

Using Latent Dirichlet Allocation for Automatic Categorization of Software

Kai Tian, Meghan Revelle, and Denys Poshyvanyk

Computer Science Department

The College of William and Mary

Williamsburg, VA 23185

 {ktian, meghan, denys}@cs.wm.edu

Abstract

In this paper, we propose a technique called LACT

for automatically categorizing software systems in

open-source repositories. LACT is based on Latent

Dirichlet Allocation, an information retrieval method

which is used to index and analyze source code

documents as mixtures of probabilistic topics. For an

initial evaluation, we performed two studies. In the first

study, LACT was compared against an existing tool,

MUDABlue, for classifying 41 software systems written

in C into problem domain categories. The results

indicate that LACT can automatically produce

meaningful category names and yield classification

results comparable to MUDABlue. In the second study,

we applied LACT to 43 software systems written in

different programming languages such as C/C++,

Java, C#, PHP, and Perl. The results indicate that

LACT can be used effectively for the automatic

categorization of software systems regardless of the

underlying programming language or paradigm.

Moreover, both studies indicate that LACT can identify

several new categories that are based on libraries,

architectures, or programming languages, which is a

promising improvement as compared to manual

categorization and existing techniques.

1. Introduction

Open-source software repositories such as

SourceForge.net maintain massive amounts of source

code and software artifacts. To facilitate easier

browsing and searching of such repositories, software

systems are placed into categories (e.g., text editors,

anti-virus, databases, etc). These categories group

systems by their functionality, and classification is

performed manually by users or administrators. This

labor-intensive categorization is time-consuming and

requires an understanding of the underlying

functionalities of the software systems in the repository.

Automatic categorization is a desirable alternative to

the current practice since it eliminates manual effort.

An existing research prototype, MUDABlue [6], has

successfully used Latent Semantic Indexing (LSI) [3],

an Information Retrieval (IR) technique, to

automatically categorize software systems in open-

source software repositories. Latent Dirichlet

Allocation (LDA) [2] is an alternative IR approach in

which documents can be viewed as a mixtures of

topics, which may make it more amenable to software

categorization than LSI. If we consider a software

system in an open-source repository to be a document,

the distribution of topics in that document can be used

to automatically place the software system into

categories. In this paper, we propose a novel technique

called LACT for automatically classifying software

systems in open-source repositories. LACT works by

using LDA’s topic-document distributions that are

gleaned from comments and identifiers in source code.

We conducted two initial studies, one aimed at

comparing LACT with MUDABlue on a previously

published dataset, and the other studying LACT when

categorizing software systems written in different

programming languages. The next sections present the

details of LACT and the results of our studies.

2. Using Latent Dirichlet Allocation for

Software Categorization

LDA is a probabilistic topic model originally used in

natural language processing, but it has also been

applied to software artifacts [1, 8-10, 12]. In LDA,

documents are represented as mixtures over latent

topics, and each topic is characterized by a distribution

over words [2]. Given a corpus of documents, LDA

identifies a set of topics, associates a set of words with

each topic, and defines a finite mixture of these topics

for each document. Our proposed technique of LACT

utilizes LDA as described in the following steps:

1. Parse software systems. We consider a software

system as a collection of words (i.e., identifiers and

comments). Each system is parsed and represented

as a document in a corpus (see Table 1).

2. Index corpus with LDA. We use GibbsLDA++
1

to index the resulting corpus. Topic-document or

1 http://gibbslda.sourceforge.net/ (accessed and verified on 03/01/09)

topic-software matrices are obtained from LDA in

which each document (i.e., software system) is

probabilistically associated with a set of topics.

The number of topics generated is a parameter of

LDA, and we explore how the number of topics

impacts results in our studies (see Section 3.1).

3. Retrieve categories. To group similar topics

around categories, we compute cosine similarities

between each pair of topics. If a cosine similarity

between two topics is greater than 0.8, we cluster

them into the same category. Note that a topic may

belong to several different categories. The result

of this step is a listing of categories and topics.

4. Categorize software systems. Once the categories

are populated with topics, the software systems are

assigned to the categories. Since we obtain topic-

software matrices in Step 2, we can derive a list of

topics for each software system as follows: if one

of the category topics belongs to a software system

with a probability above a certain distribution

threshold, then the software system is assigned to

that category. This criterion does not preclude

assigning a software system to multiple categories

(e.g., KOffice may be placed into the text editor

and spreadsheet categories). We study the impact

of various distribution thresholds in Section 3.1.

3. Case Studies

We performed two initial studies to evaluate LACT.

