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Abstract—A number of approaches in traceability link 
recovery and other software engineering tasks incorporate topic 
models, such as Latent Dirichlet Allocation (LDA). Although in 
theory these topic models can produce very good results if they 
are configured properly, in reality their potential may be 
undermined by improper calibration of their parameters (e.g., 
number of topics, hyper-parameters), which could potentially 
lead to sub-optimal results. In our previous work we addressed 
this issue and proposed LDA-GA, an approach that uses Genetic 
Algorithms (GA) to find a near-optimal configuration of 
parameters for LDA, which was shown to produce superior 
results for traceability link recovery and other tasks than 
reported ad-hoc configurations. LDA-GA works by optimizing 
the coherence of topics produced by LDA for a given dataset. In 
this paper, we instantiate LDA-GA as a TraceLab experiment, 
making publicly available all the implemented components, the 
datasets and the results from our previous work. In addition, we 
provide guidelines on how to extend our LDA-GA approach to 
other IR techniques and other software engineering tasks using 
existing TraceLab components. 

Index Terms—Configurable, TraceLab, experiments, LDA, 
genetic algorithm, traceability 

I. INTRODUCTION 

The recent years showed a significant progress in software 
engineering (SE) research community on applying Information 
Retrieval (IR) techniques. One of these techniques, called 
Latent Dirichlet Allocation (LDA) [1], is a topic modeling 
technique that can identify latent concepts found in the 
unstructured textual information of software artifacts. More 
specifically, LDA uses a probabilistic statistical model to 
extract a set of topics related to the textual artifacts analyzed, 
and estimate the distribution of these latent topics over these 
artifacts (e.g., what is the probability that a topic will be related 
to a document). These extracted topics can be leveraged to 
support various software maintenance tasks, such as 
traceability link recovery [2], feature location [3], change 
impact analysis [4], and others.  

LDA is established on a solid theoretical foundation, and 
produces topic models based on the following input 
parameters: (i) number of topics, the hyper-parameters (ii) α 
and (iii) β, which influence the distribution of topics per 

document, and the distribution of the terms per topic, 
respectively and (iv) the number of iterations needed for the 
model to converge. In theory, if these parameters are set 
correctly, LDA would generate a high quality topic distribution 
which would accurately reflect the underlying topic distribution 
from the actual data. However, if these parameters are not 
configured properly, they may lead LDA to produce sub-
optimal results. 

LDA was originally applied on natural language documents 
(e.g., books), and was later applied on software artifacts to 
support SE tasks. The underlying assumption was that software 
artifacts share the same textual characteristics as text from 
natural language. This resulted in configuring LDA for 
software maintenance tasks using the same parameters used for 
configuring natural language documents. Hence, even though 
LDA was producing good results on natural language text, it 
did not always produce the expected results for SE tasks, such 
as traceability link recovery [5]. A recent study showed that the 
text extracted from software systems is much more predictable 
and repetitive as compared to the text from natural language 
documents [6]. These finding could explain in part why LDA is 
performing well on natural language and is performing sub-
optimally when applied to SE tasks. 

In our previous work, we addressed the issue and we 
proposed LDA-GA [7], an approach that uses Genetic 
Algorithms (GA) to identify a near-optimal configuration for 
LDA’s parameters. More specifically, LDA-GA uses the 
coherence of the documents pertaining to the same topic to 
drive the evolution of the GA, which narrows down the search 
space of possible configuration of LDA parameters, until a 
configuration that is near-optimal is found. Our LDA-GA 
approach was validated on multiple datasets on three SE 
techniques, namely traceability link recovery, feature location 
and software artifact labeling, and was shown to produce near-
optimal results [7]. 

In this paper, we instantiate our LDA-GA techniques as a 
TraceLab experiment that supports traceability link recovery. 
In addition, we provide the source code (e.g., experiments, 
components) and datasets used to evaluate LDA-GA, and we 
provide all the information required by a practitioner to use 
LDA-GA on other datasets and other SE tasks that require 
calibration of their LDA techniques, such as feature location, 



 

impact analysis, and others. Our data can be access from our 
online appendix: http://www.cs.wm.edu/semeru/data/tefse13/ 

This paper addresses the configurable Grand Challenge1 of 
software traceability. More specifically, it provides a technique 
that can be used to configure the parameters of the topic model 
LDA in order to generate the most suitable topics from a 
corpus of software artifacts, which can be used in IR-based 
traceability link recovery techniques. 

