
Concept Location using Formal Concept Analysis
and Information Retrieval

DENYS POSHYVANYK and MALCOM GETHERS
The College of William and Mary
and
ANDRIAN MARCUS
Wayne State University
__

The paper addresses the problem of concept location in source code by proposing an approach that combines
Formal Concept Analysis and Information Retrieval. In the proposed approach, Latent Semantic Indexing, an
advanced Information Retrieval approach, is used to map textual descriptions of software features or bug reports
to relevant parts of the source code, presented as a ranked list of source code elements. Given the ranked list,
the approach selects the most relevant attributes from the best ranked documents, clusters the results, and
presents them as a concept lattice, generated using Formal Concept Analysis.
 The approach is evaluated through a large case study on concept location in the source code on six open-
source systems, using several hundred features and bugs. The empirical study focuses on the analysis of
various configurations of the generated concept lattices and the results indicate that our approach is effective in
organizing different concepts and their relationships present in the subset of the search results. In consequence,
the proposed concept location method has been shown to outperform a standalone Information Retrieval based
concept location technique by reducing the number of irrelevant search results across all the systems and lattice
configurations evaluated, potentially reducing the programmers’ effort during software maintenance tasks
involving concept location.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – enhancement, restructuring, reverse engineering, and reengineering
General Terms: Documentation, Design
Additional Key Words and Phrases: Concept location, feature identification, Information Retrieval, Formal
Concept Analysis, program comprehension, software evolution and maintenance

ACM File Format:
POSHYVANYK, D., GETHERS, M., MARCUS, A., 2010. Concept location using formal concept analysis and
information retrieval. ACM Transactions on Software Engineering and Methodology (TOSEM).

__

1. INTRODUCTION

Identifying the parts of the source code that correspond to specific system functionality is
a prerequisite to program comprehension and is one of the most common activities
undertaken by developers. This process is called concept (or feature) location [Wilde et
al. 1992] and it is among the key questions that developers ask during software
development and maintenance [Sillito et al. 2008]. During software evolution, the
existing code is modified in order to add new features or to alter existing ones. This is
the context in which we address concept location. During the incremental change of
software [Rajlich and Gosavi 2004], developers use concept location to identify the
location in the source code where they will implement the changes. The input is usually
a change request (or a bug report) and the result is the location of the change (for
example, a method in source code). Although the goal of incremental change is to
identify all the components that need to be changed, the developer must find the location
in the code where the first change will be made. For that, programmers search the whole
program and various concept location techniques aim at narrowing down this search
space. Recent research literature defines this step as finding only one part of the concept

1

 • D. Poshyvanyk, M. Gethers, A. Marcus 2

implementation, which is the starting point of a change [Gay et al. 2009; Liu et al. 2007;
Poshyvanyk et al. 2007; Revelle et al. 2010]. The full extent of the change is then
handled by impact analysis, which is methodologically different from concept location,
and thus is treated separately in the research literature [Rajlich and Gosavi 2004]. In this
paper, we explicitly address the identification of methods in software that are part of the
implementation of a feature (that is, they are changed when the feature is altered) and can
be used as starting points for impact analysis. Concept location is also referred to in the
literature as feature identification or concern location. Section 3 discusses in more detail
the distinctions between features and concepts. Through the rest of the paper we use the
term concept location, even when we refer to similar techniques that are named
differently. When the context may generate confusion between the uses of the word
concept in concept location vs. concept analysis we use feature instead of concept.

One of the most commonly used techniques to support concept location is based on
text search in source code, where developers write queries and a search engine returns a
list of source code elements relevant to the query. In many cases, only a small fraction of
the search result is actually relevant to the concept being located. In these cases,
developers either undertake the daunting task to investigate in detail as much as they can
from the results, or they reformulate their query to reduce the size of the search results.
Eventually, even after a series of refined queries, the user will need to investigate a subset
of the results. This type of concept location is an instance of a text retrieval task. In
general, it is common in text retrieval and data mining applications to either cluster the
data prior to executing queries or to cluster the results after a query is executed
[Carpineto et al. 2009]. Parts of the software can relate to each other in more than one
way (e.g., via data flow, control flow, conceptual similarity, past co-changes, etc.). In
consequence it is hard to find a similarity measure that supports partitioning of the entire
software in clusters relevant to all of its features. Another problem of pre-clustering the
search space is in establishing the appropriate number of clusters. Given these issues, our
choice is to cluster part of the search results, which are already relevant to the concept at
hand. Our work aims at helping developers in reducing their efforts by providing
additional structure in the search results, such that parts of the source code are grouped
based on common topics. Similar approaches are also employed by popular internet
search engines, such as, Vivisimo1 and Yippy2.

Specifically, we augment an existing information retrieval (IR) based technique for
concept location [Marcus et al. 2004] with automatic clustering of the search results using
formal concept analysis (FCA). This approach is inspired by previous work, which
applied FCA to free-text search [Cigarrán et al. 2004]. The IR-based concept location
technique uses a search engine based on Latent Semantic Indexing (LSI) [Deerwester et
al. 1990], which allows users to search source code and related textual documentation by
writing natural language queries and retrieving a list of source code elements (that is,
classes, methods, functions or files), which are ranked based on their similarity to the
query. Based on the ranked results of the search, we automatically generate a labeled
concept lattice. Developers can determine whether a node from the concept lattice (that
is, a topic or category) is relevant or not to their query by simply examining its label; they
can then explore only relevant nodes in the lattice and ignore the other ones, thus
reducing their search effort.

1 http://vivisimo.com/ (verified on 08/18/2011)
2 http://search.yippy.com/ (verified on 08/18/2011)

Concept Location using Formal Concept Analysis and Information Retrieval •

3

2. BACKGROUND

In this section we present background information on FCA, a mathematical technique for
analyzing binary relations and LSI, an advanced information retrieval method. These two
techniques are at the core of our work and come from research fields outside software
engineering.

2.1 Formal concept analysis

Formal concept3 analysis [Ganter and Wille 1996] is a branch of mathematical lattice
theory that provides means to identify meaningful groupings of objects4 that share
common attributes and it also provides a theoretical model to analyze hierarchies of these
groupings.

The main goal of FCA is to define a concept as a unit of two parts: extension and
intension. The extension of a concept covers all the objects that belong to the concept,
while the intension comprises all the attributes, which are shared by all the objects under
consideration.

In order to apply FCA, the formal context or incidence table of objects and their
respective attributes is necessary. The formal context consists of a set of objects O, a set

of attributes A, and a binary relation R  O  A between objects and attributes, indicating
which attributes are possessed by each object. Formally, it can be defined as C = (A, O,
R). From the formal context, FCA generates a set of concepts where every concept is a
maximal collection of objects that possess common attributes. More formally, a concept
is a pair of sets (X, Y) such that:

X= {o O | a  Y: (o,a) R}

Y= {a A | o  X: (o,a) R}, where

X is considered to be the extension of the concept and Y is the intension of the concept.
This set of concepts form a complete partial order where some concepts are super- or
sub-concepts with respect to others.

The set of all concepts constitutes a concept lattice and there are several algorithms to
compute concepts and concept lattices from a given formal context. For details on these
algorithms as well as more complete description on FCA, we refer to the work of Ganter
and Wille [Ganter and Wille 1996]. It should be noted that FCA provides intensional
descriptions for concept nodes, thus improving comprehensibility of concept lattices.
Additionally, an inherent advantage of concept lattices is a set of relations among the
concept nodes, which users can navigate in a lattice. Among visible disadvantages of
FCA, the size and complexity of lattices depends on the number of objects and attributes
and can be computationally demanding as compared to other clustering techniques
[Cigarrán et al. 2004].

2.2 Latent Semantic Indexing

In the proposed concept location approach we utilize an information retrieval method,
LSI [Deerwester et al. 1990], as a text indexing and search engine. LSI is based on the
Vector Space Model (VSM) [Salton and McGill 1983] IR technique, commonly used in
text retrieval. In such application, the retrieved data is (natural) text, which is organized

3 Note the difference between the use of the term concept in FCA and concept location
4 Note the difference between the terms object and attribute in FCA and OOP

 • D. Poshyvanyk, M. Gethers, A. Marcus 4

into documents. The words that occur in a document are considered as its defining
features. For example, a word (referred to as a term, when it is not part of a language)
that occurs often in a document d and rarely in others, is specific to d (that is, it is
essential to capture the semantics of d and not of other documents). VSM (and implicitly
LSI) represent documents as vectors in a space that spans the words encountered in a
corpus. This allows to define and to compute textual similarities between documents,
based on their mathematical representation as vectors. For example, the cosine between
two vectors is often used as a similarity measure for their corresponding documents.

LSI was originally developed in the context of information retrieval as a way of
overcoming problems with polysemy and synonymy that occurred with VSM [Salton and
McGill 1983] approaches. Some words appear in the same contexts (synonyms) and an
important part of word usage patterns is blurred by accidental and inessential
information. The method used by LSI to capture the vital semantic information is
dimension reduction, selecting the most important dimensions from a co-occurrence
matrix decomposed using singular value decomposition (SVD). As a result, LSI offers a
way of assessing semantic similarity between any two samples of text in an automatic,
unsupervised way. LSI does not utilize a grammar or a predefined vocabulary; however,
it can use a list of stop-words that can be extended by the user. Stop-word lists identify
words which should be excluded from the corpus. LSI is based on a Singular Value
Decomposition (SVD) of the term-by-document vector space derived from the
corresponding co-occurrence matrix. SVD is a form of factor analysis (a statistical
method capable of reducing dimensionality of a dataset), which is used to reduce
dimensionality of the feature space to capture most essential semantic information. The
formalism of SVD is rather lengthy to be presented in the paper, thus we refer the reader
for complete details elsewhere [Deerwester et al. 1990]. The original vectors are then
projected on a smaller space, determined using SVD. This projection allows representing
both words and documents in the same space; hence LSI allows computing similarities
between terms and documents. This is important in our application as we use these
similarities to find the terms in each document, which will be used as attributes by
Formal Concept Analysis.

