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Abstract 

In this paper, we propose a technique called LACT 

for automatically categorizing software systems in 

open-source repositories. LACT is based on Latent 

Dirichlet Allocation, an information retrieval method 

which is used to index and analyze source code 

documents as mixtures of probabilistic topics. For an 

initial evaluation, we performed two studies. In the first 

study, LACT was compared against an existing tool, 

MUDABlue, for classifying 41 software systems written 

in C into problem domain categories.  The results 

indicate that LACT can automatically produce 

meaningful category names and yield classification 

results comparable to MUDABlue. In the second study, 

we applied LACT to 43 software systems written in 

different programming languages such as C/C++, 

Java, C#, PHP, and Perl. The results indicate that 

LACT can be used effectively for the automatic 

categorization of software systems regardless of the 

underlying programming language or paradigm. 

Moreover, both studies indicate that LACT can identify 

several new categories that are based on libraries, 

architectures, or programming languages, which is a 

promising improvement as compared to manual 

categorization and existing techniques.   

1. Introduction 

Open-source software repositories such as 

SourceForge.net maintain massive amounts of source 

code and software artifacts. To facilitate easier 

browsing and searching of such repositories, software 

systems are placed into categories (e.g., text editors, 

anti-virus, databases, etc). These categories group 

systems by their functionality, and classification is 

performed manually by users or administrators. This 

labor-intensive categorization is time-consuming and 

requires an understanding of the underlying 

functionalities of the software systems in the repository.  

Automatic categorization is a desirable alternative to 

the current practice since it eliminates manual effort. 

An existing research prototype, MUDABlue [6], has 

successfully used Latent Semantic Indexing (LSI) [3], 

an Information Retrieval (IR) technique, to 

automatically categorize software systems in open-

source software repositories.  Latent Dirichlet 

Allocation (LDA) [2] is an alternative IR approach in 

which documents can be viewed as a mixtures of 

topics, which may make it more amenable to software 

categorization than LSI.  If we consider a software 

system in an open-source repository to be a document, 

the distribution of topics in that document can be used 

to automatically place the software system into 

categories.  In this paper, we propose a novel technique 

called LACT for automatically classifying software 

systems in open-source repositories. LACT works by 

using LDA’s topic-document distributions that are 

gleaned from comments and identifiers in source code.  

We conducted two initial studies, one aimed at 

comparing LACT with MUDABlue on a previously 

published dataset, and the other studying LACT when 

categorizing software systems written in different 

programming languages.  The next sections present the 

details of LACT and the results of our studies. 

2. Using Latent Dirichlet Allocation for 

Software Categorization 

LDA is a probabilistic topic model originally used in 

natural language processing, but it has also been 

applied to software artifacts [1, 8-10, 12].  In LDA, 

documents are represented as mixtures over latent 

topics, and each topic is characterized by a distribution 

over words [2].  Given a corpus of documents, LDA 

identifies a set of topics, associates a set of words with 

each topic, and defines a finite mixture of these topics 

for each document.  Our proposed technique of LACT 

utilizes LDA as described in the following steps: 

1. Parse software systems.  We consider a software 

system as a collection of words (i.e., identifiers and 

comments).  Each system is parsed and represented 

as a document in a corpus (see Table 1).  

2. Index corpus with LDA. We use GibbsLDA++
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topic-software matrices are obtained from LDA in 

which each document (i.e., software system) is 

probabilistically associated with a set of topics.   

The number of topics generated is a parameter of 

LDA, and we explore how the number of topics 

impacts results in our studies (see Section 3.1).  

3. Retrieve categories. To group similar topics 

around categories, we compute cosine similarities 

between each pair of topics.  If a cosine similarity 

between two topics is greater than 0.8, we cluster 

them into the same category. Note that a topic may 

belong to several different categories.  The result 

of this step is a listing of categories and topics.   

4. Categorize software systems. Once the categories 

are populated with topics, the software systems are 

assigned to the categories.  Since we obtain topic-

software matrices in Step 2, we can derive a list of 

topics for each software system as follows:  if one 

of the category topics belongs to a software system 

with a probability above a certain distribution 

threshold, then the software system is assigned to 

that category.  This criterion does not preclude 

assigning a software system to multiple categories 

(e.g., KOffice may be placed into the text editor 

and spreadsheet categories).  We study the impact 

of various distribution thresholds in Section 3.1.  

3. Case Studies 

We performed two initial studies to evaluate LACT.  

In the first, we compare LACT head-to-head with 

MUDABlue [6] on a set of 41 open-source software 

systems written in C.  In the second case study, we 

apply LACT to a set of 43 open-source software 

systems written in different programming languages 

and compare the results to the manual categorizations 

provided on SourceForge.  The results of these studies 

are discussed below.  The full results from our case 

studies are available as an online appendix.
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3.1. Comparison with MUDABlue 

We evaluated LACT on the same 41 software 

systems used to evaluate MUDABlue in [6].  We 

explored the categorization results in terms of the 

number of topics and the distribution thresholds.   The 

number of topics ranged from 10 to 80, and the 

distribution thresholds were between 0.001 and 0.1. For 

each configuration, precision and recall was computed 

using the SourceForge categorizations as the ideal set.  

