

Configuring Topic Models for Software Engineering
Tasks in TraceLab

Bogdan Dit1, Annibale Panichella2, Evan Moritz1, Rocco Oliveto3, Massimiliano Di Penta4, Denys Poshyvanyk1,
Andrea De Lucia2

1The College of William and Mary, Williamsburg, VA, USA
2University of Salerno, Fisciano (SA), Italy

3University of Molise, Pesche (IS), Italy
4University of Sannio, Benevento, Italy

Abstract—A number of approaches in traceability link
recovery and other software engineering tasks incorporate topic
models, such as Latent Dirichlet Allocation (LDA). Although in
theory these topic models can produce very good results if they
are configured properly, in reality their potential may be
undermined by improper calibration of their parameters (e.g.,
number of topics, hyper-parameters), which could potentially
lead to sub-optimal results. In our previous work we addressed
this issue and proposed LDA-GA, an approach that uses Genetic
Algorithms (GA) to find a near-optimal configuration of
parameters for LDA, which was shown to produce superior
results for traceability link recovery and other tasks than
reported ad-hoc configurations. LDA-GA works by optimizing
the coherence of topics produced by LDA for a given dataset. In
this paper, we instantiate LDA-GA as a TraceLab experiment,
making publicly available all the implemented components, the
datasets and the results from our previous work. In addition, we
provide guidelines on how to extend our LDA-GA approach to
other IR techniques and other software engineering tasks using
existing TraceLab components.

Index Terms—Configurable, TraceLab, experiments, LDA,
genetic algorithm, traceability

I. INTRODUCTION

The recent years showed a significant progress in software
engineering (SE) research community on applying Information
Retrieval (IR) techniques. One of these techniques, called
Latent Dirichlet Allocation (LDA) [1], is a topic modeling
technique that can identify latent concepts found in the
unstructured textual information of software artifacts. More
specifically, LDA uses a probabilistic statistical model to
extract a set of topics related to the textual artifacts analyzed,
and estimate the distribution of these latent topics over these
artifacts (e.g., what is the probability that a topic will be related
to a document). These extracted topics can be leveraged to
support various software maintenance tasks, such as
traceability link recovery [2], feature location [3], change
impact analysis [4], and others.

LDA is established on a solid theoretical foundation, and
produces topic models based on the following input
parameters: (i) number of topics, the hyper-parameters (ii) α
and (iii) β, which influence the distribution of topics per

document, and the distribution of the terms per topic,
respectively and (iv) the number of iterations needed for the
model to converge. In theory, if these parameters are set
correctly, LDA would generate a high quality topic distribution
which would accurately reflect the underlying topic distribution
from the actual data. However, if these parameters are not
configured properly, they may lead LDA to produce sub-
optimal results.

LDA was originally applied on natural language documents
(e.g., books), and was later applied on software artifacts to
support SE tasks. The underlying assumption was that software
artifacts share the same textual characteristics as text from
natural language. This resulted in configuring LDA for
software maintenance tasks using the same parameters used for
configuring natural language documents. Hence, even though
LDA was producing good results on natural language text, it
did not always produce the expected results for SE tasks, such
as traceability link recovery [5]. A recent study showed that the
text extracted from software systems is much more predictable
and repetitive as compared to the text from natural language
documents [6]. These finding could explain in part why LDA is
performing well on natural language and is performing sub-
optimally when applied to SE tasks.

In our previous work, we addressed the issue and we
proposed LDA-GA [7], an approach that uses Genetic
Algorithms (GA) to identify a near-optimal configuration for
LDA’s parameters. More specifically, LDA-GA uses the
coherence of the documents pertaining to the same topic to
drive the evolution of the GA, which narrows down the search
space of possible configuration of LDA parameters, until a
configuration that is near-optimal is found. Our LDA-GA
approach was validated on multiple datasets on three SE
techniques, namely traceability link recovery, feature location
and software artifact labeling, and was shown to produce near-
optimal results [7].

