
Can We Automatically Fix Bugs
by Learning Edit Operations?

Aidan Connor∗
Computer Science
William and Mary

Williamsburg, VA, USA
ajconnor@email.wm.edu

Aaron Harris∗
Computer Science
William and Mary

Williamsburg, VA, USA
amharris04@email.wm.edu

Nathan Cooper
Computer Science
William and Mary

Williamsburg, VA, USA
nacooper01@email.wm.edu

Denys Poshyvanyk
Computer Science
William and Mary

Williamsburg, VA, USA
denys@cs.wm.edu

Abstract—There has been much work done in the area of
automated program repair, specifically through using machine
learning methods to correct buggy code. Whereas some degree
of success has been attained by those efforts, there is still
considerable room for growth with regard to the accuracy of
results produced by such tools. In that vein, we implement
Hephaestus, a novel method to improve the accuracy of au-
tomated bug repair through learning to apply edit operations.
Hephaestus leverages neural machine translation and attempts
to produce the edit operations needed to correct a given buggy
code segment to a fixed version. We examine the effects of
using various forms of edit operations in the completion of this
task. Our study found that all models which learned from edit
operations were not as effective at repairing bugs as models which
learned from fixed code segments directly. This evidences that
learning edit operations does not offer an advantage over the
standard approach of translating directly from buggy code to
fixed code. We conduct an analysis of this lowered efficiency and
explore why the complexity of the edit operations-based models
may be suboptimal. Interestingly, even though our Hephaestus
model exhibited lower translation accuracy than the baseline,
Hephaestus was able to perform successful bug repair. This
success, albeit small, leaves the door open for other researchers
to innovate unique solutions in the realm of automatic bug repair.

Index Terms—automatic program repair, neural networks,
neural-machine translation, software defect analysis, negative
results

I. INTRODUCTION

A 2018 report from the Consortium for IT Software Quality
states that 16.87% of the costs incurred by poor-quality
software can be attributed to the task of fixing and debugging
defects in software [10]. With this vast cost looming over the
industry, considerable research has been dedicated to the idea
of fixing bugs in an automated manner. We must consider that
manual bug repair necessitates comprehension, localization,
refactoring, and the correction itself. Each of these phases
varies greatly with the complexity of the software product
and the experience of the software developer. A process which
can determine the existence of a bug in the source code and
propose a corrected code replacement could reduce short- and
long-term costs associated with program repair. In this study,
we concern ourselves with the latter half of such a process:
repairing code which is already known to be buggy.

*These authors contributed equally to this work.

The discussion of automated bug repair starts with a con-
sideration of the nature of the problem. The initial state is
that a segment of code is known to have a defect. A software
engineer may attempt several iterations of alteration before
landing on the perceived fix. Considering a given pair of
buggy and fixed code segments, which we call mbug and
mfix respectively, there are numerous ways to analyze the
transformation from the former into the latter. A successful
transformation is the one that results in a code segment mfix
that no longer exhibits the error that was present in mbug; that
is, it is syntactically and logically correct, as well as being able
to compile and run without an error.

A naive approach would be to attempt some sort of com-
parison algorithm that would identify the type of bug and
replace it with a prescribed patch, substituting identifiers as
needed. Such an approach would likely take more time to
develop and stock with prescriptions than it would save over
the span of its usage. Following the development path of
efforts in this area, a statistical replacement model may also
be effective. However, we have a problem represented by data
points, an observable pattern, and an unknown ideal functional
to perform the necessary work; a learning approach emerges
as the most appropriate solution. From there, we must consider
which learning approach is best suited for the task.

A learning approach that has seen some success in automatic
bug repair is neural machine translation (NMT), a technique
which takes advantage of neural networks and supervised
learning. NMT it is also widely used in the field of human
language translation. For example, an NMT model can be
created to translate from English to German and vice versa
by training the model with a dataset containing a parallel
corpus of English text and its German counterpart. However,
directly applying the NMT approach to source code repair
presents some inefficiencies. Specifically, many bug fixes
involve changes to only one or two lines in the source code
and leave the rest of the program unchanged. Therefore,
naively training an NMT model to directly predict the fixed
code results in suboptimal performance because much of
the model’s computational capacity is wasted on duplicat-
ing unchanged code. Previous work [19, 16], has attempted
to mitigate this inefficiency by only predicting the specific
statements that need to be changed or edit operations that

1

need to be performed on the Abstract Syntax Tree (AST).
While predicting changes at the statement level as done in
[19] is more efficient, finer-grained changes that work at the
individual token level would be more optimal. Additionally,
working at the AST level as done in [16] requires specialized
parsers which are not easily extended to multiple programming
languages.

To overcome the above issues, we created Hephaestus, a
novel method intended to improve the accuracy of automated
bug repair. Hephaestus leverages neural machine translation
to predict the edit operations, which are derived by the well
known Levenshtein Distance algorithm [12], needed to correct
a given buggy code segment to a fixed version. These edit
operations work at the token level of source code. Centralizing
training on edit operations allows the model to focus on
generating only the exact steps needed to fix a particular bug
rather than generating an entirely working fixed version of the
code. Furthermore, operating at the source code level allows
for Hephaestus to work on any language without language-
specific parsers. We evaluate Hephaestus on the program repair
portion of the popular CodeXGlue [11] benchmark, which
was also used to assess the performance of program repair
models in past studies [4, 8]. We find that even though
our performance was worse compared to directly predicting
the fixed code, Hephaestus was able to successfully repair a
nontrivial proportion of the tested code segments. Moreover,
the vast majority of edit operations that Hephaestus produced
were syntactically correct. We later explore the reasons behind
Hephaestus’ suboptimal performance.

II. RELATED WORK

The basis of our research is built on an existing body of
work by Tufano et al. [17]. Their study demonstrates a method
for repairing code through the identification of bug-fix patterns
in large software repositories. After training models via an
NMT approach, the authors were able to achieve between a 9%
and 50% success rate in identifying the correct fix for a given
bug. Also of note is the authors’ emphasis on examining target
code at the method level vice the file or class level, as well
as their decision to exclude exceptionally large methods from
their study. The paper further defines a method for using AST
operations to provide a granular measure of the edit distance
between the buggy and fixed versions of the code. Much of
the methodology of their work is duplicated in our paper, such
as the assessment of bug-fix pairs and the tools used.