II. BACKGROUND 

This section encapsulates all the information required by a 
practitioner to use LDA-GA and provides a high-level 
description of the concepts presented in this paper, namely 
LDA [1], LDA-GA [7] and TraceLab [8, 9, 10]. For a more 
formal description of these concepts we refer the interested 
reader to their original papers. 

A. LDA 

LDA [1] is a topic model that generates a topic distribution 
probability for each document analyzed. From an intuitive and 
simplified point of view LDA addresses the following 
questions: given a set of document, (i) which are the topics that 
describe these documents? and (ii) for each document, what is 
the probability that that document will belong to a particular 
topic? For SE, the collection of documents (i.e., the corpus) 
could consist of use cases, source code classes or methods, bug 
reports or any other textual software artifact. 

The corpus of documents is transformed to an m × n term-
by-document (or co-occurrence) matrix M, with m number of 
unique terms in all the documents, and n representing the 
number of documents. Each element of M represents the 
frequency (i.e., the number of times) that a term (from the row) 
appears in a document (from the column). The term-by-
document matrix is used as an input for LDA, which in turn 
will generate a k × n topic-by-document matrix θ, with k and n 
representing the number of topics and number of documents 
respectively. Each element θij represents the probability that the 
jth document pertains to the ith topic. The fact that k is smaller 
than n permits LDA to group documents with the same 
preponderant topics in the same cluster. The coherence of these 
clusters will be evaluated by our LDA-GA technique (see 
Section II.B.1) to determine the quality of the LDA model. 

For generating LDA models for our approach, we chose the 
fast collapsed Gibbs sampling over the standard LDA 
implementation, because it produces equivalent results, in a 
shorter amount of time [11]. The Gibbs sampling generative 
model requires the following parameters: 

 the number of topics (k) that should be extracted from 
the corpus; intuitively, this can be considered as the 
number of clusters required by a clustering algorithm 
to group the data. 

 the number of iterations (n), which represents the 
number of rounds the Gibbs sampling is applied over 
the entire corpus. The value should be large enough to 
allow the LDA model to converge. 

                                                           
1 http://www.coest.org/index.php/research-directions/grand-traceability-
challenges 

 α, the hyper-parameter that influences the smoothing of 
the topic proportions in documents. Intuitively, larger 
values of alpha would generate topics that are 
distributed more uniformly in each document. 

 β, the hyper-parameter that influences the smoothing of 
the terms distribution per topics. Intuitively, larger 
values of beta would generate results where terms are 
distributed more uniformly in each topic. 

B. LDA-GA 

LDA has been used in numerous SE tasks (e.g., traceability 
link recovery [2, 12], feature location [13], source code 
labeling [14], etc.) in the same way that it is commonly used in 
the IR community, which is based on the underlying 
assumption that source code text and natural language text are 
the same. However, in light of a recent study that showed that 
source code is exhibiting different characteristics that natural 
language text (e.g., it is more predictable and more repetitive) 
[6], we argue that using the same parameter values used in the 
IR community may not produce optimal results for SE. 
Although there were some heuristics [15, 16] for configuring 
LDA parameters, these approaches focus only on configuring 
the number of topics, excluding the other hyper-parameters.  

LDA-GA [7] addresses this issue by configuring all the 
LDA parameters in the context of a specific dataset. In other 
words, given the unique size and characteristics of a dataset, 
LDA-GA will find an LDA configuration that best fits the 
particular dataset and is independent of the SE task it will be 
evaluated in. Our underlying assumption is that the quality of 
the LDA model (represented by the quality of the clusters 
produced by the model) should be task independent, and should 
not be trained using the answer-set of the task. For example, 
training an LDA model using the answer-set for a traceability 
link recovery technique would require a priori knowledge of 
the links, which would defeat the purpose of using an 
automatic technique to recover them. 

1) Evaluating the LDA configuration. For a given 
configuration of LDA parameters, an LDA model is computed 
and evaluated as follows.  