In this paper, we instantiate our LDA-GA techniques as a
TraceLab experiment that supports traceability link recovery.
In addition, we provide the source code (e.g., experiments,
components) and datasets used to evaluate LDA-GA, and we
provide all the information required by a practitioner to use
LDA-GA on other datasets and other SE tasks that require
calibration of their LDA techniques, such as feature location,

impact analysis, and others. Our data can be access from our
online appendix: http://www.cs.wm.edu/semeru/data/tefse13/

This paper addresses the configurable Grand Challenge1 of
software traceability. More specifically, it provides a technique
that can be used to configure the parameters of the topic model
LDA in order to generate the most suitable topics from a
corpus of software artifacts, which can be used in IR-based
traceability link recovery techniques.

II. BACKGROUND

This section encapsulates all the information required by a
practitioner to use LDA-GA and provides a high-level
description of the concepts presented in this paper, namely
LDA [1], LDA-GA [7] and TraceLab [8, 9, 10]. For a more
formal description of these concepts we refer the interested
reader to their original papers.

A. LDA

LDA [1] is a topic model that generates a topic distribution
probability for each document analyzed. From an intuitive and
simplified point of view LDA addresses the following
questions: given a set of document, (i) which are the topics that
describe these documents? and (ii) for each document, what is
the probability that that document will belong to a particular
topic? For SE, the collection of documents (i.e., the corpus)
could consist of use cases, source code classes or methods, bug
reports or any other textual software artifact.

The corpus of documents is transformed to an m × n term-
by-document (or co-occurrence) matrix M, with m number of
unique terms in all the documents, and n representing the
number of documents. Each element of M represents the
frequency (i.e., the number of times) that a term (from the row)
appears in a document (from the column). The term-by-
document matrix is used as an input for LDA, which in turn
will generate a k × n topic-by-document matrix θ, with k and n
representing the number of topics and number of documents
respectively. Each element θij represents the probability that the
jth document pertains to the ith topic. The fact that k is smaller
than n permits LDA to group documents with the same
preponderant topics in the same cluster. The coherence of these
clusters will be evaluated by our LDA-GA technique (see
Section II.B.1) to determine the quality of the LDA model.

For generating LDA models for our approach, we chose the
fast collapsed Gibbs sampling over the standard LDA
implementation, because it produces equivalent results, in a
shorter amount of time [11]. The Gibbs sampling generative
model requires the following parameters:

 the number of topics (k) that should be extracted from
the corpus; intuitively, this can be considered as the
number of clusters required by a clustering algorithm
to group the data.

 the number of iterations (n), which represents the
number of rounds the Gibbs sampling is applied over
the entire corpus. The value should be large enough to
allow the LDA model to converge.

1 http://www.coest.org/index.php/research-directions/grand-traceability-
challenges

 α, the hyper-parameter that influences the smoothing of
the topic proportions in documents. Intuitively, larger
values of alpha would generate topics that are
distributed more uniformly in each document.

 β, the hyper-parameter that influences the smoothing of
the terms distribution per topics. Intuitively, larger
values of beta would generate results where terms are
distributed more uniformly in each topic.

B. LDA-GA

LDA has been used in numerous SE tasks (e.g., traceability
link recovery [2, 12], feature location [13], source code
labeling [14], etc.) in the same way that it is commonly used in
the IR community, which is based on the underlying
assumption that source code text and natural language text are
the same. However, in light of a recent study that showed that
source code is exhibiting different characteristics that natural
language text (e.g., it is more predictable and more repetitive)
[6], we argue that using the same parameter values used in the
IR community may not produce optimal results for SE.
Although there were some heuristics [15, 16] for configuring
LDA parameters, these approaches focus only on configuring
the number of topics, excluding the other hyper-parameters.

LDA-GA [7] addresses this issue by configuring all the
LDA parameters in the context of a specific dataset. In other
words, given the unique size and characteristics of a dataset,
LDA-GA will find an LDA configuration that best fits the
particular dataset and is independent of the SE task it will be
evaluated in. Our underlying assumption is that the quality of
the LDA model (represented by the quality of the clusters
produced by the model) should be task independent, and should
not be trained using the answer-set of the task. For example,
training an LDA model using the answer-set for a traceability
link recovery technique would require a priori knowledge of
the links, which would defeat the purpose of using an
automatic technique to recover them.

