Traceclipse: An Eclipse Plug-in for Traceability Link
Recovery and Management

Samuel Klock, Malcom Gethers, Bogdan Dit, Denys Poshyvanyk
Department of Computer Science
The College of William and Mary
Williamsburg, VA 23185

{skkloc,mgethers,bdit,denys}@cs.wm.edu

ABSTRACT

Traceability link recovery is an active research area in soft-
ware engineering with a number of open research questions
and challenges, due to the substantial costs and challenges
associated with software maintenance. We propose Trace-
clipse, an Eclipse plug-in that integrates some similar char-
acteristics of traceability link recovery techniques in one
easy-to-use suite. The tool enables software developers to
specify, view, and manipulate traceability links within Eclipse
and it provides an API through which recovery techniques
may be added, specified, and run within an integrated de-
velopment environment. The paper also presents initial case
studies aimed at evaluating the proposed plug-in.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation

General Terms

Documentation; Management.

Keywords

Traceability, information retrieval.

INTRODUCTION

The maintenance phase of a software project’s lifecycle
presents developers with numerous expensive challenges. One
challenge receiving attention from the research community
is the recovery of traceability links between software arti-
facts. As software systems evolve, there is a corresponding
evolution of links between various software artifacts but de-
velopers often ignore to keep links up-to-date. Failing to
maintain such links makes it difficult to identify relation-
ships between various types of artifacts, such as between
high-level artifacts (e.g., requirements) and low-level arti-
facts (e.g., source code). Traceability link recovery tech-
niques have been proposed to identify such links.

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0589-1/11/05 ...$10.00

24

The contribution of this paper is a tool for traceability link
recovery and management that supports existing techniques
described elsewhere in the literature. We introduce Trace-
clipse, a plug-in for Eclipse IDE that provides a user-friendly
interface to traceability link recovery techniques and enables
developers to manage traceability links (i.e., accept or reject
those discovered automatically, manually specify links, and
store links) in an intuitive and easy way.

2. TRACEABILITY LINKS RECOVERY US-
ING INFORMATION RETRIEVAL

Traceclipse is intended to provide support mainly for IR-
based traceability link recovery techniques, although sup-
port may be added without significant difficulty for other
retrospective techniques or prospective techniques. Here, we
briefly discuss traceability links recovery techniques based
on information retrieval.

The basic steps take the following form. First, a corpus for
the target artifacts (i.e., set of software artifacts being traced
onto) is constructed. After construction, preprocessing (i.e.,
the removal of non-literals, the splitting of identifiers, the
removal of stop words, etc.) is applied.

An information retrieval technique is then applied to index
the corpus and each element of the source artifacts (i.e., set
of artifacts being traced) is converted into a query that is
then compared to each document in the corpus. In a typical
usage scenario, a list of the most similar pairings of source
and target artifacts would then be presented to the user for
inspection and validation.

Traceclipse implements a preprocessor for Java artifacts
and a basic IR-based recovery technique that uses Lucene’.

3. PLUG-IN FUNCTIONALITY

Traceclipse, which is available for download?, provides ser-
vices in two general areas: links management and links re-
covery.

3.1 Management

Traceclipse provides basic functionality for traceability links
management. The plug-in maintains a set of traceability
links for each Eclipse project; each link identifies a source
artifact and an associated target artifact, along with a sim-
ilarity score computed between them. Each project is also
associated with a directory containing documentation arti-
facts.

"http://lucene.apache.org/
Zhttp://www.cs.wm.edu/semeru/traceclipse

| ® Traceability Links View 32 .

Granularity Path Documentation Description Remove Link Sirmilarity Al
Class eduncsurealestate.l reyCardlest home/samjruntime-EclipseApplicationjrealestate/Use Cases/UC10 0t UC10 Flow of Events fc REmove) 053

Class edu.ncsu realestate.MovePlayerCardTest home/samiruntime-EclipseApplication/realestate/Use Cases/UC2.txt UC2 Flow of Events for: Remove 0.48 |
Class edu.ncsu.realestate.GameBoardFresParking re/samjruntime-Ecl lication/realestate/u: a UC3 . txt UCz Flow of Events for: Remove 048

Class edu nesu.realestate RailRoadCellTest home/samiruntime-EclipseApplication/realestate/u: ases/UC1A txt uc14 Flow of Events fc Remove 035

Class edu.ncsu realestat: neBoard home/samjruntime-EclipseApplicationjrealestate/Use Cases/UC2 txt UC2 Flow of Events for e —— 028

Class edu.ncsu realestate.BuyHouse home/samiruntime-EclipseApplication/realestate/Use Cases/UCS.txt UCE Flow of Events for: Frmme 059

Class edu.ncsu.realestate.Utility \e/samjruntime-Ecl lication/realestate/U ases/UCT ixt UC7 Flow of Events for: Remove 0.44

Class edu.nesu.realestate Player home/samiruntime-EclipseApplication/realestate/u: ases/UC13txt UC13 Flow of Events fc Remove 036

Class edu.ncsu.realestate.Utility home/samjruntime-EclipseApplication/realestate/U = UCY txt UCY Flow of Events for FmieeE 036

|

Figure 1: The Traceability Links View.