First, each document from θ is associated with its dominant 
topic (i.e., the topic with the highest probability among all the 
document's topics). Second, the dominant topic of a document 
represents the cluster the document will belong to. Third, after 
associating each document with a cluster, two internal quality 
metrics, namely cohesion and separation, are used to determine 
how closely related and how dissimilar the clusters are, 
respectively. These two quality metrics are represented by one 
value called the Silhouette coefficient [17], which takes into 
account the maximum distances between documents in the 
same clusters and the minimum distances between documents 
pertaining to different clusters. Fourth, the quality of the cluster 
is interpreted based on the scalar values of the Silhouette 
coefficient as follows: if the value is close to 1, the clusters are 
coherent and well separated, and vice-versa for values close to  
-1. Lastly, the Silhouette coefficient is used as a fitness 
function (see Section II.B.2) for the GA. 



 

2) Finding a (near) optimal LDA Parameter Configuration. 
The GA [18] that drives LDA-GA to find the near-optimal 
LDA configuration in the search space of configurations can 
be summarized as follows. First, a population of LDA 
parameter configurations is generated. Second, each individual 
(or chromosome) of this population will generate an LDA 
model that will be used to cluster the documents (see Section 
II.B.1). Third, the clusters for each chromosome will be 
evaluated using the Silhouette coefficient, which will serve as 
the fitness function (i.e., the function that estimates how 
suitable an individual is as a candidate for future generations). 
Fourth, the fitness function is the main force to drive the 
evolution of the genetic algorithm for the next generation (i.e., 
new population). The new population evolves from the 
previous population, by applying the following criteria on the 
individuals of the previous population: (i) preserving the 
individuals with the highest fitness function (i.e., elitism), (ii) 
applying the selection operation (i.e., choose the most suited 
individuals, with the highest fitness functions to be 
reproduced), (iii) applying the crossover operator (i.e., 
combine two individuals from the previous population based 
on some probability) and (iv) applying the mutation operator 
(i.e., the values of the individuals from previous population 
will be slightly modified based on a probability). 

The configuration of the GA used in our LDA-GA 
approach is a simple GA [18] with: elitism of two individuals, 
the Roulette wheel selection as the selection operator, the 
arithmetic crossover for the crossover operator, and the 
uniform mutation as the mutation operator.  

C. TraceLab 

TraceLab [8, 9, 10] is a framework designed for creating, 
executing, and sharing experiments in SE research.  TraceLab 
is developed at DePaul University in collaboration with Kent 
State University, University of Kentucky, and the College of 
William and Mary. TraceLab is funded by the National Science 
Foundation and was initially designed to support traceability 
link recovery. However, due to its design qualities and 
characteristics it is well suited to be adapted to other SE tasks, 
such as feature location, as described in Section III.D. 
TraceLab was originally designed for the Windows platform, 
using the Microsoft .NET framework, but has been ported to 
the Linux and Mac platforms. TraceLab has already been 

successfully used to implement and reproduce experiments for 
several research publications [19, 20, 21]. 

An experiment in TraceLab (see Figure 1(a)) is a directed 
graph of nodes, where each node represents a tool or technique 
referred to as a component (e.g., RPlugin-Setup, Configured 
LDA, etc.). These components can be dragged-and-dropped 
from the library of components into the graph to add the 
necessary functionality to an experiment. Edges between nodes 
indicate both (i) precedence, meaning that all parent 
components must run before the current component can run, 
and (ii) data flow, as is often the case in situations where the 
output of one component is used as the input to the next 
component (e.g., component Cleanup Preprocessor uses as 
input the output of its parent component Source Artifacts). The 
children of nodes with multiple outgoing edges will be run in 
parallel, allowing TraceLab to multitask. Every TraceLab 
experiment has a Start and an End node (see Figure 1(a)), 
representing the entry and exit points of the graph. Once the 
end node is executed, the experiment is complete. 

TraceLab ships with the Component Library, a 
comprehensive set of tools and techniques designed for SE 
research. These can range from simple components, such as 
data importers, to state-of-the-art components, such as IR 
techniques supporting traceability links recovery among other 
techniques. Additionally, TraceLab comes with a software 
development kit (SDK) for creating custom components, 
allowing greater flexibility by integrating user techniques into 
the framework. We refer the user to the TraceLab wiki2 for 
more information about using and building components. 

