS, AND GUI COMPONENTS. LAST TWO COLUMNS
LIST THE NUMBER OF RAW EVENTS (#RE) IN THE EVENT LOGS (I.E.,

LINES IN THE FILES COLLECTED WITH THE GETEVENT COMMAND) AND
GUI LEVEL EVENTS MINED FROM THE RAW LOGS (#GE)

App Ver. LOC #Act. #M. #Comp. #RE #GE
Car Report 2.9.1 7K+ 6 764 142 23.4K+ 1.5K+
GnuCash 1.5.3 10K+ 6 1,027 275 14.7K+ 895
Mileage 3.1.1 10K+ 51 1,139 99 9.8K+ 783
My Expenses 2.4.0 24K+ 17 1778 693 20.3K+ 854
Tasks 1.0.12 10K+ 4 561 200 70.6K+ 1.7K+

methods, and GUI components. We selected the applications
looking for a diverse set in terms of events supported by
the apps (click, long click, swipe), number of GUI
components, number of Activities, and application domain.
However, the main selection criteria was the app’s size. We
decided to use only medium-to-large applications that exhibit
non-trivial use-cases and a large set of feasible events.

To answer the research questions, we simulated a system-
level testing process where we asked graduate students to
get familiarized with the apps for five minutes (exploratory
testing), and then to test the app executing multiple scenarios
for 15 minutes (functional testing). Five Ph.D. students at the
College of William and Mary executed the Record phase
of our MONKEYLAB framework. Afterward, we executed the
Mine→Generate→Validate phases in MONKEYLAB to
generate actionable sequences for each app. During the Vali-
date phase, we collected coverage measurements for each of
the generated event sequences by using a tailored version of
Emma [3] for Android. Tab. I lists the total number of low-
level and GUI-level events collected from the participants.

To represent a random approach, we generated sequences of
touch events with Android GUI monkey, simulating test
cases composed of random events. Regarding the GUI ripping
approach, we implemented our own version of DFS-based
exploration. In terms of GUI-model extraction/inference, it
considers cases that were not captured in other tools [11], [39],
such as pop-up windows in menus/internal windows, on-screen
keyboard, and containers. In this case, we do not have a set
of actionable sequences because the app is explored trying to
visit as many clickable GUI components as posible. However,
we measured the accumulated coverage for the whole sys-
tematic exploration. This measurement helped us to establish
a baseline to validate whether our event sequence generation
approach outperforms competitive approaches. More details of
the DFS implementation are in our online appendix.

B. Design Space

For training the language models, we used the traces col-
lected from the participants for the functional testing scenario.
Given two LMs (i.e., INTERP and BO) and three flavors
(i.e., up, down, strange), we generated 100 scenarios for
each combination <Model, Flavor, APP> with 3-gram LMs,
then we generated actionable scenarios using the serial mode.
For the interactive mode, we generated 33 scenarios for each
of the three INTERP flavors. Each scenario (in serial and

TABLE II
ACCUMULATED STATEMENT COVERAGE OF THE LMS

INTERP BO I-LM
App up down str. up down str.
Car Report 12% 14% 13% 11% 11% 11% 30%
GnuCash 7% 6% 7% 7% 7% 7% 22%
Mileage 36% 10% 25% 32% 24% 24% 26%
My Expenses 10% 10% 10% 10% 10% 10% 26%
Tasks 40% 34% 35% 22% 22% 34% 42%

0 20 40 60 80 100

0
10

20
30

40
50

60
70

Number of sequences

St
at

em
en

t A
cc

um
. c

ov
er

ag
e

(%
)

DFS
Users
INTERP−up
monkey
I−LM

Fig. 2. Accumulated Coverage for GnuCash

interactice modes) was composed of 100 events. We also
executed Android UI monkey on each app 100 times with
100 touchable events and inter-arrival delay of 500ms. Finally,
we executed our DFS-based GUI ripper on each app.

V. RESULTS AND DISCUSSION

Fig. 2 shows cumulative coverage of MONKEYLAB and
Android UI Monkey for the event sequences, in addition
to coverage achieved by logs collected from human partic-
ipants and coverage of the DFS-based exploration for the
GnuCash app. The figures for the other apps are in our
online appendix. In the case of MONKEYLAB, the figure
depicts the accumulated coverage of the best LM in serial
mode (in red color), and the combination of the 99 scenarios
of INTER-up, INTER-down, and INTER-strange (33
scenarios for each strategy) in interactive mode (I-LM). In the
following subsections, we present the results for the research
questions defined in Sec. IV.

