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ABSTRACT
In the recent years, studies of design and programming prac-
tices in mobile development are gaining more attention from
researchers. Several such empirical studies used Android
applications (paid, free, and open source) to analyze factors
such as size, quality, dependencies, reuse, and cloning. Most
of the studies use executable files of the apps (APK files),
instead of source code because of availability issues (most
of free apps available at the Android official market are not
open-source, but still can be downloaded and analyzed in
APK format). However, using only APK files in empirical
studies comes with some threats to the validity of the results.
In this paper, we analyze some of these pertinent threats. In
particular, we analyzed the impact of third-party libraries
and code obfuscation practices on estimating the amount
of reuse by class cloning in Android apps. When including
and excluding third-party libraries from the analysis, we
found statistically significant differences in the amount of
class cloning 24,379 free Android apps. Also, we found some
evidence that obfuscation is responsible for increasing a num-
ber of false positives when detecting class clones. Finally,
based on our findings, we provide a list of actionable guide-
lines for mining and analyzing large repositories of Android
applications and minimizing these threats to validity.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Measurement
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1. INTRODUCTION
Developing mobile applications differs from desktop and

web applications in several dimensions. It is not only about
the revenue models or the size of the applications, but also
about programming practices, hierarchy and structure of
development teams, as well as other factors. For example,
testing mobile applications highly benefits from crowdsource-
based approaches that assume testing newly released appli-
cations (or updates) on different devices, operating systems,
and under different connection modes (e.g., offline, WiFi, cel-
lular network). Also, reuse in mobile applications (hereinafter
referred as apps) is ongoing and widespread, in particular
because the apps are highly dependent on the APIs [24, 19,
18] and the distribution model in markets allows developers
to sell apps several times by (re)packaging them with differ-
ent GUI elements or data (e.g., the same travel guide app
for different cities).

As of today, only a handful of papers have analyzed mobile
apps and their ecosystems to understand the factors that
distinguish mobile apps and their development processes from
desktop and web applications [5, 9, 12, 17, 18, 19, 24, 25]. For
example, Minelli and Lanza [17] and Syer et al. [25] suggest
that practices for desktop and server-based applications may
not necessarily apply to mobile apps. Most of these related
papers used a similar approach that consists of analyzing
the code or metadata available in public markets. In the
particular case of Android, APK (Application PacKage) files
have been analyzed. It should be noted that these studies
use executable files of the apps (APK files), instead of source
code because of availability issues – most of the free apps
available at the Android official market are not open-source,
but can still be downloaded and analyzed in APK format.
During the analysis, the APK files are converted to JAR files
or decompiled to Java source code. However, the building and
packaging model of Android apps (APK files) may introduce
some threats to validity of the results of empirical studies.

As described in the Android developer guide [6], JAR
libraries referenced by the source code of Android apps are
imported into APK files at build time. Therefore, when the
Android build system converts the .class files into a DEX
file, a converter tool is called to extract .class files from JAR
libraries and consider them as local .class files compiled from
the application source code. Consequently, when converting
APK files to JAR files or to Java source code, all the files
are under the same root directory (app classes and third-
party libraries), thus following the Java rules for organizing
files under packages; in other words, there is no file system
distinction between libraries and application-specific code.
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Even in the case of open source apps, according to [17, 24]
some apps include the source code of third-party libraries. In
addition, obfuscation is a common practice recommended in
the Android developer guide [7] to protect security protocols
and other application components from reverse engineering
attacks. Also, obfuscation is used to hide illegal reuse and
avoid licensing issues [22, 10].

Including the code of third-party libraries in the APK files
and ignoring obfuscation practices are threats to validity
of empirical studies using APK files, in particular the ones
aimed at analyzing class cloning/reuse in Android apps. For
example, because of the build process, it is not possible to
distinguish directly between code referenced as a library and
code that was copied and modified from other applications
or third-party libraries. Also, signature-based techniques for
detecting class cloning, such as Software Bertilonage [3, 2],
are sensitive to obfuscation, mainly to transformations such
as renaming, ordering (e.g., changing order or methods, or
changing order of parameters in methods), and aggregations
(e.g., inline and outline methods, cloning methods) [1]. In
general, the study by Schulze and Meyer showed that obfus-
cation by renaming identifiers reduces the effectiveness of
text-based clone detectors [22].

Previous studies have not considered the impact of obfus-
cated code and third-party libraries on the measurements
of class cloning in Android apps. Only a recent study by
Mojica et al. [18] removed obfuscated classes from their
dataset when computing the amount of class cloning on An-
droid apps. Therefore, in this paper we provide empirical
evidence on how third-party libraries and obfuscated code
can impact reuse measurements. We computed the amount
of classes reused on a large set of 24,379 free apps down-
loaded from Google play, including/excluding third-party
libraries, and including/excluding obfuscated apps (that we
detected using our algorithms). For detecting clones we used
a signature-based approach as in [19, 18]. For detecting apps
with obfuscated code we used a simple heuristic we defined
after manually inspecting a large sample of obfuscated apps.

The results of this study show that there are significant
and large differences, in terms of statistical significance and
effect size, between the amount of class signatures reused
in Android apps when including and excluding third-party
libraries. Moreover, although the impact of obfuscated code
is negligible when detecting cloned classes in Android apps,
we found evidence of false positives declared as clones by
the signature-based approach. Therefore, researchers ana-
lyzing/mining APK files should consider carefully when to
include/exclude third-party libraries and obfuscated code, in
particular for studies that use lexical information extracted
from the files (i.e., identifiers) and signatures, or studies
aimed at measuring similarities among apps.