Originally LSI has been applied on natural language corpora, however, the method has
been shown to lend itself well to other types of data, for example, textual information
extracted from source code and associated documentation. Some of the software
engineering problems, related to concept location, which have been addressed using LSI
are: traceability link recovery between source code and documentation [De Lucia et al.
2007; Jiang et al. 2008; Marcus et al. 2005a], tracing requirements [Hayes et al. 2006; Lo
et al. 2006] and other software artifacts [Lormans and Van Deursen 2006], identifying
clones in software [Marcus and Maletic 2001; Tairas and Gray 2009], retrieving relevant
artifacts in project histories [Cubranic et al. 2005], measuring coupling [Poshyvanyk et
al. 2009] and cohesion [De Lucia et al. 2008; Marcus et al. 2008] of classes. In these
applications, the documents are formed using the source code (that is, a document can be
a class, method, function, package, etc.) or external documentation. The terms are the
words and identifiers that occur in the documents.

The various LSI-based concept and feature location techniques follow the following
steps [Gay et al. 2009; Liu et al. 2007; Marcus et al. 2004; Poshyvanyk et al. 2007;
Poshyvanyk and Marcus 2007]. These steps include: extraction of textual information
from the source code; pre-processing and partitioning of text into a corpus of documents;
indexing the corpus; formulating and executing queries; and analyzing and inspecting
ranked lists of the results. We describe some of these steps in more detail in Section 4, in
the context of our proposed approach.

Concept Location using Formal Concept Analysis and Information Retrieval •

5

3. RELATED WORK

This section outlines research related to our work, where we present existing approaches
to feature and concept location, with specific focus on the use of FCA in this context.

Concept location is also referred to in the literature as feature identification or concern
location. Features are special concepts (that is, a subset of concepts) that are associated
with the user visible functionality of the system. The shared goal of these techniques is
to identify the source code units (such as, methods, function, classes, etc.) that implement
(part of) a concept of interest from the problem or solution domain of the software.
Concept location is an essential part of the software change process [Rajlich and Gosavi
2004].

Existing approaches to concept location use different types of software and data
analyses. They can be broadly classified into static, dynamic, and combined analysis
based approaches [Dit et al. 2011b]. Our approach is a static technique, as it uses only
the source code (and possibly documentation) without executing the software. We will
focus this section on static concept location techniques alone. Based on the information
they use for analysis, the static techniques can be further refined into: text-based
techniques, which use text searching; structural-based techniques, which navigate the
source code using software dependencies; and of course hybrid ones, which combine
different information sources.

Biggerstaff et al. [Biggerstaff et al. 1994] introduced the problem of concept
assignment in the context of static analysis. They implemented a tool which extracts
identifiers from the source code and groups them to support identification of concepts.
The simplest and most commonly used text-based static technique relies on searching the
source code using regular expression matching tools, such as the Unix utility grep.
Modern development environments like Eclipse and MS Visual Studio build many useful
add-ons on top of simple pattern matching, including references to class and method
names, etc. Similarly, Ratiu et al. [Ratiu and Deissenboeck 2007] use simple matching to
map concepts to program elements within their formal framework. A significant
improvement over regular expression matching is brought by information retrieval-based
[Cleary et al. 2009; Gay et al. 2009; Liu et al. 2007; Marcus et al. 2004; Poshyvanyk et
al. 2007; Poshyvanyk et al. 2006b] and natural language processing [Hill et al. 2007; Hill
et al. 2009; Shepherd 2007; Shepherd et al. 2007] approaches, which allow more general
textual queries and provide ranking of the results to these queries. Recent approaches
also utilized independent component analysis [Grant et al. 2008], and Latent Dirichlet
Allocation [Lukins et al. 2008] to support concept location. One common limitation of
these approaches is redundancy in the search results that could be reduced by inferring
additional structure among the search results and grouping them based on common
topics. Our work tackles this limitation of existing IR-based concept location techniques,
augmenting them with formal concept analysis to automatically cluster search results.

One of the first structural-based static techniques for concept location is the one
proposed by Chen et al. [Chen and Rajlich 2000], which is based on the search of an
abstract system dependence graph. This approach has been recently extended [Robillard
2005; Robillard 2008] via analysis of dependency topologies to rank elements of interest
in source code. Some other methods combine other types of information obtained via
static analysis (that is, textual and structural), such as Zhao et al. [Zhao et al. 2006] who
proposed a technique which combines information retrieval with branch-reserving call-
graph information (i.e., an expansion of the call graph with information on branches and
sequential information) to automatically assign features to respective elements in the
source code. Gold et al. [Gold et al. 2006] proposed an approach for binding concepts
with overlapping boundaries to the source code which is formulated as a search problem

 • D. Poshyvanyk, M. Gethers, A. Marcus 6

using genetic and hill climbing algorithms. A comparison and overview of static feature
location techniques can be found in the work of Marcus et al [Marcus et al. 2005b].

Among the techniques that combine static and dynamic information (that is,
dependencies and execution traces), of interest is the work of Eisenbarth et al.
[Eisenbarth et al. 2003] as it uses FCA to relate features together. FCA is applied to
formal contexts consisting of computational units, an executable part of the system (e.g.
class, module, basic block), as objects and scenarios, a set of user triggered observable
events in a system, as attributes, where the relation between objects and attributes
identifies computational units exercised by scenarios. Resulting concept lattices identify
general and specific computational units as well as relationships between features and
computational units. This technique has been recently applied in the industrial setting
[van Geet and Demeyer 2009].

FCA has many uses in software engineering [Lienhard et al. 2005; Snelting 2005;
Tonella 2003] such as identification of objects in legacy code, however, we discuss here
the ones that specifically address concept location. In addition to the work of Eisenbarth
et al. [Eisenbarth et al. 2003] (mentioned above), Tonella and Ceccato [Tonella and
Ceccato 2004] use dynamic analysis together with FCA to identify aspects in execution
traces. Execution traces, obtained by exercising use cases, are objects and executed class
methods are attributes of the formal context. Discovery of candidate aspects entail
locating use case specific concepts where the intension contains methods from multiple
classes and methods of the concept that also appear in the intension of other use case
specific concepts. Mens et al. [Mens and Tourwe 2005] apply FCA to mine source code
to support various program comprehension tasks, including concept location. In their
work objects correspond to classes and methods, and attributes correspond to substrings
from class and method names. The resulting concept lattice helps identify design pattern
instances, coding and naming conventions, refactoring opportunities and important
domain concepts.

Our application of FCA differs from this earlier work. The purpose of FCA, in our
case, is to provide automatic clustering and distillation of the search results. We
conjecture that inferring and using implicit structure or order in the search results should
help reduce the search space and user efforts in terms of locating source code elements
related to the concept of interest. We build a formal context, to be used in FCA, by
considering source code methods as objects and words (e.g., identifiers and comments) in
these methods as attributes.

A comparison of different approaches for feature location in legacy systems is
presented by Wilde et al [Wilde et al. 2003]. A more up-to-date summary of all existing
approaches can be found in the literature [Antoniol and Guéhéneuc 2006; Revelle and
Poshyvanyk 2009], whereas a summary of industrial tools available for feature location is
available in the work of Simmons et al [Simmons et al. 2006].

4. CONCEPT LOCATION USING CONCEPT LATTICES

In this section we present the details of our approach to concept location, which uses
FCA to organize in a concept lattice the results of a search performed by a developer
using the LSI-based source code search engine. Part of the approach is similar to the one
presented by Marcus et al. [Marcus et al. 2004] and offers users the same main features,
such as, the ability to write queries in natural language and sort the results based on their
similarity to the query. With the LSI-based source code search engine, developers search
the software much the same way they search the internet with popular search engines like
Google. Note that any other text retrieval technique may be used here instead of LSI.

Concept Location using Formal Concept Analysis and Information Retrieval •

7

The general process would be the same. The reason we chose LSI is because of our
experience with it and the excellent results it produced in previous work.

Fig. 1 shows the main steps in the concept location process using LSI and FCA. The
first two steps are usually performed off line (that is, the corpus needs to be built and
indexed only after significant changes to the software and it is not interactive), while the
other ones are performed interactively and repeatedly during concept location until the
user finds the desired parts of the source code.
1. Creating a corpus of a software system. The source code is partitioned using a

predetermined granularity level (that is, methods or classes) and documents are
extracted from the source code. A corpus is created, so that each method (or class)
will have a corresponding document in the resulting corpus. Only identifiers and
comments are extracted from the source code. We developed tools that
automatically create corpora for MS Visual Studio C++ projects [Poshyvanyk et al.
2005] and Eclipse Java projects [Poshyvanyk et al. 2006a; Savage et al. 2010]. In
addition, we also created a corpus builder for large C++ projects, using srcML
[Maletic et al. 2002] and Columbus [Ferenc et al. 2004].

2. Pre-processing and Indexing. The resulting corpus can be pre-processed using a
set of different techniques including stop word removal, splitting identifiers, special
token elimination and stemming. The latter is the process of reducing inflected
words to their stem or morphological root form (e.g., depart, departure, and
departing are forms of the equivalent lexeme, with depart as the morphological root
form). Finally, the corpus is indexed using LSI, each document (method or class)
has a corresponding vector.

