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Abstract—Mutation testing has been widely used to assess the fault-detection effectiveness of a test suite, as well as to guide test case
generation or prioritization. Empirical studies have shown that, while mutants are generally representative of real faults, an effective
application of mutation testing requires “traditional” operators designed for programming languages to be augmented with operators
specific to an application domain and/or technology. The case for Android apps is not an exception. Therefore, in this paper we describe
the process we followed to create (i) a taxonomy of mutation operations and, (ii) two tools, MDroid+ and MutAPK for mutant generation
of Android apps. To this end, we systematically devise a taxonomy of 262 types of Android faults grouped in 14 categories by manually
analyzing 2,023 software artifacts from different sources (e.g., bug reports, commits). Then, we identified a set of 38 mutation operators,
and implemented them in two tools, the first enabling mutant generation at the source code level, and the second designed to perform
mutations at APK level. The rationale for having a dual-approach is based on the fact that source code is not always available when
conducting mutation testing. Thus, mutation testing for APKs enables new scenarios in which researchers/practitioners only have access
to APK files. The taxonomy, proposed operators, and tools have been evaluated in terms of the number of non-compilable, trivial,
equivalent, and duplicate mutants generated and their capacity to represent real faults in Android apps as compared to other well-known
mutation tools.
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1 INTRODUCTION

MOBILE apps play a paramount role in our daily lives.
With millions of mobile apps available for download

on Google Play [1] and the Apple App Store [2], users
have access to an unprecedentedly large set of apps that
are not only intended to provide entertainment but also to
support critical activities such as health monitoring. Given
the increasing relevance and demand for high-quality apps,
industrial practitioners and academic researchers have been
devoting significant effort to improve methods for measur-
ing and assuring the quality of mobile apps. Manifestations
of interest in this topic include the broad portfolio of mobile
testing methods ranging from tools for assisting record
and replay testing [3], [4], to automated approaches that
generate and execute test cases [5], [6], [7], [8], rippers
that systematically explore the apps GUI [9], [10], [11],
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and cloud-based services for large-scale multi-device testing
[12]. Despite the availability of these tools/approaches, the
field of mobile app testing is still very much under develop-
ment, as highlighted by limitations of test data generation
approaches [6], [13], and concerns regarding the effective
assessment of the quality of mobile apps’ test suites.

One way to evaluate test suites is to seed small faults,
called mutations, into source code and assess the ability of
a suite to detect these faults [14], [15]. Such mutations have
been defined in the literature to reflect the typical errors
developers make when writing source code [16], [17], [18],
[19], [20], [21], [22]. Indeed, the extent to which mutants
reflect typical bugs for a given application/domain can
have an impact on the extent to which mutants can replace
real bugs in software testing, e.g., to evaluate a test suite
effectiveness [23], or even prioritize bugs [24].

However, existing literature lacks a thorough character-
ization of bugs exhibited by mobile apps. Therefore, it is
unclear whether such apps exhibit a distribution of faults
similar to other systems, or if there are types of faults that
require special attention. As a consequence, it is unclear
whether the use of traditional mutant taxonomies [16],
[17] is sufficient to assess test quality and drive test case
generation/selection for mobile apps.

In addition, mutation operators have been thought
to be applied directly to the source code, which
requires building/compiling the generated mutants.
Building/compilation time is often more time consuming
than injecting the mutants; in that sense, tools that
avoid compilation time are desired by practitioners and



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.#, NO.#, AUGUST 2019 2

researchers.

Previous tools for Java applications like Jumble, PIT, and
Javalanche generate the mutations directly on the bytecode,
which reduces the total time required to generate executable
mutants, and also avoids generating a potentially-large
number of uncompilable mutants. In the case of Android
apps, there is no existing approach that enables mutation
testing on source code or directly on executable Android
Packages (APKs). Having a tool that enables mutation test-
ing at APK-level will help developers and practitioners to
avoid building approaches/tools for each of the existing
native Android languages (Java, Kotlin, or Dart), because
APK-level mutation is language agnostic.

Moreover, having such an approach could make muta-
tion testing for Android apps more suitable as in the case
of outsourced/crowdsourced testing by third-parties that
are not the app owners. Although mutation testing is not a
service commonly offered by third parties, it could be used
to evaluate the quality of test suites designed in a context
of outsourced/crowdsourced testing, or to automatically
generate test cases based on potential mutations. In general,
APK-level mutation could help practitioners — that do
not have access to source code of the analyzed apps— to
enable different scenarios that are not widely explored yet
by external services.

Currently, there does not exist an Android mutation
testing framework capable of seeding a large set of realistic,
Android-specific faults into open and closed source Android
apps. In fact, relatively few Android-specific mutation oper-
ators have been proposed by the research community [25],
[26] and as such these do not cover a large range of possible
Android-specific bugs/faults. Mutation tools for Java apps,
such as Pit [27] and Major [28], [29], lack any Android-
specific mutation operator, and present challenges for their
use in this context, resulting in common problems such as
trivial mutants that always crash at runtime or difficulties
in automating mutant compilation into APKs. To provide
support for mutation testing of Android apps both when
source code is available and when it is not, in this paper
we explore mutation testing by following a data-driven
approach that led us to build a taxonomy of real bugs in
mobile apps. Then, we propose a set of specialized mutation
operators, and build tools that allow mutant generation,
both at source code-level and at APK-level, based on the
proposed operators.

Paper contributions. This paper aims to deal with the
lack of (i) an extensive empirical evidence of the distribution
of Android faults, (ii) a thorough catalog of Android-specific
mutants, (iii) an analysis of the applicability of state-of-the-
art mutation tools on Android apps, and (iv) a characteriza-
tion of the pros and cons of conducting mutant generation
at source code or APK level.

As a first step, we produced a taxonomy of Android
faults by analyzing a statistically significant sample of 2,023
candidate faults documented in (i) bug reports from open
source apps; (ii) bug-fixing commits of open source apps;
(iii) Stack Overflow discussions; (iv) the Android exception
hierarchy and APIs potentially triggering such exceptions;
and (v) crashes/bugs described in previous studies on An-
droid. As a result, we produced a taxonomy of 262 types

of faults grouped in 14 categories, four of which relate to
Android-specific faults, five to Java-related faults, and five
mixed categories (Fig. 1). Then, leveraging this fault taxon-
omy and focusing on Android-specific faults, we devised
a set of 38 Android mutation operators and created their
corresponding mutation rules for Java code and SMALI
intermediate representation (IR).

Based on the proposed operators, we conceived and
implemented two frameworks for mutant generation of
Android apps, MDroid+ and MutAPK. The former injects
mutations at source-code level, while the latter injects the
mutations directly in the APKs. Our rationale for having
two different tools is based on the fact that source code is
not always available (e.g., as in the case of outsourced testing
services). In addition, we wanted to identify the pros and
cons of generating mutants of Android apps at source-code
and APK levels. Both tools are publicly available [30], [31].

In addition, we conducted a study comparing MDroid+
and MutAPK with other Java and Android-specific mutation
tools. The study results indicate that both MDroid+ and
MutAPK, as compared to existing competitive tools, (i) can
cover a larger number of bug types/instances present in
Android apps; (ii) are highly complementary to the existing
tools in terms of covered bug types; and (iii) generate fewer
trivial, non-compilable, equivalent and duplicate1 mutants.
When comparing source-code vs. APK level mutation, we
found that both mutation and compilation/assembling are
performed quicker at APK level than at source code level,
but with a lower quality of generated mutants. Our ex-
periments show an improvement of 93.83% (i.e., 4.32 from
4.61 seconds) in the mutation time and 87.05% (i.e., 174.73
from 195 seconds) for compilation/assembling times. How-
ever, the source code-based mutation approach generates
only 2.97% (i.e., 263 of 8847 mutants) of non-compilable or
trivial mutants as compared to the 6.8% (i.e., 5105 of 75053
mutants) of the APK-based mutation approach. It is worth
noting that our study does not conduct mutation testing (i.e.,
executing test suites), since no test suite is available for the
selected app dataset.

This paper is an extension of a previous paper published
at the 11th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’17) [33].
The extension includes: (i) a novel approach and publicly
available tool for conducting mutant generation for Android
apps at APK level; (ii) a larger study that compares existing
tools with our two tools for mutation testing (MDroid+
and MutAPK); and (iii) a new research question focused on
the pros and cons of mutation testing for Android apps at
source-code and APK levels.

Paper organization. Section 2 describes previous work
on mutation testing and analysis of closed-source mobile
apps. Then, Section 3 describes the process we followed
to create (empirically) a taxonomy of real crashes/bugs in
Android apps; the taxonomy establishes the foundations
for the mutation operators at source-code and APK levels.
Section 4 is devoted to describing the mutation operators
and its detailed implementation at source-code and APK

1. We use the definition provided by Papadakiset al. [32]: two mutants
that are equivalent to each other are called duplicate mutants
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levels. In Section 5, we describe the design of the study
and the corresponding results, while in Section 6 we discuss
some implications of mutation testing at source-code and
APK levels. In Section 7 we report the threats to the validity
of the results. Finally, Section 8 outlines the conclusions.

2 PREVIOUS WORK

This section describes related literature and publicly avail-
able, state-of-the-art tools and approaches on mutation test-
ing and analysis of mobile apps. We do not discuss the
literature on testing Android apps [5], [6], [7], [8], [9], [13],
[34], [35], [36], since proposing a novel approach for testing
Android apps is not the main goal of this work. For further
details about mobile app testing we refer the reader to
previous surveys and mapping studies [13], [37], [38].

2.1 Mutation Testing
Since the introduction of mutation testing in the 70s [14],
[15], researchers have tried not only to define new mu-
tation operators for different programming languages and
paradigms (e.g., mutation operators have been defined for
Java [16] and Python [39]) but also for specific types of
software like Web applications [40], NodeJS packages [41],
JS applications [42] and data-intensive applications [43], [44]
either to exercise their GUIs [45] or to alter complex, model-
defined input data [46]. The aim of our research, which we
share with prior work, is to define customized mutation
operators suitable for Android applications, by relying on
a solid empirical foundation. For further details about the
concepts, recent research, and future work in the field of
mutation testing, we refer the reader to previous work by
Jia and Harman [47].

To the best of our knowledge, the closest work to ours
is that of Deng et al., [25], which defined eight mutant
operators aimed at introducing faults in the essential pro-
gramming elements of Android apps, i.e., intents, event
handlers, activity lifecycle, and XML files (e.g., GUI or
permission files). While we share with Deng et al. the need
for defining specific operators for the key Android program-
ming elements, our work builds upon it by (i) empirically
analyzing the distribution of faults in Android apps by
manually tagging 2,023 documents, (ii) based on this distri-
bution, defining a mutant taxonomy—complementing Java
mutants—which includes a total of 38 operators tailored for
the Android platform.

Another closely-related work is that by Jabbarvand &
Malek [26] which proposed a mutation analysis framework,
called µDroid, aimed specifically at helping developers to
design tests that identify energy problems in Android apps
based on a set of fifty empirically derived energy anti-
patterns. We view our work as complementary to this
energy-aware mutation framework, as our empirically de-
rived Android mutant taxonomy covers a wide range of
both functional and non-functional bugs/faults in Android
apps, sharing little overlap with the mutation operators
proposed in [26]. In fact, developers could utilize both
frameworks to help ensure their test cases are effective at
exposing both general faults and energy-specific problems.

Mutation Testing Effectiveness and Efficiency. Several
researchers have proposed approaches to measure the effec-
tiveness and efficiency of mutation testing [48], [49], [50],

[51] to devise strategies for reducing the effort required
to generate effective mutant sets [52], [53], [54], and to
define theoretical frameworks [47], [55]. Such strategies
can complement our work, since in this paper we aim at
defining new mutant operators for Android, on which ef-
fectiveness/efficiency measures or minimization strategies
can be applied.

Existing Tools. Most of the available mutation testing
tools are in the form of research prototypes. Concerning
Java, representative tools are µJava [56], Jester [57], Ma-
jor [28], Jumble [58], PIT [27], and Javalanche [59]. Some
of these tools operate on the Java source code, while oth-
ers inject mutants in the bytecode. For instance, µJava,
Jester, and Major generate the mutants by modifying the
source code, while Jumble, PIT, and javaLanche perform
the mutations in the bytecode. When it comes to Android
apps, there are only three available tools: First, muDroid
[60], which performs the mutations at byte code level by
generating one APK (i.e., one version of the mobile app)
for each mutant. Second, Deng et al. [61], which performs
the mutation at source code level and then compiles it to
obtain an APK. Third, µDroid [26], discussed earlier which
performs energy-aware mutations. The tools for mutation
testing can be also categorized according to the tool’s ca-
pabilities (e.g., the availability of automatic test selection).
A thorough comparison of these tools is out of the scope
of this paper. The interested reader can find more details
on PIT’s website [62] and in the paper by Madeysky and
Radyk [63]. As previously mentioned, similarly to muDroid
[60], we also perform a language-agnostic, bytecode level
mutation, which makes the mutation independent of the
different programming languages supported by Android.

Empirical Studies on Mutation Testing. Daran and
Thévenod-Fosse [64] were the first to empirically compare
mutants and real faults, finding that the set of errors and
failures they produced with a given test suite were similar.
Andrews et al. [49], [65] studied whether mutant-generated
faults and faults seeded by humans can be representative
of real faults. The study showed that carefully-selected
mutants are not easier to detect than real faults, and can
provide a good indication of test suite adequacy, whereas
human-seeded faults can likely produce underestimates.

Just et al. [23] correlated mutant detection and real
fault detection using automatically and manually generated
test suites. They found that these two variables exhibit a
statistically significant correlation. At the same time, their
study pointed out that traditional Java mutants need to
be complemented by further operators, as they found that
around 17% of faults were not related to mutants. Luo et al.
[24] compared the effect of test case prioritization techniques
on real faults vs. mutants, and found that mutants tend to
overestimate the effectiveness of test suites.

Petrovic et al. [66] propose a diff-based probabilistic
mutation approach. Since their work has been conducted
in the context of a company (Google) coping with large-
scale systems, their approach is targeted to systems of such
a scale. They use a heuristic to identify non-interesting
instructions in order to reduce the number of lines analyzed
when generating mutants. The implementation of such a
tool at a company the scale of Google illustrates the growing
practical importance of mutation analysis and highlights the
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need for effective mutation testing frameworks for different
software domains.

In relation to the aforementioned work, our work pro-
poses the use of mutation operators that are as close as
possible to actual faults occurring in Android apps.