Structure of the paper. Section 2 presents previous
empirical studies that used Android apps. Section 3 defines
our empirical study and the research questions, and pro-
vides details about the data extraction process and analysis
method. Section 4 reports the study results, and discusses
them from a quantitative and qualitative point of view. Sec-
tion 5 discusses the threats that could affect the validity
of the results. Section 6 concludes the paper and outlines
directions for future work.

2. ANALYZING ANDROID APPS
Several recent papers have analyzed software evolution-

and maintenance-related aspects in Android apps. Most of
these studies used apps downloaded from Google Play and
extracted bytecode from the APK files. The extraction pro-
cess includes a transformation process from DEX to Java
bytecode. This transformation process generates a set of
.class files in a directory structure that follows the Java pack-
age guidelines. Therefore, the files belonging to third-party
libraries and to the app’s main package are organized using
folders representing the packages hierarchy inside a single
JAR file. In the following subsections we briefly describe the
studies and summarize them in Table 1.

2.1 Reuse in the Android Market
Mojica Ruiz et al. [19] were the first to report on the

volume of reuse in Android apps. Two dimensions of reuse
were analyzed: reuse by inheritance and class reuse (from
other applications). About 4,000 Android apps were manu-
ally downloaded from Google Play to measure the percentage
of classes that were totally reused (cloned) by other apps
and the top base classes that were inherited from third-party
libraries and platform APIs (Android and Java). Mojica Ruiz
et al. [19] analyzed the reuse by class cloning in Android
apps, by using class signatures as proposed by Davies et al.
[2, 3]. The main conclusion of their study is that almost 50%
of the classes in the apps inherit from a base class, and most
of the reused classes are in the Android APIs. The same
study was recently extended in [18] with more than 200K
apps from GooglePlay. The results on the extended study
showed that about 84% of the classes are reused across all
the categories of apps. However, both studies included the
code belonging to third-party libraries when measuring the
percentage of class cloned in the apps; and only the latter
[18] considered the impact of obfuscated classes. Dresnos [5]
also used method signatures to detect similar Android apps,
where the signatures included string literals, API calls, excep-
tions, and control flow structures. However, the study does
not report on the impact of obfuscated code or third-party
libraries on their experiments.

Syer et al. [24] analyzed dependencies, source code, and
churn metrics of three open source apps (i.e., Wordpress,
Google Authenticator, and Facebook SDK) in Android and
BlackBerry. Although they reported the findings in terms
of apps dependency on predefined categories (e.g., language,
user interface, platform, third-party), they analyzed different
dimensions of reuse (i.e., inheritance, interface implementa-
tion, API calls) by counting the number of dependencies on
each category and the proportion of platform and user inter-
face dependencies out of the total number of dependencies.
Their main conclusions were that Android apps require less
source code but have larger files than in BlackBerry, and
depend more on the Android APIs. During the analysis, the
authors distinguished project-specific files from the source
code of third-party libraries, and explicitly mentioned that
”apps often include, customize and maintain the source code
of third party libraries”[24].

Minelli and Lanza [17] proposed a visualization-based anal-
ysis for mobile apps using Samoa, which is an interactive tool
that uses historical and structural information from the apps.
Although the tool is not focused on a specific design aspect
as reuse, the authors used the Average Hierarchy Height
(AHH) and Average Number of Derived Classes (ANDC)
metrics to study inheritance in Android apps. Moreover,
they identified that some apps reuse libraries by copying the
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Table 1: Recent studies of Android apps analyzed aspects or purpose, number of apps, and number of
Android categories covered. We use NR to distinguish the cases where the number of domain categories is
not reported. The last two columns list if the study considered the impact of third-party libraries (TPL) or
the impact of obfuscated code (OBF): YES means the study considered the factor (NO is the opposite); NI
stands for those cases where TPL and OBF factors do not impact the results.

Study Purpose #apps #cat. TPL OBF
Shabtai et al. [23] Apps categorization 2,285 2 NO NO

Syer et al. [24] Dependencies analysis 3 NR YES NI

Sanz et al. [21] Apps categorization 820 7 NO NO

Dresnos [5] Detection of similar apps 2 1 NO NO

Mojica Ruiz et al. [19] Reuse by inheritance and code cloning 4,323 5 NO NO

Minelli and Lanza [17] Visualization based analysis 20 NR NI NI

Mojica Ruiz et al. [18] Reuse by inheritance and code cloning > 200K 30 NO YES

Syer et al. [25] Size, dependencies and defect fix time 15 NR NO NI

McDonnell et al. [14] API instability and adoption 10 7 NI NI

Linares-Vásquez et al.[12] Apps success and API change/bug proneness 7,097 30 NI NI

entire code instead of referencing JAR files. Some of the
findings help to describe the programming model of Android
apps (e.g., complexity of mobile apps is mostly attributed
to the dependency on third-party libraries), however, only
20 open source apps were used in the study. Although the
authors recognize the fact that the source code of third-party
libraries is copied in some cases into the apps, they do not
mention explicitly if the tool (Samoa) distinguishes between
project-specific and third-party library files.

2.2 Other studies using Android apps
Syer et al. [25] analyzed 15 open source apps to investi-

gate the differences of mobile apps with five desktop/server
applications. The comparison was based on two dimensions:
the size of the apps and the time to fix defects. The study
suggests that mobile apps are similar to UNIX utilities in
terms of size of the code and the development team. However,
it is not clear if the analyzed apps included the source code of
third-party libraries. Also, the findings suggest that mobile
app developers are concerned with fixing bugs quickly: over
a third of the bugs are fixed within one week and the rest
are fixed within one month.