Within a project, a user may view the links specified for
a particular source artifact or for the entire project. The
user may also manually specify traceability links for pairs of
artifacts. Traceclipse currently recognizes implementation
artifacts at the package, file, class/interface, and method
levels of granularity. To add a link for a particular artifact,
the user may right-click it and select “Traceability->Add
link...” from the artifact’s context menu. A dialog box ap-
pears showing both a list of possible target artifacts and,
for textual artifacts, a preview of the selected artifact’s con-
tents. When the user clicks “OK”, a traceability link for the
selected pair of artifacts is added to the project’s set, and
its similarity is set to “User-specified”; as a way of marking
a strong connection between those artifacts.

The user may view the traceability links specified for a
given artifact (or for the entire project) by right-clicking the
artifact and selecting “Traceability->View links...”. A new
view implemented with this plug-in called the Traceability
Links View is populated with links associated with the se-
lected artifact. If the links are viewed for an entire project,
the view is populated with all the links specified for the ar-
tifacts in that project.

The Traceability Links View (see Fig. 1) shows links in
terms of the granularity of implementation artifacts, the
names of the implementation artifacts, the names of the
documentation artifacts, a description of the documentation
artifacts, and a similarity score between the implementation
and documentation artifacts. If the artifacts for a given link
are user-specified, then the similarity column shows the text
“User-specified.” Clicking on the name of either the imple-
mentation or the documentation artifact opens the appropri-
ate Eclipse editor for viewing that artifact. Each row in the
view also provides a “Remove” button that, when clicked,
removes the associated link from the project’s set.

For convenience of storage and analysis, Traceclipse stores
the traceability links for a given project in XML format.
The plug-in’s internal representation of traceability links are
serialized into XML using XStream® and are stored under
the associated project’s directory in .trace/links.xml (e.g.,
for a project in the workspace named “foo”, the links are
stored in [workspace_directory]/foo/.trace/links.xml). The
links file may be easily parsed for analysis outside of Eclipse
and without the assistance of Traceclipse’s API.

3.2 Recovery

For semi-automatic retrospective techniques, Traceclipse
provides a new wizard-based interface from which these tech-
niques may be parameterized and run. Via the interface, a

3http://xstream.codehaus.org/

25

user selects a level of granularity with which to view source
code artifacts, preprocessing options for source and docu-
mentation corpora, a traceability recovery technique and as-
sociated parameters, a directory containing documentation
to which to trace, and criteria for proposed links to view.
After the wizard closes, the selected technique is run and
candidate links meeting the user’s criteria are presented in
the Traceability Links View for inspection.

The wizard presents standard preprocessing options to the
user. Supported options include the removal of non-literal
characters, the splitting of identifier names (using either the
camel case or underscore conventions), word stemming (ei-
ther for all words or nouns only), and the removal of stop
words. For the latter option, the user is expected to sup-
ply a text file containing stop words to remove with one
word per line. The Porter stemmer? is used to stem words.
Unfortunately, though the option is given to do so in the
link generation wizard, the preprocessor currently is not ca-
pable of distinguishing between nouns and other parts of
speech. Comments for all code are included at each level
of granularity and Javadocs for methods are included when
the preprocessor is run at the method-level granularity.

Preprocessing is only completed after the user clicks the
wizard’s “Finish” button, and its output is stored in the
project’s directory under .trace/ppsource (for implementa-
tion artifacts) and .trace/ppdoc (for documentation arti-
facts). Each document in each corpus is assigned a name
of the form [type][id].txt, where [type] is either “doc” (for
documentation artifacts) or “source” (for implementation ar-
tifacts) and [id] is a unique integer. These files are mapped
to the original artifacts to which preprocessing is applied via
a file called “mapper.txt” that is stored in .trace/ppdoc and
.trace/ppsource respectively.