III. INSTANTIATING LDA-GA IN TRACELAB 

This section details the process of implementing LDA-GA 
as a TraceLab experiment, and offers some guidelines on 
adapting LDA-GA to other datasets or SE techniques (Sections 
III.C and III.D). 

A. TraceLab-based LDA-GA Implementation 

Figure 1(a) shows the LDA-GA TraceLab experiment that 
compares two traceability link recovery techniques: one that 
uses LDA-GA and one that uses an ad-hoc configuration of 
LDA [12], which is used as a baseline. This experiment is a 
replication of the case study from [7]. Upon starting the 

                                                           
2 http://coest.org/coest-projects/projects/tracelab/wiki 

 
(a) 

 
(b) 

FIGURE 1. (A) THE LDA-GA TRACELAB EXPERIMENT THAT REPLICATES THE CASE STUDY BY PANICHELLA ET AL. [7] ON THE EASYCLINIC SYSTEM; (B) 

CONFIGURATION PANEL FOR SETTING UP THE GA AND LDA PARAMETERS FOR RUNNING LDA-GA (FOR SPACE LIMITATIONS, THE IMAGE WAS RIGHT-CLIPPED) 



 

experiment, the RPlugin-Setup component performs some 
setup tasks to prepare the components based on R3 to run in 
TraceLab. Next, the traceability dataset, composed of the 
source artifacts (e.g., use case documents) and target artifacts 
(e.g., code classes), is loaded into TraceLab and some standard 
preprocessing is performed (i.e., removing non-alphanumeric 
symbols, splitting identifiers, removing stop words and 
stemming). Next, the preprocessed source and target artifacts 
are sent as inputs to the LDA-GA Configuration component. 
This component can be configured by the user (see Figure 1(b)) 
with the parameters for the GA (see Section II.B.2) and the 
parameters of LDA used as a search space for the GA (see 
Section II.A). Furthermore, the LDA-GA Configuration 
component is responsible for running the LDA-GA algorithm 
that finds the near-optimal configuration for the LDA 
parameters. This configuration of parameters is used to 
generate the LDA model (see Configured LDA component) for 
the traceability recovery task. 

Concurrently, the Baseline LDA component computes an 
LDA model (i.e., the baseline) based on an ad-hoc parameter 
configuration which was used in a previous approach [12]. 
Both LDA components (i.e., our LDA-GA-based traceability 
technique and the baseline) output a list of candidate links 
ranked by their similarity score. Note that the oracle is not used 
until this point, which emphasized the fact that LDA-GA is a 
dataset-specific and task-independent approach. The previously 
established answer set (i.e., oracle) is loaded into TraceLab and 
fed into the LDA Metrics and Baseline Metrics components 
which compute the precision and recall metrics of these two 
traceability link recovery techniques. The precision-recall 
curve (see Figure 2) is displayed using the (UI) Results 
component. The results indicate that our LDA-GA-based 
traceability technique produces better precision and recall 
results (i.e., the curve starts with 100% precision at 10% recall, 
and slowly declines to ~80% at 20% recall, ~64% precision at 
30% recall, etc.) than a baseline traceability technique that uses 

                                                           
3 http://www.r-project.org/ 

an ad-hoc configuration (i.e., the curve suddenly drops to 20% 
precision at 6% recall). 

 This result is consistent with the evaluation performed by 
Panichella et al. [7] (see Figure 3 (a) in [7]). Note that due to 
the random nature of the GA, the precision and recall curve is 
not exactly the same as the one produced in Panichella et al.'s 
experiment [7], but the difference is negligible. For more 
details about the variability of the results we refer the interested 
reader to [7]. 

1) Reusing existing components. Since TraceLab ships with 
a suite of practical components, we were able to reuse the 
following components without modification: artifacts 
importers (for source, target, oracle), corpus preprocessor, 
metrics computation, and GUI results visualization. In 
addition, we were able to reuse the RPlugin-Setup component, 
which allows TraceLab to run any scripts in R. This 
component is part of the RPlugin library, a separate project 
that is released along with the Component Library.  