Categorization of Android applications has been explored
using machine-learning techniques [21, 23]. Shabtai et al.
[23] categorized APK files into two root categories of the An-
droid market (“Games” and “Applications”) using attributes
extracted from DEX files and XML data in the APK files.
Sanz et al. [21] used string literals in classes, ratings, appli-
cation sizes, and permissions to classify 820 applications into
several existing categories. In both cases [21, 23], some of the
extracted features could be obfuscated and could also belong
to third-party libraries. Therefore it is possible that the
results of the study were impacted by the effect of obfuscated
code and third-party libraries.

McDonnell et al [14] analyzed the evolution of Android
APIs (i.e., frequency of changes) and the reaction of client
code to API evolution. For the latter purpose, they analyzed

10 open-source Android applications from 7 domains to inves-
tigate into: (i) degree of dependency on Android APIs; (ii)
lag time between a client API reference and its most recent
available version; (iii) adoption time of new APIs; (iv) the
relation between API instability and adoption; and (v) the
relationship between API updates and bugs in client code.
Also, Linares-Vásquez et al. [12] analyzed the impact of the
Android APIs change- and fault-proneness on the success
of 7,097 apps from Google Play. In both studies [12, 14],
because they analyzed calls to the Android API, there was
not an impact on the results by the effect of third-party
libraries or obfuscated code.

3. STUDY METHODOLOGY
The goal of this study is to understand to what extent

obfuscated code and third-party libraries could affect the
studies on reuse by class cloning. The context consists of
24,379 free Android apps from the Google Play Market, and
the perspective is that of researchers interested in defining
guidelines for empirical studies based on Android apps. Table
2 reports characteristics of the apps that we analyzed. For
each category considered in our study (e.g., photography,
medical, games, etc), the table lists (i) the number of apps
analyzed from the category (column #apps), (ii) the size
range of the analyzed apps in terms of number of classes
(column #classes), and size in terms of thousands of lines of
code including third-party libraries (KLOC).

3.1 Research Questions
In the context of our study, we formulated the following

research questions:

• RQ1: Do third-party libraries impact the measurement
of class cloning? This research question aims at inves-
tigating if the amount of class cloning in Android apps
is mainly due to the dependability on the third-party
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Table 2: Characteristics of the apps (grouped by
category) used in our study.

Category #apps Classes KLOC
Arcade 826 5-566 625-20K
Books and reference 719 5-73 7K-639K
Brain 1021 5-572 5K-16K
Business 2047 5-551 64K-105K
Cards 495 8-633 30K-60K
Casual 840 6-566 60K-77K
Comics 57 10-392 251-20K
Communication 479 5-11 419-667K
Education 1572 5-119 9K-58K
Entertainment 2809 2-11 850-61K
Finance 586 5-1583 220-9K
Health and fitness 310 6-104 8K-26K
Libraries and demo 244 1-499 32K-338K
Lifestyle 1621 2-572 7K-16K
Media and video 644 5-572 8K-35K
Medical 102 5-105 6K-26K
Music and audio 1562 3-683 8K-14K
News and magazines 1015 5-280 26K-96K
Personalization 1055 2-126 12K-54K
Photography 595 6-155 111-31K
Productivity 639 5-111 11K-34K
Racing 456 15-280 26K-169K
Shopping 200 5-7 138-151K
Social 522 5-318 48K-122K
Sports 1158 5-280 7K-16K
Sports games 498 6-572 26K-52K
Tools 1421 4-65 7K-58K
Transportation 149 6-57 10K-202K
Travel and local 681 5-257 6K-16K
Weather 56 16-30 2K-22K
Total 24,379 1-1583 111-667K

libraries or the apps’ classes. Specifically, we test the
following null hypothesis:

H01 : There is no significant difference between the
amount of cloned classes in Android apps when con-
sidering third-party libraries and when excluding those
libraries from the analysis.

• RQ2: Does obfuscated code impact the measurement
of class cloning? This research question aims at in-
vestigating if obfuscated apps should be considered
when computing the amount of classes reused between
Android apps. Specifically, we test the following null
hypothesis:

H02 : There is no significant difference between the
amount of cloned classes in Android apps when consid-
ering obfuscated apps and when excluding those apps
from the analysis.

The dependent variable for both research questions is
represented by the amount of reuse by class cloning, which
is estimated as the Proportion of Class Signatures Reused
(PCSR) per category in our dataset (Section 3.3).

The independent variable for RQ1 is the set of .class
files of the apps under study including third-party libraries,
and excluding those libraries. For RQ2 the independent
variable is the set of .class files of the apps under study
including and excluding obfuscated apps.

3.2 Data Extraction Process
We downloaded (randomly) free mobile apps from Google

Play as APK files, then we converted the APK files into JAR
files using the following procedure: (i) unzip APK files by
using the apktool1 tool, which reveals the compiled Android
application code file (note that an APK is just a set of zipped
DEX files); then (ii) translate DEX files from the Dalvik
bytecode to Java bytecode files (i.e., .class) using the dex2jar2

tool (see Figure 2).

3.2.1 Reuse by class cloning detection
For computing reuse via class cloning we relied on the

Software Bertillonage technique [3, 2] to identify when a
class is cloned across several apps, by comparing the classes’
signatures. We built class signatures using the Apache Com-
mons BCEL Java library3 as in [3, 2]. Consequently, a
class signature is a file with three parts: class header, at-
tributes signatures sorted alphabetically, and methods
signatures sorted alphabetically. The format of each part
is as follows:

• The class header is defined by the following expres-
sion: <modifiers> <class name> extends <base class>
implements <interfaces separated by comma>. We av-
oided including the java.lang.Object class in the list of
base classes.

• Each attribute signature is defined by the following
expression: <modifiers> <attribute type> <attribute
name>.