2.2 Analysis of Closed-Source Mobile Apps

Most of the approaches that aid in automating or improving
software engineering tasks are designed considering source
code as the main artifact because of its familiarity to de-
velopers and its expressiveness (e.g., possible existence of
code comments). In contrast, intermediate representations
(IR) that are closer to executable files are “finer-grained”
in the sense that “higher-level” source code files are of-
ten translated to several “lower-level” concrete machine-
level instructions represented in different IRs. Because these
two representations encode different types of information,
researchers must investigate the trade-offs of using each
information for supporting different software engineering
tasks.

Exploring both source-code and IR-based development
tools has several practical implications. While many exist-
ing approaches often rely on source code for supporting
automated software engineering tasks, there are situations
in which solutions are untenable in commercial environ-
ments. For example, when third-party services are used to
outsource software engineering tasks without releasing the
source code (i.e., the services work directly on executable
files), traditional static analysis is often not possible. This is
because, for a variety of different legal and organizational
reasons, app source code is not made available to third-
party contractors or software testers, making it difficult to
enable cloud/crowd-source services that utilize state-of-the-
art static analysis approaches. Furthermore, automated ap-
proaches for SE tasks that operate directly upon executable
files are often more convenient for developers to work with,
as they are often faster (due to lack of re-compilation) and
can be more easily integrated into increasingly popular CI
pipelines (as they require fewer files than the entire code
base). However, any type of analysis that relies only on
executable files (i.e., dynamic analysis) can be limited when
compared to static analysis that can be done directly on the
code. An example of this is presented by Ghanbari et al.
[67], while performing program reparation at Java Bytecode.
They use mutant generation to create a set of suitable
patches that are evaluated by their capacity of passing the
app tests. The reported repair patches generation is 10x
faster than state-of-the-art source-code-based approaches,
while being somewhat limited more limited in scope com-
pared to similar full-fledged static analysis techniques.

Given the lack of source code under certain contexts
(e.g., app execution on devices), there are previous efforts
that have analyzed or proposed approaches for dealing
with APKs, and in particular for specific security-related
tasks. Li et al. [68] summarize those efforts in a systematic
literature review of approaches for static analysis of An-
droid Packages. In particular, their work reports 124 papers
and classifies them into 8 categories of tasks: (i) Private
Data Leaks (46 papers), (ii) Vulnerabilities (40 papers), (iii)
Permission Misuse (15 papers), (iv) Energy Consumption

(9 papers), (v) Clone Detection (7 papers), (vi) Test Case
Generation (6 papers), (vii) Cryptography Implementation
Issues (3 papers) and (vii) Code verification (3 papers). Note
that, as of today, there is no support at APK level for tasks
such as automated documentation or mutation testing. Also,
the support at APK level for automated testing is only
provided by rippers that systematically explore the apps
GUI [37]. Concerning the intermediate representations used
for the analyses, Li et al. [68] report that the top intermediate
representations (IR) used are JIMPLE (38 papers), SMALI (26
papers) and Java Bytecode (22 papers).

In general, state-of-the-art approaches for automated
software engineering can be enabled in local environments
where the source code is available and can be manipulated
by the owners. Conversely, state-of-the-practice approaches
offered by third-parties (e.g., testing) rely on manual analysis
of apps, or on automated dynamic analysis that operates
at the APK level. The mobile development community is
quickly moving towards using cloud-services and crowd-
sourced services for software engineering tasks as they can
help to reduce the cost and time devoted to otherwise
expensive activities. However, since these services have
access only to the APKs, they can not take advantage of
state-of-the-art approaches that rely on the existence of
source code for extracting intermediate representations or
models that drive the analysis execution or the artifacts
generation. Therefore, it is clear that mobile app testing and
mutation analysis should move towards supporting APK-
only analyses to better support a wide range of popular
development workflows.

3 A TAXONOMY OF CRASHES/BUGS IN ANDROID
APPS

In this section, we describe our taxonomy of bugs in
Android apps derived from a large manual analysis of
(un)structured sources. Our work is the first large-scale
data-driven effort to design such a taxonomy. Our pur-
pose is to extend/complement previous studies analyzing
bugs/crashes in Android apps and to provide a large taxon-
omy of bugs that can be used to design mutation operators.
In all the cases reported below the manually analyzed sets of
sources—randomly extracted—represent a 95% statistically
significant sample with a ' ±5% confidence interval.

3.1 Design

To derive such a taxonomy, we manually analyzed six
different sources of information described below:
1) Bug reports of Android open source apps. Bug reports are

the most obvious source to mine to identify typical bugs
affecting Android apps. We mined the issue trackers of
16,331 open source Android apps hosted on GitHub.
Such apps have been identified by locally cloning all Java
projects (381,161) identified through GitHub’s API and
searching for projects with an AndroidManifest.xml file (a
requirement for Android apps) in the top-level directory.
We then removed forked projects to avoid duplicated
apps and filtered projects that did not have a single star
or watcher to avoid abandoned apps. We utilized a web
crawler to mine the GitHub issue trackers. To be able to
analyze the bug cause, we only selected closed issues (i.e.,
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those having a fix that can be inspected) having “Bug” as
type. Overall, we collected 2,234 issues from which we
randomly sampled 328 for manual inspection.

2) Bug-fixing commits of Android open source apps. Android
apps are often developed by very small teams [69], [70].
Thus, it is possible that some bugs are not documented
in issue trackers but quickly discussed by the developers
and then directly fixed. This might be particularly true
for bugs having a straightforward solution. Thus, we also
mined the versioning system of the same 16,331 Android
apps considered for the bug reports by looking for bug-
fixing commits not related to any of the bugs considered
in the previous point (i.e., the ones documented in the is-
sue tracker). With the cloned repositories, we utilized the
git command line utility to extract the commit notes and
matched the ones containing lexical patterns indicating
bug fixing activities, e.g.,“fix issue”, “fixed bug”, similarly
to the approach proposed by Fischer et al. [71]. Through
this procedure, we collected 26,826 commits, from which
we randomly selected a statistically significant sample of
376 commits for manual inspection.

3) Android-related Stack Overflow (SO) discussions. It is not
unusual for developers to ask help on SO for bugs they
are experiencing and having difficulty fixing [72], [73],
[74], [75]. Thus, mining SO discussions could provide
additional hints on the types of bugs experienced by
Android developers. To this aim, we collected all 51,829
discussions tagged “Android” from SO. Then, we ran-
domly extracted a statistically significant sample of 377
of them for the manual analysis.

4) The exception hierarchy of the Android APIs. Uncaught
exceptions and statements throwing exceptions are a
major source of information about faults/errors that can
happen in Android apps [76], [77]. We automatically
crawled the official Android developer JavaDoc guide to
extract the exception hierarchy and API methods throw-
ing exceptions. We collected 5,414 items from which we
sampled 360 of them for manual analysis.

5) Crashes/bugs described in previous studies on Android apps.
43 papers related to Android testing2 were analyzed
by looking for crashes/bugs reported in the papers.
For each identified bug, we kept track of the following
information: app, version, bug id, bug description, bug
URL. When we were not able to identify some of this
information, we contacted the paper’s authors. In the
43 papers, a total of 365 bugs were mentioned/reported;
however, we were able (in some cases with the authors’
help) to identify the app and the bug descriptions for
only 182 bugs/issues (from nine papers [5], [6], [9], [76],
[79], [80], [81], [82], [83]). Given the limited number,
in this case we considered all of them in our manual
analysis.

6) Reviews posted by users of Android apps on the Google Play
store. App store reviews have been identified as a promi-
nent source of bugs and crashes in mobile apps [74],
[84], [85], [86], [87], [88]. However, only a reduced set of
reviews are in fact informative and useful for developers
[87], [89]. Therefore, to automatically detect informative
reviews reporting bugs and crashes, we leverage CLAP,

2. The complete list of papers is provided in our online appendix [78].

the tool developed by Villarroel et al. [90], to automati-
cally identify the bug-reporting reviews. Such a tool has
been shown to have a precision of 88% in identifying this
specific type of review. We ran CLAP on the Android
user reviews dataset made available by Chen et al. [91].
This dataset reports user reviews for multiple releases of
∼21K apps, in which CLAP identified 718,132 reviews
as bug-reporting. Our statistically significant sample in-
cluded 384 reviews that we analyzed.
The dataset collected from the six sources listed above

was manually analyzed by eight taggers following a proce-
dure inspired by open coding [92]. The taggers were authors
of this paper. In particular, the 2,007 documents (e.g., bug
reports, user reviews, etc.) to manually validate were equally
and randomly distributed among the authors making sure
that each document was classified by two authors. The goal
of the process was to identify the exact reason behind the
bug and to define a tag (e.g., null GPS position) describing
such a reason. Thus, when inspecting a bug report, we did
not limit our analysis to the reading of the bug description,
but we analyzed (i) the whole discussion performed by
the developers, (ii) the commit message related to the bug
fixing, and (iii) the patch used to fix the bug (i.e., the source
code diff). The tagging process was supported by a Web ap-
plication that we developed to classify the documents (i.e.,
to describe the reason behind the bug) and to solve conflicts
between the authors. Each author independently tagged the
documents assigned to him by defining a tag describing the
cause behind a bug. Every time the authors had to tag a
document, the Web application also shows the list of tags
created so far, allowing the tagger to select one of the already
defined tags. Although in principle this is against the notion
of open coding, in a context like the one encountered in
this work, where the number of possible tags (i.e., causes
behind the bug) is extremely high, such a choice helps using
consistent naming and does not introduce substantial bias.

In the cases for which there was no agreement between
the two evaluators (∼43% of the classified documents), the
document was automatically assigned to an additional eval-
uator. The process was iterated until all the documents were
classified by the absolute majority of the evaluators with
the same tag. When there was no agreement after all eight
authors tagged the same document (e.g., four of them used
the tag t1 and the other four the tag t2), two of the authors
manually analyzed these cases to solve the conflict and
define the most appropriate tag to assign (this happened for
∼22% of the classified documents). It is important to note
that the Web application did not consider documents tagged
as false positive (e.g., a bug report that does not report an
actual bug in an Android app) in the count of the documents
manually analyzed. This means that, for example, to reach
the 328 bug reports to manually analyze and tag, we had
to analyze 400 bug reports (since 72 were tagged as false
positives).

During the tagging, we discovered that for user reviews,
except for very few cases, it was impossible (without inter-
nal knowledge of an app’s source code) to infer the likely
cause of the failure (fault) by only relying on what was
described in the user review. For this reason, we decided
to discard user reviews from our analysis, and this left us
with 2,007-384=1,623 documents to manually analyze.
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After having manually tagged all the documents (over-
all, 2,023 = 1,623 + 400 additional documents, since 400 false
positives were encountered in the tagging process), all the
authors met online to refine the identified tags by merging
similar ones and splitting generic ones when needed. Also,
to build the fault taxonomy, the identified tags were clus-
tered in cohesive groups at two different levels of abstrac-
tion, i.e., categories and subcategories. Again, the grouping
was performed over multiple iterations, in which tags were
moved across categories, and categories merged/split.

Finally, the output of this step was (i) a taxonomy of rep-
resentative bugs for Android apps, and (ii) the assignment
of the analyzed documents to a specific tag describing the
reason behind the bug reported in the document.

3.2 The Defined Taxonomy
Fig. 1 depicts the taxonomy that we obtained through
manual coding. The black rectangle in the bottom-right part
of Fig. 1 reports the number of documents tagged as false
positive or as unclear. The other rectangles—marked with the
Android and/or with the Java logo represent the 14 high-
level categories that we identified. Categories marked with
the Android logo (e.g., Activities and Intents) group together
Android-specific bugs while those marked with the Java
logo (e.g., Collections and Strings) group bugs that could
affect any Java application. Both symbols together indicate
categories featuring both Android-specific and Java-related
bugs (see e.g., I/O). The number reported in square brackets
indicates the bug instances (from the manually classified
sample) belonging to each category. Inner rectangles, when
present, indicate sub-categories, e.g., Responsiveness/Battery
Drain in Non-functional Requirements. Finally, the most fine-
grained levels, represented as lighter text, describe the spe-
cific type of faults as labeled using our manually-defined
tags, e.g., the Invalid resource ID tag under the sub-category
Resources, in turn, part of the Android programming category.
The analysis of Fig. 1 lets us conclude that:
1) We were able to classify the faults reported in 1,230 documents

(e.g., bug reports, commits, etc.). This number is obtained
by subtracting from the 2,023 tagged documents the 400
tagged as false positives and the 393 tagged as unclear.

2) Of these 1,230, 26% (324) are grouped in categories only
reporting Android-related bugs. This means that more than
one fourth of the bugs present in Android apps are spe-
cific of this architecture, and not shared with other types
of Java systems. Also, this percentage clearly represents
an underestimation. Indeed, Android-specific bugs are
also present in the previously mentioned “mixed” cate-
gories (e.g., in Non-functional requirements 25 out of the
26 instances present in the Responsiveness/Battery Drain
subcategory are Android-specific all but Performance (un-
necessary computation)). From a more detailed count, after
including also the Android-specific bugs in the “mixed"
categories, we estimated that 35% (430) of the identified
bugs are Android-specific.

3) As expected, several bugs are related to simple Java program-
ming. This holds for 800 of the identified bugs (65%).
Take-away. Over one third (35%) of the bugs we identi-

fied with the manual inspection are Android-specific. This
highlights the importance of having testing instruments,

such as mutation operators, tailored for such a specific type
of software. At the same time, 65% of the bugs that are
typical of any Java application confirm the importance of
also considering standard testing tools developed for Java,
including mutation operators, when performing verification
and validation activities of Android apps. To this extent, the
study that we have conducted allows us to create mutation
tools for Android apps, described in Section 4, that encom-
pass Android-specific bugs as well as Java bugs frequently
occurring in Android apps.

4 MUTATION TESTING FOR ANDROID APPS

Given the taxonomy of faults in Android apps and the set
of available operators widely used for Java applications, a
catalog of Android-specific mutation operators should (i)
complement the classic Java operators, (ii) be representa-
tive of the faults exhibited by Android apps, (iii) reduce
the rate of non-compilable and trivial mutants, (iv) have
implementation rules of the operators for both Java and
SMALI representations, and (v) consider faults that can be
simulated by modifying statements/elements in the app
source code and resources (e.g., the strings.xml file). The
last condition is based on the fact that some faults cannot be
simulated by changing the source code, like in the case of
device-specific bugs, or bugs related to the API and third-
party libraries.

Our choice for having implementation rules also in
SMALI is because this intermediate representation is one of
the most used ones for analyzing APK files [68], and because
of the availability of parsers/lexers that are easy to use and
configure. Having access to SMALI code extracted directly
from the APK makes it easier to repackage the app code in
an APK, reducing the compilation/building time from Java
source code to DEX. The availability of SMALI mutation
could be particularly useful in circumstances where there
is a need to generate (and deploy) several (mutated) APK
instances, and therefore SMALI mutation could be faster
than mutating and compiling source code.