1) Evaluating the LDA configuration. For a given
configuration of LDA parameters, an LDA model is computed
and evaluated as follows.

First, each document from θ is associated with its dominant
topic (i.e., the topic with the highest probability among all the
document's topics). Second, the dominant topic of a document
represents the cluster the document will belong to. Third, after
associating each document with a cluster, two internal quality
metrics, namely cohesion and separation, are used to determine
how closely related and how dissimilar the clusters are,
respectively. These two quality metrics are represented by one
value called the Silhouette coefficient [17], which takes into
account the maximum distances between documents in the
same clusters and the minimum distances between documents
pertaining to different clusters. Fourth, the quality of the cluster
is interpreted based on the scalar values of the Silhouette
coefficient as follows: if the value is close to 1, the clusters are
coherent and well separated, and vice-versa for values close to
-1. Lastly, the Silhouette coefficient is used as a fitness
function (see Section II.B.2) for the GA.

2) Finding a (near) optimal LDA Parameter Configuration.
The GA [18] that drives LDA-GA to find the near-optimal
LDA configuration in the search space of configurations can
be summarized as follows. First, a population of LDA
parameter configurations is generated. Second, each individual
(or chromosome) of this population will generate an LDA
model that will be used to cluster the documents (see Section
II.B.1). Third, the clusters for each chromosome will be
evaluated using the Silhouette coefficient, which will serve as
the fitness function (i.e., the function that estimates how
suitable an individual is as a candidate for future generations).
Fourth, the fitness function is the main force to drive the
evolution of the genetic algorithm for the next generation (i.e.,
new population). The new population evolves from the
previous population, by applying the following criteria on the
individuals of the previous population: (i) preserving the
individuals with the highest fitness function (i.e., elitism), (ii)
applying the selection operation (i.e., choose the most suited
individuals, with the highest fitness functions to be
reproduced), (iii) applying the crossover operator (i.e.,
combine two individuals from the previous population based
on some probability) and (iv) applying the mutation operator
(i.e., the values of the individuals from previous population
will be slightly modified based on a probability).

The configuration of the GA used in our LDA-GA
approach is a simple GA [18] with: elitism of two individuals,
the Roulette wheel selection as the selection operator, the
arithmetic crossover for the crossover operator, and the
uniform mutation as the mutation operator.

C. TraceLab

TraceLab [8, 9, 10] is a framework designed for creating,
executing, and sharing experiments in SE research. TraceLab
is developed at DePaul University in collaboration with Kent
State University, University of Kentucky, and the College of
William and Mary. TraceLab is funded by the National Science
Foundation and was initially designed to support traceability
link recovery. However, due to its design qualities and
characteristics it is well suited to be adapted to other SE tasks,
such as feature location, as described in Section III.D.
TraceLab was originally designed for the Windows platform,
using the Microsoft .NET framework, but has been ported to
the Linux and Mac platforms. TraceLab has already been

successfully used to implement and reproduce experiments for
several research publications [19, 20, 21].

An experiment in TraceLab (see Figure 1(a)) is a directed
graph of nodes, where each node represents a tool or technique
referred to as a component (e.g., RPlugin-Setup, Configured
LDA, etc.). These components can be dragged-and-dropped
from the library of components into the graph to add the
necessary functionality to an experiment. Edges between nodes
indicate both (i) precedence, meaning that all parent
components must run before the current component can run,
and (ii) data flow, as is often the case in situations where the
output of one component is used as the input to the next
component (e.g., component Cleanup Preprocessor uses as
input the output of its parent component Source Artifacts). The
children of nodes with multiple outgoing edges will be run in
parallel, allowing TraceLab to multitask. Every TraceLab
experiment has a Start and an End node (see Figure 1(a)),
representing the entry and exit points of the graph. Once the
end node is executed, the experiment is complete.