A. RQ1: Language Models and Flavors
The accumulated coverage values for the language models

in serial mode are listed in Tab. II. In general, the INTERP-up
flavor is the one with the highest accumulated coverage for
the serial mode. Apps with splash-screens and modal dialogs
in clean launches (i.e., the app is launched right after being
installed) such as GnuCash, Car Report, and My Expenses
posed a challenge for the language models (see Sec. V-E for
more details). The interactive mode (I-LM), outperforms the
language models in serial model in 4 out of the 5 apps. The
I-LM mode is able to deal with the problem of splash-screens
and modal dialogs in clean launches to reduce the notoriously
high rate of infeasible events.

The accumulated coverage provides a high-level measure
when comparing two different models, however, it does not
reveal the entire story. It is possible that different strategies
are generating different events and sequences that drive to

8

BO
.d

ow
n

BO
.s

tra
ng

e

BO
.u

p

In
te

rp
.d

ow
n

In
te

rp
.s

tra
ng

e

In
te

rp
.u

p

I.L
M

Us
er

s

Users

I−LM

Interp−up

Interp−strange

Interp−down

BO−up

BO−strange

BO−down

Strategy A

St
ra

te
gy

 B

162 249 277 262 321 295 1611

185 273 300 276 380 356 1038

99 148 159 35 63 1892 1258

99 151 158 16 33 1886 1254

150 211 216 151 140 1917 1330

21 34 187 264 235 1912 1316

14 61 209 284 251 1912 1315

109 143 243 327 297 1919 1323

Fig. 3. Total number of events executed by Strategy A that are not executed
by Strategy B. The key color goes from white (zero) to red (highest value)

Us
er

s

DF
S

M
on

ke
y

In
te

rp
.u

p

In
te

rp
.d

ow
n

In
te

rp
.s

tra
ng

e

BO
.u

p

BO
.d

ow
n

BO
.s

tra
ng

e

I.L
M

I−LM

BO−strange

BO−down

BO−up

Interp−strange

Interp−down

Interp−up

Monkey

DFS

Users

Strategy A

St
ra

te
gy

 B

3235 1035 2044 1066 900 969 1028 877 895

3926 1252 2486 548 345 257 421 174 2610

3997 1351 2601 756 687 540 262 376 2746

3965 1358 2471 634 684 450 185 540 2811

3914 1253 2459 582 412 450 290 194 2598

3965 1281 2593 841 607 719 633 479 2783

3850 1206 2314 505 421 337 371 360 2574

3357 1052 1058 958 1077 935 959 1024 2254

3842 2407 1255 974 1143 1117 1011 1081 2561

1046 1875 1041 836 959 882 843 944 1903

Fig. 4. Total number of source code methods in which coverage is higher
when comparing coverage of Strategy A versus Strategy B

different executions of the apps. In fact, our goal behind
proposing six different flavors of LMs and the interactive mode
is based on the possibility that each flavor can explore different
regions in the GUI event space. Therefore, we investigated
the mutually exclusive events executed by each strategy in the
five apps. We also measured the number of times the method
coverage for each method in an app was higher in one strategy
when doing pairwise comparisons (e.g., INTER-up versus
INTER-down). The results are presented with heat-maps in
Fig. 3 and Fig. 4. Both figures corroborate the fact that each
LM strategy is able to generate different sets of events. For
example, when comparing INTERP-strange to BO-down
(Fig. 3), the former strategy was able to generate 327 GUI
events that were not generated by the latter. In addition, the
I-LM mode is the strategy with the highest difference of
executed events when compared to the other strategies.
Summary for RQ1: The LMs strategies are able to generate
diverse and orthogonal sets of GUI events, and the interactive
mode is the most effective.