The documentation located in the user-selected directory
should be stored in plain-text format. Currently this format
is the only one supported, but in the future we plan to al-
low users to provide their documentation in other formats.
For best results, the user should verify that documentation
is partitioned into traceable chunks (i.e., each requirement
should reside in its own file, each use case should reside in
its own file, etc.). The user may decide to trace a query onto
multiple different kinds of documentation artifacts simulta-
neously if desired, but for precision it is advisable to focus
on only one kind of artifact at a time.

Each technique included in the wizard specifies its own pa-
rameters to present to the user. The example included with
Traceclipse, which uses Lucene, allows the user to specify a
maximum length for fields associated with each document in

“http://tartarus.org/ martin/PorterStemmer/

the documentation corpus; smaller values improve speed and
reduce the technique’s memory footprint, but they constrain
the amount of information extracted from each document to
a certain size. In practice, if documentation artifacts tend
to be small in size, then small field lengths should be accept-
able. Other techniques implemented may specify their own
parameters (e.g., for Latent Semantic Indexing (LSI) [9], a
value for the dimensionality reduction factor).

The criteria for proposed links can take one of two forms:
a fixed number of links or a threshold for artifact pair simi-
larities displayed. In the first case, the user selects a number,
k, indicating the number of candidate links, with the high-
est similarity scores, to provide to the user. In the second
case, the user selects a threshold p for the similarity score,
and the technique returns only those links with a similarity
score above that threshold.

Upon completion, the Traceability Links view displays
traceability links, according to the specified criteria, and the
user has the ability to remove invalid links.

4. EXAMPLE USAGE

We ran Traceclipse in the context of several projects to
test and assess its functionality. Two of the projects, iTrust
and RealEstate, are available via the Repository for Open
Software® (ROSE). CM1 is a science instrument developed
by NASA and EasyClinic is a system used to manage a doc-
tor office’s appointments developed by students. The latter
two systems are used in the TEFSE Challenge®.

Our plug-in required at most a few minutes of computa-
tion time with some management functions completed al-
most instantaneously. Traceclipse appears to cope well with
compilation errors in code (e.g., syntax errors, unresolvable
package references) and in our tests the tool did not en-
counter any constraints imposed by the Java heap space.
One concern is that the Traceability Links View can take a
significant amount of time (i.e., several seconds) to render if
more than a handful of links are inserted into it. We believe
this is due to the fact that there are several widgets em-
bedded in the view for each traceability link, which makes
rendering the table more difficult to do. A possible solution
to the problem is to replace the widgets from the view with
context menus providing the same functionality.

Table 1 summarizes our experience with the ROSE projects
using traceability link generation at method-level granular-
ity with all preprocessing options except for stop word re-
moval enabled. These tests were run on a machine with a
dual-core processor clocked at 2.8 GHz and six GB of RAM
running Ubuntu 10.04. Neither project is particularly large,
but they both give some insight on how Traceclipse might
perform in real-world contexts. The corpora produced by
the preprocessor did not exceed a megabyte in size for ei-
ther project. Neither project required a substantial amount
of time to produce the requested set of traceability links, al-
though the amount of time required for iTrust suggests that
projects of an order of magnitude larger may require an hour
or more to process. Most of the time required in the case of
iTrust was consumed by Lucene; the preprocessor finished
in well under a minute. More efficient recovery techniques
may require less time to run.

®http://agile.csc.ncsu.edu/rose/
Shttp://www.cs.wm.edu/semeru/tefse2011/Challenge.htm

26

‘ RealEstate ‘ iTrust

Lines of code < 1,000 About 7,700
Size of artifacts 847 KB 2.0 MB
Documentation types Use cases Uses cases,
non-functional

requirements

Size of corpora 115 KB 942 KB
Size of Lucene index 6 KB 37 KB
Time required Seconds Five minutes
Links requested 500 500
Size of links file on disk 335 KB 357 KB

Table 1: Projects used to assess Traceclipse’s trace-
ability links generation.

Project Traced | Correct | Precision | Recall
EasyClinic (UC) 26 0.385 | 0.108
EasyClinic (ID) 71 0.465 | 0.478
EasyClinic (TC) 70 0.400 | 0.269
CM1 75 0.240 0.400

Table 2: Precision-recall performance of the Lucene
technique at cut point 75.

Note that this section is not intended to constitute a sci-
entific evaluation of the tool for management or research
purposes. We leave that as future work.

4.1 Lucene Performance

As a proof-of-concept, the precision-recall performance of
the Lucene recovery technique is shown in Table 2. We
applied Lucene to each dataset using standard preprocess-
ing options (i.e., word stemming, removal of non-literals,
and identifier splitting), and up to 75 traceability links with
similarity scores of at least 0.15 were selected. We manu-
ally assessed if the proposed traceability links returned by
Traceclipse are correct or not.