Additional previous work by Tufano et al. [18] delves into
the background of the methodology in [17], exploring the
decision to pursue an NMT-based approach. The paper also
discusses the usage of Deep Learning approaches in qualitative
analysis regarding “meaningful” changes to code. Meaningful
changes are defined by Tufano et al. as commits which were
reviewed through a pull request; these so-called meaningful
changes are the primary focus of their paper.

Contemporary work by Chen et al. [5] covers methods
used in determining the appropriate fixes for single-line code
changes. Unlike [17] and [18], this work relies on the creation

of a heavily curated dataset of single-line bug fixes to train its
model. Whereas this alone separates the two bodies of work,
we leverage the analysis provided with regard to limiting vo-
cabulary to inform our decisions. The problem of an unlimited
vocabulary set, predominantly in the form of identifiers in code
such as variable names, is one which we encounter.

The work of Chakraborty et al. [4], another NMT-based
approach called CODIT, is similar on the surface to that of Tu-
fano et al. [17]. As with the other referenced papers, concepts
resurface such as tokenization and issues with vocabulary sizes
and abstractions. Both papers choose to focus on smaller sizes
of patch targets, though CODIT did realize some moderate
success with larger patches. The primary use of this work in
our research is to provide an alternative lens with which to
view the problem of automated bug repair.

Contemporary work by Jiang et al. [7] also uses an NMT-
based approach, but the authors begin by addressing several
concerns with existing NMT-based approaches. The most
pressing of these concerns are the likelihood that the correct
fix for a given bug does not exist within the model’s output
space and the model’s lack of awareness of strict code syntax.
In order to overcome the latter problem, the authors pre-train
their model on the programming language in question so it
can learn to generate more developer-like outputs. Notably,
the work of Tufano et al. [17, 18] is referenced in this work
and used for a comparison.

Yuan and Banzhaf [19] approach the problem of automatic
program repair in an adjacent, yet distinct, manner. The
relevance to our research is the grouping of fine-granularity
edits into larger statement-level edits.

Similar work to ours was performed by Tarlow et al. [16]
where they train a model to generate edit operations that
manipulate a buggy program’s AST into a fixed version of
the program’s AST. However, as mentioned above, AST-level
interaction requires specialized parsers and tree differencing
algorithms, making this approach difficult to apply to other
programming languages. Instead, our approach works at the
source code level and uses the well known Levenshtein Dis-
tance algorithm for constructing the edit operations.

All related works discussed heretofore implement some
form of neural network to generate repairs for buggy code.
Relatively earlier work by Andersen et al. [2] outlines princi-
ples for algorithmically inferring program repair (i.e., without
the use of a neural network) during the process of collateral
evolution. This mostly involves modifying function calls and
their arguments when the API of an implemented library
changes. The bugs which need repair in these instances refer
to API usage scenarios which were compliant with the old
version of the library and become erroneous when the library’s
API is updated. The algorithmic approach in [2] to repair these
bugs is very accurate, but it is only applicable to instances of
this narrow use case.

Mousavi et al. [13] performed a survey of automatic
software repair methodologies, identifying two distinct areas
of program repair. The first area identified is runtime level
software repair, where live software is rescued from a fault

2

and restored to a running state. The second area is source code
level, where code is examined and bugs and repair patterns are
learned in repositories. The authors point to several obstacles,
including overfitting and the disparity between predicted bug
fix operations and those that would mimic a human software
developer. Our research deviates from that of Mousavi et
al. on several key elements, namely that overfitting is not
believed to be a core issue in our implementation, and that
we are not concerned with the parity between the specified
edit operations and operations made by a live programmer.
Instead, we concern ourselves primarily with the prediction
power of our model with respect to bug fixing accuracy.

III. BACKGROUND

Whereas the idea of translating between buggy and fixed
code is a relatively recent development, the concept of trans-
lating human languages using computers is far from a new
concept. Rules-based and statistical models were attempted
for a time. The translation from one language to another can
be thought of in this sense as a series of predictions of which
word or symbol will come next, given a history of all words or
symbols seen up to that point. These systems were the basis of
various speech and language recognition methods in the past
[15].

In 2003, Bengio et al. proposed a solution based in part on
these statistical language models. The primary obstacle was the
curse of dimensionality, the name given to the problem caused
by the vastness of the domain of possible words in the training
set versus the testing set. There is a reasonable probability
that the model will encounter words during testing that it did
not see in training. Then during prediction, the model may
have difficulty inferring the meaning of the previously unseen
words. The authors proposed a method using a neural network
to learn from two input corpora, and were able to surpass the
state-of-the-art at the time. [3]

The existence of this field of study under the moniker
Neural Machine Translation arrived in 2014, and there has
been a prolific growth in the number of papers published in
this body of work since [15]. As a result, NMT models have
become more standardized over time. In an effort to provide a
common toolkit and benchmark, researchers at Harvard SEAS
and SYSTRAN created OpenNMT [9]. This is the toolkit
which we use in our study.

Figure 1 demonstrates a simplified version of the NMT
process. Embedding representations of an input sequence are
learned in the encoder; then from the input, the decoder learns
to predict the next symbol or word in the sequence. This
prediction is the impetus for the use of code abstraction.
Without abstraction, the vocabulary space of a large source
code corpus would be too vast to be meaningfully used in
NMT learning [8]. However, abstraction also introduces major
limitations which are discussed in Sections 4 and 7.

In concept, the jump from traditional language translation to
buggy→ fixed code translation is simply a matter of regarding
the buggy and fixed versions of code as varieties of language
– two dialects of a common mother tongue. There are, of

Fig. 1: Example of NMT encoding and decoding.

course, several distinguishing features that separate the two
ideas. When translating between human languages, it is typical
to replace the majority of the input sequence. In contrast, the
changes required to fix a code segment may be minimal (such
as a missing semicolon), or considerable (replacing entire
lines or blocks of code). Importantly, unlike human language
translation, the output of code repair translation should not
have the same meaning as its input; the input is known to be
buggy and the output is intended to be fixed.