• Each method signature is defined by the follow-
ing expression: <modifiers> <return type> <method
name> (<argument types>).

Similarly to [3, 2, 19, 18], the parts corresponding to the base
class and interfaces are optional in the class header, and the
names of classes/types do not include the package in any of
the parts. Figure 1 presents an example of a class signature.

In order to detect reuse by class cloning, we needed to
find if any signature file’s contents were exactly the same
as the contents of another signature file. Even if we used
certain optimizations on our comparisons to prevent redun-
dant comparisons, it would be extremely time-consuming
to repeatedly compare files directly. In order to overcome
this obstacle, we opted to read in each signature file, and
created an MD5 hash from each class signature. We created
a large hash map which used the MD5 hash as the key, and
contained a list of signature names for the value. For every
signature file, we checked if the hash already existed as a
key in the hash map. If it did, we appended the name of the
signature file to the end of the list in the respective value. If
not, we added the key/value pair to the hash map. Thus,
once we finished adding every signature file’s hash and name
to the map, we were able to distinguish the cloned files from
the originals.

3.2.2 Detecting obfuscated apps
One of the authors manually inspected the source code

(after decompilation) of 120 apps (i.e., two obfuscated and
two non-obfuscated apps per category) to identify patterns in

1http://code.google.com/p/android-apktool/
2http://code.google.com/p/dex2jar/
3http://commons.apache.org/proper/commons-bcel/
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Figure 1: Class signature example for the class
zz.zzz.ZzActivity in the Android zz.zzz App.

Google 
Play!

dex2jarapktoolAPKs
APK files

JARs

JAR files

Error? 7zipJADsource
code

No

signatures BCEL

Figure 2: Source code and JAR files extraction pro-
cess from APK files

the identifiers of obfuscated classes. To decompile the apps
we extracted .class files from the JAR files by using the 7zip4

tool and then we decompiled the .class files to Java source
code using the JAD decompiler5. During decompilation, we
discarded any apps that did not decompile correctly (see
Figure 2). At the end, we were able to decompile 24,379
apps successfully.

After decompiling and manually inspecting the apps, we
found that all the apps with obfuscated identifiers always
have a class a.java, because of the renaming algorithm of the
obfuscation tool used for Android apps transforms identifiers
using a lexicographic order. Therefore, to detect apps with
obfuscated identifiers we looked for apps with a class a.java
in the main package. We decided to use this simple heuristic
because we were interested only in the impact of identifier
obfuscation in the class cloning estimation using signatures.
Using this method we found 415 apps with obfuscated code.
The distribution of apps with obfuscated code per category
is depicted in Figure 3.

To validate the accuracy of the method, another author
of the paper manually verified the true positive rate (TPR)
and false positive rate (FPR) of the heuristic for detecting
obfuscated classes, by using a validation set of apps. The
validation set was built using the following guidelines:

• The apps were sampled by one of the authors (not the
same author performing the validation)

• The validation set includes two apps classified as ob-
fuscated and two apps classified as non-obfuscated for
each category (i.e., 120 apps).

• The apps in the validation set were different from the
ones inspected manually for identifying patterns in the
identifiers of obfuscated classes

For the validation we followed these definitions6:

4http://www.7-zip.org/
5http://www.varaneckas.com/jad/
6We were interested in the correctness of the heuristic for
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Figure 3: Distribution of obfuscated apps per cate-
gory.

• True positives (TP ): number of obfuscated apps
classified correctly by the heuristic

• True negatives (TN): number of non-obfuscated
apps classified correctly by the heuristic

• False positives (FP ): number of non-obfuscated apps
classified incorrectly by the heuristic (i.e., classified as
obfuscated)

• False negatives (FN): number of obfuscated apps
classified incorrectly by the heuristic (i.e., classified as
non-obfuscated)

• True positive rate (TPR), a.k.a., recall: TP/(TP+
FN)

• True negative rate (TNR): TN/(FP + TN)

• Accuracy (ACC): (TP+TN)/(TP+TN+FP+FN)

The results of the manual validation were 60 true positives
and 60 true negative, which accounts for a TPR equal to 1,
a TNR equal to 1, and an ACC equal to 1. Therefore, our
simple heuristic for detecting obfuscated apps is accurate and
correct in a sample of 120 apps, which ensures a confidence
interval of 8.93% with a confidence level of 95%.

3.3 Analysis Method
For measuring the amount of reuse by class cloning we

used the Proportion of Class Signatures Reused (PCSR)
proposed by Mojica Ruiz et al. [18, 19]. PCSR calculates
the proportion of class signatures that are clones (i.e., they
appear in multiple apps belonging to a set of apps). Given a
set of apps A, the number of Unique Class Signatures (UCS)
in an app ai ∈ a (a ⊂ A), and C the set of all class signatures
of the apps in a, the PCSR of a subset of apps a is defined
as follows:

PCSR(a,A) = 1−
∑|a|

i=1 UCS(ai, {A− ai})
|C| (1)

classifying apps in the positive set (i.e., obfuscated), and in
the negative set (i.e., non-obfuscated), and in the general
accuracy of the heuristic. Therefore, we used TPR, FPR,
and ACC instead of precision.
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We defined a unique class signature in ai as a signature that
does not appear in the rest of apps in A ({A− ai} in equa-
tion 1). Thus, the higher the PCSR, the higher the reuse
in a subset of apps a (e.g., apps in the category Arcade)
when compared to all the apps in A (e.g., all the apps in our
dataset). Consequently, in order to compare the impact of
third-party libraries on the measurement of reuse by class
cloning (RQ1) we computed the PCSR per category (i.e.,
PCSR of class signatures of apps belonging to a specific
category that are cloned in all the 24,379 apps) including
the class signatures of the third-party libraries (PCSR+TPL);
we also computed the PCSR per category excluding class
signatures of the third-party libraries (PCSR−TPL). To com-
pare the impact of obfuscated apps on the measurement of
reuse by class cloning (RQ2) we computed PCSR per cate-
gory excluding obfuscated apps (PCSR−OBF ), and excluding
classes signatures of third-party libraries and obfuscated apps
(PCSR−(TPL,OBF )).