B. RQ2: MONKEYLAB vs. Android UI monkey

The coverage of UI monkey surprisingly outperformed
the LMs in serial model for Gnu Cash, Car Report, and
MyExpenses. LMs provided a better coverage only in Tasks
and showed similar coverage in Mileage. The random nature of
the events generated by the UI monkey allows this strategy

to execute more GUI components without deeply exploring ex-
ecution paths that are related to the use cases. For instance, UI
Monkey is able to click on a diverse set of GUI components;
however, it does so without context awareness of the execution
history. The LMs are able to explore execution paths that lead
to the activation of Activities and features that can not be
reached easily by the UI Monkey. However, the I-LM mode
outperforms the accumulated coverage of UI monkey in all
the apps except for Mileage. When looking into the results in
Fig. 4, it is clear how UI monkey is able to achieve higher
coverage in source code methods more times than the serial
LM-strategies. However, the I-LM is able to achieve higher
coverage in more source code methods when compared to
Android UI monkey.
Summary for RQ2: Android UI monkey is able to
achieve higher coverage than MONKEYLAB in serial model.
However, our interactive mode outperforms UI monkey. In
terms of scenarios, all the MONKEYLAB strategies are able to
generate execution paths that are not covered by UI monkey.

C. RQ3: MONKEYLAB vs. DFS

The LMs in a serial mode provided similar statement
coverage as compared to DFS in GnuCash, Tasks, and
MyExpenses, better coverage in Mileage, and lower in
Car Report. DFS follows a systematic strategy for execut-
ing click events on the GUIs. This systematic exploration is
able to exercise deeper executions paths as compared to UI
monkey, but DFS is not able to recognize data dependencies.
We found that the LMs can actually model some of these
dependencies (e.g., some fields are required to create a budget
or task). In other cases, the LMs can get stuck in specific paths
that are very common (frequent) in the observed traces. How-
ever, the I-LM mode outperformed the accumulated coverage
of DFS in the 5 apps. Concerning, the source code methods
with higher coverage (Fig. 4), there is a notorious difference
between DFS and the LMs in serial mode. However, the I-LM
provides higher coverage on more methods when compared to
DFS (I-LM−DFS = 2,561 and DFS−I-LM = 1,035 methods).
Summary for RQ3: Although the LMs in serial mode are
not able to achieve better coverage than DFS, I-LM is able to
achieve higher coverage as compared to DFS.

D. RQ4: MONKEYLAB vs. Manual execution

The coverage achieved by the users during the Record
phase outperforms UI Monkey, DFS, and the LMs in serial
and interactive modes, as originally expected. However, the
LMs were able to execute events that were not observed in
the event traces collected by the users (see Fig. 3). In general,
the LMs were able to generate actionable scenarios for natural
executions, i.e., there are sequences generated with the LMs
including GUI events from the collected traces. However, the
LMs were also able to generate sequences with unseen events,
which means that the actionable scenarios cover natural cases
but also corner-cases not considered by the users. And the
benefit is noticeable when using the interactive mode, which

9

was able to generate 1,611 GUI events not considered by the
participants in our study.

While we can not claim that the LMs are better than the
other approaches in terms of coverage, after looking into the
details of the events executed by each method, it becomes
clear that the combinations of manual testing and automated
approaches can significantly improve the coverage. However,
MONKEYLAB is able to learn a model and then generate
actionable scenarios that can be executed on a target device. In
addition, MONKEYLAB generates not only natural scenarios
but also corner cases that are not generated by any of the
competitive approaches.
Summary for RQ4: Although the overall coverage achieved
by MONKEYLAB is not as high as compared to manual exe-
cution, MONKEYLAB is able to generate actionable scenarios
including not only natural GUI events, but also events that are
not considered during manual testing. Therefore, the scenarios
generated by MONKEYLAB can help increase the coverage
achieved by manual testing without extra effort that is imposed
by collecting test-scripts.

E. Limitations
Automated GUI-based testing approaches can benefit from

the following information in this study, since some of these
issues can pose similar problems for various testing strategies.

Encapsulated components. Encapsulated components
(e.g., KeyboardView, AutoCompleteTextView,
CalendarView, and DatePicker) cannot be analyzed
during systematic exploration, because the sub-components
(e.g., each key of the keyboard) are not available for ripping at
execution time. Thus, the sub-components are not recognized
by the View Server nor the Hierarchy Viewer. This
type of component requires a predefined model of the feasible
events with the locations and areas of these sub-components.