IV. APPROACH

A. Levenshtein Edit Operations

The most successful approaches thus far to automatic broad-
range bug repair have come from [17] and [7], as well as
their related studies. As mentioned in Section 2, these studies
leverage NMT methodologies to translate directly from buggy
code segments to fixed code segments, with some variation
in the pre-training approach. For example, given mbug as
an input sequence, the NMT model in [17] would attempt
to produce directly the sequence of tokens comprising mfix.
Our novel approach, which we name Hephaestus, differs with
regard to the NMT output. Given mbug as an input sequence,
a Hephaestus NMT model attempts to produce a sequence of
steps, called edit operations, which transforms the inputted
mbug into mfix. Our approach therefore determines a possible
mfix indirectly via edit operations as intermediaries.

Edit operations are used to modify the tokens of a token
sequence or delimited string; different edit operations modify
the tokens in different ways. The most basic form of edit
operation is the Levenshtein edit operation, or Levenshtein
operation for short. A Levenshtein operation affects only one
token in a sequence, and comes in three different “flavors”:
• Insertion: A token is inserted and the number of tokens

increases by one.
• Deletion: A token is removed and the number of tokens

decreases by one.
• Replacement: A token is substituted for another token and

the number of tokens remains constant.

B. Compound Edit Operations

We define a compound edit operation, or compound oper-
ation for short, as a group of one or more edit operations.
Applying the compound operation to some mbug will produce
exactly the same result as if the constituent edit operations
were applied, in order, to mbug. The operations in the grouping

3

can be basic Levenshtein operations or compound operations
themselves. Similar to Levenshtein operations, compound op-
erations come in three flavors:
• Insertion: No tokens are removed and a sequence of at

least one token is added.
• Deletion: A contiguous sequence of at least one token is

removed and no tokens are added.
• Replacement: Either of the following:

– No tokens are removed and no tokens are added
(this can occur when condensing two operations that
effectively cancel each other, such as an insertion
directly followed by a deletion at the same index).

– A contiguous sequence of at least one token is
removed at some index and a sequence of at least
one token is added at that same index.

Any edit operation as defined can be represented by the
function op(i, j, S), where i and j are non-negative integers
such that j ≥ i, and S = {s0, s1, . . . } is a sequence of tokens.
The function operates by first deleting all tokens within the
index range [i, j), then inserting the token sequence S at index
i. Every type of edit operation can be represented by various
configurations of i, j, and S:

Levenshtein insertion: j = i and |S| = 1
Compound insertion: j = i and |S| ≥ 1
Levenshtein deletion: j = i+ 1 and |S| = 0
Compound deletion: j > i and |S| = 0

Levenshtein replacement: j = i+ 1 and |S| = 1
Compound replacement: (j = i and |S| = 0) or

(j > i and |S| > 0)

Algorithm 1 determines the flavor of an edit operation
according to the above configurations of i, j, and S.

We refer to the grouping process which forms compound
operations as condensing; i.e., edit operations are condensed
into compound operations. Condensing is represented math-
ematically by the equation c(E) = E′, where E =
{e0, e1, . . . } is the original sequence of edit operations, c is

Algorithm 1 Returns the flavor of the edit operation e. Note
that e is an object representation of the function op(i, j, S);
e.g., e.S refers to the S property of e. The returned value is
one of {“Insertion”, “Deletion”, “Replacement”}.

1: procedure FLAVOR(e)
2: r ← e.j − e.i
3: if r == 0 and |e.S| == 0 then
4: return “Replacement”
5: else if r == 0 then
6: return “Insertion”
7: else if |e.S| == 0 then
8: return “Deletion”
9: else

10: return “Replacement”
11: end if
12: end procedure

the condensing function, and E′ = {e′0, e′1, . . . } is the con-
densed sequence of compound operations. Because elements
of E are grouped together to form elements of E′, it follows
that |E′| ≤ |E|. In our study, we condense edit operations
according to three different strategies: basic condensing, loose
condensing, and strict condensing.

1) Basic Condensing: A trivial case where E′ = E; every
basic compound operation e′ ∈ E′ corresponds with exactly
one e ∈ E.

2) Loose Condensing: E is condensed according to loose
compatibility. A sequence of edit operations is said to be
loosely compatible if and only if the application of its con-
stituent operations, in order, is equivalent to the application of
some singular op(i, j, S). More colloquially, edit operations
are loosely compatible with one another if and only if they
modify a contiguous section of tokens. Algorithm 2 determines
the loose compatibility of edit operations and what happens
when such operations are condensed.

When loosely condensing E into E′, it is not necessary, nor
is it likely, that every e ∈ E is loosely compatible. Rather, E
is effectively partitioned into subsequences, where every edit
operation in each subsequence is loosely compatible. Then,
each subsequence is represented as its own op(i, j, S) which
together define the final condensed sequence E′. Thus, the

Algorithm 2 Attempts to condense the edit operation x into
the edit operation e according to loose compatibility. Edit
operation x is assumed to occur after edit operation e. Returns
True if the condensing was successful, i.e., if e and x are
loosely compatible; returns False otherwise.

1: procedure ADDLOOSE(e, x)
2: l← e.i+ |e.S|
3: if x.j < e.i or x.i > l then
4: return False
5: else if x.i < e.i then
6: if x.j ≤ l then
7: e.S ← x.S + e.S[(x.j − e.i) to end]
8: e.i← x.i
9: else

10: e.S ← x.S
11: e.i← x.i
12: e.j ← e.j + x.j − l
13: end if
14: else
15: if x.j ≤ l then
16: e.S ← e.S[start to (x.i− e.i)] + x.S+

e.S[(x.j − e.i) to end]
17: else
18: e.S ← e.S[start to (x.i− e.i)] + x.S
19: e.j ← e.j + x.j − l
20: end if
21: end if
22: return True
23: end procedure

4

Algorithm 3 Condenses the sequence of edit operations E
into the sequence of compound operations E′ according to
loose compatibility. Returns E′.