5. PLUG-IN DESIGN

A central goal for Traceclipse’s design is that it should be
easily expandable. While we intend for Traceclipse to facili-
tate routine traceability links-related tasks (e.g., specifying
and viewing links), we also want the tool to be a suitable
platform on which to conduct research on future traceabil-
ity link recovery techniques. Accordingly, the tool should
provide a straightforward API upon which to build and test
new techniques.

To meet that goal, we developed a simple API to imple-
ment new techniques. Retrospective (particularly IR-based)
techniques may be added in the context of the recovery
wizard by implementing a pair of interfaces and prospec-
tive techniques essentially need only to interact with Trace-
clipse’s manager module. The relevant elements of the de-
sign are described in the following subsections and proce-
dures for adding new techniques are described in the next
section.

5.1 Traceability Links

The package in which the concepts of a traceability link
and a set thereof is specified in Table 3. There, two classes
and an enumerated type are defined. The class Traceabil-
ityLink represents a traceability link in terms of a imple-
mentation artifact, a documentation artifact, a similarity
score, a level of granularity, and an optional textual descrip-
tion. Objects of the type are represented in aggregate via
the class TraceabilityLinkSet. Levels of granularity are
defined in the enumerated type Granularity.

Element Packages

Description

Traceability Links | traceability.links

API for interacting with traceability links

Manager traceability.management

API for managing traceability links within a project

Recovery traceability.recovery
traceability.wizard

API for building new recovery techniques

Interface traceability.dialog

traceability.views

Elements of Traceclipse’s user interface; the

traceability.popup.actions | traceability links view; etc.

Miscellaneous traceability

traceability.util

Miscellaneous /utility class definitions

Table 3: Packages for various elements of the design.

Instances of TraceabilityLinkSet are serialized into XML
for the purpose of storing traceability links. That function-
ality is described in the next subsection.

5.2 Manager

The abstraction of traceability links management is han-
dled by the class Manager in the package given by Table 3.
The Manager class constitutes the foundation of Traceclipse,
as it provides an interface between the other elements of the
tool (e.g., the UI and recovery techniques) and the trace-
ability links set for each project in the Eclipse workspace.

Manager is a singleton class and its responsibilities include
creating empty sets of traceability links for each project,
adding links to and removing links from those sets, and ex-
tracting links from the sets for analysis. The Manager also
keeps track of where the sets are stored.

The Manager handles the information about a single project
at a time. To interact with the traceability links for a par-
ticular project, interested entities must first have the Man-
ager change its current project to the desired project. The
Manager will save the set of traceability links for the cur-
rent project to disk and load the set for the desired project,
whereupon interested artifacts may use the Manager to view
and manipulate the contents of the set. From the perspec-
tive of a user, existing elements of the Ul set the current
project appropriately in response to user actions; additions
to the Ul will have to take this into account.

5.3 Recovery

The relevant packages for recovery-related code are given
in Table 3. In the recovery package, Traceclipse provides
a preprocessor for Java artifacts, along with two interfaces
and an enumerated type defining contracts for recovery tech-
niques. A sample implementation using Lucene also resides
in that package.

The user is expected to activate (retrospective) recovery
techniques via the wizard interface (see Section 3.2). The
wizard is defined using Eclipse’s wizard API (org.eclipse.-
jface.wizard) and is divided into a series of pages corre-
sponding to the steps described earlier. The recovery wiz-
ard runs the preprocessor and the user-specified recovery
technique (after the user presses the “Finish” button) and is
responsible for collecting links from the technique, adding
them to the current set via the Manager, and making the set
available to the Traceability Links View (see Figure 1).

5.3.1 Eclipse JDT API

The preprocessor (JavaDocumentPreprocessor) relies heav-
ily on the API from Eclipse’s Java Development Toolkit
(JDT). When generating documents at the class- and method-
levels of granularity, the preprocessor uses the API to build
abstract syntax trees from the source code to determine

where classes and methods begin and end. In addition, the
API is used to tokenize the source code to facilitate filtering
non-literals and Java keywords from input documents.

The crucial elements of the JDT used to build the source
corpus reside in org.eclipse. jdt.core.compiler and org. -
eclipse.jdt.core.dom. In the former package, the Scanner
class is used to tokenize Java source, enabling the preproces-
sor to efficiently ignore Java keywords and, where appropri-
ate, non-literals. The Scanner is applied to source artifacts
at all levels of granularity, but it is not applied to documen-
tation artifacts.