3. Formulating a query. A developer selects a set of terms that describe the concept
of interest (for example, ‘print page’). This set of words constitutes the initial query.
The tool spell-checks all the terms from the query using the vocabulary of the source
code (generated by LSI). If any word from the query is not present in the
vocabulary, then the tool suggests similar words based on editing distance and
replaces the term in the search query with the user selected term. It should be noted,
however, that in our evaluation of the proposed approach, all the queries were
formulated automatically using default feature summaries from user documentation

Fig. 1. Concept location process using LSI and FCA. Numbers in the figures correspond to the
following steps which are discussed in Section 4 (1) creating a corpus of a software system, (2) pre-
processing and indexing, (3) formulating a query, (4) ranking documents, (5) selecting descriptive

attributes, (6) applying formal concept analysis, and (7) examining results.

 • D. Poshyvanyk, M. Gethers, A. Marcus 8

or the short summaries in bug reports. For example, Mylyn bug #1498385
description "Encoding problems when product name contains foreign characters” is
used as the query. We opted for automatic query formulation technique in order to
avoid potential bias in terms of evaluating the results. The query is then represented
in the vector space as a pseudo document.

4. Ranking documents. Similarities between the user query and the documents from
the source code (such as, methods or classes) are computed. The similarity between
a query reflecting a concept and a set of data about the source code indexed via LSI
allows generating a ranking of documents relevant to the feature. All the documents
are ranked by the similarity measure in descending order.

5. Selecting descriptive attributes. The top k attributes (in the FCA sense) from the
first n documents in the ranked list (for example, methods) are selected (see Section
4.1). These attributes are the terms that are highly similar to the selection of the n
documents and less similar to the other documents in the search results.

6. Applying Formal Concept Analysis. Before applying FCA we prepare the formal
context, which is generated from a set of n-first documents (objects) in the ranked
list and k descriptive terms (attributes) extracted in the previous step. Subsequently,
we apply the FCA algorithm [Ganter and Wille 1996] to build the set of concepts for
the given context, which forms a complete partial order, or simply a concept lattice.

7. Examining results. The resulting concept lattice, with annotated descriptions for
concept nodes and with links to actual documents in source code is presented to the
user. The user can browse the results by traversing the lattice and refining queries if
desired. If a user finds a part of the concept (that is, the location where a change
needs to be done), then the search succeeds, otherwise, the user formulates a new
query, taking into account new knowledge obtained from the investigated documents
in the lattice, and returns to step 3.

4.1 Selecting descriptive attributes

Steps 1, 2, 3, 4, and 7 from our approach are the same as those used in our previous work
[Liu et al. 2007; Marcus et al. 2004; Poshyvanyk et al. 2007; Poshyvanyk and Marcus
2007]. New to the process of concept location are steps 5, 6, and 7, which we describe in
more detail here. The addition of the three new steps to the concept location process was
inspired by prior work, which utilized FCA to free-text IR-based systems [Cigarran et. al
2004]. We adapt and apply the idea of using FCA for clustering search results, originally
introduced by Cigarran et. al. [Cigarran et. al 2004] in order to improve the process of
concept location in software.

There are several published solutions to extract descriptive terms for sub-collections
of documents. For example, the okapi weighting scheme and the terminological formula
are two of the approaches previously used in free-text IR systems [Cigarrán et al. 2004].
We adopt here the technique proposed by Kuhn et al. [Kuhn et al. 2007], since it was
defined in the context of source code to select relevant terms with respect to given
clusters of source code elements. We present how this technique is adapted and used to
select terms to be used in FCA.

We define a corpus for a software system as a set of documents D = {d1, d2 … ds}. A
set of documents in the ranked list which we use to build a formal context is denoted as
Dn, where the number of documents is n=|Dn|. To denote the rest of the corpus, which
does not contain documents in Dn, we use D1 = D – Dn, where the number of documents
is |D1| = s – n.

5 https://bugs.eclipse.org/bugs/show_bug.cgi?id=149838 (verified on 08/18/2011)

Concept Location using Formal Concept Analysis and Information Retrieval •

9

We define a set of unique terms that occur in D as TD = {t1, t2 … tr}. A set of unique
terms that occur in Dn only is defined as TDn, where TDn  TD.

In order to rank every term ti  TDn (for i=1 …|TDn|) with respect to a document
collection Dn we apply the following formula to determine the ranking of the terms:

1 1

1 1
1

1 1
(,) (,) (,)

| | | |i n i i
d D d D

sim t D sim t d sim t d
D D 

    

The equation above computes the average similarity of a term and all documents in the
corpus as well as the average similarity of a term and documents not used to generate the
formal context, namely Dn. The difference between the two averages for a given term is
returned as sim1(ti, Dn). Using this approach we are able to rank all the unique terms in
Dn (for example, TDn) so that the terms highly similar to the documents in Dn but not to
the documents in D1 are ranked higher. We penalize those terms which are highly similar
to D1, since it is observed that they might be identifiers for data structures or utility
classes [Kuhn et al. 2007], which would pollute the top ranked list of terms (for example,
common function names and keywords, atoi, class, sqrt, etc.).

4.2 Applying formal concept analysis

We decided to use FCA instead of other standard clustering algorithms because of the
following reasons: FCA provides an intensional description for each cluster, which
makes groupings more interpretable; the generated cluster organization is a lattice, rather
than a hierarchy, allowing easier recovery from bad decisions, while exploring the
hierarchy; FCA is generally a more effective way of browsing the document space than
hierarchical clustering [Cigarran et al. 2005].

With the approach presented in this paper we tackle the problem of scalability of FCA
in the context of a software system by applying it on a subset of relevant search results
only. Using this approach, the top search results, that is, the first n methods or classes in
the ranked list are organized in the concept lattice based on the attributes automatically
selected from identifiers and comments implemented in their source code. Section 5
discusses in detail the issue of selecting values for n and k.

4.2.1 Running Example. To illustrate how FCA works with respect to the problem that
we are addressing in this work, that is, concept location, we present the following
example of locating the source code of Eclipse 3.16 implementing the system
functionality which cancels printing after the user initiates a print page request. The
following top six methods returned as the results of our initial query 'cancel print page':
getBounds(), which obtains the size of the paper, startPage() and endPage(), which start
and end printing a page, startJob(), which initiates a print job which may include printing
several pages, endJob(), which finalizes printing a page(s), and cancelJob(), which ends
and cancels the print job respectively.

Using the algorithm for selecting descriptive terms, described in section 4.1, the
following terms are selected from the identifiers and comments of the returned methods:
printer, print, page, job, device, paper and rendering. Note that these terms are specific
only to those six methods and not so much to the rest of the source code in Eclipse.

Using the top six methods from the results and their descriptive attributes, we generate
a formal context C = (A, O, R), where the objects O are the aforementioned methods and
A are words (attributes) extracted from implementation of the methods in O. Note that in

6 http://www.eclipse.org/ (verified on 08/18/2011)

 • D. Poshyvanyk, M. Gethers, A. Marcus 10

this example we choose n top objects (n=6) and k most similar terms to these objects
(k=7). The set of binary relations R among O and A are summarized in Table I.

When applying FCA on our example, the following concepts are identified:

C1= ({startJob, endJob, cancelJob}, {print, job})
C2= ({startPage, endPage}, {page, paper, rendering})
C3= ({getBounds},{printer, device, paper})
C4= ({startPage, endPage, getBounds}, {paper})
C5= ({startJob, endJob, cancelJob, startPage, endPage, getBounds}, {})
C6= ({}, {printer, print, page, job, device, paper, render})

Concepts here are groups of methods (that is, objects) and their common words (that

is, attributes). This set of concepts is referred to as a complete partial order whereas
some concepts are super- or sub-concepts with respect to others (see Fig. 2). For
example, the concept C4 is a sub-concept of concept C3. Intuitively, from the intension
‘paper’ of C4 we also may assume that C3 (with intension ‘printer device paper’) is more
specific than concept C4. The implementations of the methods which belong to these
concepts reflect this fact. In addition, the three methods implement different actions
related to the paper – getBounds is used to obtain physical properties of the paper based
on current system device, whereas startPage and endPage implement operations which
initialize and finalize printing of a page respectively.

Table I. Formal context: objects (six methods from source code of Eclipse) and
attributes (shared in identifiers and comments of those methods)

 printer print page job device paper rendering

startJob × ×

endJob × ×

cancelJob × ×

startPage × × ×

endPage × × ×

getBounds × × ×

Fig. 2. Concept lattice (left) and its corresponding sparse representation (right) for the ‘cancel print
page’ query. Grey boxes are attributes (words) and white boxes are objects (methods). The sparse

representation of the concept lattice only presents objects (methods) in the smallest concept node which
they appear in, eliminating redundant appearances of methods along paths explored by the user.

Concept Location using Formal Concept Analysis and Information Retrieval •

11

4.3 Examining results

After applying FCA to a subset of search results, the concept lattice is presented to the
user. In order to facilitate the lattice exploration process the user is returned a sparse
representation of the concept lattice (see Fig. 2). Presenting the user with a sparse
concept lattice eliminates repeated occurrences of methods along a given path in the
concept lattice. That is, as opposed to labeling each node with all the elements contained
in its intension and extension, attributes (objects) are annotated on a concept node if it is
the highest (lowest) node that appears in its intension (extension). For simplicity, we
refer to a sparse concept lattice as a concept lattice.