2) Implementing new components Our RPlugin project uses 
the LDA implementation from R’s topicmodels package. We 
implemented the component responsible for the LDA-GA 
approach (see LDA-GA Configuration component in Figure 
1(a)) using an R script which was wrapped and accessed 
through our RPlugin library. The script uses the R package tm 
to transform a corpus into a document-by-term matrix, which 
is then weighted using the tf-idf scheme. The weighted matrix 
is used as input for the genetic algorithm found in the R 
package GA, which utilizes the fitness function based on the 
Silhouette coefficient to generate a near-optimal configuration 
for LDA’s parameters. The LDA parameters, which are the 
result of the R script, are sent back to the TraceLab 
workspace. 

Note that the LDA-GA component provides the user with 
the flexibility of changing the configuration options for the GA 
algorithm (see Section II.B.2) and the search space parameters 
of LDA used by the GA (see Section II.A) via the component’s 
configuration panel (see Figure 1(b)). More specifically, the 
configurable GA parameters include: the population size, 
elitism size, permutation rate for the mutation operation, and 
maximum number of generations. On the other hand, the LDA-
GA parameters for LDA that indicate the search space of 
possible values for the GA are: the maximum values for α and 
β (minimum is 0), and the minimum and maximum number of 
LDA Gibbs iterations. Note that the max number of topics is 
currently capped by the number of documents in the corpus. 

We also implemented a component that takes as input LDA 
parameters and computes the corresponding LDA model. This 
component was instantiated twice: once as a component which 
takes as input a configuration produced by another component 
(i.e., see Figure 1(a), Configured LDA) and once as a 
component manually configured by a user using ad-hoc 
parameters (see Baseline LDA in Figure 1(a)). 

B. Description of the Datasets 

We evaluated the two traceability techniques (e.g., LDA-
GA and baseline) on the EasyClinic dataset. EasyClinic is a 
system designed to manage a doctor's office and consists of 20 

FIGURE 2 PRECISION (Y-AXIS) AND RECALL (X-AXIS) GRAPH FOR EASYCLINIC.
THE BASELINE CURVE (RED) IS ON THE BOTTOM AND THE LDA-GA RESULTS 

CURVE (BLUE) IS ON TOP 



 

KLOC, 30 use cases (i.e., source artifacts), 47 source code 
classes (i.e., target artifacts), and 93 correct traceability links 
between the source and target artifacts.  

TraceLab supports a few different corpora formats, and 
provides the possibility to create custom data importers. For 
this experiment, we used the Artifacts Directory Importer 
format, in which the corpus is represented by a directory of 
files. Each file represents an artifact, where the filename is the 
ID of the artifact and the contents of the file represents the 
textual description of the artifact. The artifacts are then 
converted into TraceLab’s native corpus format 
(TLArtifactsCollection).  

The pre-computed answer sets were imported using the 
standard Answer Set Importer component. The format of the 
answer set is a tab-delimited file, where the first entry on each 
line is the ID of a source artifact, and the remaining entries on 
that line are the IDs of true links of the target artifacts. The 
imported answer set is then converted into TraceLab's 
TLSimilarityMatrix data type, with all scores set to 1. 

C. Adapting LDA-GA to other Datasets 

TraceLab was designed to facilitate running existing 
experiments on different datasets. Therefore, running LDA-GA 
on another dataset is a straightforward process, which requires 
adding the path of the other datasets in configuration info pane 
of the components responsible for importing. 

D. Adapting LDA-GA to other SE Techniques 

As a general rule of thumb, a user can reuse as many 
existing components as possible when creating new 
experiments. A large number of these components are already 
found in the Component Library, while other can be 
implemented by the user, using the guidelines described in the 
TraceLab wiki. For example, using LDA-GA for a feature 
location technique that uses LDA [13] would require replacing 
the traceability link related components with existing feature 
location components from the library (e.g., importers, metrics 
to compute the effectiveness measure, GUI components for 
generating box plots). As mentioned before, LDA-GA will still 
run on the dataset and will find the configuration the produces 
the most coherent topics, while remaining agnostic at the SE 
task at hand. 
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