To have an implementation of the proposed operators
for both source code and APK, we created two tools,
MDroid+ [30] and MutAPK [31]. We describe the details of
both tools for the remainder of this section.

4.1 Mutation Operators

Following the aforementioned conditions, we defined a set
of 38 operators, covering as many fault categories as possi-
ble (10 out of the 14 categories in Fig. 1), and complementing
the available classic Java mutation operators. We did not
consider the following categories:

1) API/Libraries: bugs in this category are related to
API/Library issues and API misuses. The former will
require applying operators to the APIs; the latter re-
quires a deeper analysis of the specific API usage pat-
terns inducing the bugs;

2) Collections/Strings: most of the bugs in this category can
be induced with classic Java mutation operators;

3) Device/Emulator: because this type of bug is Device/Em-
ulator specific, their implementation is out of the scope
of source code mutations;



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.#, NO.#, AUGUST 2019 7

Activities and Intents [37] Android programming [107] API and Libraries [86]

Back-end Services [22]

Collections and Strings [34]

Connectivity [19]

Data/Objects Parsing and Format [187]

Database [87]

Device/Emulator [51]

General Programming [283]

GUI [129]

I/O [105]

Non-functional Requirements [47]

Threading [36]

Invalid data/uri [19]
   Invalid activity name [1]
   ActivityNotFoundException, Invalid intent [18]

Issues with manifest file [3]
   Invalid activity path in manifest [1]
   Missing activity definition in manifest [2]

Bad practices [11]
   API misuse (improper call activity methods) [1]
   Errors implementing Activity lifecycle [6]
   Invalid context used for intent [2]
   Call in wrong activity lifecycle method [2]

Other [4]
   Bug in Intent implementation [3]
   Issues in onCreate methods [1]

Invalid data/uri [7]
   Invalid GPS location [4]
   Invalid ID in findView [2]
   Package name not found [1]

Issues with app’s folder structure [5]
   Android app folder structure [4]
   Executable/command not in right folder [1]

Issues with manifest file [23]
   Android app permissions [11]
   Issues with high screen resolution [1]
   Other [11]

Issues with peripherals/ports [2]
   Controller quirk on android games [1]
   Resting value of analog channel [1]

Bad practices [13]
   Argument/Object is not parcelable [1]
   Component decl. before call setContentView [2]
   Declaring loader fragment inside the fragment [1]
   Missing override isValidFragment method [1]
   Multiple instantiation of a resource [1]
   OpenGL issues [1]
   Parcelable not implement for intent call [1]
   Service unbinding is missing [1]
   System service invoked before creating activity [1]
   Wake lock misuse [1]
   Wakelock on WIFI connection [1]
   65K methods limitation in a single dex file [1]

Resources [10]
   Invalid Drawable [1]
   Invalid Path to Resources [1]
   Invalid resource id [5]
   Missing String in Resources Folder [1]
   Resources.NotFoundException [1]
   Wrong version number of OBB file [1]

Other [36]
   Call restricted method in accessibility service [11]
   Google API key configuration/setup [1]
   Invalid Application package [2]
   Using Context.MODE_PRIVATE to open file [1]
   Issues with Preferences [2]
   Issues with Timers [2]
   Miss return in listener/event implementation [1]
   Stale data in app [2]
   Timeout values for location services [1]
   Running out of loopback devices [1]
   Errors in managing the apps fragments [3]
   Internationalization [4]
   Unregistered Receivers Errors [1]
   Missing 3G interfaces [1]
   State not saved [1]

App change and fault proneness [16]
   Generic API bug [4]
   Impact of API change [10]
   Operation on deprecated API [2]

Device/Emulator with different API [18]
   Android compatibility APIs [11]
   Build.VERSION.SDK_INT unavailable in Andr. x.y [1]
   Image viewer bug in Android x.y and below [1]
   Invalid TPL version [1]
   Invalid/Lower SDK version [2]
   Unsupported Operation at run-time [2]

Bad practices [30]
   API misuse (general) [25]
   API misuse (bluetooth) [1]
   API misuse (camera) [2]
   Web API misuse [2]

Other [22]
   Errors with API/Library linking [14]
   Meta-data tag for play services [1]
   Conflicts between libraries [1]
   Library bug [6]

Authentication [3]
   Invalid auth token for back-end service [1]
   Invalid certificate for back-end service [2]

Invalid data/uri [2]
   Return from back-end service not well formed [1]
   Special characters in HTTP post [1]

Other [17]
   Back-end service not available/returns null [7]
   Error while invoking back-end service [10]

Size-related [24]
   Miss check for IndexOutOfBoundException [14]
   Operation on empty string [1]
   Issues with collections size [1]
   Operations on empty collections [8]

Other [10]
   ArrayStoreException [1]
   Missing implementation of comparable [3]
   Accessing TypedArray already recycled [1]
   Invalid operation on collection [4]
   Invalid string comparison in condition [1]

   UDP 53 bypass [1]
   SMTPSendFailedException (Authent. Failure) [1]
   Network connection is off/lost [6]
   Data loss in network operations  [1]
   HTTP request issue [2]
   HttpClient usage [1]
   Network errors during authentication [1]
   Using infinite loop to check WIFI connection [1]
   Player crashes on slow connection [1]
   Network timeout [1]
   SipException (VoIP) [3]

Missing checks [147]
   Missing null check [10]
   Null/Uninitialized object [40]
   Null Parameter [42]
   NullPointerException (general) [55]

URI/URL [7]
   Error parsing URL in HTML website [1]
   Invalid URI used internally [4]
   Invalid URI provided by the user [1]
   URL UnsupportedEncodingException [1]

XML-related [11]
   Invalid SAX transformer configuration [1]
   SAXException [4]
   XML Format Error [1]
   XmlPullParserException [1]
   DOMException [1]
   Data Parsing Errors [3]

Numeric-data [5]
   NumberFormatException [4]
   Parsing numeric values [1]

Other [17]
   DataFormatException [1]
   JSON Parsing Errors [13]
   Invalid user input [3]

SQL-related [67]
   DB table/column not found [3]
   SQL Injection [1]
   Invalid field type retrieval [1]
   Query syntax error [62]

Cursor [7]
   Closing null/empty cursor [2]
   Issues when using DB cursors [5]

Other [13]
   Database file cannot be opened [1]
   Bug in database access on SD card [1]
   Database locked [2]
   Wrong database version code [4]
   Database connection error [4]
   Bug in database descriptor [1]

   Device/Android ROM-specific issues [12]
   Emulator-specific issues [8]
   Keyboard not showing up in webview [1]
   Directories/Space missing in filesystem [7]
   Device rotation [23]

   Bugs in application logic [106]
   Invalid Parameter [70]
   Error in numerical operations [1]
   ClassCastException [4]
   GenericSignatureFormatError [1]
   Missing precondition check [8]
   Empty constructors are missed [1]
   Errors implementing inner class [3]
   Override method missing [2]
   Super not called [1]
   Date issues [2]
   Error in loop limit [1]
   Exception/Error handling [3]
   Invalid constant [2]
   Missing break in switch [1]
   Syntax Error [18]
   Regex error [1]
   Wrong relational operator [1]
   Uncaught exception [14]
   Error in console command invoked from app [3]
   Issues executing telnet commands [1]
   Data race [26]
   Bug in loading resources [8]
   IllegalStateException [5]

Components and Views [30]
   Component with wrong dimensions [1]
   Invalid component/view focus [6]
   Text in input/label/view disappears [1]
   View/Component is not displayed [4]
   Component with wrong fonts style [1]
   Wrong text in view/component [6]
   Issues in component animation [8]
   FindViewById returns null [3]

Issues with manifest file [4]
   Button should not be clickable [1]
   Component undefined in XML Layout files [3]

Layout [23]
   Issues in layout files [3]
   Visual appearance (layout issues) [19]
   Unsupported theme [1]

Bad practices [21]
   ViewHolder pattern is not used [9]
   Improper call to getView [1]
   Inappropriate use of ListView [6]
   Inappropriate use of ViewPager [2]
   Inflating too many views [1]
   Large number of fragments in the app [1]
   setContent before content view is set [1]

Message/Dialog [5]
   Error messages are not descriptive [1]
   Notification/Warning message missing [3]
   Notification/Warning message re-appear [1]

Other [30]
   Issues in GUI logic (general) [14]
   Multi line text selection is not allowed [1]
   Bug in GUI listener [7]
   Bug in webViewClient listener [1]
   Dismiss progress dialog before activity ends [1]
   GUI refresh issue [1]
   Tab is missing listener [1]
   Wrong onClickListener [2]
   Fragm. without implement. of onViewCreated [1]
   Fragment not attached to activity [1]

Visual appearance [16]
   Data is not listed in the right sorting/order [2]
   Showing data in wrong format [3]
   Texture error [4]
   Invalid colors [7]

Buffer [9]
   Buffer overflow [3]
   BufferUnderflowException [2]
   ShortBufferException [1]
   Mutation operation on non-mutable buffer [2]
   InvalidMarkException [1]

Channel/Socket connection [12]
   AsynchronousCloseException [1]
   ClosedChannelException [1]
   ErrnoException [6]
   NonWritableChannelException [1]
   SocketException [3]

File [72]
   File I/O error [56]
   File metadata issue [1]
   File permissions [1]
   Operation with invalid file [5]
   Using symbolic link in backup [1]
   Issue creating file/folder in device system [1]
   FileNotFoundException/Invalid file path [7]

Streams [12]
   Closing unverified writer [1]
   Connect PipedWriter to closed/connected reader [2]
   File operation on closed reader [2]
   File operation on closed stream/scanner [2]
   KeyException [1]
   Release stream without verifying if still busy [1]
   Next token cannot translate to expected type [1]
   Flush of decoder at the end of the input [1]
   Operations on closed Formatter [1]

Memory [15]
   OOM (canvas texture size) [1]
   OOM (general) [1]
   OOM (large arrays) [2]
   OOM (large bitmap) [3]
   OOM (loading too many images) [3]
   OOM (resizing multiple images) [1]
   OOM (saving JSON to SharedPreferences) [1]
   Uncaught OOM exception [3]

Responsiveness/Battery Drain [25]
   Expensive operation in main thread (GUI lags) [16]
   ANR (unnecessary computation in Handler) [1]
   Performance (lengthy operation creating db) [1]
   Performance (unnecessary computation) [1]
   GUI updated unnecessarily often [1]
   Lengthy operations on background thread [1]
   Network request in the GUI thread [4]

Security [7]
   KeyChainException [1]
   PrivilegedActionException [1]
   SecurityException [4]
   Invalid signed public key [1]

   Callback/message not removed from handler [1]
   Data race (threads synchronization) [3]
   GUI operation out of main thread [1]
   Inappropriate use of threads/async tasks [7]
   Instantiating Handler without looper [1]
   Synchronized access to methods [1]
   Wrong GUI update from async task [3]
   Wrong GUI update from thread [1]
   Wrong handler import [1]
   Bug in threading implementation [7]
   Runnable does not stop [1]
   Invalid operation on AsynkTaskLoader [1]
   Invalid operation on interrupted thread [6]
   Invalid operation on Phaser [1]
   Set thread as deamon when it already runs [1]

Media [3]
   Bad call of SyncParams.getAudioAdjustMode [1]
   Flush on initialized player [1]
   Getting token from closed media browser [1]

Discarded [793]

   False positive [400]
   Unclear [393]

Images [8]
   Failed binder transaction (bitmaps) [1]
   Images without default dimensions [2]
   Inducing GC operations because of images [1]
   Large bitmaps [2]
   Persisting images as strings in DB [1]
   Resizing images in GUI thread [1]

Fig. 1: The defined taxonomy of Android bugs.
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TABLE 1: Proposed mutation operators. The table lists the operator names, detection strategy (AST or TEXTual), the fault
category (Activity/Intents, Android Programming, Back-End Services, Connectivity, Data, DataBase, General Programming, GUI,
I/O, Non-Functional Requirements), a brief operator descriptions, and if it is implemented in MDroid+ and MutAPK.

Mutation Operator Det. Cat. Description MDroid+ MutAPK
ActivityNotDefined Text A/I Delete an activity <android:name=“Activity”/> entry in the Manifest

file
X X

DifferentActivityIntentDefinition AST A/I Replace the Activity.class argument in an Intent instantiation X X
InvalidActivityName Text A/I Randomly insert typos in the path of an activity defined in the Manifest

file
X X

InvalidKeyIntentPutExtra AST A/I Randomly generate a different key in an Intent.putExtra(key, value) call X X
InvalidLabel Text A/I Replace the attribute “android:label” in the Manifest file with a random

string
X X

NullIntent AST A/I Replace an Intent instantiation with null X X
NullValueIntentPutExtra AST A/I Replace the value argument in an Intent.putExtra(key, value) call with

new Parcelable[0]
X X

WrongMainActivity Text A/I Randomly replace the main activity definition with a different activity X X
MissingPermissionManifest Text AP Select and remove an <uses-permission /> entry in the Manifest file X X
NotParcelable AST AP Select a parcelable class, remove“implements Parcelable” and the @over-

ride annotations
X x

NullGPSLocation AST AP Inject a Null GPS location in the location services X X
SDKVersion Text AP Randomly mutate the integer values in the SdkVersion-related attributes X X
WrongStringResource Text AP Select a <string /> entry in /res/values/strings.xml file and mutate the

string value
X X

NullBackEndServiceReturn AST BES Assign null to a response variable from a back-end service X X
BluetoothAdapterAlwaysEnabled AST C Replace a BluetoothAdapter.isEnabled() call with“true” X X
NullBluetoothAdapter AST C Replace a BluetoothAdapter instance with null X X
InvalidURI AST D If URIs are used internally, randomly mutate the URIs X X
ClosingNullCursor AST DB Assign a cursor to null before it is closed X X
InvalidIndexQueryParameter AST DB Randomly modify indexes/order of query parameters X X
InvalidSQLQuery AST DB Randomly mutate a SQL query X X
InvalidDate AST GP Set a random Date to a date object X X
InvalidMethodCallArgument AST GP Randomly mutate a method call argument of a basic type x x
NotSerializable AST GP Select a serializable class, remove “implements Serializable” X x
NullMethodCallArgument AST GP Randomly set null to a method call argument x X
BuggyGUIListener AST GUI Delete action implemented in a GUI listener X x
FindViewByIdReturnsNull AST GUI Assign a variable (returned by Activity.findViewById) to null X X
InvalidColor Text GUI Randomly change colors in layout files X X
InvalidIDFindView AST GUI Replace the id argument in an Activitity.findViewById call X X
InvalidViewFocus AST GU Randomly focus a GUI component x X
ViewComponentNotVisible AST GUI Set visible attribute (from a View) to false X X
InvalidFilePath AST I/O Randomly mutate paths to files X X
NullInputStream AST I/O Assign an input stream (e.g., reader) to null before it is closed X X
NullOutputStream AST I/O Assign an output stream (e.g., writer) to null before it is closed X X
LengthyBackEndService AST NFR Inject large delay right-after a call to a back-end service X X
LengthyGUICreation AST NFR Insert a long delay (i.e., Thread.sleep(..)) in the GUI creation thread X X
LengthyGUIListener AST NFR Insert a long delay (i.e., Thread.sleep(..)) in the GUI listener thread X X
LongConnectionTimeOut AST NFR Increase the time-out of connections to back-end services X X
OOMLargeImage AST NFR Increase the size of bitmaps by explicitly setting large dimensions X X

4) Multi-threading: the detection of the places for applying
the corresponding mutations is not trivial. Therefore,
this category will be considered in future work. Pre-
vious work by Lin et al. [93] on refactoring workers
and threads could be used as a foundation for defining
operators.