Require: |E| > 0
1: procedure CONDENSELOOSE(E)
2: E′ ← {E[0]}
3: for each e ∈ E[1 to end] do
4: if not ADDLOOSE(E′[last], e) then
5: E′ ← E′ + {e}
6: end if
7: end for
8: return E′

9: end procedure

subsequences of edit operations in E are combined according
to loose compatibility, resulting in an E′ such that |E′| ≤ |E|.
Algorithm 3 defines explicitly the loose condensing process.

3) Strict Condensing: E is condensed according to strict
compatibility. A sequence of edit operations is said to be
strictly compatible if and only if it is loosely compatible
and every edit operation is of the same flavor. Hence the
term “strict” – strict compatibility has more stringent criteria
than loose compatibility. Therefore |E′strict| ≥ |E′loose| for any
given sequence of edit operations E. Algorithm 4 describes
explicitly the strict condensing process.

With respect to the three condensing strategies, it is likely
that the compound operations in E′ will vary depending on the
strategy used to condense E. Despite the possible variation in
content, each E′ defines the exact same translation behavior
when its constituent edit operations are applied to a token
sequence. Figure 2 shows an example of this phenomenon.
This variation in content and consistency in behavior across
the different condensing strategies is desirable, as it may allow
the determination of which form of edit operation is most
effective in NMT models. This concept is explored further in
RQ2.

C. Dataset Construction

Each of our datasets is formatted as a set of rows, where
each row contains one pair of token sequences. The first
sequence in a pair denotes what is translated from, and the
second sequence in a pair denotes what is translated into;
i.e., the first sequence is translated into the second sequence.
Constructing datasets in this way allows for easy consumption
by an NMT model. The model learns from the relationships
between the first and second sequences in each pair and
gains to some extent the ability to translate arbitrary token
sequences.

1) Control Dataset: The control dataset is used to establish
a baseline against which we can evaluate our experimental re-
sults. Thus, the control set is not involved with edit operations
in any way; rather, it is used to train an NMT model to translate
directly from buggy code to fixed code.

For the control dataset, we use a subset of the Bugs2Fix
data provided in Microsoft’s CodeXGlue project [11]. The

Algorithm 4 Condenses the sequence of edit operations E
into the sequence of compound operations E′ according to
strict compatibility. Returns E′. Note that the if condition on
line 4 employs short-circuiting.

Require: |E| > 0
1: procedure CONDENSESTRICT(E)
2: E′ ← {E[0]}
3: for each e ∈ E[1 to end] do
4: if not (

FLAVOR(e) == FLAVOR(E′[last]) and
ADDLOOSE(E′[last], e)

) then
5: E′ ← E′ + {e}
6: end if
7: end for
8: return E′

9: end procedure

data which we include for the control consist of about 58,000
unique Java method bug-fix pairs, with each method having
between 1 and 50 tokens, inclusive. A bug-fix pair (BFP) is
defined as a pair (mbug,mfix), where mbug is some method
source code containing bugs and mfix is its corresponding
method in which the bugs are fixed. Each method in the
CodeXGlue data has been preformatted according to Section
2.2 of Tufano et al. [17]; that is, their tokens have been
abstracted except for the most common literals and identi-
fiers, called idioms, which retain their actual values per the
source code. A major limitation of the abstraction process
as mentioned in [17] is that only BFPs in which mfix is a
rearrangement of the tokens in its corresponding mbug may
be considered. The inclusion of idioms mitigates this problem
to some extent, as it enlarges the vocabulary and increases the
number of BFPs which can be considered.

Figure 2 shows an example of one BFP belonging to the
control set. Looking at mbug in the figure, tokens 0, 1, 2, and
5 appear often enough in the rest of the data that they are left
as idioms. Tokens 3, 6, 9, and 11 do not meet this frequency
threshold and are therefore abstracted.

2) Machine Strings: In order to include edit operations in
our datasets, a method of transforming edit operations into
strings is necessary. Let the string representation of an edit
operation e be called its machine string, denoted by ms(e).
Machine strings come in two forms: typed and general. Every
edit operation has only one corresponding machine string
in each form, and every valid machine string has only one
corresponding edit operation.

A typed form machine string mstyped(op(i, j, S)) is com-
posed like so:

<f> i j <sep> s0 s1 · · · </f>

where f is one of ins, del, or rep, depending on if the
flavor of the represented edit operation is insertion, deletion,
or replacement, respectively.

5

For example, if e = op(8, 9, {“this”, “.”, “VAR_1”}),
then mstyped(e) is

<rep> 8 9 <sep> this . VAR_1 </rep>

A general form machine string msgeneral(op(i, j, S)) is
composed like so:

<op> i j <sep> s0 s1 · · · </op>

For example, using the same e as previously, msgeneral(e) is

<op> 8 9 <sep> this . VAR_1 </op>

Unlike typed form, general form machine strings do not
explicitly store the flavor of their represented edit operations;
however, the flavor can still be determined via Algorithm 1.
We make the distinction between typed and general form
to determine if the form of machine string used during
training affects the Hephaestus models’ abilities to learn edit
operations.

In addition to single edit operations, sequences of edit
operations can be converted to machine strings. To convert
a sequence of edit operations E to a machine string, every
e ∈ E is first converted to a machine string, then those
individual machine strings are concatenated in order, like so:

ms(E) = ms(e0) +ms(e1) + · · ·

3) Experimental Datasets: For each BFP in the control
set, the minimal sequence of Levenshtein operations is ex-
tracted which deterministically translates the mbug into its
corresponding mfix. This sequence is denoted by Efix, where
|Efix| is equal to the Levenshtein edit distance between mbug
and mfix. The application of Efix to its corresponding mbug is
represented mathematically by the addition operator like so:

mbug +Efix = mfix

Efix is then condensed into basic compound operations
(Efix)

′
basic, strict compound operations (Efix)

′
strict, and loose

compound operations (Efix)
′
loose. The application of any one

of these sequences of compound operations to an mbug results
in its corresponding mfix. Figure 2 shows an example of the
extraction of Efix from a BFP and the proceeding condensing
of Efix into its compound variants.