To validate that the results of our research questions are
statistically significant in the 30 categories of Google play we
used the Mann-Whitney test [4]. We compared PCSR+TPL

to PCSR−TPL for H01 ; and PCSR+TPL to PCSR−OBF ,
and PCSR−TPL to PCSR−(TPL,OBF )

7 for H02 . We also
computed the Cliff’s delta d effect size [8] to measure the
magnitude of the difference in the three cases. We followed
the guidelines in [8] to interpret the effect size values: negli-
gible for |d| < 0.147, small for 0.147 ≤ |d| < 0.33, medium
for 0.33 ≤ |d| < 0.474 and large for |d| ≥ 0.474. We are not
assuming population normality and homogeneous variances,
therefore we choose non-parametric methods (Mann-Whitney
test and Cliff‘s delta). To distinguish app-specific classes
from third-party-library classes, we extracted the package
name (i.e., main package) from the AndroidManifest.xml

file that resided with every application we downloaded. Then,
we considered all the classes inside the main package and its
sub-packages as app-specific classes; classes outside the main
package were considered as classes from third-party libraries.

3.4 Replication Package
The data set used in our study is publicly available at

http://www.cs.wm.edu/semeru/data/MSR14-android-reuse/.
In particular we provide: (i) the list (and URLs) of the stud-
ied 24,379 apps; (ii) the list of apps labeled manually as
obfuscated and non-obfuscated; (iii) the dataset used for
training the classifiers; and (iv) the results of the classifica-
tion process and the manual validation.

4. ANALYSIS OF THE RESULTS
This section reports the results aimed at answering the

two research questions formulated in Section 3.1. Table 3
summarizes the results for RQ1 and RQ2. In particular, the
table lists the number of the proportion of class signatures
reused (PCSR) in our dataset per category, when considering
third-party libraries (+TPL), excluding third-party libraries
(−TPL), excluding obfuscated apps (−OBF ),and exclud-
ing third-party libraries and obfuscated apps (i.e., -(TPL,
OBF)); Table 3 also lists the differences between the PCSR
values (∆PCSR). In addition, Figure 4 depicts the change
ratio (i.e., reduction) of number of cloned signatures detected
in the 30 categories, when comparing the initial dataset to

7Note that the apps used for computing PCSR+TPL and
PCSR−TPL include obfuscated apps.

the dataset without third-party libraries, and when compar-
ing the dataset without third-party libraries to the dataset
without libraries and without obfuscated apps.

4.1 Impact of third-party libraries
Excluding the libraries from the PCSR computation re-

duces notoriously the number of classes detected as clones.
On average, 87.66% less signatures are detected as clones
(see Figure 4 boxplot +TPL to -TPL), with a median of
90.70%, a minimum reduction of 67.08% (in the category
Health and fitness), and a maximum reduction of 97.48%
(in the category Casual). A similar behavior (i.e., reduction
in all the categories) is reflected in the PCSR computation
(see Table 3). The average reduction of PCSR when compar-
ing PCSR+TPL to PCSR−TPL is 37.30%, with a median of
37.94%, a minimum reduction of 7.45% (in the category Busi-
ness), and a maximum reduction of 71.82% (in the category
Finance).

That reduction in the number of class signatures detected
as clones is large and significant. The Mann-Whitney test
applied to the PCSR of signatures including third-party li-
braries (PCSR+TPL) and the PCSR of signatures excluding
third-party libraries (PCSR−TPL) reports a p-value= 9.123e-
13, and the Cliff’s delta was 0.9267 with a 95% confidence
interval [0.8083, 0.9730]. Therefore, we can reject our null
hypothesis H01 , that is, there is statistically significant dif-
ference between the two groups, and the magnitude of the
difference is large (Cliff’s delta > 0.474).

The significant reduction of the PCSR and the number of
clones when excluding the signatures of third-party libraries
from the analysis shows that most of the clones are detected
in the signatures of the libraries, and it suggests that most
of the code in APK files belongs to the libraries. Figure
5 depicts the change ratio (i.e., reduction) of the number
of class signatures when comparing the datasets including
and excluding third-party libraries. On average, 82% of the
signatures are reduced when excluding third-party libraries,
with a median reduction of 81.23%, a minimum reduction of
63.82% (in the case of apps in the Category Medical), and
a maximum reduction of 93.13% of the signatures (in the
category Arcade).

We also analyzed which third-party library class signatures
appeared most often, and attributed them to their respec-
tive third-party libraries. By doing so, we found that the
most common third-party library class signature is com.goo-

gle.ads.AdActivity of the com.google.ads package. This
class is found in 8,008 apps from our dataset, and is by far
the most common third-party library class. The second most
common is com.facebook.android.FacebookError, from the
com.facebok.android package. This class signature was
found in 6,652 apps. Finally, the third most common is
org.mcsoxford.rss.Dates (and 22 other classes from this
same package), which all appeared 4,880 times each.

A significant number of apps in our dataset utilize the
Google Ads third-party library, potentially as a source of
revenue due to all the apps in our dataset being free. Also
free apps have the option for Facebook integration. Finally,
the commonality of org.mcsoxford.rss demonstrates that
many apps try to integrate with RSS feeds, and this third-
party library is described as a ”lightweight Android library
to read parts of RSS 2.0 feeds.” 8

8https://github.com/ahorn/android-rss
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Table 3: Summary of results for RQ1 and RQ2. The PCSR and the difference between PCSR are listed by
category.