The list of defined mutation operators is provided in
Table 1. These operators were implemented in Java (for
source code-based mutations in MDroid+) and SMALI (for
APK-based mutations in MutAPK). The locations for the
mutations are identified by using a Potential Failure Profile
(PFP). The PFP lists code locations that could be modified to
inject a mutation. The locations of the analyzed apps which
can be source code statements, XML tags or locations in
other resource files that can be the source of a potential fault,
given the faults catalog from Section 3.

To extract the PFP, both MDroid+ and MutAPK stati-
cally analyze the targeted mobile app, looking for locations
where the operators from Table 1 can be implemented. The
locations are detected automatically by parsing XML files
or through AST-based analysis for detecting the location of

API calls. Given an automatically derived PFP for an app,
and the catalog of Android-specific operators, MDroid+ and
MutAPK generate a mutant for each location in the PFP. Mu-
tants are initially generated as clones of the original app, and
then the clones are automatically compiled/built/packaged
into individual Android Packages (APKs).

Note that each location in the PFP is related to a muta-
tion operator. Therefore, given a location entry in the PFP,
both tools automatically detect the corresponding mutation
operator and apply the mutation either in the source code
(for MDroid+) or intermediate representation (for MutAPK).
Details of the detection rules and code transformations
applied with each operator are provided in our replication
package [94].

It is worth noting that from our catalog of Android-
specific operators only two operators (DifferentActivityIn-
tentDefinition and MissingPermissionManifest) overlap with
the eight operators proposed by Deng et al. [25]. Future work
will be devoted to cover a larger number of fault categories
and define/implement a larger number of operators.
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Fig. 2: Overview of MDroid+ and MutAPK workflows.

4.2 MDroid+ and MutAPK

To ensure that MDroid+ and MutAPK are effective, practical,
and flexible/extensible tools for mutation testing, both tools
take into account the following design considerations:
(i) an empirically derived set of mutation operators; (ii) a
design embracing the open/closed principle (i.e., open to
extension, closed to modification); (iii) visitor and factory
design patterns for deriving the Potential Failure Profile
(PFP) and applying operators; (iv) parallel computation for
efficient mutant seeding. Both tools are written in Java and
are available as open source projects [30], [31].

Fig. 2 presents an overview of the workflow for both
tools. There are four main stages for both tools: First, App
Processing where MutAPK requires the APKTool [95] library
to decode an app to get an intermediate representation of
the compiled code and resources. In this stage, MDroid+
requires the source code and resources folder of a given app
(e.g., the /res/ folder).

Second, PFP Derivation consisting in two processes:
(i) resource files processing: by taking advantage of the
structure provided in given files (i.e., XML files, resource
files), to identify XML tags that match the different operators
either by its tag name (e.g., WrongStringResource that search
for <string> tags) or tag attributes (i.e., InvalidLabel that
search for android:label in Manifest’s tags), and (ii) Code-
related files: by pattern matching API calls. In MDroid+
case, the JDT Core DOM Library is used to generate an
AST representation from JAVA code and matches AST’s
nodes with API call templates defined in a file called target-
apis.properties. In contrast, MutAPK uses Antlr, JFlex and GAP
libraries, to generate the AST given it works with SMALI
code. Nevertheless, since SMALI code uses a larger set of
instructions to represent a JAVA instruction, a larger set of
API calls must be matched for each operator.

Third, Mutant Generation is performed based on the
previously-generated PFP and the catalog of implemented
operators (explained in Section 4.2.1). Therefore, using the
mutation rules, for each location in the PFP a copy of the app
processing result is generated and modified. To provide the
most efficient process, both tools allow users to parallelize
the generation process, utilizing the multi-core architecture
of most modern hardware.

Finally, the fourth stage is the Mutation Process Consol-

idation: MutAPK generates for each mutant an APK using
the APKTool [95] and signs it with the Uber APK Signer
[96]; MDroid+ stores the mutated source code folder. Finally,
both tools generate a log file for the mutation process result.

4.2.1 Implemented Mutation Operators
One of the main components in the mutation process is
the set of mutation operators that define the correct way to
represent a naturally occurring fault in an Android project.
Specifically, in this study we define 38 mutation operators
that belong to 10 of the 14 categories extracted in the
previous taxonomy (i.e., Fig. 1). As it can be seen in Table 1,
MDroid+ implements 35 operators while MutAPK imple-
ments 34. It worth noticing that 32 of these implemented
operators are shared between tools.

For example, a Missing Permission on Manifest file could
be a fault likely to be found in an Android Project. Therefore,
both MDroid+ and MutAPK have an operator called Missing-
PermissionManifest that, given a permission on the manifest
file, remove it from the file by replacing the complete line
with a blank space.

Another mutation operator we defined is DifferentActiv-
ityIntentDefinition where, given an intent declaration (List-
ing 1), MDroid+ replaces the Activity.class argument in the
intent instantiation with the Activity.class value of another
class belonging to the project (Listing 2).

Listing 1: Intent instantiation Java
1 Intent intent = new Intent(main.this, ImportActivity.

class);

Listing 2: MDroid+ operator result
1 Intent intent = new Intent(main.this, ExportActivity.

class);

MutAPK also provides this operator. However, since it
works at the APK level, the definition of the mutation rule
is in terms of SMALI representation. Therefore, the intent
instantiation seen in Listing 1 is represented in SMALI as
it can be seen in Listing 5.2. Moreover, the mutation result
seen in Listing 2 is represented as it is shown in Listing 4.

Listing 3: SMALI Intent instantiation Java
1 const-class v3, Lcom/fsck/k9/activity/ImportActivity;
2 invoke-direct {v1, v2, v3}, Landroid/content/Intent;-> <

init>(Landroid/content/Context;Ljava/lang/Class;)V
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Listing 4: MutAPK operator result
1 const-class v1, Lcom/fsck/k9/activity/ExportActivity;
2 invoke-direct {v1, v2, v3}, Landroid/content/Intent;-> <

init>(Landroid/content/Context;Ljava/lang/Class;)V

5 EMPIRICAL STUDY: APPLYING MUTATION TEST-
ING OPERATORS TO ANDROID APPS

The goal of this study is to: (i) understand and compare
the applicability of MDroid+, MutAPK, and other currently
available mutation testing tools; (ii) understand the underly-
ing reasons for mutants generated by these tools that cannot
be considered useful, i.e., non-compilable mutants, mutants
that cannot be launched, mutants that are equivalent to the
original app, and mutants that are duplicate; and (iii) un-
derstand the pros and cons of conducting mutation testing
at source code and APK level. This study is conducted from
the perspective of researchers interested in improving current
tools and approaches for mutation testing of mobile apps.

The study addresses the following research questions:
• RQ1: Are the mutation operators (available for Java and

Android apps) representative of real bugs in Android apps?
• RQ2: What is the rate of non-compilable (e.g., those leading

to failed compilations), trivial (e.g., those leading to crashes
on app launch), equivalent, and duplicate mutants produced
by the studied tools when used with Android apps?

• RQ3: What are the major causes for non-compilable, trivial,
equivalent, and duplicate mutants produced by the mutation
testing tools when applied to Android apps?

• RQ4: What are the benefits and trade-offs of performing
mutation testing at APK level vs source code level?

5.1 Study Context and Methodology
To answer RQ1, we analyzed the complete list of 102 muta-
tion operators from seven mutation testing tools (Major [28],
PIT [27], µJava [56], Javalanche [59], muDroid [60], Deng et
al. [25], and MDroid+/MutAPK to investigate their ability
to “cover” bugs described in 726 artifacts3 (103 exceptions
hierarchy and API methods throwing exceptions, 245 bug-
fixing commits from GitHub, 176 closed issues from GitHub,
and 202 questions from SO). Such 726 documents were
randomly selected from the dataset built for the taxonomy
definition (see Section 3.1) by excluding the ones already
tagged and used in the taxonomy.

The documents were manually analyzed by the eight
authors using the same procedure previously described for
the taxonomy building. In other words, there were two
evaluators per document having the goal of tagging the type
of bug described in the document; conflicts were solved by
using a majority-rule schema; and the tagging process was
supported by a Web app (details in Section 3.1). We targeted
the tagging of ∼150 documents per evaluator (600 overall
documents considering eight evaluators and two evalua-
tions per document). However, some of the authors tagged
more documents, leading to the considered 726 documents.
Note that we did not constrain the tagging of the bug type
to the ones already present in our taxonomy (Fig. 1). The
evaluations were free to include new types of previously
unseen bugs.

3. With “cover” we mean the ability to generate a mutant simulating
the presence of a given type of bug.

Upon addressing RQ1 we report (i) the new bug types
we identified in the tagging of the additional 726 documents
(i.e., the ones not present in our original taxonomy), (ii) the
coverage level ensured by each of the seven mutation tools,
measured as the percentage of bug types and bug instances
identified in the 726 documents covered by its operators. We
also analyze the complementarity of our tools with respect
to the existing tools.

Concerning RQ2, RQ3 and RQ4, we compared the tools
based on different mutation testing metrics. In particular,
we compared Major, PIT, muDroid, MDroid+, and MutAPK.
Major and PIT are popular open source mutation testing
tools for Java, that can be tailored for Android apps. The
tool by Deng et al. [25] is a context-specific mutation test-
ing tool for Android available at GitHub. We chose these
tools because of their diversity (in terms of functionality
and mutation operators), their compatibility with Java, and
their representativeness of tools working at different rep-
resentation levels: source code, Java bytecode, and SMALI
(i.e., Android-specific bytecode representation). Jabbarvand
and Malek [26] present a tool called µDroid that generates
mutants to validate the energy usage of apps. However,
this tool is only compatible with Eclipse, precluding it from
being used with the large set of apps collected for our
empirical evaluation.

To compare the applicability of each mutation tool, we
need a set of Android apps that meet certain constraints:
(i) the source code of the apps must be available, (ii), the
apps should be representative of different categories, and
(iii) the apps should be compilable (e.g., including proper
versions of the external libraries they depend upon). For
these reasons, we use the Androtest suite of apps [6], which
includes 68 Android apps from 18 Google Play categories.
These apps have been previously used to study the design
and implementation of automated testing tools for Android
and met the three above listed constraints. The mutation
testing tools exhibited issues in 13 of the considered 68 apps,
i.e., the 13 apps did not compile after injecting the faults.
Thus, in the end, we considered 55 subject apps in our study.
The list of considered apps as well as their source code and
APKS is available in our replication package [94].

Note that while Major and PIT are compatible with Java
applications, they cannot be directly applied to Android
apps. Thus, we wrote specific wrapper programs to perform
the mutation, the assembly of files, and the compilation of
the mutated apps into runnable Android application pack-
ages (i.e., APKs). While the procedure used to generate and
compile mutants varies for each tool, the following general
workflow was used in our study: (i) generate mutants by
operating on the original source/byte/SMALI code using
all possible mutation operators; (ii) compile or assemble the
APKs either using the ant, dex2jar, or baksmali tools;
(iii) run all of the apps in a parallel-testing architecture that
utilizes Android Virtual Devices (AVDs); (iv) collect data
about the number of apps that crash on launch and the
corresponding exceptions of these crashes, which will be
utilized for a manual qualitative analysis; and (v) compute
the number of equivalent and duplicate mutants. We refer
readers to our replication package for the complete technical
methodology used for each mutation tool [94].
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To quantitatively assess the applicability and effective-
ness of the considered mutation tools to Android apps,
we used five metrics: Total Number of Generated Mu-
tants (TNGM), Non-Compilable Mutants (NCM), Trivial
Mutants (TM), Equivalent Mutants (EM), and duplicate
Mutants (DM). Additionally, we analyzed the time required
by both MutAPK and MDroid+ to: (i) generate a mutated
copy of the app and to (ii) compile/build the copy.

In this paper, we consider Non-Compilable Mutants as
those that are syntactically incorrect to the point that the
APK file cannot be compiled/assembled, and trivial mutants
as those that are exhibited when launching the app. If a
mutant crashes upon launch, we consider it as a trivial
mutant because it could be detected by any test case that
starts the app. Note that we use the term “Non-Compilable
Mutants (NCM)” as a synonym of still-born mutants.

Two other metrics that one might consider to evaluate
the effectiveness of a mutation testing tool is the number of
equivalent and duplicate mutants the tool produces. However,
in past work, the identification of equivalent mutants has
been proven to be an undecidable problem [97], [98], and
both equivalent and duplicate mutants require the existence
of test suites (not always available and sufficiently complete
for this purpose in the case of the Androtest apps).

Papadakis et al. [32] proposed a method to overcome
the lack of test suites and to reduce the computational
time required to detect equivalent and duplicate mutants
by relying on proxies computed at the machine code level.
Note that this idea has also been explored previously by
Offutt et al. [99] and Kintis et al. [100].

In particular, Papadakis et al. [32] propose using “Trivial
Compiler Equivalence (TCE)", which relies on comparing
compiled machine code to detect equivalence between (i)
mutants and original programs, and (ii) among mutants to
detect duplicated ones. TCE has been shown to detect, on
average, 30% of equivalent mutants [32] on a benchmark of
18 small/medium C/C+ programs [101].