Note that Efix is not the only Levenshtein operation se-
quence which transforms a given mbug into its corresponding
mfix. Indeed, there is an infinite set of Levenshtein operation
sequences E such that ∀E ∈ E , mbug + E = mfix. Efix is
simply the minimal member of E , meaning that ∀E ∈ E ,
|Efix| ≤ |E|. Likewise, (Efix)

′
basic is the minimal sequence

of all basic compound operation sequences which transform
mbug into mfix, (Efix)

′
strict is the minimal sequence of the strict

compound operation sequences, and (Efix)
′
loose is the minimal

sequence of the loose compound operation sequences.
We construct three experimental datasets, one for each

of the basic, strict, and loose compound operations which
were derived from the Levenshtein operations as described
previously. Each row in the datasets is a pair: the first element

is a buggy method and the second element is the machine
string representation of the sequence of compound operations
which transforms the buggy method into its corresponding
fixed method. Thus, every BFP in the control set is represented
in the experimental sets. Each experimental dataset is also
copied to produce two variants: one variant contains the
compound operation machine strings in typed form and the
other contains the machine strings in general form. Table I
describes mathematically the format of the rows in each
dataset.

D. Hephaestus Model Construction

We select training parameters for the Hephaestus models
according to three parameter groups:

• LSTM+General: These parameters are as close as possi-
ble to the highest performing NMT model as described in
[17]. An Long Short Term Memory (LSTM) architecture
is used, and experimental models are trained with edit
operation machine strings in general form.

• GRU+General: A Gated Recurrent Unit (GRU) archi-
tecture is used instead of an LSTM architecture. All
other parameters are unchanged from the LSTM+General
group.

• LSTM+Typed: Experimental models are trained with ma-
chine strings in typed form. All other parameters are
unchanged from the LSTM+General group.

Three parameter groups and four datasets on which to
train gives twelve Hephaestus models total. For example,
the Hephaestus model trained with the loosely condensed
operation dataset and GRU+General parameters is referred to
as the “loose GRU+General model”. Each model is trained
with 80% of their respective dataset and validated with 10%
of the dataset using 50,000 training steps. The training process
took about 5.5 hours for each model using an NVIDIA Titan
RTX GPU.

We then test each Hephaestus model using the remaining
10% of our datasets. The final output for all the models is ab-
stracted Java method source code which is supposedly “fixed”.
The experimental models go about this process indirectly:
they first output edit operation machine strings, then apply
the represented edit operations to the inputted mbug to reach
the final output. Models are evaluated based on differences in
their final output and the ideal output of the true mfix for each
inputted mbug.

TABLE I: Dataset Row Formats

Dataset name Row format

Control (mbug, mfix)

Basic (mbug, ms((Efix)
′
basic))

Strict (mbug, ms((Efix)
′
strict))

Loose (mbug, ms((Efix)
′
loose))

6

Buggy Method (mbug)
0 1 2 3 4 5 6 7 8 9 10 11 12 13

public static void METHOD_1 (long VAR_1) { VAR_2 = VAR_1 ; }

Levenshtein Operations (Efix)
op(1, 2, {}) ≡ delete token 1
op(8, 8, {“this”}) ≡ insert “this” at index 8
op(9, 9, {“.”}) ≡ insert “.” at index 9
op(10, 11, {“VAR_1”}) ≡ replace token 10 with “VAR_1”

Basic Condensed Operations ((Efix)
′
basic)

op(1, 2, {}) ≡ delete token 1
op(8, 8, {“this”}) ≡ insert “this” at index 8
op(9, 9, {“.”}) ≡ insert “.” at index 9
op(10, 11, {“VAR_1”}) ≡ replace token 10 with “VAR_1”

Strictly Condensed Operations ((Efix)
′
strict)

op(1, 2, {}) ≡ delete token 1
op(8, 8, {“this”, “.”}) ≡ insert “this”, “.” at index 8
op(10, 11, {“VAR_1”}) ≡ replace token 10 with “VAR_1”

Loosely Condensed Operations ((Efix)
′
loose)

op(1, 2, {}) ≡ delete token 1
op(8, 9, {“this”, “.”, “VAR_1”}) ≡ replace token 8 with “this”, “.”, “VAR_1”

Fixed Method (mfix)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

public void METHOD_1 (long VAR_1) { this . VAR_1 = VAR_1 ; }

Fig. 2: Example of a real bug-fix pair from the control dataset. Levenshtein operations are derived from the transformation
of the buggy method into the fixed method. Then, these Levenshtein operations are condensed into basic, strict, and loose
compound operations. The indices of the tokens in the buggy and fixed methods are shown in small numbers.

E. Hephaestus Model Architecture
Our neural network models in the LSTM+General and

LSTM+Typed groups are built around a two-layer LSTM
architecture. This architecture provides internal methods for
maintaining error flow throughout the LSTM layers via the
constant error carousel (CEC). The CEC ensures that error
signals fed forward into the LSTM layers and backpropagated
to the LSTM layers are resistant to the effects of the vanishing
gradient problem. Internal learning units called the input and
output gates control the learning process [6].

Additionally, these models implement dropout layers with a
dropout rate of 0.2. Such layers reduce overfitting in the mod-
els by randomly removing their influence from the network
[14].

Models in the GRU+General group are built around a
GRU architecture instead of an LSTM architecture. GRU
architectures typically have fewer parameters than their LSTM
counterparts, and they use forget gates instead of output gates.
This implementation is used as a basis for comparison to
determine if the model architecture affects the experimental
outcome.

Stochastic gradient descent (SGD) is a widely-employed
optimizer for machine learning methodologies. We couple
SGD with a cross entropy error measure to train our models.

The benefit of cross entropy error as an error measure is
the reduction of the gradient to a lower order of curve,
which reduces the necessity of initial starts in SGD and
improves overall training efficiency. Our approach is at heart a
classification problem; either the output is part of the class of
correct translations or it is not. Cross entropy is widely used
in classification problems, as it maximizes the probability of
correctly classifying data in the output layer [1].

V. EXPERIMENTAL DESIGN

A. Evaluation

We evaluate the performance of each model according to
the following metrics:

1) Perfect Prediction Accuracy: The final output, i.e., the
prediction, of a model is said to be perfectly accurate if
it matches exactly the mfix corresponding to the inputted
mbug. Perfect prediction accuracy (PPA) is the percentage
of perfectly accurate predictions for all inputted mbug during
testing.