Category PCSR ∆PCSR in percentage

(1) + TPL (2)− TPL (3)−OBF (4)− (TPL,OBF ) (1)−(2)
(1)

(1)−(3)
(1)

(2)−(4)
(2)

Arcade 0.879688807 0.351430128 0.829749587 0.353 60.05% 5.68% -0.49%
Books and reference 0.902051778 0.764008747 0.865465015 0.766 15.30% 4.06% -0.32%
Brain 0.887832825 0.430272179 0.856644088 0.443 51.54% 3.51% -2.98%
Business 0.87552092 0.81029478 0.83328423 0.819 7.45% 4.82% -1.03%
Cards 0.839701923 0.383950449 0.803221733 0.394 54.28% 4.34% -2.52%
Casual 0.879285526 0.316837771 0.848328398 0.334 63.97% 3.52% -5.29%
Comics 0.920239358 0.569789675 0.895015907 0.570 38.08% 2.74% 0.00%
Communication 0.721917416 0.267079672 0.698035799 0.278 63.00% 3.31% -4.02%
Education 0.930289647 0.752647301 0.89829617 0.758 19.10% 3.44% -0.70%
Entertainment 0.926801039 0.778399296 0.890272919 0.782 16.01% 3.94% -0.45%
Finance 0.73930074 0.2083375 0.671912979 0.214 71.82% 9.12% -2.72%
Health and fitness 0.942137572 0.858483567 0.910759035 0.858 8.88% 3.33% 0.06%
Libraries and demo 0.945508264 0.58816772 0.906561089 0.588 37.79% 4.12% 0.00%
Lifestyle 0.895974257 0.670682596 0.854727031 0.673 25.14% 4.60% -0.39%
Media and video 0.82493961 0.350162866 0.778602469 0.356 57.55% 5.62% -1.57%
Medical 0.892509122 0.79831534 0.868709734 0.797 10.55% 2.67% 0.14%
Music and audio 0.876889856 0.772113587 0.872644424 0.782 11.95% 0.48% -1.30%
News and magazines 0.898420806 0.570090694 0.863682988 0.579 36.55% 3.87% -1.53%
Personalization 0.916485781 0.579639994 0.882627703 0.597 36.75% 3.69% -2.97%
Photography 0.841369352 0.488375841 0.802766729 0.493 41.95% 4.59% -0.93%
Productivity 0.760950939 0.372573998 0.697382465 0.386 51.04% 8.35% -3.65%
Racing 0.92630846 0.544961203 0.914853858 0.570 41.17% 1.24% -4.66%
Shopping 0.778630803 0.241201949 0.722952071 0.248 69.02% 7.15% -2.80%
Social 0.891405177 0.769676122 0.874447338 0.771 13.66% 1.90% -0.20%
Sports 0.913609539 0.70980359 0.8654784 0.721 22.31% 5.27% -1.52%
Sports games 0.928972353 0.515475313 0.900676647 0.520 44.51% 3.05% -0.81%
Tools 0.798852806 0.423019698 0.719613626 0.439 47.05% 9.92% -3.86%
Transportation 0.818652745 0.396924049 0.755777412 0.397 51.51% 7.68% 0.00%
Travel and local 0.913801067 0.727011219 0.859122395 0.727 20.44% 5.98% 0.06%
Weather 0.949381457 0.660390516 0.90783172 0.660 30.44% 4.38% 0.00%

Summarizing, the results of our RQ1 show that consid-
ering third-party libraries when computing class cloning
in Android apps impacts the results, in the sense that
because of the wide usage of third-party libraries, a
significant number of clones are detected between the
apps. Therefore, an actionable guideline when ana-
lyzing APK files is: consider carefully if third-party
libraries should be included or not in the specific analy-
sis; in particular, when analyzing class cloning between
Android apps, researchers should justify the decision
of including/excluding third-party libraries libraries in
the class cloning measurements.

4.2 Impact of obfuscated apps
Excluding obfuscated apps also reduced the number of

signatures detected as clones, and consequently PCSR. The
Mann-Whitney test applied to the PCSR of signatures in-
cluding third-party libraries (PCSR+TPL) and the PCSR of
signatures excluding obfuscated apps (PCSR−OBF ) reports
a p-value= 0.009604, and the Cliff’s delta was 0.3866667 with
a 95% confidence interval [0.08998, 0.62031998]. Therefore,
we can reject our null hypothesis H02 , i.e. there is a statisti-
cally significant difference between the two groups, and the
magnitude of the difference is medium ( 0.33 ≤ |d| < 0.474).

On average (see Table 3) there is a reduction of 4.55% in
the PCSR, with a median of 4.09%, a minimum reduction

of 0.48% (Music and Audio), and a maximum reduction of
9.92% (Tools). This reduction is explained due to the number
of signatures belonging to obfuscated apps (we found 415
obfuscated apps out of 24,415). When excluding obfuscated
apps (see Figure 5) 8.25% of the signatures were reduced on
average (median = 7.31%, min. = 0%, max=21.38%), which
represented an average reduction in the number of signatures
detected as clones (see Figure 4) of 12.40% (median = 11.43%,
min. = 2.74%, max=23.98%).