Given a concept lattice, the labels of concept nodes can be viewed by developers to
assist them in the navigational decision making process. More specifically, a user should
begin evaluating the lattice at the root node. The labels of all sub-concepts should be
considered when deciding on the next concept node to visit. Following this decision, all
documents of the selected sub-concept node are evaluated. If none of the documents are
relevant to the concept of interest, a sub-concept of the current node is selected as
previously discussed. The process continues until the developer locates a concept node
containing a relevant document. Throughout this process we make an assumption that
the attribute labels provide information useful for making navigational decision during
concept location.

Consider the example previously discussed in section 4.2.1 where the user is interested
in locating methods relevant to the 'cancel print page' feature. The concept lattice, which
appears in Fig. 3, is provided to the user. The exploration of the concept lattice begins at
the root node. The attribute labels of all sub-concepts of the root node are considered
when making the decision of which node to consider next. In this particular example two
concept nodes are considered where the attribute labels are {paper} and {print, job}.
Based on these choices the developer might select the concept, which is labeled as {print,
job}, as it may be considered to be more relevant to the search query 'cancel print page'.
Following this decision the methods of the concept node, which consist of {startJob,
cancelJob, endJob}, are evaluated to determine if a relevant document appears in the
concept node. In this particular scenario, evaluation of the selected concept node results
in identifying the relevant method cancelJob (implements functionality related to
canceling a print request) while only having to consider three documents. So during the
navigation process, each decision is determined by considering the documents, which

Fig. 3. Concept lattice (left) and tree view (right) for the ‘cancel print page’ query. Grey boxes are

attributes (words), white boxes are objects (methods), and the path circled in red indicates the minimal
browsing area. For the tree view each folder represents a concept node and the number on the folder

indicates the number of methods that a concept node contains. The labels beside the folder are the terms
associated with the concept node.

 • D. Poshyvanyk, M. Gethers, A. Marcus 12

appear in the current concept node, as well as the attribute labels of all sub-concept
nodes.

5. EVALUATION OF THE PROPOSED APPROACH

Our approach depends on three specific issues that potentially affect the results: corpus
creation (that is, granularity), pre-processing (that is stemming), and applying FCA (that
is a number of objects and attributes used). We performed a case study to evaluate our
approach and answer the following research questions:

 What is the effect of n and k when applying FCA and building concept lattices
from subsets of search results on the number of methods encountered before
locating the first relevant method during concept location?

 What is the effect of stemming the corpus of software on the concept lattices’
ability to effectively organize search results in order to limit the number of
methods explored by a user during concept analysis?

Our choice of empirical evaluation is based on reenacting concept location based on
past changes and to simulate the user's actions. Past changes in software provide us with
a change request (or bug description) and the actual changes in the code done in response
to the request, named as the change set. During concept location a user or a tool starts
with the change request and finds a place in the code where a change should be made. In
order to verify that this location is correct, the complete change should be implemented
and tested. Reenactment based on historical data allows us to assess the correctness of
concept location without the complete implementation and testing. If concept location
results in a place in the code that is in the original change set, then we can conclude that
concept location succeeded. If the result of the concept location leads to a place that is
not in the change set, then we consider that concept location failed. Changes to software
can be made in a variety of ways, so there may be some cases when concept location
leads to a place that is not in the original changes set, yet could still lead to a complete
and correct change. Our assumption will cause to miss these cases, but it is a trade-off
we are willing to take given that we gain huge amounts of time in the evaluation.

Many concept location techniques, such as the one we introduced here, depend on user
choices. In all cases, it is the user who makes the final decision that a place in the code
needs to be changed. In addition, there are other steps in the process where user input
and decision is needed. In our approach, two such steps are the most important:

 The query formulation and reformulation (when needed); and
 Navigation of the results.
Since we aim to simulate the user, we have to address these two issues. In order to

simulate query formulation during concept location reenactment, we choose as query the
original change request (or bug description). We assume that concept location is
performed without reformulation of the query, hence no need for further user input. In
order to simulate navigation, we assume that users would investigate every piece of code
the concept location tool provides in the order it is being provided by the tool. In this
way we simulate an “ideal” user behavior, where a single query is formulated without
user interference and the results are inspected in the most efficient way. Clearly in real
world scenarios concept location is more complex. However, our assumptions allow us
to automate in part the evaluation and thus to collect a large number of data points.

Based on our choices and assumptions, the empirical evaluation consists of a case
study where our FCA based approach is used to automatically (i.e., simulated user)
perform concept location associated with past changes (i.e., reenactment of concept
location). A baseline approach, namely, IR-based concept location [Marcus et al. 2004],
is also used in a similar fashion and the results are compared to assess whether our

Concept Location using Formal Concept Analysis and Information Retrieval •

13

approach can lead to better results (given that both approaches approximate ideal user
behavior).

The remainder of this section provides the details of our empirical evaluation: the
design of the case study, the data we used, the evaluation mechanism, and the results we
obtained.

5.1 Methodology

We evaluated the proposed technique in the case study with a total of 320 features from
six open source systems (see Table II). The complete details on all the features and bugs
used in the case study are supplied in an online appendix7. The online appendix also
includes the information on the methods that were changed in order to fix the bugs or
implemented to introduce the features (these are extracted from the official patches
released to fix the bugs and change history of added or modified features). Additionally,
the table in the online appendix also shows method ranks in the list of the results obtained
with the baseline approach. As explained above, the search queries to locate the bugs and
features were formulated automatically from the descriptions of the bug reports or
features from the available user manuals, thus eliminating any potential bias caused by
formulating queries by users.

We studied how the number of documents (that is, methods, n) and of terms (that is,
attributes, k) affects the size and quality of concept lattices. We also investigated whether
stemming of the corpus and queries has an impact on the search results. After an initial
study [Poshyvanyk and Marcus 2007] of different lattice configurations with documents
and attributes, we decided to keep the number of attributes in the range from 10 to 25 and
study the generated concept lattices for the top 80 to 100 documents from the ranked list.
Using less than 10 attributes resulted in low clustering capacity in grouping related
concepts, while using more than 25 attributes, generated a relatively large number of
concept nodes in the lattices making them difficult to navigate.

For every concept location task, given a query and a ranked list of the results, we build
24 concept lattices of different configurations: 12 lattices using all possible combinations
of documents (that is, 80, 90, and 100) and terms (that is, 10, 15, 20, and 25), which are
obtained from the corpus without applying stemming and 12 lattices with the same
document-term configurations for the stemmed corpus. In order to perform a fair
comparison between concept lattices with varying number of documents and with or
without stemming, we only considered queries where the first relevant method appeared
in the top 80 for both the stemmed and non-stemmed scenario. Such criteria ensured that
metric values for the concept lattices are defined. We derive our analysis results from the
concept lattices created for the features of ArgoUML, Freenet, iBatis, JMeter, Mylyn and
Rhino (see Table II for the number of concepts located per system).

5.2 Design of the case study

The case study design is based on the guidelines defined by Yin [Yin 2003]. The results
of the proposed approach based on the combination of FCA and LSI with stemming are
compared against the results that do not utilize stemming. Both configurations of this
combined approach are compared against an LSI-based ranking of the results (that is, the
baseline approach).

7 http://www.cs.wm.edu/semeru/tosem-fca-lsi (verified on 08/18/2011)

 • D. Poshyvanyk, M. Gethers, A. Marcus 14

5.2.1 Objectives. The goal of the case study is to evaluate the impact of the following
parameters and pre-processing technique on the size and quality of resulting concept
lattices:

 the number of documents (n) in the ranked list that should be kept for selection
of descriptive attributes and the final concept lattice;

 the number of attributes (k) that should be selected for the number of n
documents;

 the stemming of the corpus and the queries.
We expect that the resulting concept lattices will help reducing developer searching

efforts when compared to the IR-based concept location (baseline) technique, which does
not cluster the results. This hypothesis is based on the fact that the new approach can
effectively utilize information about relationships among the results of the search based
on common attributes rather than only those used in the original user query. In other
words, it can effectively group relevant documents and provide informative labels as
node descriptions in a concept lattice, helping users to navigate the resulting lattice more
effectively, possibly navigating through only fraction of the documents. Such a
representation should provide a structured view of different sub-topics present in the
results of the search and provide additional information, such as descriptive labels, which
can be used as visual cues to navigate results more effectively than a plain ranked list.
This hypothesis, however, can be investigated via user studies, which we are planning to
conduct in our future work.

With respect to applying stemming we conjecture that our approach might not only
benefit in the quality of the terms selected by the attribute selector, but also in the
resulting clustering of the topics. For instance, consider the case where the terms 'table'
and 'tables' both appear in the set of relevant attributes in a subset of search results.
Ideally, each selected term should assist in identifying unique topics in the set of
methods. In this example, generating a concept lattice using both terms would not seem
to provide better reduction of search effort as compared to lattices using only one of these
attributes. In the stemmed version of the same corpus the term 'tabl' would appear as a
representative of both 'table' and 'tables' allowing for the selection of another, potentially
more useful term, thus helping reduce effort required to locate relevant information in the
subset of search results.