In the first, we compare LACT head-to-head with

MUDABlue [6] on a set of 41 open-source software

systems written in C. In the second case study, we

apply LACT to a set of 43 open-source software

systems written in different programming languages

and compare the results to the manual categorizations

provided on SourceForge. The results of these studies

are discussed below. The full results from our case

studies are available as an online appendix.
2

2 http://www.cs.wm.edu/~denys/data/msr09/msr09-appendix.htm

3.1. Comparison with MUDABlue

We evaluated LACT on the same 41 software

systems used to evaluate MUDABlue in [6]. We

explored the categorization results in terms of the

number of topics and the distribution thresholds. The

number of topics ranged from 10 to 80, and the

distribution thresholds were between 0.001 and 0.1. For

each configuration, precision and recall was computed

using the SourceForge categorizations as the ideal set.

Precision is the number of systems correctly

categorized by a technique divided by the total number

of systems categorized, while recall is the number of

correctly categorized systems divided by the total

number of ideal categorizations. Table 2 shows

LACT’s precision and recall results. The performance

of our technique varies greatly in terms of the number

of topics and the distribution threshold. However,

LACT’s performance is generally comparable with that

of MUDABlue [6]. The highest precision and recall

values come from 40 topics with distribution threshold

of 0.02. When the number of topics is too large, LACT

generates very fine-grain categories, which means each

category has only one or two software systems.

Using 40 topics and a distribution threshold 0.02,

LACT generates 33 categories. As compared to the

manual categorization on SourceForge, LACT generates

19 of the same categories. In addition, LACT generates

14 new categories which are not defined on

SourceForge. Among the new categories, seven are

based on libraries or architectures. The other new

categories do not represent meaningful concepts.

Identifying and eliminating these hollow categories is

part of the future work of this paper.

 We compared LACT’s results under its best

configuration directly with MUDABlue. While

MUDABlue generated 40 categories for these systems,

LACT generated 33 categories. The average number of

software systems in each category is 2.6 and 3.125 for

MUDABlue and LACT respectively. MUDABlue

generated 18 of the same categories defined on

Table 1. Using LDA for software categorization

LDA

Model
Source Code Entities

word

Identifiers and comments are extracted from

source code to form a vocabulary set. This set is

refined to exclude programming language

keywords, stop words, and punctuation. All

compound identifiers are split based on observed

naming conventions. V={w1, w2,..., wv }.

document

A software system is treated as a document which

can be expressed as n identifies and comments

from a vocabulary. si=(w1,w2,...,wn)

corpus
A corpus consists of a set of indexed software

systems. C = {S1, S2, ..., Sz}

Table 2. Precision and recall for various
distribution thresholds and number of topics

Distribution Threshold # of

topics 0.001 0.005 0.01 0.02 0.05 0.1

10 0.54,0.52 0.56,0.53 0.57,0.52 0.59,0.54 0.58,0.56 0.56,0.54

20 0.57,0.55 0.58,0.56 0.61,0.58 0.64,0.63 0.65,0.63 0.62,0.59

30 0.62,0.61 0.62,0.61 0.64,0.63 0.69,0.70 0.68,0.65 0.68,0.64

40 0.66,0.65 0.69,0.66 0.71,0.70 0.74,0.72 0.73,0.73 0.69,0.69

50 0.63,0.61 0.62,0.62 0.65,0.64 0.68,0.70 0.68,0.69 0.66,0.65

60 0.64,0.63 0.66,0.65 0.69,0.68 0.69,0.70 0.64,0.63 0.69,0.68

70 0.68,0.67 0.71,0.70 0.74,0.73 0.73,0.73 0.69,0.68 0.62,0.64

80 0.56,0.57 0.73,0.72 0.64,0.63 0.70,0.69 0.64,0.63 0.68,0.67

SourceForge, and LACT generated 19. For the new,

non-SourceForge categories generated by both

techniques, MUDABlue generated 11 meaningful

categories while LACT generated seven. Among these

categories, LACT had three categories in common with

MUDABlue: GTK, YACC, and SSL. LACT generated

two additional categories, XML and SQL, which

MUDABlue did not. On the other hand, MUDABlue

generated some categories that LACT did not, but the

meaning of a number of these categories is difficult to

interpret. LACT also generated six categories with

titles from which it is difficult to discern meaning.

MUDABlue generated 11 categories whose titles

contain identifiers such as “X” and “a”. Outside of the

source code, identifier names such as these have little to

no meaning. As for the category titles, LACT provided

significant improvement over MUDABlue because

LACT pre-processes all identifiers to remove non-

literals, keywords, tokens, and split identifiers to

generate meaningful category names. As a result, the

names of categories generated by LACT are more

readable than those of MUDABlue.