Precision is the number of systems correctly 

categorized by a technique divided by the total number 

of systems categorized, while recall is the number of 

correctly categorized systems divided by the total 

number of ideal categorizations.  Table 2 shows 

LACT’s precision and recall results. The performance 

of our technique varies greatly in terms of the number 

of topics and the distribution threshold.  However, 

LACT’s performance is generally comparable with that 

of MUDABlue [6]. The highest precision and recall 

values come from 40 topics with distribution threshold 

of 0.02. When the number of topics is too large, LACT 

generates very fine-grain categories, which means each 

category has only one or two software systems. 

Using 40 topics and a distribution threshold 0.02, 

LACT generates 33 categories.  As compared to the 

manual categorization on SourceForge, LACT generates 

19 of the same categories. In addition, LACT generates 

14 new categories which are not defined on 

SourceForge. Among the new categories, seven are 

based on libraries or architectures. The other new 

categories do not represent meaningful concepts. 

Identifying and eliminating these hollow categories is 

part of the future work of this paper. 

  We compared LACT’s results under its best 

configuration directly with MUDABlue.  While 

MUDABlue generated 40 categories for these systems, 

LACT generated 33 categories. The average number of 

software systems in each category is 2.6 and 3.125 for 

MUDABlue and LACT respectively. MUDABlue 

generated 18 of the same categories defined on 

Table 1. Using LDA for software categorization 

LDA 

Model 
Source Code Entities 

word 

Identifiers and comments are extracted from 

source code to form a vocabulary set.  This set is 

refined to exclude programming language 

keywords, stop words, and punctuation.  All 

compound identifiers are split based on observed 

naming conventions. V={w1, w2,..., wv }. 

document 

A software system is treated as a document which 

can be expressed as n identifies and comments 

from a vocabulary. si=(w1,w2,...,wn) 

corpus 
A corpus consists of a set of indexed software 

systems. C = {S1, S2, ..., Sz}  

 

Table 2. Precision and recall for various 
distribution thresholds and number of topics 

Distribution Threshold # of 

topics 0.001 0.005 0.01 0.02 0.05 0.1 

10 0.54,0.52 0.56,0.53 0.57,0.52 0.59,0.54 0.58,0.56 0.56,0.54 

20 0.57,0.55 0.58,0.56 0.61,0.58 0.64,0.63 0.65,0.63 0.62,0.59 

30 0.62,0.61 0.62,0.61 0.64,0.63 0.69,0.70 0.68,0.65 0.68,0.64 

40 0.66,0.65 0.69,0.66 0.71,0.70 0.74,0.72 0.73,0.73 0.69,0.69 

50 0.63,0.61 0.62,0.62 0.65,0.64 0.68,0.70 0.68,0.69 0.66,0.65 

60 0.64,0.63 0.66,0.65 0.69,0.68 0.69,0.70 0.64,0.63 0.69,0.68 

70 0.68,0.67 0.71,0.70 0.74,0.73 0.73,0.73 0.69,0.68 0.62,0.64 

80 0.56,0.57 0.73,0.72 0.64,0.63 0.70,0.69 0.64,0.63 0.68,0.67 

 



 

   

SourceForge, and LACT generated 19. For the new, 

non-SourceForge categories generated by both 

techniques, MUDABlue generated 11 meaningful 

categories while LACT generated seven. Among these 

categories, LACT had three categories in common with 

MUDABlue: GTK, YACC, and SSL.  LACT generated 

two additional categories, XML and SQL, which 

MUDABlue did not. On the other hand, MUDABlue 

generated some categories that LACT did not, but the 

meaning of a number of these categories is difficult to 

interpret.  LACT also generated six categories with 

titles from which it is difficult to discern meaning.  

MUDABlue generated 11 categories whose titles 

contain identifiers such as “X” and “a”.  Outside of the 

source code, identifier names such as these have little to 

no meaning. As for the category titles, LACT provided 

significant improvement over MUDABlue because 

LACT pre-processes all identifiers to remove non-

literals, keywords, tokens, and split identifiers to 

generate meaningful category names. As a result, the 

names of categories generated by LACT are more 

readable than those of MUDABlue.     

3.2. Language-Independent Categorization 

We also evaluated the performance of LACT using 

43 open-source software systems written in various 

programming languages. Among these software 

systems, 14 software systems are written in C/C++, 10 

are in Java, 11 in PHP, 5 in Perl, and 3 in C#.  The 

systems, listed in Table 3, were randomly selected from 

six categories on SourceForge: Game, Editor, 

Database, Terminal, E-mail, and Chat.  These systems 

belong to other manually assigned categories as well.   