In the latter package, Traceclipse uses several classes to
produce and analyze abstract syntax trees. One of the most
important classes is ASTParser, which is used to build the
abstract syntax trees. Various other classes, such as AST and
ASTNode, are used to traverse the trees and extract interest-
ing nodes for the purposes of preprocessing (e.g., Compila-
tionUnits, Types, and MethodDeclarations, depending on
the level of granularity). Information extracted from these
nodes is used to guide preprocessing. In each case, the JDT’s
representation marks where the unit begins and ends in the
source file, which helps the preprocessor divide source files
into documents prior to further preprocessing.

5.4 Interface

Traceclipse’s provides a new view for Eclipse, called Trace-
ability Links View that is implemented in traceability.-
views. It also provides functionality to context menus for
various resources in Eclipse. These elements include IPro-
ject and IFile resources (as defined in Eclipse’s resources
APT under org.eclipse.core.resources), along with IType,
IPackageFragment, and IMethod (as defined in the JDT API
under org.eclipse.jdt.core).

The extensions add a submenu for each resource named
“Traceability”. For each resource apart from IProject, the
menu contains two items, “Add link...” and “View link...”,
with the obvious semantics. For IProject resources, the
menu also contains two items, “View links...” and “Build
project corpus...”. The first item has predictable semantics;
the second item brings up the recovery wizard.

The classes responsible for handling events generated by
the new menu items are located in traceability.popup.-
actions. Their names give their expected behavior; for ex-
ample, AddLink is used to create manually specified trace-
ability links. ViewLinks provides one of two ways for the
user to populate the Traceability Links View with links; the
other way is via link generation through the recovery wizard.

6. EXTENDING TRACECLIPSE

Traceclipse is designed to be easily extended with new
recovery techniques. While the API is designed primarily

to support retrospective techniques (particularly those that
are IR-based, given the supplied preprocessing functional-
ity), it may also be used to develop and deploy prospective
techniques. We describe how to do so in the following two
subsections.

6.1 Retrospective Techniques

Developers who wish to contribute retrospective techniques
to Traceclipse must follow two basic steps. First, they must
implement the interfaces RecoveryTechnique and Recov-
eryTechniqueParams in traceability.recovery (see Fig-
ure 2). Second, they must add a line of code to Tech-
niqueWizardPage in traceability.wizard to get the wiz-
ard to recognize the new technique.

For the first step, developers must implement an interface
for the technique itself via RecoveryTechnique. The inter-
face specifies four methods, which respectively specify the
technique’s name, its parameters, a way of running it, and
a way of obtaining links from it following its execution. The
parameters for the technique are specified via a second in-
terface, called RecoveryTechniqueParams. All techniques
are required to implement this interface and the param-
eter method for each technique (RecoveryTechnique.get-
Parameters) is expected to return an instance of Recovery-
TechniqueParams that will be used by the technique.

The RecoveryTechniqueParams interface specifies several
methods used to parameterize recovery techniques. Recov-
eryTechniqueParams is expected to function as a mapping
from parameter names (Strings) to values for those param-
eters. Each instance is required to provide a method for
setting a special parameter, which is the granularity with
which to view source artifacts. Otherwise, the set of pa-
rameters (if any) is decided entirely by the technique. The
interface requires implementers to provide labels for each pa-
rameter, to specify types for each parameter, and to provide
ways of getting and setting the value of each parameter. Le-
gal types are defined in the enumerated type ParameterType
in traceability.recovery; they are used by the wizard to
build controls allowing the user to set values for the pa-
rameters. Currently, supported types include text, booleans
(check-boxes and radio buttons), integers, and reals. Con-
tributing additional parameter types will require modifying
ParameterType to include them and TechniqueWizardPage
to generate appropriate controls. (This functionality may
be transferred to the enumerated type, if deemed appro-
priate.) Classes implementing RecoveryTechniqueParams
should provide default values for each parameter; these are
used to populate appropriate fields in the wizard.

Apart from implementing the interfaces, developers must
also add a line to TechniqueWizardPage in order for their
techniques to appear in the wizard. TechniqueWizardPage
has as a member an array of RecoveryTechniques called
TECHNIQUES; developers must create an instance of their new
technique in that array for it to appear in the wizard. The
wizard itself will handle the generation of controls for the
technique. Again, this is a requirement that may be rela-
tively easy to obviate; see Section 7.