5.2.2 Objects and settings of the case study. We utilized the following software
systems in our case study: ArgoUML8 (version 2.8), Freenet9 (version 0.7), iBatis10
(version 2.3), JMeter11 (version 2.3.4), Mylyn12 (version 1.0.1), and Rhino13 (version 1.5
release 6). ArgoUML is an open source java implementation of a UML diagramming
tool. Freenet is an open source implementation of a peer-to-peer anonymous file sharing
software. iBatis is an object-relational mapping tool that facilitates the mapping of SQL
databases to objects in a variety of programming languages. JMeter is an open-source
Java desktop application developed to allow users to load test functional behavior of web
applications and other functions. Mylyn [Kersten and Murphy 2006] is a well-known
Eclipse plug-in which facilitates task oriented development. Our evaluation is performed
using only two components from Mylyn, bugzilla.core and bugzilla.ui, for which the
mappings between bugs and source code were made publicly available [Kersten and

8 ArgoUML: http://argouml.tigris.org/ (verified on 08/18/2011)
9 Freenet: http://freenetproject.org/ (verified on 08/18/2011)
10 iBatis: http://ibatis.apache.org/ (verified on 08/18/2011)
11 JMeter: http://jakarta.apache.org/jmeter/ (verified on 08/18/2011)
12 Mylyn: http://www.eclipse.org/mylyn/ (verified on 08/18/2011)
13 Rhino: http://www.mozilla.org/rhino/ (verified on 08/18/2011)

Concept Location using Formal Concept Analysis and Information Retrieval •

15

Murphy 2006]. Rhino is an open-source software system that provides a Java
implementation of JavaScript.

We preprocessed and indexed the source code of each system using the approach
outlined in Section 4. We chose method level granularity, i.e., each document in the
corpus corresponds to a method. We constructed the corpus for each system by
extracting all comments and identifiers from the source code. The resulting text was pre-
processed using the following set of rules: some types of tokens were eliminated (for
example, operators, special symbols, some numerals, keywords of the Java programming
language, standard library function names); the identifiers in the source code were split
into parts based on known coding standards while the initial form of each identifier was
preserved as well; each document in the corpus was created with the comments and
identifiers corresponding to each method. Note that a comment is associated with a
method if it appears immediately before, within the body, or immediately after a method
definition. In our future work, we will consider applying more advanced approaches for
associating comments with methods in source code like the ones proposed by Fluri et al.
[Fluri et al. 2009]. No morphological analysis or transformations were applied since we
did not use a pre-defined vocabulary, or a pre-defined grammar. In our case studies we
also utilized stemming, using the widely adopted Porter stemmer algorithm14, and
evaluated its impact on the proposed technique. The size of the corpora and the number
of indexed methods (that is, parsed documents) from each system are outlined in Table II.

5.2.3 Data used. As mentioned before, one recurrent issue in empirical studies on
concept location is the verification of the results. It is often difficult to determine for sure
that a certain method implements, at least in part, a given concept. To mitigate this
problem, we utilize datasets obtained using three complementary strategies for
establishing mappings between source code elements and concepts.

The first strategy validates the existence of a correspondence between a concept
expressed in a change request and source code elements by inspecting the actual history
of changes behind a given change request. Of course, a given change request may be
designed and implemented in many ways. In order to minimize the threats to the validity
of our results, we opted to employ the first strategy similarly to its previous usage [Cleary
et al. 2009; Lukins et al. 2008; Poshyvanyk et al. 2007; Poshyvanyk and Marcus 2007].
Specifically, we reenact concept location associated with previous changes associated
with particular bugs reported for the given software. During reenactment developers
perform concept location starting from the bug description and we can verify the
correctness of the location process by checking the final patches for these bugs, as those
are available and are not implemented by any of the authors of this paper. The
documentation for every bug used in the case study specifies which methods were changed
during the bug fix. We consider these methods as (part of) the implementation of the
concept associated with the bug. We used the following criteria to select bugs for the case

14 Porter Stemmer: http://tartarus.org/~martin/PorterStemmer/ (verified on 08/18/2011)

Table II. Software systems’ source code and corpus vitals

System
of

Features
LOC

Parsed
Docs

Vocabulary
(stemmed)

Vocabulary
(non-stemmed)

ArgoUML 27 308K 10,546 2,803 10,459
Freenet 33 295K 18,147 6,438 17,295
iBatis 13 13K 1,869 684 2,041

JMeter 85 130K 8,269 2,699 8,489
Mylyn 57 13K 537 668 1,551
Rhino 105 32K 3,800 1,989 5,326

 • D. Poshyvanyk, M. Gethers, A. Marcus 16

study: (1) bugs should be well-documented and reproducible; (2) bugs should have
approved patches applied in recent releases; (3) none of the authors knows the parts of
the program corresponding to the features to eliminate potential bias; (4) a short
description of a bug report is available and can be used as a query input to an IR-based
source code search engine to eliminate potential bias while formulating queries. Short
descriptions of bug reports typically describe the problematic feature. For each bug we
are interested in using the short description of the bug report as a query and locating at
least one of the methods modified during its fix and found in the official patch. For our
evaluation, the subset of the Mylyn dataset which was established using bug reports and
previously used by Eaddy et al. [Eaddy et al. 2008b], follows such criteria to map
concepts to source code.

The second strategy in our evaluation uses the prune dependency rule introduced by
Eaddy et al. [Eaddy et al. 2008b] to establish mappings between source code elements
and concepts. Eaddy et al. [Eaddy et al. 2008b] released a set of mappings for a number
of concepts derived from the software system documentation and source code elements
for a set of open source software systems. Our case study utilizes this publicly available
data15 that has been previously published and verified by other researchers [Eaddy et al.
2008a; Eaddy et al. 2008b]. Moreover, in the second strategy, official system
documentation is used to derive the search queries (that is, relevant sections of
documentation are used as queries) used in our evaluation. The datasets that use the
second criteria include iBatis, Mylyn, and Rhino.

Finally, the third strategy used to establish mappings between source code elements
and concepts entails researchers manually identifying such relationships. Our case study
also utilizes publicly available benchmarks16, which have been used in previous studies
[Bacchelli et al. 2010a; Bacchelli et al. 2009; Bacchelli et al. 2010b]. The creators of the
benchmarks linked a set of emails from development mailing lists to source code
elements. Six research group members manually mapped the emails to source code with
two researchers reviewing 51% of the emails. In the context of our case study, the text
within the email discusses concepts implemented in the source code. Therefore, we used
the emails as queries corresponding to the concepts that we were interested in locating in
the source code. Software systems from the benchmarks discussed above which are used
in our evaluation include ArgoUML, Freenet, and JMeter.

5.2.4 Evaluation criteria and measures. We compare the results of our new concept
location technique with the sorted list of the retrieval results obtained with the IR-based
ranking of the source code elements (that is, the baseline approach). We assume that
with a ranked list, a user has to scan documents (that is, methods), starting from the first
one, until the relevant document is found. We define the scope of concept location to
finding the starting point of a change, in our case fixing a bug or implementing a concept,
as defined by Rajlich and Gosavi [Rajlich and Gosavi 2004], as it is the role of impact
analysis and change propagation to get the full extent of the change in the source code
[Rajlich and Gosavi 2004; Ren et al. 2004]. A study on how developers explore search
results suggests that developers actually "skim" results as opposed to performing
exploration systematically [Starke et al. 2009]. However, in this work we assume that
developers explore results systematically based on the technique they use, to allow for
stability during empirical comparison of techniques. At the same time we understand that
the same comparison involving human subjects could produce different results.

It is common in retrieval tasks to use precision and recall [Baeza-Yates and Ribeiro-
Neto 1999] as measures to assess the quality of the retrieved results.

15 http://www1.cs.columbia.edu/~eaddy/concerntagger/ (verified on 08/18/2011)
16 http://miler.inf.usi.ch/ (verified on 08/18/2011)

Concept Location using Formal Concept Analysis and Information Retrieval •

17

Precision and Recall are two well known Information Retrieval metric and are defined
as follows:

Precision =
correct retrieved

retrieved


 Recall =

correct retrieved

correct



where correct and retrieved correspond to the set of relevant documents and the entire

set of retrieved, respectively.
Precision and recall are complementary measures and usually increasing one of them

results in the decrease of the other. Depending on the application (i.e., retrieval tasks),
high precision, high recall, or acceptable balance of the two is desired. For example,
during concept location, high precision is desirable as the developer wants to investigate
as few false positives as possible. On the other hand, during impact analysis, for
example, high recall is more important as it is undesirable to miss places in the code that
need to be changed.

Concept location techniques that are formulated as retrieval tasks, as in this paper, are
evaluated in related work using these two measures, adapted for the specifics of the task
at hand [Poshyvanyk et al. 2007]. It is important to note again that concept location
succeeds when one of the methods that need to change is identified. In this context,
recall becomes one (1) when concept location succeeds and zero (0) otherwise. In
consequence, the measure best suited to compare the performance of concept location
techniques is precision when recall is one (i.e., when concept location succeeds). In such
situation precision is computed simply as the inverse of the number or documents (i.e.,
methods in our case) that are investigated (i.e., retrieved) until the proper one is found
(see section Maximum possible precision gain). In order to make the precision relevant
to developer actions, it is common to use the inverse precision, when comparing concept
location techniques. Previous work defined this measure as effectiveness [Poshyvanyk et
al. 2007] and it is used to approximate user effort, as it represents the number a methods
the user needs to investigate in order to conclude concept location. Since our focus is on
the number of methods scanned to reach the best ranked relevant method, relevant
methods with the same rank do not impact our effectiveness measure. In reality, users
may spend as little as a few seconds looking at a method (or only to its signature) or
considerable amount of time. To simplify the evaluation we consider that each method
inspection takes the same time, that is, we do not distinguish between the methods they
inspect. Again, in order to account for such a factor, user studies are needed.