Training corpus size in serial mode. Another lesson
gleaned from this study concerns an effective training set.
Specifically, we diagnosed two critical issues that contributed
to the high rate of infeasible events produced by the inter-
polated n-grams and back-off models. The principal issue
was relatively small amount of training data for each app
as compared to the size of the respective vocabularies. The
need for substantial training data was observed in most of
the sequences for the apps (especially Keepscore) for which
the LM-based strategies were not able to produce a response.
For example, an app with a vocabulary size of 250 events
would require 250×249 and 250×250×249 parameters to re-
liably estimate bigram and trigram models, respectively. Data
sparsity is a key concern in statistical language modeling, and
a number of techniques have been developed to manage the
problem of deriving useful statistical estimates from relatively
small corpora [14]. Naturally, one approach to controlling the
number of parameters is to reduce the order of the model [41];
however, reducing the order of our models presented another
issue. In our experiments, reducing the order degenerated the
effectiveness of the INTERP-up models at generating feasible
test cases. This degeneration can be attributed to allocating too

much weight to the unigrams in the mixture model (Eq. 3).
In other words, after unfolding the recurrence in Eq. 3,
unigrams will generally have more influence on the predictions
of interpolated n-gram models as compared to interpolated
models whose order is greater than n. For example, unigrams
will have more influence on the predictions of interpolated
trigrams than interpolated 4-grams, because the unigrams are
multiplied by β(h) (Eq. 3), a number less than one, an
additional time in interpolated 4-grams. Our expectation was
for INTERP-up models to yield favorable coverage results in
line with previous empirical studies [49], yet the low-orders
disabled the models in our experiments. However, we did not
expect INTERP-down nor INTERP-strange models to
yield high rates of feasible events. Considering the nature of
the interpolation smoothing technique, models at all orders
are factored into the estimator. So, regardless of the order
of the interpolated model and the history of events, every
event will have a chance to be selected at each point in
time. Moreover, for INTERP-down and INTERP-strange,
the probability distributions are transformed such that all of
the unlikely events (given the context) in the vocabulary are
generally assigned more probability mass. Thus, we expected
INTERP-down and INTERP-strange models to yield
high rates of infeasible events. The sparse training set had
a similar degenerative effect on the back-off models. With
relatively few data points to inform high-order component
models, the back-off model will successively probe low-order
models until reaching unigrams—the base case. Probing low-
order models is not conducive to generating feasible events.
The purpose of smoothing techniques like interpolation and
back-off is to use substantial contexts when possible before
defaulting to lower-order models (e.g., unigrams and bigrams),
but this is predicated on a training set that can support the
estimation of higher-order models.

VI. CONCLUSION AND FUTURE WORK

We present a novel framework for automatic generation of
actionable scenarios for Android apps. The framework uses
two language models and three proposed flavors. For the eval-
uation we used several medium-large Android apps. On one
hand, the results suggest that the BO model is more suitable for
generating unnatural scenarios with small and large corpora.
On the other hand, INTERP is not able to generate scenarios
when the available corpora are small. If small corpora are
available, INTERP is more suitable for natural scenarios.
Finally, the interactive mode in MONKEYLAB outperformed
the serial mode in terms of coverage.

We also provide a set of learned lessons for GUI-based
testing of Android apps using actionable scenarios. The lessons
recommend designing models for encapsulated components
and increasing training corpus size of LMs. The lessons can
be used by researchers to implement automated approaches
for GUI-based testing that are more attractive and useful to
mobile developers and testers. Actionable scenarios can also
be combined with automatic generation of testing oracles [35]
for generating GUI-based test cases for mobile apps.

10

REFERENCES

[1] Apktool. https://code.google.com/p/android-apktool/.
[2] dex2jar. https://code.google.com/p/dex2jar/.
[3] Emma: a free java code coverage tool. http://emma.sourceforge.net/.
[4] Robotium. https://code.google.com/p/robotium/.
[5] Sending keyboard input via adb to your android device.

http://blog.rungeek.com/post/42456936947/sending-keyboard-input-
via-adb-to-your-android.