3.2. Language-Independent Categorization

We also evaluated the performance of LACT using

43 open-source software systems written in various

programming languages. Among these software

systems, 14 software systems are written in C/C++, 10

are in Java, 11 in PHP, 5 in Perl, and 3 in C#. The

systems, listed in Table 3, were randomly selected from

six categories on SourceForge: Game, Editor,

Database, Terminal, E-mail, and Chat. These systems

belong to other manually assigned categories as well.

After running LACT using 45 topics and a

distribution threshold of 0.05, 34 categories were

generated. Compared to the manual categorization on

SourceForge, LACT found nine of the same categories

and generated 25 new categories. Among the new

categories, 15 are meaningful as they are either based

on libraries or architectures (GTK, MFC, SSL, and

XML) or are based on certain programming languages.

The other 10 new categories are not meaningful, and

future work will involve eliminating such categories.

The categorization results of using these 43 software

systems written in different languages are quite

different from the previous study where the software

system were all written in C. One possible reason is

that a programming language acts as a noise factor in

categorization, and sometimes LACT categorizes the

software systems written in the same language into a

certain category. LACT’s ability to categorize software

systems based on programming language is more

flexible and applicable than existing approaches.

3.3. Threats to Validity

Threats to external validity include to what degree

the software systems in this case study are

representative of all software systems. In the

programming language-independent case study, we

used software systems written in several popular

programming languages from only a few domains.

While meaningful categories were found, a larger

sample of systems is needed to ensure that the results

are applicable to all software systems. Threats to

internal validity include choosing the number of topics

and the distribution threshold to generate the best

categorization results. To minimize this threat, we

studied a range of values. We also acknowledge the

cosine similarity value (i.e., 0.8) used to cluster topics

into categories. Other similarity criteria could have

resulted in different category-topics configurations.

Another threat to internal validity exists in the

subjectivity of judging categories. When calculating

precision and recall, we manually determined

correspondence of generated categories to ideal ones.

An alternative way to conduct the study would be to

collect categorizations from a group of diverse people

and calculate precision and recall values based on the

group’s agreement. Another threat to validity is the

manual evaluation and comparison of the categorization

results generated by MUDABlue and LACT. However,

this is a common problem in evaluating software

Table 3. 43 software systems used in programming language-independent categorization study

Category C/C++ PHP Java Perl C#

Game
gcells-0.4, freedroid-1.0.2,

fuzzy_adventure-0.5

nomic-1.3, Netrisk 2.0,

deep dungeons-0.1
Bubblebreaker-0.1 fortune SharpTTT-1.2.1

Editor
pdfedit-0.4.2, npp-5.0,

AkelPad-3.6.4

ontext-0.3,

FCKeditor 2.6.3

jedit-4.2,VietPad-2.0,

 rtext 0.9.9.7
Kephra-0.4

Database postgresql-8.3.0 phpMyAdmin-3.0.1.1 smallsql-0.20, DBEdit2.1.5 SequelExplorer0.7

Terminal
anyterm-1.0.1,cgterm-1.6,

putty-0.60, tatelnet-1.1.1

ajaxphpterm,

phpterm-0.3.0

jalita-1.0,

j2ssh-0.2.9

E-mail jwsmtp-1.32.15, hotpop3.0.0.1
squirrelmail-1.4.17,

 emailer-2.3.1
OpenJMail 1.0.9 Mercury-0.10

ILKMail v1.2,

cses-0.3

Chat gib-0.2 Web2IRC exb-2.1.0-20020504 pircd-beta-one

categorization systems. To the best of our knowledge,

there are no good, existing metrics or criteria to

quantify the quality of software categorization results.

4. Related Work

 Information Retrieval has previously been used to

categorize software systems. Kawaguchi et al. [6]

applied LSI to categorize software systems

automatically with MUDABlue. They use source code

identifiers and ignore comments, while LACT uses

LDA, employs comments, and pre-processes identifiers

to produce more legible category names.

At a finer granularity than software systems,

machine learning techniques have been exploited to

automatically categorize software modules [5].

Similarly, different IR techniques such as LSI, pLSI,

and Naïve Bayes approaches have also been applied to

categorize reusable software components [15].

Software components have also been retrieved using IR

techniques for software reuse. CodeBroker [17] is a

tool for retrieving reusable components from a software

system using IR. SpotWeb [16] is a code search engine

based approach that detects hotspots and coldspots in a

given framework by mining open-source code on the

web. Automated approaches for assessing reuse also

exist for software libraries [11, 13], reuse repositories

[14] and ranking components by their reusability [4].