However, when comparing the impact of obfuscated code
in the PCSR excluding the signatures of third-party libraries
(i.e., -TPL to -(TPL, OBF)) the Mann-Whitney reports a
p-value=0.8187, and we obtained a Cliff’s delta = -0.0356.
In this case there is no significant difference (p-value > 0.05)
and the magnitude of the difference is negligible (|d| < 0.147).
When removing the obfuscated apps from the set of signatures
that does not include third-party libraries there is an average
reduction in the number of signatures detected as clones of
0.63% (median = 0%, min. = 0%, max=3%), and an average
reduction in the number of signatures of 2.23% (median = 1%,
min. = 0%, max=8%). However, in most of the categories
(23 out of 30) removing the obfuscated apps increases the
PCSR (see Table 3 ). For example, there is a change in the
PCSR of the category Casual from 0.3168 (PCSR−TPL) to
0.334 (PCSR−(TPL,OBF )), which accounts for an increment
of 5.29%.

An explanation for those cases is the impact of the reduc-
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Figure 4: Boxplots for the change ratio of num-
ber of clones (signatures) when (1) comparing the
dataset with third-party libraries and without third-
party libraries (i.e., +TPL to -TPL); (2) compar-
ing the dataset with third-party libraries, and the
dataset without obfuscated apps (i.e., +TPL to -
OBF); and (3) comparing the dataset without third-
party libraries, and the dataset without third-party
libraries and without obfuscated apps (i.e., -TPL to
-(TPL, OBF)). Red diamonds represent the mean
(average).

tion of the signatures in the PCSR computation. Equation
1 is equivalent to the ratio between the number of signa-
tures detected as clones and the total number of signatures.
In the case of apps in the category Casual for PCSR−TPL

there were 11,851 signatures detected as clones out of 37,404
signatures (PCSR−TPL = 11, 851/37, 404 = 0.3168), and
for PCSR−(TPL,OBF ) there were 11,539 signatures detected
as clones out of 34,589 signatures (PCSR−(TPL,OBF ) =
11, 539/34, 589 = 0.334). That increment of 5.29% in the
PCSR is explained in the fact that proportionally the reduc-
tion of the signatures is bigger compared to the reduction of
clones, which means that most of the clones were detected
between the non-obfuscated apps. However, there were some
signatures detected as clones between the obfuscated apps.

Regarding detecting cloned classes in the dataset of apps
tagged as obfuscated, we inspected manually the signatures
and we found that there are some false positives. That is,
there are classes that are marked as clones of other classes
based on their class signatures, but further analysis of the
content of the class demonstrated that this is not always
true. We were able to find multiple examples of this occur-
ring fairly easily, and we believe that there could be many
more false clone detections in our obfuscated dataset as a
result of this observation. The first example comes from the
apps with package names bagins.football and com.antivirus.
In both apps we found two obfuscated classes that were
detected as cloned signatures: /bagins/football/c/c.java

and /com/ antivirus/core/b/ c.java. Both of these files
have the same signatures and thus method names, but these
methods do different things. For instance, in bagins.football
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Figure 5: Boxplots for the change ratio of num-
ber of signatures when (1) comparing the dataset
with third-party libraries and without third-party
libraries (i.e., +TPL to -TPL); (2) comparing the
dataset with third-party libraries, and the dataset
without obfuscated apps (i.e., +TPL to -OBF);
and (3) comparing the dataset without third-party
libraries, and the dataset without third-party li-
braries and without obfuscated apps (i.e., -TPL to
-(TPL, OBF)). Red diamonds represent the mean
(average).

the values() method creates a new array and performs a
System.arraycopy into it, whereas in com.antivirus the
method only has a statement returning a casted variable
with .clone().

Another example we found is between the apps com.agilesoft
resource and com.ableon.team.barcelona. Both apps have a
class called h.java inside their main package, and both
classes have a void run() method. However, the run func-
tion in h.java of com.agilesoftresource is simply a one-line
statement:

"AppManagerMain.a(AppManagerMain.e(g.a(a))).

refreshPackList();"

whereas the run method of com.ableon.team.barcelona is 15
lines long and makes calls to the javax.microedition.khron-
os.egl API and performs an obfuscated conditional:

"if(a.isVisible() && g.c(a).eglGetError() = 12302)"

Some cloned classes appear in more than two apps. One
such example is the class as.java, which appears in three
apps: balofo.game.movie, com.application.fotodanz, and com.
advancedprocessmanager. For each app, this class has the
onClick() method, but the code it executes is unique in each
case. For balofo.game.movie, the method simply performs
a dialoginterface.cancel(); for com.application.fotodanz,
the method executes no code; and for com.advancedprocess
manager, we get an ”obfuscated” one-line of code:

"ak.a(aq.a(a)).a()"
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The examples described before show how using class sig-
natures to detect clones between obfuscated classes is not
accurate because it is prone to false positives. However,
there are also cases of true positives. We have noted that
if apps share a main package or developer ”keyword” in
the app’s package name then it is likely that the files are
indeed clones. For instance, com.appmakr.app247821 and
com.appmakr.app153560 both have a class called c.java

that were located within different directories inside each
main package respectively, but were still detected as clones.
Due to each app’s package name sharing the term appmakr,
we assume it’s likely for these two files to be legitimate
clones; upon further inspection, each file is 43 lines long
and both files are the exact same, character for character,
except for one line which references the main package name
(app247821 or app153560 respectively). Therefore, these
files are correctly detected as legitimate clones.