In the case studies we use the inverse precision at maximum recall (i.e., one), a.k.a.
effectiveness, to measure and compare the performance of the two concept location
techniques. As mentioned before, we simulate user actions, so we need to define how the
“users” investigate the results in order to measure precision and recall, and implicitly the
effectiveness. For the baseline approach, we assume that the ideal “user” would
investigate every method in the ranked list of results until the target one is reached. For
the FCA-based approach, we assume that the ideal “user” will navigate the concept lattice
starting at the root and investigating every method in the nodes encountered on the
shortest path from the root to the target method. This approach is not uncommon, the
shortest path was previously used to define the minimal browsing area [Cigarrán et al.
2004], which is in fact the measure we use.

In our context, the minimal browsing area and the effectiveness, described above, are
formally defined as follows.

 • D. Poshyvanyk, M. Gethers, A. Marcus 18

Minimal browsing area

Let C be the set of nodes in the resulting concept lattice. The programmer, while visiting
a node in the lattice, can view the actual objects, which correspond to this node (that is,
methods from the software system). We define CFEATURE  C as the subset of the concept
nodes containing methods relevant to the feature, which are present in the concept lattice.
We redefine the minimal browsing area (MBA) as the minimal part of the lattice that a
user should explore, starting from the top node, to reach the first object in CFEATURE. The
reason for redefining this metric is to allow its definition to reflect the task of concept
location.

Given two concept nodes ci and cj, the node ci is smaller than cj if the extension of ci is
a subset of the extension of cj. Given a document d D, its object concept is the smallest
concept in C which contains d in its extension. Within a concept lattice a path, p, from
the root node to a given node in the concept lattice can be expressed as a sequence of
concept nodes c0, c1,…,cn where n ≥ 0 such that each ci is a concept node and ci+1 is a
sub-concept of ci. For each concept node in CFEATURE there exists at least one path from
the root to each concept node, which appears in the set. We define PFEATURE as the set of
all paths from the root concept node to concepts of CFEATURE. In order to measure the
effort required to traverse a particular path, for each concept node contained in the path
we count the number of documents, d, with its object concept appearing in CFEATURE.
More specifically, for each concept node in CFEATURE we count the number of documents
which appear in the concept node, but do not appear in any of the sub-concept nodes.
Note that we provide the user with a sparse representation of the concept lattice, which,
for each concept node, only indicates documents that meet the aforementioned criteria.
MBA is identified by selecting the path from PFEATURE, which requires minimal effort to
traverse. That is, locating the path which requires the user to investigate the minimal
number of methods (i.e., the lowest possible number of false positives) while navigating
to a method of interest. Determining MBA can easily be transformed into the problem of
finding the shortest path between the root node and a node in CFEATURE.

Effectiveness

We need a uniform measure to compare the effectiveness of the proposed and the
baseline concept location techniques. More specifically, our proposed concept location
technique returns a concept lattice that developers traverse as opposed to a ranked list,
which is traditionally used to compute precision and recall. Since the goal of every
feature location technique is to reduce the effort for the developers in the concept location
process, we measure this effort as the number of methods from the list that the developers
would need to investigate until they find the first relevant method. Formally, we define
effectiveness of a baseline technique, that is ERL, and the techniques utilizing FCA, that is
EMBA, as the rank r(mi) of the methods mi, where mi is the top ranked method among the
methods that must be changed. The effectiveness captures how many methods must be
investigated before the first method relevant to the feature is located. A higher
effectiveness value indicates that more search effort is needed. Using the same example
in Fig. 2, the method of interest occurs in the baseline approach in position 6, having ERL
= 6. However, in the concept lattice it is in position 3, thus EMBA = 3. As previously
mentioned the MBA reflects the best possible performance for a given concept lattice. It
is possible to achieve lower effectiveness if the user does not navigate the minimal
browsing area.

Concept Location using Formal Concept Analysis and Information Retrieval •

19

Maximum possible precision gain

Finally, we must compare the performance of the baseline technique with the proposed
technique. Here we define maximum possible precision gain (MPG), a measure which
extends the commonly used precision [Baeza-Yates and Ribeiro-Neto 1999] measure to
capture the potential gain provided by our concept lattice based technique. The reason
we are talking here about a maximum possible gain in precision is because using the
minimal browsing area (i.e., the methods along the shortest path) in the measure of
precision we compute the precision in the best possible case (i.e., assume an ideal user).
In real life scenarios, users may take different paths in the lattice. Nonetheless, MPG
shows us whether in the best case scenario, the FCA based technique leads to better
precision than the baseline or not.

PMBA, is defined as the number of relevant documents encountered (the document
representing the first relevant method) divided by the total number of irrelevant
documents which viewed when traversing the minimal browsing area. Obviously, the
lower bound is the size of the ranked list of search results that the user has to scan before
he identifies the first method belonging to the feature. We denote the precision of the
ranked list as PRL. Formally the measures PMBA and PRL are defined as follows:

PMBA = 1

MBAE
 PRL = 1

RLE

Notice that the numerator is constant, with a value of one, because we are interested in
locating only one method, namely the first relevant method, as we explained before.

We define the maximum possible precision gain as the utmost possible precision gain
obtained with the concept lattice over the precision of the ranked list.

MPG(C) = 100


RL

RLMBA

P

PP %

Consider the example from Fig. 2 (see Section 4.2.1) and let us assume that the
developer is locating the method that cancels printing operations and the method of
interest occurs in position 6 (that is cancelJob) out of 7, having PRL=0.16. However, in
the concept lattice it has the ranking of 3 out of 7, thus PMBA=0.33. To obtain the ranking
of a document in a concept lattice we count the number of documents, which appear in
the concept nodes along the path to the document of interest. Eventually, MPG(C) =
(0.33-0.16)/0.16 = 106%, meaning that the concept lattice can reduce the effort in half
when compared to a plain ranked list in this particular case.

Positive values of MPG indicate a potential gain in performance when the concept
lattice based approach (and the user follows the MBA) is applied as opposed to the use of
the IR-based ranked list for concept location. When MPG returns a value of zero, the
technique would encounter an identical number of irrelevant documents before locating
the first relevant document. Note that it is possible for the metric to yield a negative
value, which indicates that the precision obtained using the IR-based ranked list is an
improvement over the results acquired using the concept lattice based approach.
Additionally, as previously mentioned, MPG is based on the precision of MBA, therefore
providing an upper bound to the gain in precision possible when using concept lattice
based concept location. In practice, such gains are only possible when navigation
decisions made by developers during lattice exploration are identical to the traversal path,
which minimizes the effort required to locate the first relevant method, namely the MBA.
We cannot guarantee that a user will always follow such a path during evaluation of
concept lattices. Therefore, the proposed metric serves as a valid indicator of the

 • D. Poshyvanyk, M. Gethers, A. Marcus 20

potential gain in precision, which can be acquired through the use of the concept lattice in
the best possible exploration scenario.

5.3 Results and discussion

Fig. 4 through Fig. 9 provide the descriptive statistics for the MPG values for each lattice
configuration across all the features in six software systems. We provide the mean, 1st
quartile, 3rd quartile, and maximum values for both non-stemmed and stemmed versions
of the corpora. We differentiate the descriptive statistics among various configurations of
lattices to distinguish general and software specific trends. MPG expresses potential
precision gain acquired by using concept lattices as compared to LSI-based ranked lists
of the results. Negative values indicate scenarios where LSI-based concept location
outperforms the proposed technique.

5.3.1 The results for Rhino. The results of the study indicate that the proposed approach
outperforms the IR-based concept location technique for all the configurations, with the
best results obtained while increasing the number of terms and decreasing the number of
documents. The results for locating 105 features in Rhino (see Fig. 4) using 2,520
concept lattices indicate that the MPG values range from -85.1% (-93% for stemmed) to
7,700% (7,900% for stemmed) depending on specific configuration of a concept lattice.
The results indicate that there are cases where the concept lattices significantly
outperform the IR-based ranked lists and vice versa, shown by the range (that is min to
max) of MPG for various configurations. The mean MPG values across all the
configurations indicate that the proposed approach outperforms the IR-based ranking of
the results. In this case mean values of MPG are positive for all configurations,
indicating that, on average, there is a reduction in the number of methods evaluated to
locate the first relevant method. Moreover, studying the average MPG values per
configuration unveils the existence of a positive correlation between a number of terms
used to build lattices and the MPG values. The configurations using 100 documents
indicate a consistent increase in the MPG values from 375% when 10 terms are used up

Fig. 4. Box-plots for the descriptive statistics for MPG values for different configurations (documents - N and
terms - K) of concept lattices of Rhino for both stemmed (right) and non-stemmed (left) version of the

corpora. For each box plot, the bottom and top whiskers represent the minimum and maximum non-outlier
values respectively, the bottom and top of the box represent the 1st and 3rd quartiles respectively, and the line

inside the box represents the median, whereas the crosses inside the boxes indicate the mean. Circles
represent data points determined to be outliers (1.5*(3rd Quartile - 1st Quartile)).

Concept Location using Formal Concept Analysis and Information Retrieval •

21

to 1,383% when 25 terms are used. This trend holds for all the other configurations using
80 and 90 documents.

While increasing the number of terms from 10 to 15 the upper 75% of the data points
own positive MPG values indicating that the proposed approach outperforms the IR-
based concept location approach in at least 75% of the cases. The results also support the
observation that decreasing the number of documents leads to increased MPG values. It
should be noted, however, that this improvement is not as significant and consistent as
the improvement caused by increasing the number of terms. There are a few scenarios
where decreasing the number of documents negatively impacts the MPG values. For
instance, consider the configurations n=90 and k=20, and n=80 and k=20 where MPG
decreases from 1,064.8% to 1,012.8% (in average). However, even in those cases the
concept location using concept lattices outperforms the IR-based concept location
approach. Moreover, the results of statistical Wilcoxon’s matched-pairs signed-ranked
test with an alpha of 0.05 for comparing differences in effectiveness for both approaches,
ERL-EMBA, indicate that the majority of lattice configurations yields statistically
significant improvement in effectiveness while using concept location technique with
concept lattices (see Table III).