We used TCE to compute equivalent and duplicate mu-
tants at APK level. Instead of doing binary comparisons,
we computed hashes, which is also proposed by Papadakis
et al. [32] as an alternative for the comparisons. Because
mutations of Android apps can be applied on source code,
manifest files, or resource files (i.e., XMLs), for each original
APK and generated mutants, we computed four different
hashes. Given and APK file under analysis, we computed:

1) H(APK): hash of the whole apk file;
2) H(APKresources): hash of the resource files in the APK

file, which is computed as the concatenation of hash for
each resource file;

3) H(APKmanifest): hash of the manifest file in the APK
file;

4) H(APKSMALI): hash of the SMALI files extracted
from the APK file, which is computed as the concate-
nation of hash values for each SMALI file.

To detect equivalent mutants, we compared the four
hashes of an original APK, with the four hashes of each
of the generated mutants. In cases where all of the mutant
hashes are equal to the original ones, the corresponding
mutant is declared as equivalent. Similarly, to detect du-
plicate mutants, we compared the four hashes, but among

103 out of 119 bug types (87%) covered 
by the bug taxonomy in Figure 1.

392 out of the 413 tagged bug 
instances are covered by one of the 
bug types in Figure 1 (95%).

87%

Bug taxonomy coverage

Mutation tools coverage

             

13%
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8%
9%

10%
15%
38%

60 out of the 119 bug types (50%) are not covered by 
any of the considered mutation tools.
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PIT                    
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24%
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54%

73%

Fig. 3: Mutation tools and coverage of analyzed bugs.

the mutants. Note that in the case of duplicate mutants we
report only the number of mutants that should be discarded.

5.2 Results

RQ1: Fig. 3 reports (i) the percentage of bug types, iden-
tified during our manual tagging, that are covered by the
taxonomy of bugs shown in Fig. 1 (top part of Fig. 3), and
(ii) the coverage in terms of bug types as well as of instances
of tagged bugs ensured by each of the considered mutation
tools (bottom part). The data shown in Fig. 3 refers to the
413 bug instances for which we were able to define the exact
reason behind the bug (this excludes the 114 entities tagged
as unclear and the 199 identified as false positives).

87% of the bug types are covered in our taxonomy. In
particular, we identified 16 new bug categories that we
did not encounter before in the definition of our taxonomy
(Section 3). Examples of these categories (full list in our
replication package) are: Issues with audio codecs, Improper
implementation of sensors as Activities, and Improper usage of
the static modifier. Note that these categories just represent a
minority of the bugs we analyzed, accounting altogether for
a total of 21 bugs (5% of the 413 bugs considered). Thus, our
bug taxonomy covers 95% of the bug instances we found,
indicating a very good coverage.

Moving to the bottom part of Fig. 3, our first impor-
tant finding highlights the limitations of the experimented
mutation tools (including MDroid+/MutAPK) in potentially
unveiling the bugs subject of our study. Indeed, for 60 out
of the 119 bug types (50%), none of the considered tools
can generate mutants simulating the bug. This stresses the
need for new and more powerful mutation tools tailored for
mobile platforms. For instance, no tool is currently able to
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Fig. 4: Distribution of number of mutants generated per app.

generate mutants covering the Bug in webViewClient listener
and the Components with wrong dimensions bug types.

When comparing the mutation tools considered in our
study, MDroid+ and MutAPK clearly stand out as the tools
ensuring the highest coverage both in terms of bug types
and bug instances. In particular, mutators generated by
MDroid+/MutAPK have the potential to unveil 38% of the
bug types and 62% of the bug instances. In comparison, the
best competitive tool (i.e., the catalog of mutants proposed
by Deng et al. [25]) covers 15% of the bug types (61%
less as compared to MDroid+/MutAPK) and 41% of the
bug instances (34% less as compared to MDroid+/MutAPK).
Also, we observe that MDroid+/MutAPK cover bug cate-
gories (and, as a consequence, bug instances) missed by
all competitive tools. Indeed, while the union of the six
competitive tools covers 24% of the bug types (54% of the
bug instances), adding the mutation operators included in
MDroid+/MutAPK increases the percentage of covered bug
types to 50% (73% of the bug instances). Some of the cate-
gories covered by MDroid+/MutAPK and not by the other
tools are: Android app permissions, thanks to the MissingPer-
missionManifest operator, and the FindViewById returns null,
thanks to the FindViewByIdReturnsNull operator.

Finally, we statistically compare the proportion of
bug types and the number of bug instances covered by
MDroid+/MutAPK, by all other techniques, and by their
combination, using Fisher’s exact test and Odds Ratio (OR)
[102]. The results indicate that:

1) The odds of covering bug types using
MDroid+/MutAPK are 1.56 times greater than other
techniques, although the difference is not statistically
significant (p-value=0.11). Similarly, the odds of
discovering faults with MDroid+ are 1.15 times
greater than other techniques, but the difference is not
significant (p-value=0.25);

2) The odds of covering bug types using
MDroid+/MutAPK combined with other techniques
are 2.0 times greater than the other techniques
alone, with a statistically significant difference (p-
value=0.008). Similarly, the odds of discovering bugs
using the combination of MDroid+/MutAPK and other
techniques are 1.35 times greater than other techniques
alone, with a significant difference (p-value=0.008).

Summary of RQ1 Findings: MDroid+ and MutAPK outper-
formed the other mutation tools by achieving the highest coverage
both in terms of bug types and bug instances. However, the results
show that Android-specific mutation operators should be combined
with existing mutation operators for Java to generate mutants that
are representative of real faults in mobile apps.
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Fig. 5: Distribution (%) of non-compilable mutants.
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Fig. 6: Distribution (%) of trivial mutants.

RQ2: Fig. 4 depict the total number of mutants generated
by each tool on each analyzed app, while Fig. 5 and Fig. 6
show the percentage of (a) Non-Compilable Mutants (NCM)
and (b) Trivial Mutants (TM) respectively. As stated in
Section 4.2, MutAPK was based on MDroid+, therefore, in
the following comparisons we will show the results for
both MutAPK and MutAPK-Shared4 to study the benefits of
applying the MDroid+ operators at APK level.

On average, 167, 207, 1.3k+, 904, 2.6k+, and 1.5k+
mutants were generated by MDroid+, MutAPK-Shared,
MutAPK, Major, PIT, and muDroid, respectively for each
app. The larger number of mutants generated by PIT is
due, in part, to the larger number of mutation operators
available for the tool; note that PIT uses object oriented-
based mutators for Java source code. muDroid tends to
generate a larger number of mutants due to its more generic
mutation operators, meaning that there are more potential
instances in the source code for mutants to be seeded.
MutAPK generates significantly more mutants than Major
(Wilcoxon paired signed-rank test adjusted p-value< 0.001
with Holm’s correction [103]) and significantly fewer mu-
tants than PIT (Wilcoxon paired signed-rank test adjusted p-
value < 0.001 with Holm’s correction). However, MDroid+
and MutAPK-Shared generate significantly fewer mutants
than Major, muDroid, and PIT (Wilcoxon paired signed-rank
test adjusted p-value < 0.001).

The average percentage of Non-Compilable Mutants
(NCM) generated by MutAPK, MutAPK-shared, MDroid+,
Major and muDroid over all the apps is 0.04%, 0.31%,
0.56%, 1.8%, and 53.9%, respectively, while no NCM were
generated by PIT (Fig. 5). MDroid+ produces significantly
fewer NCM than Major (Wilcoxon paired signed rank test

4. MutAPK-Shared means MutAPK using only the operators shared
with MDroid+
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adjusted p-value < 0.001, and large Cliff’s d=0.59) and than
muDroid (adjusted p-value < 0.001, and medium Cliff’s
d=0.35). MutAPK and MutAPK-Shared produces significantly
fewer NCM than Major and muDroid (Wilcoxon paired
signed rank test adjusted p-value< 0.001)

These differences across the tools are mainly due to
the compilation/assembly process they adopt during the
mutation process. PIT works at Java bytecode level and thus
can avoid the NCM problem, at the risk of creating a larger
number of TM. However, PIT is the tool that required the
highest effort to build a wrapper to make it compatible with
Android apps. Major and MDroid+ work at the source code
level and compile the app in a “traditional" manner. Thus, it
is more prone to NCM and requires an overhead in terms of
memory and CPU resources needed for compiling/building
the mutants. Finally, muDroid and MutAPK operate on APKs
and smali code, reducing the computational cost of mutant
generation, but significantly increasing the chances of NCM;
muDroid is the top-one generator of NCM with an average
of 53.9% of NCMs per app. However, MutAPK and MutAPK-
Shared are the ones generating the least amount of NCM
with averages of 0.04% and 0.31% respectively. This due
to the process designed to create the mutation rules, as
explained in Section 4.2.

All the analyzed tools generated trivial mutants (TM)
(i.e., mutants that crashed simply upon launching the app).
These instances place an unnecessary burden on the de-
veloper, particularly in the context of mobile apps, as
they must be discarded from the analysis. The average
of the distribution of the percentage of TM over all apps
for MDroid+, Major, PIT, MutAPK, muDroid and MutAPK-
Shared is 2,42%, 5.4%, 7.2%, 9%, 11.8% and 13.62%, re-
spectively (Fig. 6). MDroid+ generates significantly less TM
than muDroid (Wilcoxon paired signed rank test adjusted
p-value=0.04, Cliff’s d=0.61 - large) and than PIT (adjusted
p-value=0.004, Cliff’s d=0.49 - large), while there is no
statistically significant difference with Major (adjusted p-
value=0.11). MutAPK generates significantly more TM than
Major (Wilcoxon paired signed rank test adjusted p-value
< 0.001) and MutAPK-Shared generates significantly more
TM than PIT (Wilcoxon paired signed rank test adjusted p-
value < 0.001)

While these percentages may appear small, the raw val-
ues show that the TM can comprise a large set of instances
for tools that can generate thousands of mutants per app.
For example, for the Translate app, 518 out of the 1,877 mu-
tants generated by PIT were TM. For the same app, muDroid
creates 348 TM out of the 1,038 it generates. For the Blokish
app, 340 out of the 3,479 GM by Major were TM. At the
same time, for HNDroid app MutAPK generates 673 trivial
mutants out of 1038 generated mutants but also for Anycut
app generates only 2 TM out of 380 GM. Finally, MDroid+
generates also for HNDroid 94 trivial mutants from 123
generated. Both MutAPK and MDroid+ generate the smallest
number of NCM with 55 and 37 respectively. However,
MDroid+ generates less TM, only 213 in total across apps
due to being also the one generating less mutants, around
167 per app. At the same time, MutAPK belongs to the top
generators of TM, with around 9% of TM per app.

Following the approach proposed by Papadakis et al.
[32], we found that none of the tools generated equiva-

lent mutants when comparing the hash values between
the original APKs and the mutated APKs. As previously
mentioned, the four hash values calculated for both original
and mutated APK should be equal to identify a mutant
as an equivalent mutant. Nevertheless, we used the same
approach to find duplicate mutants by performing a pair-
wise comparison of all mutants. As a result, we found that
MutAPK, MutAPK-Shared, PIT, and muDroid generate du-
plicate mutants. Specifically, 211, 43, 8, and 2,031 duplicate
mutants were generated, respectively. Note that muDroid
generates more duplicate mutants that other tools, with a
percentage of 6.55% of the generated mutants; the second
one is MutAPK-Shared with 0.38%; the third is MutAPK with
0.28%; and finally PIT with 0.006%.
Summary of RQ2 findings: As for the generation of mutants,
all the analyzed tools (Major, Pit, muDroid, MDroid+, MutAPK)
generated a relatively low rate of trivial mutants, with muDroid
being the worst with a 11.8% average rate of trivial mutants.
Additionally, no equivalent mutants were found for any tool,
according to a hash-based comparison between the original APKs
and the corresponding mutants. Nevertheless, 4 tools (MutAPK,
MutAPK-Shared, PIT and muDroid) generated duplicate mu-
tants, with muDroid being the worst with a 6.55% of total
duplicate mutants.

RQ3: we found that for Major, the Literal Value Re-
placement (LVR) operator had the highest number of TM,
whereas the Relational Operator Replacement (ROR) had
the highest number of NCM. It may seem surprising that
ROR generated many NCM, however, we discovered that
the reason was due to improper modifications of loop
conditions. For instance, in the A2dp.Vol app, one mutant
changed this loop: for (int i = 0; i < cols; i++)
and replaced the condition “i < cols" with “false", caus-
ing the compiler to throw an unreachable code error. For
PIT, the Member Variable Mutator (MVM) is the one causing
most of the TM; for muDroid, the Unary Operator Insertion
(UOI) operator has the highest number of NCM (although
all the operators have relatively high failure rates), and the
Relational Value Replacement (RVR) has the highest number
of TM. For MutAPK, the FindViewByIdReturnsNull and
NullValueIntentPutExtra operators had the highest number
of NCM, while the NullMethodCallArgument operator gen-
erates the highest number of TM.

The details of the mutation operators being the source
of duplicate mutants are depicted in Tables 2, 3, and 4.
Table 2 presents the results for muDroid. As previously
mentioned, muDroid generates the largest number of du-
plicate mutants. One example is ”Relational Operator Re-
placement” mutant operator with 1135 duplicate mutants of
28,560 generated ones, which account for a total of 4% of
duplicate mutants generated with this operator.

PIT’s results are shown in Table 3; in this case, there
are only 8 duplicate mutants where 6 of them belong to
a relation between mutants having “NegateConditional" and
"RemoveConditional" operators.

Finally, for MutAPK (Table 4) the “NullMethodCallArgu-
ment" is the operator generating more duplicate mutants.
Additionally, it is worth noticing that there are 12 duplicate
mutants in MutAPK and MutAPK-shared that are between
different pairs of operators; this behavior is further analyzed
later.
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TABLE 2: Number of duplicate mutants created by muDroid
grouped by operator.

Mutation Operators Amount
Relational Operator Replacement 849
Inline Constant Replacement 228
Arithmetic Operator Replacement 486
Return Value Replacement 34
Logical Connector Replacement 6
Negative Operator Inversion 1
Inline Constant Replacement & Relational Operator Replacement 180
Inline Constant Replacement & Arithmetic Operator Replacement 77
Arithmetic Operator Replacement & Relational Operator Replacement 57
Return Value Replacement & Inline Constant Replacement 57
Return Value Replacement & Relational Operator Replacement 24
Return Value Replacement & Arithmetic Operator Replacement 14
Logical Connector Replacement & Inline Constant Replacement 4
Relational Operator Replacement & Logical Connector Replacement 3
Negative Operator Inversion & Inline Constant Replacement 3
Arithmetic Operator Replacement & Logical Connector Replacement 2
Negative Operator Inversion & Relational Operator Replacement 2
Negative Operator Inversion & Arithmetic Operator Replacement 2
Logical Connector Replacement & Return Value Replacement 2
Total (MuDroid) 2,031

TABLE 3: Number of duplicate mutants created by PIT
grouped by operator.