6.2 Prospective Techniques

The tool provides no direct support for prospective trace-
ability apart from allowing users to manually specify and re-
move links. Automated prospective traceability techniques
may rely on Traceclipse to manage links via the Manager

28

public interface RecoveryTechnique {
public String getName();
public RecoveryTechniqueParams getParameters();
public boolean run(IProject project);
public Set<TraceabilityLink> getRecoveredLinks();
}

public interface RecoveryTechniqueParams {
public String [] getParameterIDs();
public String getLabelForParameter(String id);
public ParameterType getTypeForParameter(String id);
public void setValueForParameter(String id, Object val);
public Object getParameterValue(String id);
public void setGranularity(Granularity granularity);

Figure 2: Interfaces for retrospective techniques.

class. For example, a simple prospective technique might
keep track of the source artifacts on which a developer is
working (and, by extension, the project on which the devel-
oper is working). When a developer opens a documentation
artifact, the technique might automatically prompt the Man-
ager to add a link between the source and documentation
artifacts. More sophisticated prospective techniques may
follow this basic form. Thus, Traceclipse does provide a use-
ful, if modest, API for contributing prospective techniques.

7. FUTURE WORK ON TRACECLIPSE

Although we provide a working plug-in for researchers and
practitioners for traceability link recovery, there are features
which will be further developed.

One goal for future development is to enable developers
to do so by having them specify the location of class files for
their new techniques in a configuration file, which is then
read and used in the context of Java’s reflection API to
pull the technique into the recovery wizard. Ideally, de-
velopers should be able to implement new techniques and
then configure Traceclipse to use them (i.e., via a settings
file in a well-known location). A second goal is to develop
project-specific preferences for Traceclipse. Traceclipse cur-
rently does not support preferences of any kind. However,
the user should ideally be able to control, for example, where
sets of traceability links are stored on disk.

Another avenue for future work is extending Traceclipse
to support languages other than Java. The current prepro-
cessor defined in traceability.recovery relies heavily on
the JDT API, which means that adding new language sup-
port will require either substantially modifying it or adding
a new preprocessor (e.g., Eclipse CDT API for C programs).

There are avenues for future work on Traceclipse, which
mainly deal with extending Traceclipse to support more fea-
tures (i.e., languages other than Java) and improving its ex-
isting functionality, such as the efficiency of its preprocessor.
More important, it would be wise to assess how effective the
tool is as a support both for real-world software projects and
as a research platform.

8. RELATED WORK

Research in the field has dealt with three means of trace-
ability link recovery: manual, automatic, and semi-automatic
[21]. Manual methods entail that developers or analyst track
links by hand, generally during the implementation process;
the analyst is responsible for finding and evaluating links

without the assistance of automated techniques. Fully auto-
matic techniques entail the use of specialized software that
tracks the creation and evolution of software artifacts and
that makes final decisions on links itself.

Most work has occurred in the field of semi-automatic
traceability link recovery, in which both the software tool
and the analyst play a role. The focus of this project is
the development of a semi-automatic tool, hence the focus
of this section will be on semi-automatic traceability links
recovery, with an emphasis on the use of IR techniques in
candidate link generation.

8.1 Semi-automatic Traceability Links Recov-
ery

Antoniol et al. produced early work in (semi-)automatic
traceability link recovery [3]. Their work focused on the se-
lection of properties along which artifacts may be matched
(e.g., class names, methods, fields, attributes; developer-
produced dictionaries; etc.). Prior to their work, automated
traceability techniques were not well-studied. Antoniol et
al. point to, for example, the development of an annotation
language for Ada [16].

Since their work, researchers have developed a number
of approaches to semi-automatic traceability link recovery.
Qusef et al. divide these into three categories: heuristic-
based, data-mining based, and IR-based [20]. Their work
is an example of heuristic-based traceability link recovery.
To discover traceability links between JUnit test cases and
tested code, the authors applied a heuristic: any class that
affects the outcome of the last assert statement in a test
case is a class under test. Egyed and Grunbacher [10] pro-
posed pairing requirements with execution traces on the as-
sumption that source code artifacts exercised in those traces
implement the requirements. Data-mining techniques have
been used to find traceability links among source code ar-
tifacts, which is useful for detecting relationships among
classes [20]. IR-based techniques are discussed more fully
in the following subsection.