2) Failed prediction rate: It is possible that for an inputted
mbug, a Hephaestus model will either output a malformed
string which cannot be parsed, or output edit operations that
are invalid. When this occurs, the output is discarded and
dubbed a failed prediction. The failed prediction rate (FPR)

7

is the percentage of failed predictions for all inputted mbug
during testing.

3) Edit distance decrease: There is a Levenshtein edit
distance value, called the prediction distance, between each
model prediction and the target mfix. The term true distance
refers to the Levenshtein edit distance between the original
mbug and its corresponding mfix. The edit distance decrease
(EDD) is the true difference minus the prediction distance, and
describes how much a model improved the inputted mbug.
A positive value is desirable as it indicates that the model
predicted an output which is closer to the target value. We use
this metric to gauge prediction accuracy even when predictions
are not perfectly accurate.

4) Training accuracy: A measure provided by the internal
NMT implementation which describes how well a model
learns its training data.

B. Research Questions

In this study, we attempt to answer the following three
experimental research questions:

RQ1. Is learning edit operations an effective approach
to automatic bug repair?

In other words, is there an advantage to training the models
with edit operations instead of plain code text? This is the main
focus of our study. In order to determine the effectiveness of
learning edit operations, we compare the experimental metrics
against the control metrics in Section 6.

RQ2. What effect does each condensing strategy and
machine string form have on the accuracy of bug repair?

We described the various condensing strategies employed
in the construction of our experimental datasets in Section
3 (basic, strict, and loose condensing). The edit operations
in the data are further differentiated by the way they are
represented as machine strings (general versus typed form).
We devised these variations to maximize the Hephaestus
models’ exposure to different types of edit operations. We
hypothesize that training NMT models with edit operations
that are condensed and represented in different ways may have
an effect on the models’ prediction abilities. This is measurable
via the performance metrics; if the metrics differ among the
experimental models trained on different datasets, then there
is evidence that condensing or representing edit operations in
different ways affects the fidelity of the model.

RQ3. What is the effect of using an LSTM-based archi-
tecture versus a GRU-based architecture on the accuracy
of bug repair?

A nontrivial difference in the performance of the LSTM
and GRU versions of our architecture may indicate lurking
variables affecting our study. We test our methods against both
architectures to determine the closeness of performance levels.

VI. RESULTS

A. Perfect Prediction Accuracy

As shown in Figure 3a, the control models greatly out-
performed all versions of the experimental models at per-
fectly predicting bug fixes. The most accurate control model

(LSTM+General) had a PPA of 14.7%, whereas the most
accurate experimental model (loose GRU+General) had a PPA
of only 8.3%. With respect to condensing strategy and training
parameter group among the experimental models, there is no
significant difference in PPA.

B. Failed Prediction Rate

Figure 3b gives the failed prediction rates for all models.
The control models maintained 100% capability of producing
well-formed predictions. This is because every model always
outputs a string, and the string can always be interpreted as a
sequence of Java method tokens, as is the case for the control.
It does not matter for this metric if the outputted tokens form
valid abstracted Java code or not. In contrast, outputting invalid
edit operation machine strings will indeed cause prediction
failures.

Every experimental model exhibited a nonzero FPR, so it is
evidenced that the introduction of edit operations in an NMT
model’s training regimen will cause some amount of prediction
failure. The basic GRU+General model had a particularly high
value of 1.56%, although the inconsistency in the data suggests
that this is an anomaly. Thus, among the experimental models,
the data do not show any significant effects of the experimental
variables.

C. Edit Distance Decrease

Figure 3c shows the average edit distance decrease across all
models. Interestingly, every single model exhibited a negative
average EDD. This means that on average, every model
generated “bug fixes” which were further away from the fixed
code than the original buggy code was.

The control models had the most positive of the EDD
values, averaging at -1.32. The basic models were the least
helpful at reducing edit distance, with an overall average EDD
of -2.54. The strict and loose models fall in between, with
overall average EDDs of -1.57 and -1.61, respectively.

D. Training Accuracy

Figure 3d shows that the training accuracy of the control
model and basic model in the LSTM+General group main-
tained similar trajectories. Each model exceeded a training
accuracy of 90% toward the end of the training period.
Notably, the basic model’s training accuracy rose more quickly
initially than that of the control model. This is not reflected in
the end behavior where the control model had a slightly higher
training accuracy than the basic model. The strict and loose
models trained less accurately than the control by a greater
margin (approximately 15%). Both the strict and loose models
maintained relatively parallel trajectories in their end behavior,
with the strict model narrowly outperforming the loose model.

E. Research Questions

RQ1. Is learning edit operations an effective approach to
automatic bug repair?

The results of this experiment suggest that learning edit
operations does not offer advantages over the baseline ap-
proach. The control models performed better according to

8

Control Basic Strict Loose
0

4.5

9

13.5

18

1
4
.7

8
.0

7
.1

7
.2

1
3
.9

7
.6 8
.1 8
.3

1
4
.7

7
.5

6
.8 7
.5

Training Dataset

Pe
rf

ec
t

pr
ed

ic
tio

n
ac

cu
ra

cy
%

LSTM+General

GRU+General

LSTM+Typed

(a) Perfect prediction accuracies of all models.

Control Basic Strict Loose
0

0.45

0.9

1.35

1.8

0
.0
0

0
.3
8

0
.2
7

0
.5
8

0
.0
0

1
.5
6

0
.3
9

0
.6
0

0
.0
0

0
.3
4

0
.5
5

0
.7
9

Training Dataset

Fa
ile

d
pr

ed
ic

tio
n

ra
te

%

LSTM+General

GRU+General

LSTM+Typed

(b) Failed prediction rates of all models.

Control Basic Strict Loose
−3.6

−2.7

−1.8

−0.9

0

−
1
.5
3

−
2
.4
0

−
1
.6
6

−
1
.8
4

−
0
.8
9

−
2
.6
9

−
1
.4
6

−
1
.6
0

−
1
.5
3

−
2
.5
4

−
1
.5
8

−
1
.3
9

Training dataset

A
ve

ra
ge

ed
it

di
st

an
ce

de
cr

ea
se

LSTM+General

GRU+General

LSTM+Typed

(c) Average edit distance decreases for all models.