Concept location with the concept lattices technique using corpus stemming
outperforms its carbon copy, which does not utilize stemming. Our findings for Rhino
advocate that applying stemming enhances the performance of the proposed technique to
efficiently locate concepts in source code. For example, stemming prompts an elevation
in the MPG values for the configuration using 80 documents and 25 terms (1,514.9%
without stemming vs. 2,812.5% with stemming). Although cases exist where MPG has a
few negative values, as indicated by the minimal values column, the upper 75% of the
data for each configuration include only positive MPG values.

5.3.2 The results for iBatis. The results for iBatis (see Fig. 5) indicate that the
proposed technique outperforms the IR-based concept location approach even without
utilizing corpus stemming. In this particular case we have 13 features from which we

Fig. 5. Box-plots for the descriptive statistics for MPG values for different configurations (documents - N and
terms - K) of concept lattices of iBatis for both stemmed (right) and non-stemmed (left) version of the corpora.

For each box plot, the bottom and top whiskers represent the minimum and maximum non-outlier values
respectively, the bottom and top of the box represent the 1st and 3rd quartiles respectively, and the line inside
the box represents the median, whereas the crosses inside the boxes indicate the mean. Circles represent data

points determined to be outliers (1.5*(3rd Quartile - 1st Quartile)).

 • D. Poshyvanyk, M. Gethers, A. Marcus 22

generate 312 lattices to evaluate. The MPG ranges from -33.3% (n=80 and k=25) to
7,100% (all configurations). All the configurations consisting of more than ten terms
boost MPG values. Any concept lattice corresponding to these configurations
outperforms the baseline approach. While using concept lattices, applying stemming
does not result in any significant improvement. The results of the IR-based concept
location technique improved significantly after applying stemming, thus, leaving little or
no room for improvement for the proposed concept lattices based approach. That is,
improvement of the IR-based concept location technique allows the position of the first
relevant method to near or reach one, which is considered optimal. A baseline method,
which yields results close or equal to the optimal result limits or eliminates any possible
improvements. If the first relevant method acquired using the baseline is located in the
first position, alternate techniques can only equal the performance at best, as it is
practically impossible to exceed such a result. For the stemmed version of the corpus,
the MPG values range from 0% (all configurations) to 5,400% (n=90 and k=25).

5.3.3 The results for Mylyn. As visualized in Fig. 6, for nearly 85% of the
configurations obtained using the non-stemmed version of the corpus and 90% of the
configurations of the stemmed version of the corpus the minimum value of MPG is zero.
The observation is made using the total 1,368 concept lattices generated for the various
configurations of the 57 features of Mylyn evaluated. Such a result is significant as it
indicates that even in the worst case the performance of the proposed concept location
technique exceeds that of the baseline approach for those particular configurations.
Overall all configurations considered, the maximum possible precision gain ranges from -
86% (-71% for stemmed) to 6,200% (7,000 for stemmed). Once again, analyzing the
mean MPG value across the various configurations shows the existence of a positive
correlation between the number of terms used and the improvement obtained through the
use of concept lattice based concept location.

5.3.4 The results for ArgoUML. Our finding for ArgoUML show a slight decrease in the
average MPG values for the 648 lattice configurations evaluated corresponding to the
selected 27 features (see Fig. 7). The average MPG values range from 167% (212% for

Fig. 6. Box-plots for the descriptive statistics for MPG values for different configurations (documents - N and
terms - K) of concept lattices of Mylyn for both stemmed (right) and non-stemmed (left) version of the

corpora. For each box plot, the bottom and top whiskers represent the minimum and maximum non-outlier
values respectively, the bottom and top of the box represent the 1st and 3rd quartiles respectively, and the line

inside the box represents the median, whereas the crosses inside the boxes indicate the mean. Circles
represent data points determined to be outliers (1.5*(3rd Quartile - 1st Quartile)).

Concept Location using Formal Concept Analysis and Information Retrieval •

23

stemmed) to 502% (792% for stemmed). Although the magnitude of improvement
acquired when applying our concept lattice based technique on ArgoUML is not
comparable to the results of the systems discussed above the general trend of the data is
virtually identical. Once again, the proposed technique benefits from the use of
stemming.

5.3.5 The results for Freenet. The results of Freenet present an unusual case when
compared to other systems in the case study (see Fig. 8). For this data set (33 features
which resulted in 792 concept lattices) we encounter configurations where, on average,
the baseline approach outperforms our proposed technique without stemming with

Fig. 8. Box-plots for the descriptive statistics for MPG values for different configurations (documents - N and
terms - K) of concept lattices of Mylyn for both stemmed (right) and non-stemmed (left) version of the

corpora. For each box plot, the bottom and top whiskers represent the minimum and maximum non-outlier
values respectively, the bottom and top of the box represent the 1st and 3rd quartiles respectively, and the line

inside the box represents the median, whereas the crosses inside the boxes indicate the mean. Circles
represent data points determined to be outliers (1.5*(3rd Quartile - 1st Quartile)).

Fig. 7. Box-plots for the descriptive statistics for MPG values for different configurations (documents - N and
terms - K) of concept lattices of Mylyn for both stemmed (right) and non-stemmed (left) version of the

corpora. For each box plot, the bottom and top whiskers represent the minimum and maximum non-outlier
values respectively, the bottom and top of the box represent the 1st and 3rd quartiles respectively, and the line

inside the box represents the median, whereas the crosses inside the boxes indicate the mean. Circles
represent data points determined to be outliers (1.5*(3rd Quartile - 1st Quartile)).

 • D. Poshyvanyk, M. Gethers, A. Marcus 24

respect to maximum possible precision gain. For example, the configuration where
n=100 and k=10 the average MPG value is -13%. There are two important observations
which must be made. First, when stemming is applied the average MPG value for the
configurations considered ranges from 17% to 485% as opposed to -24% to 83% without
stemming. Such results further highlight the pertinent role that stemming plays on our
technique. Second, as the number of terms increase we observe an increase in the MPG
values. Based on this observation, which appears across all the systems in this case
study, we conjecture that if we were to use larger number of terms we could obtain
results similar to those obtained for other software systems evaluated.

5.3.6 The results for JMeter. The MPG values achieved range from 62% (368% for
stemmed) to 360% (828% for stemmed) for the configurations of the 85 features (2,040
concept lattices) evaluated. As is the case with other systems evaluated, the impact of
stemming on the results prevails as shown in Fig. 9. Also, the results for JMeter
demonstrate the improvement in performance acquired when the number of terms used to
generate the concept lattice increases. For example, increasing the number of terms from
10 to 15 when 100 documents are used increases the MPG value from 62% to 131%
(391% to 588% for stemmed).

5.4 Analysis of concept lattice configurations

While our analysis of the results of MPG values supports the assumption that concept
lattices are effective in terms of clustering source code search results, we also compared
lattices of different configurations to gain more insights into the differences in their
effectiveness. Fig. 10 provides a visual synopsis of the descriptive statistics, combining
results from all software systems, summarizing the differences in the effectiveness while
comparing lattices of different configurations to the IR-based ranking of the results. In
this case, each data point is the difference between the absolute position of the first
relevant method in the concept lattice, which follows the minimal browsing area, and the
position of the first relevant method in the ranked list of search results using the baseline
approach. Each data point represents the difference in the effectiveness for the two
concept location techniques while locating a single feature or a bug, whereas each box

Fig. 9. Box-plots for the descriptive statistics for MPG values for different configurations (documents - N and
terms - K) of concept lattices for both stemmed (right) and non-stemmed (left) version of the corpora. For

each box plot, the bottom and top whiskers represent the minimum and maximum non-outlier values
respectively, the bottom and top of the box represent the 1st and 3rd quartiles respectively, and the line inside
the box represents the median, whereas the crosses inside the boxes indicate the mean. Circles represent data

points determined to be outliers (1.5*(3rd Quartile - 1st Quartile)).

Concept Location using Formal Concept Analysis and Information Retrieval •

25

plot summarizes the descriptive statistics of these differences across all the features and
bugs for a given lattice configuration. For instance, the box plot summarizing differences
between effectiveness of concept location technique using lattice configurations with
n=80 and k=25 over the IR-based concept location approach (see Fig. 10) indicates that
concept lattices reduce the number of methods in the search results that need to be
inspected by more than 10 methods on average as compared to the baseline approach.
This box plot also indicates that there are only a few cases where the IR-based ranking
slightly outperforms the concept lattices. The results for locating the features in Rhino,
iBatis, Mylyn, ArgoUML, Freenet, and JMeter are summarized in the box plots.

Overall, the box plots indicate the presence of all the trends identified and described in
the previous section. For instance, it can be observed that increasing the number of terms
elevates the effectiveness of concept lattices as compared to the baseline approach. The
case of concept location using non-stemmed version of the corpus provides a clear
example of how increasing the number of terms in lattices improves overall effectiveness.
While using 100, 90 and 80 documents with 10 terms, it is evident that the IR-based
concept location approach outperforms concept lattices in approximately 50% of the
cases for each configuration. However, the effectiveness of concept lattices is directly
proportional to the number of terms used to build lattices. In the same setting, but using
25 terms, the concept lattices outperform the baseline approach in approximately 75% of
cases. This trend also holds for stemmed versions of the corpora.