Semi-automatic traceability link recovery relies on two ac-
tors to produce useful results: the automated tool (responsi-
ble for finding candidate links) and the analyst (responsible
for evaluating and accepting/rejecting candidate links). In
most research, the focus is on describing an automated tech-
nique that produces the best results (i.e., proposes the most
correct traceability links with as few incorrect links as pos-
sible). Hayes and Dekhtyar [13] point out that, in addition
to recall and precision, such techniques ought to focus on
usability and earning the confidence of the analyst to max-
imize the effectiveness of the human factor; analysts who
find tools difficult to use or do not trust them to yield good
results tend to use them less effectively. One of the goals of
this project is to produce a tool that is both effective and
highly usable.

Conversely, a related issue in the effectiveness of semi-
automatic traceability techniques, as well as, presumably,
fully automatic techniques, is developer discipline. Many
techniques, especially those that rely on textual information
(i.e., IR), rely on developers to follow good programming
and documentation conventions. Cleland-Huang et al. [7],
for example, advise developers to meaningfully organize doc-
umentation; state requirements clearly, concisely, and mean-
ingfully; and constrain the language used in documentation
to a small, domain-specific vocabulary. Similarly, De Lu-

29

cia et al. [15] noted the problem of poor programming con-
ventions, for example, poorly selected names for identifiers.
They suggested an IR-based traceability system called CO-
CONUT to help programmers wisely select identifier names
based on the artifacts related to their task. More recently,
the tool has been extended, resulting in CodeTopics [11],
which utilizes topic models to show developers the similar-
ities between source code and high-level artifacts as well as
providing other useful functionality.

8.2 Traceability using Information Retrieval

IR-based traceability recovery techniques rely on textual
information to draw inferences about how software artifacts
are related. Typically, artifacts are partitioned into sets of
documents called corpora. Preprocessing techniques, such
as word stemming and identifier splitting, are then applied
to the documents in each corpora, yielding a series of terms
presumed to be meaningful in each document. An IR-based
algorithm is then used to compute similarity scores between
artifacts from each corpus, which are then used to propose
candidates for links [7].

Antoniol et al. introduced the usage of IR techniques to
the problem of traceability [2]. In particular, their work
evaluated the effectiveness of vector-space and probabilis-
tic network models as similarity metrics in semi-automated
links recovery. They found both methods promising.

Subsequent work expanded on the IR paradigm that An-
toniol et al. established. Marcus et al. [17] in particular
expanded on the use of Vector Space Models (VSM) for
traceability link recovery, using LSI; they claimed to obtain
results at least as good as Antoniol et al. with less prepro-
cessing required and language-independence. Others later
expanded on their investigation; De Lucia et al. [14], for ex-
ample, integrated LSI-based traceability link recovery into
an artifact management system and assessed its effectiveness
in terms of usability, efficiency, and accuracy with reason-
ably promising results. As another example, Abadi et al.
[1] compared a number of different IR techniques, including
LSI, variants thereof, and a new technique using the Jensen-
Shannon similarity model. They found that the vector-space
and Jensen-Shannon (JS) similarity models were most ef-
fective for traceability link recovery. Capobianco et al. [6]
proposed a technique using the B-spline method, which is
based on numerical analysis. The authors also claimed to
obtain superior results to both vector-space models and LSI.
More recently, Oliveto et al. [18] demonstrate that across
various systems LSI, JS, and VSM result in equivalent per-
formance while recovery techniques based on topic models
yield results orthogonal to the aforementioned techniques.
One potential issue encountered when applying information
retrieval techniques to recover links between various types of
artifacts relates to vocabulary mismatch. Cleland-Huang et
al. [8] and Gibiec et al. [12] propose combining webmining
and information retrieval techniques to alleviate the issue
and improve their accuracy.

8.3 Traceability Tools

A number of tools for traceability link recovery and man-
agement exist in the literature. An early example is TOOR,
developed by Pinheiro and Goguen in 1996 [19]. It enables
the specification and management of links among multiple
kinds of artifacts using user-defined relations. The latter fea-
ture is intended to make the intended meaning of traceability

links easier for developers to understand. TOOR predates
most of the research on semi-automatic recovery techniques,
hence it provides no automated recovery feature.

Asuncion et al. provides a pair of more recent examples
[4, 5]. The first of these examples was developed around
2007 with support from the Wonderware commercial soft-
ware company. The unnamed tool is intended to support
traceability links management with a focus on minimizing
overhead and enabling reuse.

The second was described in 2010; it is a tool given in
three components intended to support prospective traceabil-
ity link recovery using topic modeling as a guide for find-
ing new links and paring invalid ones. Notably, neither of
these tools rely on traditional IR-based techniques described
in the literature. The first relies on manual management
and the second relies primarily on automated prospective
traceability. An example more consistent with the litera-
ture described here is given by De Lucia et al. in the form
of ADAMS, a tool for traceability link recovery and man-
agement [14]. The tool relies on LSI to retrieve candidate
links, assess their probable quality, and make suggestions to
developers during software evolution.