Mutation Operators Amount
NegateConditional 1
RemoveSwitch 1
NegateConditional & RemoveConditional_ORDER_ELSE 6
Total (PIT) 8

To qualitatively investigate the causes behind the crashes
and duplicate generation, four authors manually analyzed a
randomly selected sample of 15 crashed mutants and 10 du-
plicate mutants per tool. In this analysis, the authors relied
on information about the mutation (i.e., applied mutation
operator and location), and the generated stack trace.

Major. The reasons behind the crashing mutants gener-
ated by Major mainly fall into two categories. First, mutants
generated with the LVR operator that changes the value of
a literal causing an app to crash. This was the case for the
wikipedia app when changing the “1” in the invocation set-
CacheMode(params.getString(1)) to “0”. This passed
a wrong asset URL to the method setCacheMode, thus
crashing the app. Second, the Statement Deletion (STD)
operator was responsible for app crashes especially when
it deleted needed methods’ invocations. A representative
example is the deletion of invocations to methods of the su-
perclass when overriding methods, e.g., when removing the

TABLE 4: Number of duplicate mutants created by MutAPK
and MutAPK-Shared grouped by operator.

Mutation Operators Amount
DifferentActivityIntentDefinition 10
NullValueIntentPutExtra 6
NullIntent 6
WrongStringResource 3
InvalidIDFindView 3
LengthyGUICreation 2
InvalidActivityPATH 1
ActivityNotDefined 1
InvalidFilePath 1
NullValueIntentPutExtra & NullBackEndServiceReturn 3
NullValueIntentPutExtra & MissingPermissionManifest 2
WrongStringResource & NullIntent 2
MissingPermissionManifest & ViewComponentNotVisible 2
LengthyGUICreation & LengthyGUIListener 1
Subtotal (MutAPK-Shared - Common operators) 43
NullMethodCallArgument 165
InvalidViewFocus 1
InvalidActivityPATH & InvalidViewFocus 2
Total (MutAPK) 211

super.onDestroy() invocation from the onDestroy()
method of an Activity. This results in throwing of
an android.util.SuperNotCalledException. Other
STD mutations causing crashes involved the deletion of
a statement initializing the main Activity leading to
a NullPointerException. No duplicate mutants were
identified among the mutants generated by Major.

muDroid. This tool is the one exhibiting the highest
percentage of NCM and TM. The most interesting finding of
our qualitative analysis is that 75% of the crashing mutants
lead to the throwing of a java.lang.VerifyError. A
VerifyError occurs when Android tries to load a class
that, while being syntactically correct, refers to resources
that are not available (e.g., wrong classpaths). In the re-
maining 25% of the cases, several of the crashes were
due to the Inline Constant Replacement (ICR) operator.
An example is the crash observed in the photostream
app where the “100” value has been replaced with “101”
in bitmap.compress(Bitmap.CompressFormat.PNG,
100, out). Since “100” represents the quality of the com-
pression, its value must be bounded between 0 and 100.

In terms of duplicate mutants, muDroid5 is also the tool
generating the highest amount of DM. As listed in Table 2,
the 6 mutants operators generate duplicate mutants, and
there are 13 combinations of operators that also generate
duplicate mutants. The mutation operator that generates
more duplicate mutants is Relational Operator Replacement
(ROR). This operator generates around 850 mutants that
are duplicate with other ROR mutants. Additionally, there
are around 266 duplicate mutant pairs with one of the
mutants being a result of ROR operator being applied. After
manually analyzing the duplicate mutants, we found that
there are implementation errors in muDroid, since several
mutants generated with the ROR, ICR and AOR operators
have identical mutations in the same app, despite being
reported in the log files as different mutants.

PIT. In this tool, several of the manually analyzed
crashes were due to (i) the RVR operator changing the
return value of a method to null, causing a NullPointer-
Exception, and (ii) removed method invocations causing
issues similar to the ones described for Major. In terms
of the duplicate mutants, PIT generated the lowest rate (8
out of 103k mutants). The most common duplicate mu-
tant case is between NegateConditional and RemoveCondi-
tional_ORDER_ELSE. From its definition, the RemoveCondi-
tional_ORDER_ELSE operator is a specialization of the base
mutant operator RemoveConditional, whose objective is to
change “a==b” to “true”. The specialized operator negates
the condition to ensure the ELSE block is executed; however,
in some cases, the effect of both operators is the same.
Consider, for example, the following source code snippet:

1 if(a < b){
2 // Do something
3 } else {
4 // Do something else
5 }

If we apply NegateConditional operator, PIT will look for
the conditional operator used in the if statement (i.e., < )
and it would negate it, replacing it with a >=. However,

5. For the time of the writing of this article last update of MuDroid’s
source code was done in May 3, 2016
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if we apply RemoveConditional_ORDER_ELSE, PIT would
make the necessary change in the if condition so the else
statement is executed. This is represented in replacing the
< condition, with a >= condition. Therefore, both operators
will give a final result where the < condition was replaced
with a >= condition.

MDroid+. Table 5 lists the mutants generated by
MDroid+ across all the systems (information for the other
tools is provided with our replication package). In MDroid+,
the overall rate of NCM was quite low with the ClosingNull-
Cursor operator having the highest total number of NCM
(across all the apps) with 13. These instances stem from edge
case that trigger compilation errors involving cursors that
have been declared Final, thus causing the reassignment
to trigger the compilation error. The small number of other
NCMs are generally other edge cases, and current limita-
tions of MDroid+ can be found in our replication package
with detailed documentation. No duplicate mutants were
identified among the mutants generated by MDroid+.

MutAPK. Table 5 lists the mutants generated by MutAPK
across all the systems (information for the other tools is
provided with our replication package). The overall rate of
NCM is very low in MutAPK, and most failed compilations
pertain to specialized cases that would require a more robust
static analysis approach to inject the mutations. However, it
is worth noting that MutAPK works at APK level, and the
mutation rules require more modifications (when compared
to source code level mutations) to generate a valid mutation.
For example, the FindViewByIdReturnsNull mutation rule
consists of replacing the statements used to find a specific
component with a null value assignment to the register
where the corresponding result is stored. This storage pro-
cess could store the value in a register higher than 16. This
value is the maximum register index normally accepted by
DALVIK instructions. However MutAPK uses the const/4 v#,
0x0 instruction to set the null value. Therefore, if the register
used for the assignment is above 16 the instruction will not
compile. To correctly mutate the app, an extensive search
for an empty register must be done to store the null value.
However, if there is no empty register, MutAPK would need
to save the value from one of the below-16-registers into a
temporal above-16-register, use the first selected register to
storage the null value while the process uses it and then
reassign its original value. This problem also applies to
NullValueIntentPutExtra mutation operator.

The operator generating the highest number of TM is
NullMethodCallArgument (84.43%, i.e., 4,264 out of 5,050).
The main reason for this behavior is due to the nature
of the mutation rule; the NullMethodCallArgument operator
replaces one parameter value in a method call with a null
value. Therefore, all method invocations with the null value
as an argument will throw an exception when the method
does not handle the null value. It is worth noting that
MutAPK generates 63,441 mutants using this operator, there-
fore only 6.72% of generated mutants are trivial under our
definition. Future work must be focused on avoiding muta-
tions of this type in the main activities to avoid the TM case.
There are also 3 other operators that increase the amount of
TM generated by MutAPK. First, FindViewByIDReturnsNull,
modifies a findViewByID call to return null. Second, Inva-
lidIDFindView replaces the parameter that represents the

view Id required with a generated randomly, therefore, the
result of the findViewByID call will be a null value. Third,
the NullValueIntentPutExtra operator replaces the value sent
as extra in an intent with a null value. Therefore, just like
what happens with NullMethodCallArgument, all the method
invocations and statements that do not correctly handle the
null values will generate an exception breaking the app.

In terms of duplicate mutants, MutAPK generates the
largest amount with the NullMethodCallArgument operator.
By definition, this operator changes the value of a parameter
in a method call to null. In source code, it is possible to
find method calls that use the same value more than once
in a call. For example, in the a2dp.Vol app, the method
deleteAll calls the method delete by providing twice a null
value as parameter: this.db.delete(TABLE\_NAME, null, null).
This instruction at APK level also makes the call using two
times the same parameter:

1 invoke-virtual {v0, v1, v2, v2}, Landroid/database/
sqlite/SQLiteDatabase;->delete(Ljava/lang/String;
Ljava/lang/String;[Ljava/lang/String;)I

However, MutAPK does not validate the current value of
the parameter before changing it to null; therefore, the value
for v2 was already null before MutAPK injected the null
assignment. This is also an example of an equivalent mutant
that cannot be found by following the TCE approach, since
the SMALI bytecode was modified and the hash values were
not affected by the change.

It is also important to see that there are some mutant op-
erators shared with MDroid+ that are generating duplicate
mutants only at APK level, such as DifferentActivityIntent-
Definition that has different implementations in both tools.
This is a good example since this operator requires finding
a new Activity name for making the change. In the MutAPK
case, the operator is not validating that the activity should
not be replaced with the same name (picked randomly from
the list of activities in the APK).
Summary of RQ3 Findings: The performed analysis indicate
that the PIT tool outperforms others in terms of ratio between non-
compilable and generated mutants, because it does not generate
any non-compilable mutant. However, MDroid+ and MutAPK
provide Android-specific mutations, which make the tools (i.e.,
Pit, MDroid+, MutAPK) complementary for mutation testing
of Android apps. MDroid+ and MutAPK generated the lowest
rate of both non-compilable and trivial mutants (when compared
to Major and muDroid), illustrating its immediate applicability
to Android apps. Major and muDroid generate non-compilable
mutants, with the latter having a critical average rate of 58.7%
non-compilable mutants per app. Also, even when PIT generates
duplicate mutants, the number is insignificant when compared
to the number of mutants generated; at the same time MutAPK
and MutAPK-Shared also generate a low number of duplicate
mutants; some of them can be fixed by improving the current
implementation.

RQ4: Table 5 presents the results from both MutAPK
and MDroid+ in terms of Generated Mutants (GM), Non-
Compilable Mutants (NCM) and Trivial Mutants (TM) per
mutation operator defined in this study. Note that each
tool has implemented some operators that the other does
not. Therefore, we first study the times required by both
tools to (i) generate a mutated copy of the app and to (ii)



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.#, NO.#, AUGUST 2019 16

TABLE 5: Number of Generated (GM), Non-Compilable
(NCM), and Trivial Mutants (TM) created by MDroid+ and
MutAPK

MDroid+ MutAPK
Mutation Operators GM NCM TM GM NCM TM
WrongStringResource 3,394 0 14 3,432 0 10
NullIntent 559 3 41 482 0 37
InvalidKeyIntentPutExtra 459 3 11 477 0 9
NullValueIntentPutExtra 459 0 14 477 22 103
InvalidIDFindView 456 4 30 1,313 0 193
FindViewByIdReturnsNull 413 0 40 1,313 28 190
ActivityNotDefined 384 1 8 385 0 11
InvalidActivityName 382 0 10 383 0 50
DifferentActivityIntentDefinition 358 2 8 482 0 7
ViewComponentNotVisible 347 5 7 398 0 58
MissingPermissionManifest 229 0 8 227 0 7
InvalidFilePath 220 0 1 228 0 36
InvalidLabel 214 0 3 214 0 5
ClosingNullCursor 179 13 5 222 0 14
LengthyGUICreation 129 0 1 336 0 15
LengthyGUIListener 122 0 0 339 0 5
NullInputStream 61 0 4 90 0 4
WrongMainActivity 56 0 0 56 0 8
InvalidColor 52 0 0 47 0 0
NullOuptutStream 45 0 2 59 0 2
InvalidDate 40 0 0 20 0 0
InvalidSQLQuery 33 0 2 82 0 7
NullBluetoothAdapter 9 0 0 9 0 0
LengthyBackEndService 8 0 0 15 15 0
NullBackEndServiceReturn 8 1 0 34 5 2
InvalidIndexQueryParameter 7 1 0 82 0 2
OOMLargeImage 7 4 0 7 0 4
BluetoothAdapterAlwaysEnabled 4 0 0 1 0 0
InvalidURI 2 0 0 2 0 0
NullGPSLocation 1 0 0 2 0 0
LongConnectionTimeOut 0 0 0 0 0 0
SDKVersion 66 0 2 0 0 0
Subtotal (Common operators) 8,703 37 211 11,214 55 779
NotParcelable 7 6 0 - - -
NotSerializable 15 7 0 - - -
BuggyGUIListener 122 0 2 - - -
NullMethodCallArgument - - - 63,441 0 4,264
InvalidViewFocus - - - 398 0 7
Total 8,847 50 213 75,053 55 5,050

TABLE 6: Summary of time results: MutAPK vs. MDroid+.

Metric Name MutAPK MDroid+
Avg. Mutation Time (secs.) 284.67 x 10 −3 4.61
Avg. Compilation Time (secs.) 25.265 195
Avg. Full Mutant Creation Time (secs.) 25.549 199.61

compile/assemble a given mutant into an APK. Then, we
analyze the mutation results taking into account only the
operators that are common in both tools, and finally, we
study the impact of tool-specific operators in the results.

As it was mentioned previously, we ran MutAPK and
MDroid+ over 55 apps. MDroid+’s default behavior gener-
ates mutated copies of the original source code; therefore,
we implemented a wrapper that based on the MDroid+
results builds the corresponding APKs. MutAPK works di-
rectly on APKs; therefore, the APK generation is embedded
in the mutation process.

As it can be seen in Table 6, MutAPK takes 6.17% of
the time required by MDroid+ to mutate a copy of the
app and 12.95% of the time required to compile/assemble
the mutant into an APK. Therefore, MutAPK executes the
complete mutation process (i.e., mutation of app copy plus
compilation/assembling) 87.2% faster than MDroid+.

Common operators. Concerning the mutation type met-
rics (Table 5), when considering only the common operators,
MDroid+ and MutAPK generated 8,703 and 11,214 mutants
respectively. This shows that at the APK level, the PFP (Sec-
tion 3) detects more locations for implementing mutations.
MutAPK generates on average 78 more mutants per operator
with a median of 7.5 more than MDroid+. However, the
SDKVersion operator does not find instances in any app

due to latest modifications of the Android building process,
where all the details for SDK Version must be defined in the
build.gradle file instead of the Manifest file.