TraceLab ships with the Component Library, a
comprehensive set of tools and techniques designed for SE
research. These can range from simple components, such as
data importers, to state-of-the-art components, such as IR
techniques supporting traceability links recovery among other
techniques. Additionally, TraceLab comes with a software
development kit (SDK) for creating custom components,
allowing greater flexibility by integrating user techniques into
the framework. We refer the user to the TraceLab wiki2 for
more information about using and building components.

III. INSTANTIATING LDA-GA IN TRACELAB

This section details the process of implementing LDA-GA
as a TraceLab experiment, and offers some guidelines on
adapting LDA-GA to other datasets or SE techniques (Sections
III.C and III.D).

A. TraceLab-based LDA-GA Implementation

Figure 1(a) shows the LDA-GA TraceLab experiment that
compares two traceability link recovery techniques: one that
uses LDA-GA and one that uses an ad-hoc configuration of
LDA [12], which is used as a baseline. This experiment is a
replication of the case study from [7]. Upon starting the

2 http://coest.org/coest-projects/projects/tracelab/wiki

(a)

(b)

FIGURE 1. (A) THE LDA-GA TRACELAB EXPERIMENT THAT REPLICATES THE CASE STUDY BY PANICHELLA ET AL. [7] ON THE EASYCLINIC SYSTEM; (B)

CONFIGURATION PANEL FOR SETTING UP THE GA AND LDA PARAMETERS FOR RUNNING LDA-GA (FOR SPACE LIMITATIONS, THE IMAGE WAS RIGHT-CLIPPED)

experiment, the RPlugin-Setup component performs some
setup tasks to prepare the components based on R3 to run in
TraceLab. Next, the traceability dataset, composed of the
source artifacts (e.g., use case documents) and target artifacts
(e.g., code classes), is loaded into TraceLab and some standard
preprocessing is performed (i.e., removing non-alphanumeric
symbols, splitting identifiers, removing stop words and
stemming). Next, the preprocessed source and target artifacts
are sent as inputs to the LDA-GA Configuration component.
This component can be configured by the user (see Figure 1(b))
with the parameters for the GA (see Section II.B.2) and the
parameters of LDA used as a search space for the GA (see
Section II.A). Furthermore, the LDA-GA Configuration
component is responsible for running the LDA-GA algorithm
that finds the near-optimal configuration for the LDA
parameters. This configuration of parameters is used to
generate the LDA model (see Configured LDA component) for
the traceability recovery task.

Concurrently, the Baseline LDA component computes an
LDA model (i.e., the baseline) based on an ad-hoc parameter
configuration which was used in a previous approach [12].
Both LDA components (i.e., our LDA-GA-based traceability
technique and the baseline) output a list of candidate links
ranked by their similarity score. Note that the oracle is not used
until this point, which emphasized the fact that LDA-GA is a
dataset-specific and task-independent approach. The previously
established answer set (i.e., oracle) is loaded into TraceLab and
fed into the LDA Metrics and Baseline Metrics components
which compute the precision and recall metrics of these two
traceability link recovery techniques. The precision-recall
curve (see Figure 2) is displayed using the (UI) Results
component. The results indicate that our LDA-GA-based
traceability technique produces better precision and recall
results (i.e., the curve starts with 100% precision at 10% recall,
and slowly declines to ~80% at 20% recall, ~64% precision at
30% recall, etc.) than a baseline traceability technique that uses

3 http://www.r-project.org/

an ad-hoc configuration (i.e., the curve suddenly drops to 20%
precision at 6% recall).

 This result is consistent with the evaluation performed by
Panichella et al. [7] (see Figure 3 (a) in [7]). Note that due to
the random nature of the GA, the precision and recall curve is
not exactly the same as the one produced in Panichella et al.'s
experiment [7], but the difference is negligible. For more
details about the variability of the results we refer the interested
reader to [7].

1) Reusing existing components. Since TraceLab ships with
a suite of practical components, we were able to reuse the
following components without modification: artifacts
importers (for source, target, oracle), corpus preprocessor,
metrics computation, and GUI results visualization. In
addition, we were able to reuse the RPlugin-Setup component,
which allows TraceLab to run any scripts in R. This
component is part of the RPlugin library, a separate project
that is released along with the Component Library.