0 25,000 50,000
0

25

50

75

100 95.2

92.5
76.3

75.3

Train step

Tr
ai

ni
ng

ac
cu

ra
cy

%

Control
Basic
Strict
Loose

(d) Training accuracies of LSTM+General models. Labeled values
are the final training accuracies.

Fig. 3: Compilation of results statistics. Note that the control model in the LSTM+General group and the control model in the
LSTM+Typed group are identical. This is because the LSTM+Typed parameters only affect the form of edit operation machine
strings, and the control models do not in any way interact with edit operations.

every performance metric that was tested. This is likely
due to the experimental models experiencing higher entropy
than the control when making predictions. The experimental
Hephaestus models must determine a sequence of edit oper-
ations, decode them, and apply them to the inputted buggy
method in order to predict fixed source code. In contrast, the
control models output their predictions directly in the form
of source code. The data show that any possible advantages
gained by learning edit operations (as described in Section
1) are significantly outweighed by the complexity that such a
learning process introduces to the system.

The fact that edit operations-based NMT models experience
prediction failures is another disadvantage of the Hephaestus
approach. Further analysis revealed that the main cause of
prediction failure was that some generated edit operations
modified token indices that were out-of-bounds with respect to
the inputted buggy method. This failure case manifests most

often when predicting fixes for buggy methods with fewer
tokens; in this situation, outputted edit operations will have
a higher chance of modifying out-of-bounds token indices.
Additional information regarding failure analysis is available
in the source documentation (see Section 9).

RQ2. What effect does each condensing strategy and ma-
chine string form have on the accuracy of bug repair?

The data show that the experimental models’ ability to
fix bugs was influenced slightly by condensing strategy. The
differences in PPA between the basic, strict, and loose models
are negligible, but there are differences according to the
training accuracy and average EDD values. Despite having
significantly lower final training accuracy, the strict and loose
models had slightly more positive EDD values than the basic
models (a difference of about 0.96). Thus, it is evidenced
that condensing edit operations into strict and loose forms is
beneficial over not condensing them at all.

9

The only notable effect of machine string form is shown by
Figure 3b, where for the strict and loose models, training with
typed form machine strings caused marginally more prediction
failures than with general form machine strings. This is likely
due to the fact that typed form machine strings have more
stringent formatting guidelines and are therefore more difficult
to generate.

RQ3. What is the effect of using an LSTM-based architecture
versus a GRU-based architecture on the accuracy of bug
repair?

Whereas there is some variation between the PPAs as
shown in Figure 3a, the variation is not meaningful enough
to consider as a key difference between the models. Of note,
the GRU architecture performed mildly worse in the control
models (by approximately 0.8%), and mildly better in the strict
and loose models (by approximately 1% in each case).

VII. THREATS TO VALIDITY

Whereas care was taken to ensure the rigor of this study,
there are factors which could necessitate mitigation in the
application of our findings:

Construct Validity: From a formatting perspective, our
implementation of edit operations was chosen based on con-
venience. It is simple to limit the representation of any edit
operation to one function, namely op(i, j, S). However, this
may not be the optimal approach; different formatting may
produce different results.

External Validity: Our study is limited by our dataset; the
Hephaestus methodology was only applied against the prefor-
matted Bug2Fix CodeXGlue dataset. Whereas the population
size is sufficiently large, it focuses solely on Java codebases.
Based on this limitation, we can only say that our method is
ineffective for Java-based examples.

Internal Validity: We inherit the limitations stated by
Tufano et al., namely regarding the code abstraction process.
Source code abstraction reduces the vocabulary size signifi-
cantly and allows the use of NMT for meaningful predictions.
However, this reduction of vocabulary size brings with it a
cost: only BFPs in which mfix is a rearrangement of the
tokens in its corresponding mbug may be considered [17].
One mitigation to this problem is the inclusion of idioms in
the data, but only so many idioms can be included before the
vocabulary size is once again too large to be useful in NMT
learning. Thus, the problem remains significant.

VIII. FUTURE WORK

Based on the results of this study, several opportunities for
further research present themselves:

Failed Prediction Analysis: It was determined that most
failed predictions were caused by generated indices outside
the valid range for a given string. What changes can be
made to this model to restrict the prediction range? Is there
an alternative preprocessing measure that could alleviate this
issue?

Source Code Abstraction Method: In light of the idea
that different syntactic complexities may affect the perfect
prediction rates in Hephaestus, does changing the abstraction
method of the training dataset affect this metric? One avenue
of overcoming this concern is incorporating the approach taken
by Jiang et al. [7] of pre-training the model to have awareness
of developer-like syntax generalities.

Model Architecture: This study performed all experiments
guided by the framework of the Hephaestus model, focusing
on the LSTM and GRU implementations. As novel learning
methods and architectures emerge, reconsidering the archi-
tecture selected for this task may provide different results.
Additionally, use of other NLP tools such as GPT-based
architectures may prove beneficial.

Functional Testing: In this study, we are primarily con-
cerned with learning to generate edit operations which trans-
form one input element into one output element as presented
in the Bugs2Fix dataset. Whereas we believe this baseline
is appropriate for this initial study, we note that there is
potentially more than one acceptable final state for code that
qualifies as “fixed”. Further testing could be done to determine
if outputs that do not fail certain metrics (such as prediction
failure due to invalid output) are capable of compiling and
running successfully. This would involve extra software layers
in addition to the methods presented in our study. In ma-
chine translation task testing, Bilingual Evaluation Understudy
(BLEU) score can be used to determine the similarity of the
machine output and the translation by a human interpreter; a
metric of this nature would be useful in our context.

IX. CONCLUSIONS

In this study, we presented Hephaestus, a novel approach to
learning to translate from buggy to fixed code via the introduc-
tion of Levenshtein edit operations and their condensed forms:
basic, strict, and loose compound operations. After training
and testing the Hephaestus models, we have determined that
the introduction of these specific methods for training NMT-
based systems to learn bug fixes did not provide a benefit to
the task.