The number of NCM is very similar in both cases. How-
ever, the percentage of TMs is larger with MutAPK (6.94%)
than with MDroid+ (2.24%), and this happens because of
the FindViewByIdReturnsNull, InvalidIDFindView, and Nul-
lValueIntentPutExtra operators that account for 62,39% of
the trivial mutants in MutAPK. Note that MutAPK generates
more mutants than MDroid+ for those operators, because
SMALI representation of code statements must express each
instruction in a line. Therefore, as it can be seen in Listing 5
a Java statement can contain several instructions that are
solved from inside to outside. However, a given Java state-
ment in SMALI uses a line for each instruction as it can be
seen in Listing 6. Knowing that, MDroid+’s search power is
reduced by the Java capability of chaining instructions. For
example, for FindViewByIDReturnsNull operator MDroid+
search for statements where the view is stored in a variable
(see Listing 7). However, if the result of findViewById method
is used directly as parameter (see Listing 5), MDroid+ does
not recognize that statement as part of the PFP.

Listing 5: Java chained instructions
1 highlight(findViewById(R.id.load_data_button));

Listing 6: SMALI representation of JAVA chained in-
structions

1 invoke-virtual {p0, p1}, Lio/github/hidroh/materialistic
/AboutActivity;->findViewById(I)Landroid/view/View;

2 move-result-object v0
3 check-cast v0, Landroid/widget/TextView;
4 invoke-virtual {v5, v0}, Lio/github/hidroh/materialistic

/AboutActivity;->highlight(I)Ljava.awt.String;

Listing 7: MDroid+ mutation rule
1 ImageButton loadButton = (ImageButton) findViewById(R.id

.load_data_button);

If NCM, TM and DM are removed, we can see that
MDroid+ generated 8,455 mutants versus 10,337 mutants
generated by MutAPK. Therefore, the results suggest that
MDroid+ takes 9.79 more hours to generate 21.9% less
functional mutants (i.e., mutants that compile and are not
trivial nor equivalent nor duplicate) than MutAPK.

Whole set of operators. Considering all the operators
available with each tool, MutAPK generates per operator on
average 63% more mutants than MDroid+ with a median of
3.9% and a mode of 0%. We found that MutAPK generates
a significant amount of extra mutants because of the Null-
MethodCallArgument operator. This operator is capable of
generating 63,441 additional mutants for the 55 apps, which
is around 6 times the amount of mutants generated by the
rest of the operators. However, 6.72% of those are trivial
and 0.26% are duplicate. Additionally, on the one hand
MutAPK also implements InvalidViewFocus, that generated
398 mutants (only 7 were trivial and 1 duplicate). On the
other hand, MDroid+ has 3 additional operators that add
144 mutants to the list; 13 of them are non-compilable and
only 2 are trivial. Even in this case, MutAPK is able to
generate more functional mutants: 69,742 vs 8,579 generated
by MDroid+.
Summary of RQ4 Findings: The clear benefit of performing
APK-level mutation analysis (MutAPK) as opposed to source code-
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level mutation analysis (MDroid+) relates primarily to the ease
of use of the system, as it only requires a single file (i.e., an APK
file instead of several source files), and generates mutants with
higher compilability ratio in less time. Moreover, this makes the
mutation tool applicable to apps written with various languages,
i.e., Java, Kotlin, and Dart. However, this ease of use comes with a
slight trade-off in terms of generating a higher number of mutants
(which leads to an extensive execution effort from developers),
and a higher number of trivial and duplicate mutants for certain
operators that are likely to be discarded during mutant analysis.

6 DISCUSSION & FUTURE WORK

The results of the study show that generating mutants at
APK level has some benefits when compared to mutants
generation at the source code level. With tools like MutAPK
third-parties could improve their services by using mutation
testing without the need of having access to the source code.
However, there is a trade-off, because there are pros and
cons on both sides. Therefore, the decision of whether to
use APK-level mutation versus source level should be made
carefully, with consideration for the specific context and
the needs of researchers/practitioners. In the remainder of
this section, we discuss the aforementioned trade-off and
differing usage scenarios as well as promising future work
that builds upon MDroid+ and MutAPK.

Mutant comprehension. APK-level mutation is faster
but with a larger number of NCMs and TMs. Another
aspect to consider with APK-level mutation is related to
mutant comprehension. Since the mutations are performed
at SMALI level, the locations of the changes are not the same
as the equivalent changes at the source code level. Therefore,
when doing APK-level mutation and reporting killed and
survived mutants, the mutations are presented to develop-
ers/testers as the type of mutation (e.g., InvalidIDFindView),
but also in a location that is not the same when compared to
source code. Therefore, this could require extra effort of the
developer/tester to create a mapping between the mutation
location at SMALI level and the equivalent location at source
code. Future work should be devoted to automatically pro-
vide users with the location of the mutations at source code
level when APK-level mutation is used in such a way that
no extra time is required by the users to create the location
mapping.

Opportunistic programming. A recent paper by Petrovic
et al. [66] presents how mutation testing is used at Google
during code-reviewing, in particular, by providing “inline”
feedback at the statement level. This approach could be
extended to provide early feedback to developers while
coding, i.e., providing mutation-based hints directly on the
IDE or during commit operations.

Classic vs Android-Specific operators. Our Android
bug taxonomy (see Section 3) and the results for RQ1

show that using only classic operators for mutation of An-
droid apps is not sufficient. Therefore, classic and Android-
specific operators should be combined. Our MutAPK and
MDroid+ tools do not include classic operators in their
catalogs. Therefore, for a more effective mutation testing
process, future work could be devoted to extend the tools
to include classic operators. However, this would imply
redoing work already done by tools like Pit and Major.
Consequently, another option is to dedicate future efforts

to create “meta” tools that combine mutants generated by
different existing tools according to user preferences.

New languages for Android app development. New
programming languages have emerged in the Android
ecosystem; on the one side, there are Kotlin and Flut-
ter/Dart for native apps, on the other side, there are the
hybrid/cross-platform frameworks. Using source code-level
mutation requires specific frameworks for each language
(e.g., Kotlin), which is not a problem for APK-level muta-
tion with MutAPK. Therefore, MutAPK can be used for the
Android native languages (i.e., Java, Kotlin, Dart) with the
limitation of mutants comprehension (already mentioned).
However, in the case of hybrid apps there is no current tool
for mutation testing. Future work should be also focused on
building bugs taxonomies for and mutation testing tools for
Android hybrid apps.

More mutants at APK level and mutant selection. Time
is an issue in mutation testing, for both generation and
testing time. Although mutation at APK level drastically
reduces the time required to generate executable mutants,
MutAPK also generates a larger number of mutants (on
average 1.3k per apps) because it is easier to perform more
mutations at SMALI code than at the source code level. This
behavior occurs because SMALI instructions are closer to
machine operations and some syntactic sugar is not allowed
at this level. For example, it is common in Java Android
programming to have inline declarations of arguments, like
in the following statement of an Android app:
startActivity(new Intent(FrActivity.this, ScActivity.class))

In this case, we could think that the DifferentActivityIntent-
Definition mutant operator could be applied; however, the
mutant operator at source code looks for an instruction like
the following:
Intent intent=new Intent(FrActivity.this, ScActivity.class)

And since the intent is defined inside the parameter space,
the operator will not identify this line as a mutable one.
However, at APK level, the aforementioned instruction is
expressed in multiple lines (See following code snippet): First,
the intent is declared (Lines 1-4), and then, it is used as a
parameter in the startActivity method call (Lines 5-7).

1 new-instance v2, Landroid/content/Intent;
2 const-class v3, Lcom/example/myapplication/ScActivity;
3 invoke-direct {v2, p0, v3}, Landroid/content/Intent;
4 -><init>(Landroid/content/Context;Ljava/lang/Class;)V
5 invoke-virtual {p0, v2},
6 Lcom/example/myapplication/FrActivity;
7 ->startActivity(Landroid/content/Intent;)V

Because of this, even when instructions are concatenated
at source code level, they are separated and are easier to
identify when applying mutation operators at SMALI level.

There are some (trivial) features in the analyzed tools to
deal with large sets of mutants. Both MDroid+ and MutAPK
allow users to select the type of mutants to be generated.
In addition, MutAPK provides a feature to select the total
number of mutants to be generated. Thus, before starting
the mutation process, the user can identify a statistically
significant sample of mutants to use during mutation anal-
ysis. For example, if MutAPK indicates that 1,174 mutants
will be generated, then with a confidence level of 95% and
confidence interval of ±5%, only 290 mutants are required
to have a significant sample. Anyway, MutAPK, while gener-
ating more mutants and using more mutant operators than
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MDroid+, has a generation time that is 5.5 hours less than
the time required by MDroid+.

However, practitioners and researchers should consider
using mutants prioritization/selection techniques [104] dur-
ing mutation testing of Android apps; for instance, mutants
could be generated from the most change-/fault-prone code
or the impact set of the last change-set. Mutants selection
techniques for mobile apps is still an open topic for future
research.

Comprehensive tool for mutation testing of Android
apps. As of today, there is no mutation testing tool for
Android apps. The tools and approaches used in our study
are a first step (mutant generation) towards the goal of
having a comprehensive tool for mutation testing. However,
to achieve this goal, researchers and practitioners should en-
vision an approach that is agnostic of the testing framework.
Note that in the case of testing of Android apps, there are a
plethora of available tools widely used. Therefore, to enable
mutation testing, existing tools should be extended to be
able to execute test suites written with any of the available
frameworks for testing Android apps.

7 THREATS TO VALIDITY

This section discusses the threats to validity of the work
related to devising the fault taxonomy, and carrying out the
study reported in Section 5.

Threats to construct validity concern the relationship be-
tween theory and observation. The main threat is related to
how we assess and compare the performance of mutation
tools, i.e., by covering the types, and by their capability to
limit non-compilable, trivial, equivalent and duplicate mu-
tants. In particular, for detecting equivalent and duplicate,
we relied on the TCE approach [32], which was able to detect
(on average) 30% of equivalent mutants on a benchmark
of 18 small/medium C/C+ programs [101]. Our choice for
TCE is justified by the fact that the analyzed apps do not
have test suites that can be used for mutation analysis.
However, we can not claim that we are not detecting all
the equivalent and duplicate mutants generated by the
analyzed tools.

Threats to internal validity concern factors internal to our
settings that could have influenced our results. This is, in
particular, related to the possible subjectiveness of mistakes
in the tagging of Section 3 and for RQ1. As explained, we
employed multiple taggers to mitigate such a threat

Threats to external validity concern the generalization of
our findings. To maximize the generalizability of the fault
taxonomy, we have considered six different data sources.
However, it is still possible that we could have missed some
fault types available in sources we did not consider, or due
to our sampling methodology. Also, we are aware that in
our study results of RQ1 are based on the new sample of
data sources, and results of RQ2, RQ3, and RQ4, on the set
of 68 apps considered [6]. Also, although we compared the
proposed tools with several state-of-the-art mutation tools
(six tools in RQ1 and three tools in RQ2 and RQ3), our
results may not generalize to tools not included in the study.

8 CONCLUSIONS

Although Android apps rely on the Java language as a pro-
gramming platform, they have specific elements that make

the testing process different than other Java applications.
In particular, the type and distribution of faults exhibited by
Android apps may be very peculiar, requiring, in the context
of mutation analysis, specific operators.

In this paper, we presented the first taxonomy of faults in
Android apps, based on a manual analysis of 2,023 software
artifacts from six different sources. The taxonomy is com-
posed of 14 categories containing 262 types. Then, based
on the taxonomy, we have defined a set of 38 Android-
specific mutation operators, implemented in an infrastruc-
ture composed of two mutation testing tools, MDroid+ and
MutAPK, to automatically seed mutations in Android apps
at source code and APK level. To validate the taxonomy
and our tools, we conducted a comparative study with
existing Java and Android mutation tools. The study results
show that the proposed operators are more representative
of Android faults than other catalogs of mutation oper-
ators, including both Java and Android-specific operators
previously proposed. Also, MDroid+ and MutAPK are able
(in general) to outperform state-of-the-art tools in terms of
non-compilable and trivial mutants. Mutating at APK level
with MutAPK is faster and reduces the proportion of non-
compilable mutants, but it also requires a higher number of
mutants than when working on the source code.

The obtained results make our taxonomy and our tools
ready to be used and possibly extended by other researcher-
s/practitioners. To this aim, MDroid+, MutAPK and the
wrappers for using Major and Pit with Android apps are
available as open source projects [30], [31], [105], [106].
Future work will extend MDroid+ and MutAPK by imple-
menting more operators, and creating a framework for mu-
tation analysis. Also, we plan to experiment with MDroid+
and MutAPK in the context of test case prioritization and
mutation-driven test cases generation.
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[39] A. Derezińska and K. Hałas, Analysis of Mutation Operators for the
Python Language. Cham: Springer International Publishing, 2014.

[40] U. Praphamontripong, J. Offutt, L. Deng, and J. Gu, “An experi-
mental evaluation of web mutation operators,” in ICSTW 2016.

[41] D. Rodríguez-Baquero and M. Linares-Vásquez, “Mutode:
generic javascript and node. js mutation testing tool,” ser. ISSTA
2018, 2018.

[42] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Efficient
javascript mutation testing,” ser. ICST 2013.

[43] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan,
“Automated testing for SQL injection vulnerabilities: an input
mutation approach,” in ISSTA 2014, 2014.

[44] C. Zhou and P. G. Frankl, “Mutation testing for java database
applications,” ser. ICST 2009, 2009.

[45] R. A. P. Oliveira, E. Alégroth, Z. Gao, and A. Memon, “Definition
and evaluation of mutation operators for GUI-level mutation
analysis,” in ICSTW 2015, 2015.

[46] D. Di Nardo, F. Pastore, and L. C. Briand, “Generating complex
and faulty test data through model-based mutation analysis,” in
ICST 2015, 2015.

[47] Y. Jia and M. Harman, “An analysis and survey of the de-
velopment of mutation testing,” IEEE Transactions on Software
Engineering, vol. 37, no. 5, Sept 2011.

[48] A. J. Offutt and S. D. Lee, “How strong is weak mutation?” in
TAV 1991, 1991.

[49] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in ICSE 2005.

[50] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, , and A. Groce,
“Measuring effectiveness of mutant sets,” in ICSTW 2016.

[51] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Do redundant
mutants affect the effectiveness and efficiency of mutation analy-
sis?” in ICST 2012, 2012.

[52] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to
overcome the equivalent mutant problem and achieve tailored
selective mutation using co-evolution,” in GECCO 2004.

[53] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in ISSTA
2014.

[54] R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen, and A. Groce,
“On the limits of mutation reduction strategies,” ser. ICSE 2016,
2016.

[55] D. Shin and D.-H. Bae, “A theoretical framework for understand-
ing mutation-based testing methods,” in ICST 2016, 2016.

[56] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: An automated class
mutation system,” Softw. Test., Verif. Reliab., vol. 15, no. 2, Jun.
2005.

[57] I. Moore, “Jester - the junit test tester.” 2017, http://goo.gl/
cQZ0L1.