[6] Srcml. http://www.sdml.info/projects/srcml/.
[7] P. Aho, M. Suarez, T. Kanstren, and A. Memon. Murphy tools: Utilizing

extracted gui models for industrial software testing. In Software Testing,
Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh
International Conference on, pages 343–348, 2014.

[8] D. Amalfitano, A. Fasolino, P. Tramontana, S. De Carmine, and
A. Memon. Using gui ripping for automated testing of android
applications. In 258-261, editor, International Conference on Automated
Software Engineering (ASE’12), 2012.

[9] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. Memon.
Mobiguitar - a tool for automated model-based testing of mobile apps.
IEEE Software, page to appear, 2014.

[10] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic
testing of smartphone apps. In FSE’12, 2012.

[11] T. Azim and I. Neamtiu. Targeted and depth-first exploration for
systematic testing of android apps. In International Conference on
Object Oriented Programming Systems Languages and Applications
(OOPSLA’13), pages 641–660, 2013.

[12] G. Bavota, M. Linares-Vásquez, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. The impact of api change- and fault-
proneness on the user ratings of android apps. IEEE Transactions on
Software Engineering (TSE), 2015.

[13] C. C. K. K. C. Yeh, H. Lu and S. Huang. Craxdroid: Automatic
android system testing by selective symbolic execution. In IEEE Eighth
International Conference on Software Security and Reliability (SERE-
C), pages 140–148, 2014.

[14] S. F. Chen and J. Goodman. An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th Annual Meeting on
Association for Computational Linguistics, ACL ’96, pages 310–318,
Stroudsburg, PA, USA, 1996. Association for Computational Linguistics.

[15] W. Choi, G. Necula, and K. Sen. Guided gui testing of android apps with
minimal restart and approximate learning. In International Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA’13), pages 623–640, 2013.

[16] K. Church and W. Gale. A comparison of the enhanced good-turing
and deleted estimation methods for estimating probabilities of english
bigrams. Computer Speech and Language, 5:19–54, 1991.

[17] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and A. Zeller.
Automatically generating test cases for specification mining. Software
Engineering, IEEE Transactions on, 38(2):243–257, 2012.

[18] A. Dias-Neto, R. Subramanyan, M. Vieira, and G. Travassos. A survey
on model-based testing approaches: a systematic review. In International
Workshop on Empirical Assessment of Software Engineering Languages
and Technologies, pages 31–36, 2007.

[19] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II. Leveraging user-
session data to support web application testing. IEEE Trans. Softw. Eng.,
31(3):187–202, Mar. 2005.

[20] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing-
and touch-sensitive record and replay for android. In International
Conference on Software Engineering (ICSE’13), pages 72–81, 2013.

[21] I. Good. The population frequencies of species and the estimation of
population parameters. Biometrika, 40(3/4):237–264, 1953.

[22] Google. Nexus 7. http://www.google.com/nexus/7/.
[23] Google. Ui/application exerciser monkey. http://developer.android.com/

tools/help/monkey.html.
[24] M. Grechanik, Q. Xie, and C. Fu. Experimental assessment of manual

versus tool-based maintenance of gui-directed test scripts. In Software
Maintenance, 2009. ICSM 2009. IEEE International Conference on,
pages 9–18, Sept 2009.

[25] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and W. Strouila.
Understanding Android fragmentation with topic analysis of vendor-
specific bugs. In 19th Working Conference on Reverse Engineering,
pages 83–92, 2012.

[26] A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness
of software. In International Conference on Software Engineering
(ICSE’12), pages 837–847, 2012.

[27] B.-J. P. Hsu. Language Modeling for Limited-data Domains. PhD thesis,
Cambridge, MA, USA, 2009. AAI0822209.

[28] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, effectively detecting
mobile app bugs with appdoctor. In Ninth European Conference on
Computer Systems (EuroSys’14), page Article No.18, 2014.

[29] F. Jelinek and R. L. Mercer. Interpolated estimation of Markov source
parameters from sparse data. In In Proceedings of the Workshop
on Pattern Recognition in Practice, pages 381–397, Amsterdam, The
Netherlands: North-Holland, May 1980.

[30] C. S. Jensen, M. R. Prasad, and A. Moller. Automated testing with
targeted event sequence generation. In International Symposium on
Software Testing and Analysis (ISSTA’13), pages 67–77, 2013.