Finally, we should note that because we only tried to find
cloned classes that reside within the main package of the app,
we’ve extracted the package name from the AndroidMani-

fest.xml file that resided with every application we down-
loaded. Thus, sometimes a cloned class may appear to lie in
a package different from the source directory, but is in fact
within the proper main package. For instance, another cloned
class was q.java which appears in apps com.atomimbh.app,
com.BeltzandRuth, and com.bangladeshfreegoimbh.app. We
noted that both the first and last apps in this list seem to
follow the trend of having a shared keyword (*imbh.app),
but one of the apps doesn’t follow this pattern. However, for
this app the actual location of this cloned class is found in
com.BeltzandRuth/src/com/bemyvalentineimbh/app/, which
does share the similar keyword as the other two apps. Upon
analyzing the Android manifest for this app, the main pack-
age is indeed com.bemyvalentineimbh.app. Thus, upon fur-
ther inspection of the q.java class, we noted that all three
apps have a similar implementation of both methods inside
the class, where both com.BeltzandRuth and com.bangladeshfr
eegoimbh.app contained exactly the same implementations,
and com.atomimbh.app contained the exact implementation
of one method and a functionally similar implementation of
another method (only a few lines had their order changed).

Summarizing, the results of our RQ2 show that consid-
ering obfuscated apps when computing class cloning in
Android apps impacts the results, in the sense that signa-
tures in obfuscated classes introduce false positives in the
cloned signatures detection. Although the impact of obfus-
cated code is not as significant as the impact of considering
third-party libraries in the cloned signatures detection, re-
searchers should be careful when considering obfuscated
code in their experiments using APK files. Therefore, an
actionable guideline when analyzing APK files is: consider
carefully if obfuscated apps (or obfuscated code) should
be included or not in the specific analysis; in particular,
when analyzing class cloning between Android apps, re-
searchers should justify the decision of including/excluding
obfuscated code in the measurements.

5. THREATS TO VALIDITY
Threats to construct validity concern the relationship be-

tween theory and observation, and it is essentially due to
the measurements/estimates on which our study is based.

We assumed that class signatures are representative of the
actual source code files as in previous studies [2, 3, 18, 19].
However, we cannot state that the code inside the source
files is exactly the same based solely on matching signatures.
Instead, the methods may have been named similarly or may
have had the same parameters. Therefore, it is likely that
there is much more source code reuse occurring that we have
been unable to detect in the case of class cloning. As this is
an initial study of reuse, for future work we plan to obtain
more exact results, by considering also the source code.

Threats to conclusion validity concern the relationship be-
tween treatment and outcome. Our conclusions are supported
by appropriate, non-parametric statistics (Mann-Whitney
test). In addition, the practical significance of the observed
differences is highlighted by effect size measures (Cliff’s d).

Threats to internal validity concern factors that can af-
fect our results. Our heuristic for identifying obfuscated
apps could fail if the renaming strategy did not follow a
lexicographic order (i.e., the first letted used to obfuscate
identifiers is a) or the obfuscation is different to renaming
transformation. However, we manually inspected a sample
of apps classified by the heuristic and we obtained a true
positive and true negative rates equals to 1, which represents
an accuracy of 100%.

Threats to external validity concern the generalization of
our findings. Our analysis is limited to Android free apps.
Dependency of commercial apps on third-party libraries could
be different, for example, libraries for advertisements might
not be widely used in commercial apps. Also, it is possible
that the commercial apps have more obfuscated code. There-
fore, our findings may not necessarily hold for commercial
apps. Regarding the size of our dataset (24,379 apps), the
set of analyzed apps is a small percentage of the existing
apps in Google Play (more than 1 million of apps reported
by the AppBrain website9). However, our sample covers
all the domain categories in Google Play with a significant
number of apps compared to other studies using Android
apps (see Table 1). In future studies, we are also planning
on using diversity measures to guide the selection of apps
to maximize generalizability of the case studies [20]. Finally,
our conclusions may not be valid for apps developed for other
mobile platforms (e.g., iOS).

6. CONCLUSION AND FUTURE WORK
Although APK files have been used in several studies for

analyzing Android apps and their development processes, the
building process used to generate those files introduces some
threats to the validity of the results in the studies. In partic-
ular, we analyzed 24,379 APK files downloaded from Google
Play to measure the impact of third-party libraries and ob-
fuscated code on class cloning measurement. We found that
excluding third-party libraries reduces on average 87.66% of
the signatures detected as clones, and the difference is large
and statistically significant when comparing the proportion of
class signatures reused (PCSR) in our dataset including and
excluding the libraries. Concerning the impact of obfuscated
files, it is significantly different but the difference is medium
on the computation of the PCSR. We found a few of the
obfuscated apps and evidence of false positives detected as
clones by the signature-based method (Software Bertilonage).

9http://www.appbrain.com/stats/number-of-android-
apps
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Future studies with significantly higher number of obfuscated
apps should analyze the impact of those apps on the results.

Our findings show that empirical studies using APK files
should take into account possible impacts of third-party
libraries and obfuscated code. Therefore, we suggested two
actionable guidelines when analyzing/mining APK files:

1. Consider carefully if third-party libraries should be in-
cluded or not in the specific analysis; in particular,
when analyzing class cloning between Android apps,
researchers should justify the decision of including/ ex-
cluding third-party libraries libraries in the class cloning
measurements.

2. Consider carefully if obfuscated apps (or obfuscated
code) should be included or not in the specific analysis;
in particular, when analyzing class cloning between
Android apps, researchers should justify the decision of
including/excluding obfuscated code in the class cloning
measurements.

These actionable guidelines are also pertinent to stud-
ies/approaches on software categorization [11, 13, 16], in
which the lexical information in bytecode or source code is
used to categorize the apps; given the widespread use of
third-party libraries, such as Google Ads or Facebook for
Android using the identifiers extracted from those libraries
can reduce the variance and consequently impact the cate-
gorization process. In addition, studies aimed at identifying
similar apps [15], which use non-textual based detection,
should also consider the impact of third-party libraries and
obfuscation practices.
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