It is worth noting that no tool in the literature appears to
serve as a platform for general research in traceability link
recovery. In this respect, Traceclipse is a novel contribution.

9. CONCLUSION

In this paper, we presented a new plug-in for traceability
link recovery and management. Traceclipse provides sup-
port for manual specification and management of traceabil-
ity links and it supplies an API which new techniques for
traceability link recovery may be built and analyzed. It
stores traceability links in a convenient, portable XML file,
and provides functionality for viewing/assessing traceability
links. Accordingly, we hope Traceclipse may be used both as
a research platform and as a practical system for traceability
link recovery in real-world development projects.

Acknowlegemetns

This work is supported by NSF CNS-0959924 grant. Any
opinions, findings, and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

10. REFERENCES

[1] A. Abadi, M. Nisenson, and Y. Simionovici. A
traceability technique for specifications. Proc. of 16th
ICPC, pages 103-112, 2008.

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IJEEE TSE, 28(10):970-983,
2002.

G. Antoniol, B. Caprile, A. Potrich, and P. Tonella.
Design-code traceability recovery: selecting the basic
linkage properties. Sci. Comput. Program.,
40(2-3):213-234, 2001.

H. U. Asuncion, A. U. Asuncion, and R. N. Taylor.
Software traceability with topic modeling. In Proc. of
82nd ICSE, pages 95-104, 2010.

H. U. Asuncion, F. Francgois, and R. N. Taylor. An
end-to-end industrial software traceability tool. In
Proc. of 6th ESEC/FSE, pages 115-124, 2007.

2]

30

[6] G. Capobianco, A. D. Lucia, R. Oliveto,

A. Panichella, and S. Panichella. Traceability recovery
using numerical analysis. In Proc. of 16th WCRE,
pages 195-204, 2009.

J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi,
and E. Romanova. Best practices for automated
traceability. Computer, 40(6):27-35, 2007.

J. Cleland-Huang, A. Czauderna, M. Gibiec, and

J. Emenecker. A machine learning approach for tracing
regulatory codes to product specific requirements. In
Proc. of 32nd ICSE, pages 155-164, 2010.

S. C. Deerwester, S. T. Dumais, T. K. Landauer,

G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391-407, 1990.
A. Egyed and P. Grunbacher. Automating
requirements traceability: Beyond the record replay
paradigm. In Proc. of 17th ASE, pages 163 — 171,
2002.

M. Gethers, T. Savage, M. Di Penta, R. Oliveto,

D. Poshyvanyk, and A. De Lucia. Codetopics: Which
topic am i coding now? In Proc. of 33rd ICSE, Formal
Research Tool Demonstration, to appear in 2011.

M. Gibiec, A. Czauderna, and J. Cleland-Huang.
Towards mining replacement queries for
hard-to-retrieve traces. In Proc. of the 25th ASE,
pages 245-254, 2010.

J. H. Hayes and A. Dekhtyar. Humans in the
traceability loop: can’t live with ’em, can’t live
without ’em. In Proc. of 3rd TEFSE, pages 20-23,
2005.

A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora.
Recovering traceability links in software artifact
management systems using information retrieval
methods. ACM TOSEM., 16(4):13, 2007.

A. D. Lucia, M. D. Penta, and R. Oliveto. Improving
source code lexicon via traceability and information
retrieval. IEEE TSE, 2010.

D. C. Luckham, F. W. von Henke, B. Krieg-Briickner,
and O. Owe. ANNA: a language for annotating Ada
programs. Springer-Verlag, 1987.

A. Marcus, J. I. Maletic, and A. Sergeyev. Recovery of
traceability links between software documentation and
source code. International Journal of Software
Engineering and Knowledge Engineering,
15(4):811-836, 2005.

R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De
Lucia. On the equivalence of information retrieval
methods for automated traceability link recovery. In
Proc. of 18th ICPC, pages 68-71, 2010.

F. A. Pinheiro and J. A. Goguen. An object-oriented
tool for tracing requirements. Software, 13:52—64,
1996.

A. Qusef, R. Oliveto, and A. D. Lucia. Recovering
traceability links between unit tests and classes under
test: An improved method. In Proc. of the 26th ICSM,
2010.

S. Sundaram, J. Hayes, A. Dekhtyar, and E. Holbrook.
Assessing traceability of software engineering artifacts.
Requirements Engineering, 2010.

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