[31] N. Jones. Seven best practices for optimizing mobile testing efforts.
Technical Report G00248240, Gartner, 2013.

[32] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile
apps. In ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM’13), pages 15–24, 2013.

[33] S. M. Katz. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. In IEEE Transactions on
Acoustics, Speech and Signal Processing, pages 400–401, 1987.

[34] H. Khalid, M. Nagappan, E. Shihab, and A. Hassan. Prioritizing the
devices to test your app on: A case study of android game apps. In
22nd ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE 2014), 2014.

[35] Y.-D. Lin, J. Rojas, E. Chu, and Y.-C. Lai. On the accuracy, efficiency,
and reusability of automated test oracles for android devices. IEEE
Transactions on Software Engineering, Preprint, 2014.

[36] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. Api change and fault proneness:
A threat to the success of android apps. In 9th Joint Meeting of
the European Software Engineering Conference and the 21st ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’13), pages 477–487, 2013.

[37] M. Linares-Vásquez, G. Bavota, M. D. Penta, R. Oliveto, and D. Poshy-
vanyk. How do API changes trigger Stack Overflow discussions? a
study on the android SDK. In 22nd IEEE International Conference on
Program Comprehension (ICPC’14), pages 83–94, 2014.

[38] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and
D. Poshyvanyk. Mining actionable scenarios for android apps using
language models - online appendix. http://www.cs.wm.edu/semeru/data/
MSR15-MonkeyLab/.

[39] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for android apps. In 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE’13), pages 224–234, 2013.

[40] R. Mahmood, N. Mirzaei, and S. Malek. Evodroid: Segmented evolu-
tionary testing of android apps. In FSE’14, page to appear, 2014.

[41] C. D. Manning and H. Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, Cambridge, Massachusetts, 1999.

[42] T. McDonnell, B. Ray, and M. Kim. An empirical study of api stability
and adoption in the android ecosystem. In Software Maintenance
(ICSM), 2013 29th IEEE International Conference on, pages 70–79,
Sept 2013.

[43] N. Mirzaei, S. Malek, C. S. Pasareanu, N. Esfahani, and R. Mahmood.
Testing android apps through symbolic execution. SIGSOFT Softw. Eng.
Notes, 37(6):1–5, 2012.

[44] B. Nguyen and A. Memon. An observe-model-exercise* paradigm
to test event-driven systems with undetermined input spaces. IEEE
Transactions on Software Engineering, 99(Preprints), 2014.

[45] L. Ravindranath, S. nath, J. Padhye, and H. Balakrishnan. Automatic
and scalable fault detection for mobile applications. In 12th annual
international conference on Mobile systems, applications, and services
(MobiSys’14), pages 190–203, 2014.

[46] A. Rountev and Y. Dacong. Static reference analysis for gui objects
in android software. In IEEE/ACM International Symposium on Code
Generation and Optimization, 2014.

[47] M. Strobel. Procyon. https://bitbucket.org/mstrobel/procyon.
[48] T. Takala, M. Katara, and J. Harty. Experiences of system-level model-

based gui testing of an android application. In Fourth International
Conference on Software Testing, Verification and Validation (ICST’11),
pages 377–386, 2011.

[49] P. Tonella, R. Tiella, and C. Nguyen. Interpolated n-grams for model
based testing. In International Conference on Software Engineering
(ICSE’14), 2014.

11

[50] VisionMobile. Developer economics q3 2013: State of the developer
nation, 2013.

[51] VisionMobile. Developer tools: The foundations of the app economy
(developer economics 2013), 2013.

[52] VisionMobile. Developer economics q1 2014: State of the developer
nation. Technical report, 2014.

[53] C.-Y. Wang, W.-C. Chu, H.-R. Chen, C.-Y. Hsu, and M. Y. Che. Evertu-

tor: Automatically creating interactive guided tutorials on smartphones
by user demonstration. In SIGCHI Conference on Human Factors in
Computing Systems (CHI’14), pages 4027–4036, 2014.

[54] W. Yang, M. Prasad, and T. Xie. A grey-box approach for automated gui-
model generation of mobile applications. In 16th International Confer-
ence on Fundamental Approaches to Software Engineering (FASE’13),
pages 250–265, 2013.

12