2) Implementing new components Our RPlugin project uses
the LDA implementation from R’s topicmodels package. We
implemented the component responsible for the LDA-GA
approach (see LDA-GA Configuration component in Figure
1(a)) using an R script which was wrapped and accessed
through our RPlugin library. The script uses the R package tm
to transform a corpus into a document-by-term matrix, which
is then weighted using the tf-idf scheme. The weighted matrix
is used as input for the genetic algorithm found in the R
package GA, which utilizes the fitness function based on the
Silhouette coefficient to generate a near-optimal configuration
for LDA’s parameters. The LDA parameters, which are the
result of the R script, are sent back to the TraceLab
workspace.

Note that the LDA-GA component provides the user with
the flexibility of changing the configuration options for the GA
algorithm (see Section II.B.2) and the search space parameters
of LDA used by the GA (see Section II.A) via the component’s
configuration panel (see Figure 1(b)). More specifically, the
configurable GA parameters include: the population size,
elitism size, permutation rate for the mutation operation, and
maximum number of generations. On the other hand, the LDA-
GA parameters for LDA that indicate the search space of
possible values for the GA are: the maximum values for α and
β (minimum is 0), and the minimum and maximum number of
LDA Gibbs iterations. Note that the max number of topics is
currently capped by the number of documents in the corpus.

We also implemented a component that takes as input LDA
parameters and computes the corresponding LDA model. This
component was instantiated twice: once as a component which
takes as input a configuration produced by another component
(i.e., see Figure 1(a), Configured LDA) and once as a
component manually configured by a user using ad-hoc
parameters (see Baseline LDA in Figure 1(a)).

B. Description of the Datasets

We evaluated the two traceability techniques (e.g., LDA-
GA and baseline) on the EasyClinic dataset. EasyClinic is a
system designed to manage a doctor's office and consists of 20

FIGURE 2 PRECISION (Y-AXIS) AND RECALL (X-AXIS) GRAPH FOR EASYCLINIC.
THE BASELINE CURVE (RED) IS ON THE BOTTOM AND THE LDA-GA RESULTS

CURVE (BLUE) IS ON TOP

KLOC, 30 use cases (i.e., source artifacts), 47 source code
classes (i.e., target artifacts), and 93 correct traceability links
between the source and target artifacts.

TraceLab supports a few different corpora formats, and
provides the possibility to create custom data importers. For
this experiment, we used the Artifacts Directory Importer
format, in which the corpus is represented by a directory of
files. Each file represents an artifact, where the filename is the
ID of the artifact and the contents of the file represents the
textual description of the artifact. The artifacts are then
converted into TraceLab’s native corpus format
(TLArtifactsCollection).

The pre-computed answer sets were imported using the
standard Answer Set Importer component. The format of the
answer set is a tab-delimited file, where the first entry on each
line is the ID of a source artifact, and the remaining entries on
that line are the IDs of true links of the target artifacts. The
imported answer set is then converted into TraceLab's
TLSimilarityMatrix data type, with all scores set to 1.

C. Adapting LDA-GA to other Datasets

TraceLab was designed to facilitate running existing
experiments on different datasets. Therefore, running LDA-GA
on another dataset is a straightforward process, which requires
adding the path of the other datasets in configuration info pane
of the components responsible for importing.

D. Adapting LDA-GA to other SE Techniques

As a general rule of thumb, a user can reuse as many
existing components as possible when creating new
experiments. A large number of these components are already
found in the Component Library, while other can be
implemented by the user, using the guidelines described in the
TraceLab wiki. For example, using LDA-GA for a feature
location technique that uses LDA [13] would require replacing
the traceability link related components with existing feature
location components from the library (e.g., importers, metrics
to compute the effectiveness measure, GUI components for
generating box plots). As mentioned before, LDA-GA will still
run on the dataset and will find the configuration the produces
the most coherent topics, while remaining agnostic at the SE
task at hand.

ACKNOWLEDGMENT

This work is supported in part by the United States NSF
CCF-1016868, CNS-0959924, and CCF-1218129 awards. Any
opinions, findings and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

REFERENCES

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet
Allocation," Journal of Machine Learning Research, vol. 3, pp.
993-1022, 2003.