Unlike LACT, these approaches concentrate on reuse of

software components instead of categorization of

software systems. Semantic clustering is a technique

used to identify topics in source code [7] that uses LSI

and clustering algorithms to group source artifacts that

use a similar vocabulary. Semantic clustering, like

LACT, defines linguistic topics which reveal the

intention of code.

5. Conclusions

In this paper, we introduced LACT as a technique for

automatically categorizing software systems using

Latent Dirichlet Allocation. Our initial results indicate

that LACT can effectively categorize systems

implemented in different programming languages

according to manual assignments as well as find new,

useful categories. Additionally, LACT generates more

comprehensible category names as compared with an

existing automatic categorization system.

6. Acknowledgements

We acknowledge Dr. Shinji Kawaguchi and Dr.

Katsuro Inoue for providing us with MUDABlue’s

categorization results. We thank anonymous reviewers

for detailed comments and helpful suggestions. This

research was supported in part by the United States Air

Force Office of Scientific Research under grant number

FA9550-07-1-0030.

7. References

[1] Baldi, P., Linstead, E., Lopes, C., and Bajracharya, S., "A Theory

of Aspects as Latent Topics", in Proc. of Conference on Object-

Oriented Programming, Systems, Languages and Applications, 2008.

[2] Blei, D. M., Ng, A. Y., and Jordan, M. I., "Latent Dirichlet

Allocation", Journal of Machine Learning Research, vol. 3, 2003,.

[3] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,

and Harshman, R., "Indexing by Latent Semantic Analysis", Journal

of the American Society for Information Science, vol. 41, 1990.

[4] Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., and

Kusumoto, S., "Ranking significance of software components based

on use relations", Trans. on Software Engineering, vol. 31, no. 3,

March 2005, pp. 213- 225.

[5] Kawaguchi, S., Garg, P. K., Matsushita, M., and Inoue, K.,

"Automatic Categorization Algorithm for Evolvable Software

Archive", in Proc. of International Workshop on Principles of

Software Evolution, 2003, pp. 195-200.

[6] Kawaguchi, S., Garg, P. K., Matsushita, M., and Inoue, K.,

"MUDABlue: An automatic categorization system for Open Source

repositories", Journal of Systems and Software, vol. 79, no. 7, 2006.

[7] Kuhn, A., Ducasse, S., and Gîrba, T., "Semantic Clustering:

Identifying Topics in Source Code", Information and Software

Technology, vol. 49, no. 3, March 2007, pp. 230-243.

[8] Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., and Baldi, P.,

"Mining concepts from code with probabilistic topic models", in

Proc. of International Conference on Automated Software

Engineering, 2007, pp. 461-464.

[9] Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., and Baldi, P.,

"Mining Eclipse Developer Contributions via Author-Topic Models",

in Proc. of International Workshop on Mining Software Repositories,

2007, pp. 30-33.

[10] Lukins, S., Kraft, N., and Etzkorn, L., "Source Code Retrieval

for Bug Location Using Latent Dirichlet Allocation", in Proc. of

Working Conference on Reverse Engineering, 2008, pp. 155-164.

[11] Maarek, Y. S., Berry, D. M., and Kaiser, G. E., "An Information

Retrieval Approach for Automatically Constructing Software

Libraries", Trans. on Software Engineering, vol. 17, no. 8, 1991.

[12] Maskeri, G., Sarkar, S., and Heafield, K., "Mining Business

Topics in Source Code using Latent Dirichlet Allocation", in Proc. of

1st Conference on India Software Engineering Conference,

Hyderabad, India, 2008, pp. 113-120.

[13] Michail, A. and Notkin, D., "Assessing software libraries by

browsing similar classes, functions and relationships", in Proc. of

International Conference on Software Engineering, 1999.

[14] Pan, Y., Wang, L., Zhang, L., Xie, B., and Yang, F., "Relevancy

based semantic interoperation of reuse repositories", in Proc. of FSE,

2004, pp. 211-220.

[15] Sandhu, P. S., Singh , J., and Singh, H., "Approaches for

Categorization of Reusable Software Components", Journal of

Computer Science, vol. 3, no. 5, 2007, pp. 266-273.

[16] Thummalapenta, S. and Xie, T., "SpotWeb: Detecting

Framework Hotspots and Coldspots via Mining Open Source Code

on the Web", in Proc. of ASE, 2008.

[17] Ye, Y. and Fischer, G., "Reuse-Conducive Development

Environments", Journal Automated Software Engineering, vol. 12,

no. 2, 2005, pp. 199-235.