After running LACT using 45 topics and a 

distribution threshold of 0.05, 34 categories were 

generated. Compared to the manual categorization on 

SourceForge, LACT found nine of the same categories 

and generated 25 new categories. Among the new 

categories, 15 are meaningful as they are either based 

on libraries or architectures (GTK, MFC, SSL, and 

XML) or are based on certain programming languages. 

The other 10 new categories are not meaningful, and 

future work will involve eliminating such categories. 

The categorization results of using these 43 software 

systems written in different languages are quite 

different from the previous study where the software 

system were all written in C. One possible reason is 

that a programming language acts as a noise factor in 

categorization, and sometimes LACT categorizes the 

software systems written in the same language into a 

certain category.  LACT’s ability to categorize software 

systems based on programming language is more 

flexible and applicable than existing approaches. 

3.3. Threats to Validity 

Threats to external validity include to what degree 

the software systems in this case study are 

representative of all software systems. In the 

programming language-independent case study, we 

used software systems written in several popular 

programming languages from only a few domains.  

While meaningful categories were found, a larger 

sample of systems is needed to ensure that the results 

are applicable to all software systems.  Threats to 

internal validity include choosing the number of topics 

and the distribution threshold to generate the best 

categorization results. To minimize this threat, we 

studied a range of values. We also acknowledge the 

cosine similarity value (i.e., 0.8) used to cluster topics 

into categories.  Other similarity criteria could have 

resulted in different category-topics configurations.  

Another threat to internal validity exists in the 

subjectivity of judging categories. When calculating 

precision and recall, we manually determined 

correspondence of generated categories to ideal ones. 

An alternative way to conduct the study would be to 

collect categorizations from a group of diverse people 

and calculate precision and recall values based on the 

group’s agreement. Another threat to validity is the 

manual evaluation and comparison of the categorization 

results generated by MUDABlue and LACT. However, 

this is a common problem in evaluating software 

Table 3.  43 software systems used in programming language-independent categorization study 

Category C/C++ PHP Java Perl C# 

Game 
gcells-0.4, freedroid-1.0.2, 

fuzzy_adventure-0.5 

nomic-1.3, Netrisk 2.0, 

deep dungeons-0.1 
Bubblebreaker-0.1 fortune SharpTTT-1.2.1 

Editor 
pdfedit-0.4.2, npp-5.0, 

AkelPad-3.6.4 

ontext-0.3,  

FCKeditor 2.6.3 

jedit-4.2,VietPad-2.0, 

 rtext 0.9.9.7 
Kephra-0.4  

Database postgresql-8.3.0 phpMyAdmin-3.0.1.1 smallsql-0.20, DBEdit2.1.5 SequelExplorer0.7  

Terminal 
anyterm-1.0.1,cgterm-1.6, 

putty-0.60, tatelnet-1.1.1 

ajaxphpterm,  

phpterm-0.3.0 

jalita-1.0,  

j2ssh-0.2.9 
  

E-mail jwsmtp-1.32.15, hotpop3.0.0.1 
squirrelmail-1.4.17, 

 emailer-2.3.1 
OpenJMail 1.0.9 Mercury-0.10 

ILKMail v1.2,  

cses-0.3 

Chat gib-0.2 Web2IRC exb-2.1.0-20020504 pircd-beta-one  

 



 

   

categorization systems. To the best of our knowledge, 

there are no good, existing metrics or criteria to 

quantify the quality of software categorization results.  

4. Related Work 

 Information Retrieval has previously been used to 

categorize software systems. Kawaguchi et al. [6] 

applied LSI to categorize software systems 

automatically with MUDABlue. They use source code 

identifiers and ignore comments, while LACT uses 

LDA, employs comments, and pre-processes identifiers 

to produce more legible category names.  

At a finer granularity than software systems, 

machine learning techniques have been exploited to 

automatically categorize software modules [5].  

Similarly, different IR techniques such as LSI, pLSI, 

and Naïve Bayes approaches have also been applied to 

categorize reusable software components [15].  

Software components have also been retrieved using IR 

techniques for software reuse. CodeBroker [17] is a 

tool for retrieving reusable components from a software 

system using IR.  SpotWeb [16] is a code search engine 

based approach that detects hotspots and coldspots in a 

given framework by mining open-source code on the 

web. Automated approaches for assessing reuse also 

exist for software libraries [11, 13], reuse repositories 

[14] and ranking components by their reusability [4].  

Unlike LACT, these approaches concentrate on reuse of 

software components instead of categorization of 

software systems.  Semantic clustering is a technique 

used to identify topics in source code [7] that uses LSI 

and clustering algorithms to group source artifacts that 

use a similar vocabulary.  Semantic clustering, like 

LACT, defines linguistic topics which reveal the 

intention of code.   

5. Conclusions 

In this paper, we introduced LACT as a technique for 

automatically categorizing software systems using 

Latent Dirichlet Allocation.  Our initial results indicate 

that LACT can effectively categorize systems 

implemented in different programming languages 

according to manual assignments as well as find new, 

useful categories.  Additionally, LACT generates more 

comprehensible category names as compared with an 

existing automatic categorization system. 
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