[2] H. Asuncion, A. Asuncion, and R. Taylor, "Software Traceability
with Topic Modeling," in ICSE, 2010, pp. 95-104

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, "Feature
Location in Source Code: A Taxonomy and Survey," JSEP, pp. to
appear, doi: 10.1002/smr.567, 2012.

[4] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, "Integrated
Impact Analysis for Managing Software Changes," in ICSE, 2012,
pp. 430-440.

[5] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, "On the
Equivalence of Information Retrieval Methods for Automated
Traceability Link Recovery," in ICPC, 2010, pp. 68-71.

[6] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu, "On the
Naturalness of Software," in ICSE, 2012, pp. 837-847.

[7] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, "How to Effectively Use Topic Models for Software
Engineering Tasks? An Approach based on Genetic Algorithms,"
in ICSE, 2013, pp. to appear.

[8] J. Cleland-Huang, A. Czauderna, A. Dekhtyar, G. O., J. Huffman
Hayes, E. Keenan, G. Leach, J. Maletic, D. Poshyvanyk, Y. Shin,
A. Zisman, G. Antoniol, B. Berenbach, A. Egyed, and P. Maeder,
"Grand Challenges, Benchmarks, and TraceLab: Developing
Infrastructure for the Software Traceability Research Community,"
in TEFSE, 2011, pp. 17-23.

[9] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin, E.
Moritz, M. Gethers, D. Poshyvanyk, J. Maletic, J. H. Hayes, A.
Dekhtyar, D. Manukian, S. Hussein, and D. Hearn, "TraceLab: An
Experimental Workbench for Equipping Researchers to Innovate,
Synthesize, and Comparatively Evaluate Traceability Solutions,"
in ICSE, 2012, pp. 1375-1378.

[10] J. Cleland-Huang, Y. Shin, E. Keenan, A. Czauderna, G. Leach,
E. Moritz, M. Gethers, D. Poshyvanyk, J. H. Hayes, and W. Li,
"Toward Actionable, Broadly Accessible Contests in Software
Engineering," in ICSE, 2012, pp. 1329-1332.

[11] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and M.
Welling, "Fast Collapsed Gibbs Sampling For Latent Dirichlet
Allocation," in KDD, 2008, pp. 569-577.

[12] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, "On
Integrating Orthogonal Information Retrieval Methods to Improve
Traceability Link Recovery," in ICSM, 2011, pp. 133-142.

[13] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy, L. H.
Etzkorn, and N. A. Kraft, "Configuring Latent Dirichlet Allocation
based Feature Location," ESE, pp. to appear, doi: 10.1007/s10664-
012-9224-x , 2012.

[14] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S.
Panichella, "Using IR Methods for Labeling Source Code
Artifacts: Is it Worthwhile?," in ICPC, 2012, pp. 193-202.

[15] S. Grant and J. R. Cordy, "Estimating the Optimal Number of
Latent Concepts in Source Code Analysis," in SCAM, 2010, pp.
65-74.

[16] T. Griffiths and M. Steyvers, "Finding scientific topics," National
Academy of Sciences, 2004.

[17] J. Kogan, Introduction to Clustering Large and High-
Dimensional Data: Cambridge University Press, 2006.

[18] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, 1989.

[19] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto,
D. Poshyvanyk, and A. De Lucia, "Using Structural Information
and User Feedback to Improve IR-based Traceability Recovery,"
in CSMR, 2013, pp. to appear.

[20] B. Dit, E. Moritz, and D. Poshyvanyk, "A TraceLab-based
Solution for Creating, Conducting, and Sharing Feature Location
Experiments," in ICPC, 2012, pp. 203-208.

[21] A. Czauderna, M. Gibiec, G. Leach, Y. Li, Y. Shin, E. Keenan,
and J. Cleland-Huang, "Traceability challenge 2011: Using
tracelab to evaluate the impact of local versus global idf on trace
retrieval," in TEFSE'11, Honolulu, HI, USA, 2011.