[58] R. Two, “Jumble,” 2017, http://jumble.sourceforge.net.
[59] D. Schuler and A. Zeller, “Javalanche: efficient mutation testing

for java,” ser. ESEM/FSE 2009, 2009.
[60] Yuan-W, “mudroid project at github,” 2017, https://goo.gl/

sQo6EL.
[61] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation

operators for testing android apps,” Information and Software
Technology, vol. 81, 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0950584916300684

[62] H. Coles, “Mutation testing systems for java compared,” 2017,
http://pitest.org/java_mutation_testing_systems/.

[63] L. Madeyski and N. Radyk, “Judy - a mutation testing tool for
Java,” IET Software, vol. 4, no. 1, Feb 2010.

[64] M. Daran and P. Thévenod-Fosse, “Software error analysis: A real
case study involving real faults and mutations,” ser. ISSTA 1996,
1996.

[65] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage
criteria,” IEEE Trans. Software Eng., vol. 32, no. 8, 2006.

[66] G. Petrovic and M. Ivankovic, “State of mutation testing at
google,” ser. SEIP 2017, 2018.

[67] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
19–30.

[68] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android apps:
A systematic literature review,” IST, vol. 88, 2017.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.#, NO.#, AUGUST 2019 20

[69] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in
mobile apps,” in ESEM 2013.

[70] M. Nagappan and E. Shihab, “Future trends in software engi-
neering research for mobile apps,” ser. SANER 2016), 2016.

[71] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in
ICSM 2003.

[72] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An exploratory
analysis of mobile development issues using stack overflow,” ser.
MSR 2013, May 2013.

[73] S. Beyer and M. Pinzger, “A manual categorization of android
app development issues on stack overflow,” in ICSME 2014, Sept
2014.

[74] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do
mobile app users complain about?” IEEE Software, vol. 32, no. 3,
2015.

[75] C. Rosen and E. Shihab, “What are mobile developers asking
about? a large scale study using stack overflow,” Empirical Soft-
ware Engineering, vol. 21, no. 3, 2016.

[76] P. Zhang and S. Elbaum, “Amplifying tests to validate exception
handling code: An extended study in the mobile application
domain,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 4, Sep.
2014.

[77] R. Coelho, L. Almeida, G. Gousios, and A. van Deursen, “Unveil-
ing exception handling bug hazards in android based on github
and google code issues,” ser. MSR 2015, 2015.

[78] “Online appendix/replication package for “enabling muta-
tion testing for android apps". http://android-mutation.com/
fse-appendix,” 2017.

[79] L. Ravindranath, S. nath, J. Padhye, and H. Balakrishnan, “Au-
tomatic and scalable fault detection for mobile applications,” in
MobiSys 2014.

[80] R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated gen-
eration of oracles for testing user-interaction features of mobile
apps,” in ICST 2014, 2014.

[81] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson,
H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao, “Caiipa:
Automated large-scale mobile app testing through contextual
fuzzing,” ser. MobiCom 2014, 2014.

[82] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execu-
tion of android test suites in adverse conditions,” in ISSTA 2015,
2015.

[83] K. Moran, M. L. Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Auto-completing bug reports for android applications,”
in ESEC/FSE 2015, 2015.

[84] D. Pagano and W. Maalej, “User feedback in the appstore: An
empirical study,” in RE 2013, 2013.

[85] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps
feature requests from online reviews,” in MSR 2013, 2013.

[86] S. Panichella, A. Di Sorbo, E. Guzman, C. Visaggio, G. Canfora,
and H. Gall, “How can i improve my app? classifying user
reviews for software maintenance and evolution,” in ICSME
2015, 2015.

[87] F. Palomba, M. Linares-Vasquez, G. Bavota, R. Oliveto,
M. Di Penta, D. Poshyvanyk, and A. De Lucia, “User reviews
matter! tracking crowdsourced reviews to support evolution of
successful apps,” in ICSME 2015, 2015.

[88] M. L. Vásquez, C. Vendome, Q. Luo, and D. Poshyvanyk, “How
developers detect and fix performance bottlenecks in android
apps,” in ICSME 2015, 2015.

[89] N. Chen, J. Lin, S. Hoi, X. Xiao, and B. Zhang, “AR-Miner:
Mining informative reviews for developers from mobile app
marketplace,” in ICSE 2014, 2014.

[90] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta,
“Release planning of mobile apps based on user reviews,” in
ICSE 2016, 2016.

[91] N. Chen, S. C. Hoi, S. Li, and X. Xiao, “Simapp: A framework for
detecting similar mobile applications by online kernel learning,”
ser. WSDM 2015. ACM, 2015.

[92] M. B. Miles, A. M. Huberman, and J. Saldaña, Qualitative Data
Analysis: A Methods Sourcebook, 3rd ed. SAGE Publications, Inc,
Apr 2013.

[93] Y. Lin, S. Okur, and D. Dig, “Study and refactoring of android
asynchronous programming (t),” in 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), Nov
2015, pp. 224–235.

[94] “Android mutation web appendix https://thesoftwaredesignlab.
github.io/android-mutation/,” 2019.

[95] (2019) Apktool. https://code.google.com/p/android-apktool/.
[96] P. Favre-Bulle, “Uber apk signer https://github.com/patrickfav/

uber-apk-signer,” 2019.
[97] A. J. Offutt and J. Pan, “Automatically detecting equivalent

mutants and infeasible paths,” Softw. Test., Verif. Reliab., vol. 7,
no. 3, 1997.

[98] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, and
A. Groce, “Does choice of mutation tool matter?” Software
Quality Journal, vol. 25, no. 3, Sep. 2017. [Online]. Available:
https://doi.org/10.1007/s11219-016-9317-7

[99] A. J. Offutt and W. M. Craft, “Using compiler optimization
techniques to detect equivalent mutants,” Software Testing, Verifi-
cation and Reliability, vol. 4, no. 3, 1994. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/stvr.4370040303

[100] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. Le Traon, and
M. Harman, “Detecting trivial mutant equivalences via compiler
optimisations,” IEEE Transactions on Software Engineering, vol. 44,
no. 4, April 2018.

[101] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stub-
born mutation operators using human analysis of equivalence,”
ser. ICSE 2014. New York, NY, USA: ACM, 2014.

[102] D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures., second edition ed. Chapman & Hall/CRC.

[103] S. Holm, “A simple sequentially rejective Bonferroni test proce-
dure,” Scandinavian Journal on Statistics, vol. 6, 1979.

[104] J. M. Zhang, L. Zhang, D. Hao, L. Zhang, and M. Harman, “An
empirical comparison of mutant selection assessment metrics,” in
2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), April.

[105] SEMERU, “Android wrapper for the major tool
https://gitlab.com/SEMERU-Code-Public/Android/
Mutation/Android-Major-Wrapper,” 2019.

[106] ——, “Android wrapper for the pit tool https:
//gitlab.com/SEMERU-Code-Public/Android/Mutation/
Android-Pit-Wrapper,” 2019.

Camilo Escobar-Velásquez is a Ph.D. student
at Universidad de los Andes in Colombia. He
received his M.S. in Software Engineering from
Universidad de los Andes in 2019. He received
his B.S. in Systems and Computing Engineer-
ing - Minor: Mathematics from Universidad de
los Andes in 2017. He is part of The Software
Design Lab, where he has been part of research
projects on evolution, maintenance and analysis
of closed-source android apps, automation of
software engineering tasks and software testing.

He received a Google Latin American Research Award in 2018-2020.
He served as a student volunteer for ICSME’2018, ICSE’2019 and
ASE’2019.
More information is available at https://caev03.github.io

Mario Linares-Vásquez is an Assistant Profes-
sor at Universidad de los Andes in Colombia. He
received his Ph.D. degree in Computer Science
from the College of William and Mary in 2016. He
received his B.S. in Systems Engineering from
Universidad Nacional de Colombia in 2005, and
his M.S. in Systems Engineering and Comput-
ing from Universidad Nacional de Colombia in
2009. He is the leader of The Software Design
Lab, which is focused on automated software
engineering, mining software repositories, ap-

plication of data mining and machine learning techniques to support
software engineering tasks, design for everyone, and app development
with societal impact. He received four ACM SIGSOFT distinguished
paper awards, and the best paper award at ICSM’13. He has served as
organizing and program committee member of international conferences
in the field of software engineering, such as ICSE, ASE, ICSME, MSR,
SANER, ICPC, SCAM, MOBILESOFT and others. Mario is member of
the editorial board of the Journal of Systems and Software and the
Information and Software Technology Journal.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.#, NO.#, AUGUST 2019 21

Gabriele Bavota is an Assistant Professor at the
Università della Svizzera italiana (USI), Switzer-
land. He received the PhD degree in computer
science from the University of Salerno, Italy,
in 2013. His research interests include soft-
ware maintenance, empirical software engineer-
ing, and mining software repository. He is the
author of over 120 papers appeared in inter-
national journals, conferences and workshops.
He received five ACM SIGSOFT Distinguished
Paper awards at ASE 2013, ESEC-FSE 2015,

ICSE 2015, ASE 2017, and MSR 2019, an IEEE TCSE Distinguished
Paper Award at ICSME 2018, the best paper award at SCAM 2012, and
three distinguished reviewer awards at WCRE 2012, SANER 2015, and
MSR 2015. He is the recipient of the 2018 ACM Sigsoft Early Career
Researcher Award. He served as a Program Co-Chair for ICPC’16,
SCAM’16, and SANER’17. He also serves and has served as organizing
and program committee member of international conferences in the
field of software engineering, such as ICSE, FSE, ASE, ICSME, MSR,
SANER, ICPC, SCAM, and others

Michele Tufano received his Ph.D. in Computer
Science from The College of William & Mary
in May 2019. He received a B.S. in Computer
Science from the University of Salerno in 2012
and his M.S. in Computer Science from the Uni-
versity of Salerno in 2014. His research interests
include Deep Learning applied to Software En-
gineering, Automated Program Repair, Software
Evolution and Maintenance, Mining Software
Repositories, and Android Testing. He received
an ACM SIGSOFT Distinguished Paper Award

at ICSE 2015. More information available at: https://tufanomichele.com/.

Kevin Moran is currently a Research Assistant
Professor in the Computer Science Department
at the College of William & Mary and a senior
member of the SEMERU research group. He
graduated with a B.A. in Physics from the Col-
lege of the Holy Cross in 2013 and an M.S. de-
gree from William & Mary in August of 2015. He
received his Ph.D. degree from William & Mary in
August 2018. His main research interests involve
facilitating the processes of software engineer-
ing, maintenance, and evolution with a focus on

mobile platforms. He has published in several top peer-reviewed venues
including: ICSE, ESEC/FSE, TSE, USENIX Security, ICST, ICSME, and
MSR. He was recognized as the second-overall graduate winner in
the ACM Student Research competition at ESEC/FSE 2015, received
the best paper award at CODASPY 2019, and an ACM SIGSOFT
distinguished paper award at ESEC/FSE’19. Moran has served on the
organizing committees of MobileSOFT 2019 and ICSME 2019. More
information is available at http://www.kpmoran.com.

Massimiliano Di Penta is a full professor at the
University of Sannio, Italy. His research inter-
ests include software maintenance and evolu-
tion, mining software repositories, empirical soft-
ware engineering, search-based software engi-
neering, and service-centric software engineer-
ing. He is an author of over 270 papers appeared
in international journals, conferences, and work-
shops. He serves and has served in the orga-
nizing and program committees of more than
100 conferences, including ICSE, FSE, ASE, IC-

SME. He is in the editorial board of the Empirical Software Engineering
Journal edited by Springer, ACM Transactions on Software Engineering
and Methodology, and of the Journal of Software: Evolution and Pro-
cesses edited by Wiley, and has served the editorial board of the IEEE
Transactions on Software Engineering.

Christopher Vendome is an Assistant Profes-
sor at Miami University in Oxford, Ohio. He re-
ceived a B.S. in Computer Science from Emory
University in 2012 and he received his M.S. in
Computer Science from The College of William
& Mary in 2014. He received his PhD degree in
Computer Science from the College of William &
Mary in 2018. His main research areas are soft-
ware maintenance and evolution, mining soft-
ware repositories, program comprehension, soft-
ware provenance, and software licensing. He

has received an ACM Distinguished Paper Award at ASE 2017. More
information is available at http://www.christophervendome.com

Carlos Bernal-Cárdenas is currently Ph.D. can-
didate in Computer Science at the College of
William & Mary as a member of the SEMERU
research group advised by Dr Denys Poshy-
vanyk. He received the B.S. degree in systems
engineering from the Universidad Nacional de
Colombia in 2012 and his M.E. in Systems and
Computing Engineering in 2015. His research
interests include software engineering, software
evolution and maintenance, information retrieval,
software reuse, mining software repositories,

mobile applications development. He has published in several top peer-
reviewed software engineering venues including: ICSE, ESEC/FSE,
ICST, and MSR. He has also received the ACM SIGSOFT Distinguished
paper award at ESEC/FSE’15 and ESEC/FSE’19. Bernal-Cárdenas is
a student member of IEEE and ACM and has served as an external
reviewer for ICSE, ICSME, FSE, APSEC, and SCAM. More information
is available at http://www.cs.wm.edu/~cebernal/.

Denys Poshyvanyk is the Class of 1953 Term
Distinguished Associate Professor of Computer
Science at the College of William and Mary in
Virginia. He received the MS and MA degrees in
Computer Science from the National University
of Kyiv-Mohyla Academy, Ukraine, and Wayne
State University in 2003 and 2006, respectively.
He received the PhD degree in Computer Sci-
ence from Wayne State University in 2008. He
served as a program co-chair for MobileSoft’19,
ICSME’16, ICPC’13, WCRE’12 and WCRE’11.

He currently serves on the editorial board of IEEE Transactions on
Software Engineering (TSE), Empirical Software Engineering Journal
(EMSE, Springer) and Journal of Software: Evolution and Process
(JSEP, Wiley). His research interests include software engineering, soft-
ware maintenance and evolution, program comprehension, reverse en-
gineering, software repository mining, source code analysis and metrics.
His research papers received several Best Paper Awards at ICPC’06,
ICPC’07, ICSM’10, SCAM’10, ICSM’13 and ACM SIGSOFT Distin-
guished Paper Awards at ASE’13, ICSE’15, ESEC/FSE’15, ICPC’16,
ASE’17 and ESEC/FSE’19. He also received the Most Influential Pa-
per Awards at ICSME’16 and ICPC’17. He is a recipient of the NSF
CAREER award (2013). He is a member of the IEEE and ACM. More
information available at: http://www.cs.wm.edu/~denys/.