Whereas the methods prescribed in Hephaestus failed to
meet or exceed the baseline, it is important to note that they
did not fail entirely. Each approach used was successful in
greater than 7% of tested instances. As the chance of randomly
applying edit operations to a given buggy code input and
successfully producing the fixed version are minuscule, we can
see that edit operations are capable of performing automated
bug repair to some degree.

The code used to perform this study along
with replication documentation can be found at
https://github.com/WM-SEMERU/hephaestus.

X. ACKNOWLEDGEMENTS

The authors have been supported in part by the NSF CCF-
1955853 and CCF-2007246 grants. Any opinions, findings,
and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

10

REFERENCES

[1] Yaser Abu-Mostafa, Malik Magdon-Ismail, and Lin
Hsuan-Tien. Learning from Data: A Short Course.
AMLBook, Mar. 2012. ISBN: 978-1-60049-006-4.

[2] Jesper Andersen et al. “Semantic Patch Inference”.
In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (Sept.
2012). DOI: 10 . 1145 / 2351676 . 2351753. URL: https :
//ieeexplore.ieee.org/document/6494961.

[3] Yoshua Bengio et al. “A Neural Probabilistic Language
Model”. In: Journal of Machine Learning Research
(Feb. 2003). URL: https : / / www . jmlr . org / papers /
volume3/bengio03a/bengio03a.pdf.

[4] Saikat Chakraborty, Miltiadis Allamanis, and Baishakhi
Ray. “CODIT: Code Editing with Tree-Based Neural
Machine Translation”. In: IEEE Transactions on Soft-
ware Engineering (May 2019). DOI: 10.1109/TSE.2020.
3020502. URL: https: / / ieeexplore. ieee.org/document/
9181462.

[5] Zimin Chen et al. “SEQUENCER: Sequence-to-
Sequence Learning for End-to-End Program Repair”.
In: IEEE Transactions on Software Engineering (Sept.
2019). DOI: 10.1109/TSE.2019.2940179. URL: https:
//ieeexplore.ieee.org/document/8827954.

[6] Sepp Hochreiter and Jurgen Schmidhuber. “Long Short-
Term Memory”. In: Neural Computation (Nov. 1997).
URL: https://dl.acm.org/doi/10.1162/neco.1997.9.8.
1735.

[7] Nan Jiang, Thibaud Lutellier, and Lin Tan. “CURE:
Code-Aware Neural Machine Translation for Automatic
Program Repair”. In: 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE)
(May 2021). DOI: 10.1109/icse43902.2021.00107. URL:
http://dx.doi.org/10.1109/ICSE43902.2021.00107.

[8] Rafael-Michael Karampatsis et al. “Big code != big
vocabulary”. In: Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering (June
2020). DOI: 10.1145/3377811.3380342. URL: http://dx.
doi.org/10.1145/3377811.3380342.

[9] Guillaume Klein et al. “OpenNMT: Open-Source
Toolkit for Neural Machine Translation”. In: Proceed-
ings of ACL 2017, System Demonstrations. Vancou-
ver, Canada: Association for Computational Linguistics,
July 2017, pp. 67–72. URL: https://www.aclweb.org/
anthology/P17-4012.

[10] Herb Krasner. “The Cost of Poor Quality Software in
the US: A 2018 Report”. In: Consortium for IT Software
Quality (Sept. 2018). URL: https://www.it-cisq.org/the-
cost - of - poor - quality - software - in - the - us - a - 2018 -
report/The-Cost-of-Poor-Quality-Software-in-the-US-
2018-Report.pdf.

[11] Shuai Lu et al. CodeXGLUE: A Machine Learning
Benchmark Dataset for Code Understanding and Gen-
eration. URL: https : / / arxiv . org / abs / 2102 . 04664.
(accessed: 03.15.2021).

[12] Frederic P. Miller, Agnes F. Vandome, and John
McBrewster. Levenshtein Distance: Information The-
ory, Computer Science, String (Computer Science),
String Metric, Damerau?Levenshtein Distance, Spell
Checker, Hamming Distance. Alpha Press, 2009. ISBN:
6130216904.

[13] S. Amirhossein Mousavi, Donya Azizi Babani, and
Francesco Flammini. “Obstacles in Fully Automatic
Program Repair: A survey”. In: CoRR abs/2011.02714
(2020). arXiv: 2011.02714. URL: https://arxiv.org/abs/
2011.02714.

[14] Nitish Srivastava et al. “Dropout: a simple way to pre-
vent neural networks from overfitting”. In: The Journal
of Machine Learning Research (Jan. 2014). URL: https:
//dl.acm.org/doi/10.5555/2627435.2670313.

[15] Felix Stahlberg. “Neural Machine Translation: A Re-
view”. In: CoRR abs/1912.02047 (2019). arXiv: 1912.
02047. URL: http://arxiv.org/abs/1912.02047.

[16] Daniel Tarlow et al. “Learning to Fix Build Er-
rors with Graph2Diff Neural Networks”. In: CoRR
abs/1911.01205 (2019). arXiv: 1911.01205. URL: http:
//arxiv.org/abs/1911.01205.

[17] Michele Tufano et al. “An Empirical Study on Learning
Bug-Fixing Patches in the Wild via Neural Machine
Translation”. In: ACM Transactions on Software Engi-
neering and Methodology (Sept. 2019). DOI: 10.1145/
3340544. URL: https://doi.org/10.1145/3340544.

[18] Michele Tufano et al. “On Learning Meaningful Code
Changes via Neural Machine Translation”. In: 41st
ACM/IEEE International Conference on Software Engi-
neering (May 2019). DOI: 10.1109/ICSE.2019.00021.
URL: https://doi.org/10.1109/ICSE.2019.00021.

[19] Yuan Yuan and Wolfgang Banzhaf. “Toward Better Evo-
lutionary Program Repair: An Integrated Approach”.
In: ACM Transactions on Software Engineering and
Methodology (Jan. 2020). DOI: 10.1145/3360004. URL:
https://dl.acm.org/doi/10.1145/3360004.

11