The results indicate noticeable positive impact of stemming on concept location using
lattices. After stemming the corpora, the average of the effectiveness measure for all
lattice configurations indicates an improvement over the baseline approach. The box
plots confirm that after applying stemming all the lattice configurations outperform the
baseline approach in approximately 75% of the cases. The results highlight the
significance of choosing the number of terms for building lattices as selecting adequate
values for this parameter (e.g., at least 15 terms) can warrant consistent improvements of
using concept lattices over the IR-based ranking of the search results.

Finally, the results of statistical Wilcoxon’s matched-pairs signed-ranked test with an
alpha of 0.05 for comparing differences in effectiveness between the baseline and

Fig. 10. The box plots summarize the difference in effectiveness, that is, ERL-EMBA. The dataset for each box plot

consists of the absolute difference ERL-EMBA. For each box plot, the bottom and top whiskers represent the
minimum and maximum non-outlier values respectively, the bottom and top of the box represent the 1st and 3rd
quartiles respectively, and the line inside the box represents the median, whereas the crosses inside the boxes

indicate the mean. Circles represent data points determined to be outliers (1.5*(3rd Quartile - 1st Quartile))

 • D. Poshyvanyk, M. Gethers, A. Marcus 26

proposed approaches, ERL-EMBA, indicate that all of the lattice configurations considered
yields statistically significant improvement in effectiveness while using concept lattices
for concept location (see Table III).

5.5 Statistical significance of the effect of stemming

We investigate whether the improvements provided by stemming for the concept location
technique using concept lattices is statistically significant or not. We observe the impact
of stemming on the maximum possible precision gain (that is, the MPG). For this
measure, we determine if stemming improves the results, that is, whether or not it
increases MPG. Our goal is to determine if utilizing stemming significantly enhances the
ability of generated concept lattices to reduce effort required during concept location.

In scenarios where stemming considerably improves the effectiveness of the baseline
approach, concept lattices garner additional gains when the number of terms is large
enough (that is, k>=15). We determine this by first, deriving the null hypothesis for each
measure on all evaluated configurations for each software system. Since, for each
configuration we have results for both non-stemmed and stemmed we use Wilcoxon’s
Matched-Pairs Signed-Ranks test with an alpha of 0.05. Table IV summarizes the results,

Table IV. The results of Wilcoxon’s matched-pairs signed-ranked test with an alpha of 0.05 for
comparing differences in effectiveness, that is, ERL-EMBA. Highlighted are lattice configurations

that provide statistically significant differences while using stemming.

P-value

N K=10 K=15 K=20 K=25
100 0.0010 < 0.0001 < 0.0001 < 0.0001
90 0.0003 < 0.0001 < 0.0001 < 0.0001
80 0.0001 < 0.0001 < 0.0001 < 0.0001

Table III. The results for Wilcoxon’s matched-pairs signed-ranked tests for checking if applying
stemming yields statistically significant impact on LDF measure. Highlighted are the

configurations, which indicate statistically significant difference in the results (in some cases
stemming improves the position of the first relevant method in the baseline approach providing

little or no room for improvement while using concept lattices).

 P-value

System N k=10 k =15 k =20 k =25
100 < 0.0001 < 0.0001 < 0.0001 < 0.0001

90 < 0.0001 < 0.0001 < 0.0001 < 0.0001Rhino

80 < 0.0001 < 0.0001 < 0.0001 < 0.0001

100 0.9768 0.9626 0.8893 0.9727
90 0.9566 0.8756 0.8606 0.8606iBatis

80 0.9680 0.8446 0.9626 0.8893
100 0.2892 0.0027 0.0398 0.0355

90 0.4046 0.0283 0.0158 0.0457Mylyn

80 0.0325 0.0227 0.0112 0.0459

100 0.0047 0.0075 0.0081 0.0167

90 0.0047 0.0315 0.0069 0.0181ArgoUML

80 0.0103 0.0163 0.0085 0.0181

100 0.0002 < 0.0001 < 0.0001 < 0.0001

90 0.0074 < 0.0001 < 0.0001 < 0.0001Freenet

80 0.0021 < 0.0001 < 0.0001 < 0.0001

100 < 0.0001 < 0.0001 < 0.0001 < 0.0001

90 < 0.0001 < 0.0001 < 0.0001 < 0.0001JMeter

80 < 0.0001 < 0.0001 < 0.0001 0.0002

Concept Location using Formal Concept Analysis and Information Retrieval •

27

where in the majority of cases the null hypothesis can be rejected for the significance
level specified, indicating that our results are unlikely to be caused by chance. Results
for all systems evaluated except iBatis support our intuition that stemming corpora
significantly improves MPG. iBatis’ p-values for maximum possible precision gain of
various configurations are high, however. Further investigation reveals that for nine of
the 13 features stemming improves the position of the first relevant method in the
baseline technique. Additionally, without stemming, MBA values are relatively low,
indicating excellent reduction in effort when searching for relevant information. The
combination of these two factors considerably limits improvements possible by stemming
while using concept lattices, which is confirmed by some of the p-values.

Overall, we conclude that stemming positively impacts both the concept location
technique using concept lattices and the baseline approach. Analysis of the results (see
Table IV) indicates that the reduction in effort (that is, methods viewed) while using
concept lattices as compared to the baseline approach is statistically significant with an
alpha level of 0.05 in the majority of the scenarios. For the software systems that were
considered in our case study, the results show that p-values decrease as the number of
terms increase. This appears to be caused by two factors: (1) stemming improves the
position of the first relevant method for 56 out of 118 features and (2) the improvements
obtained for configurations using stemming levels off quicker than results for non-
stemmed as k increases. The first factor impacts the total amount of improvement
possible. The combination of these two factors leads to the difference between the non-
stemmed and stemmed results being less significant as the number of terms increases.

5.6 Outlier analysis

In this section we provide a few representative examples, which do not adhere to general
patterns observed in the previous section. More specifically, we present the analysis of
the results for two features from Mylyn and JMeter17 (see the complete details for the
concept lattices in Table V).

In case of the bug# 14983818 for Mylyn we can observe that stemming negatively
impacts the MPG values. For instance, for the lattice configuration of n=100 and k=25,

17 http://www.cs.wm.edu/semeru/tosem-fca-lsi/ (verified on 08/18/2011)
18 https://bugs.eclipse.org/bugs/show_bug.cgi?id=149838 (verified on 08/18/2011)

Fig. 11. Concept lattice for JMeter feature #195 using 80 documents and 10 terms. Each node
represents a concept and the numbers associated with each node (located in the rectangles with

white background) indicate number of methods assigned to the concept node. Rectangles with grey
background are the terms associated with each concept node. The circled node shows the location

of the first relevant method in the concept lattice.

 • D. Poshyvanyk, M. Gethers, A. Marcus 28

the MPG values drop from 3000% to 500% after applying stemming. This case does not
align with the majority of the cases from the previous sections, where stemming
consistently improved the results of concept location using concept lattices. While this
case negatively impacts the results, detailed analysis reveals that MPG values decrease
since stemming already elevated the position of the first relevant method in the baseline
techniques from the 31st to the 6th position (see the values of RL19 in Table V). This case
limits the potential of concept lattices to improve the results as the baseline technique
already provides high rankings for relevant methods (the upper bound for MPG measure
after stemming is 500%, whereas MPG values before stemming reach 3000%). In
summary, this example emphasizes the importance of evaluating different measures in
unison while assessing the effectiveness gain provided by stemming as in some cases
stemming significantly improves the results of the baseline reducing the potential
improvement acquired while using concept lattices.

Another case where we found MPG values to be negative is the situation where
concept lattices contain relatively large concept nodes (see Fig. 11). Feature #195 (see
online appendix) for JMeter is an example of such a situation. For this feature the lattice
configuration of n=80 and k=10 terms, which appears in the Fig. 11, illustrates how large
concept nodes affect the MPG values. Notably, the large concept nodes along the path of
the minimal browsing area inflate the MBA value. The figure shows one relatively large

19 RL is the position of the first relevant method in the ranked list of the results (see section 5.2.4 for complete
definitions)

Table V. Experimental results for locating two features in Mylyn and JMeter. The table provides results
for 12 non-stemmed and 12 stemmed configurations of concept lattices for each system.

 Non Stemmed Stemmed
Sys. N K C EMBA ERL MPG C EMBA ERL MPG

100 10 424 1 31 3000.0 232 1 6 500.0

100 15 1202 1 31 3000.0 1331 1 6 500.0

100 20 3285 1 31 3000.0 2914 1 6 500.0

100 25 5142 1 31 3000.0 3477 1 6 500.0

90 10 414 1 31 3000.0 228 1 6 500.0

90 15 1055 1 31 3000.0 1119 1 6 500.0

90 20 2085 1 31 3000.0 1674 1 6 500.0

90 25 2629 1 31 3000.0 2007 1 6 500.0

80 10 360 1 31 3000.0 185 1 6 500.0

80 15 646 1 31 3000.0 734 1 6 500.0

80 20 955 1 31 3000.0 1229 1 6 500.0

M
yl

yn
 (

14
98

38
)

80 25 1685 1 31 3000.0 1805 1 6 500.0
100 10 17 51 10 -80.4 31 28 10 -64.3

100 15 28 49 10 -79.6 72 7 10 42.9

100 20 43 37 10 -73.0 110 1 10 900.0

100 25 64 32 10 -68.8 148 1 10 900.0

90 10 17 47 10 -78.7 22 27 10 -63.0

90 15 26 46 10 -78.3 60 7 10 42.9

90 20 46 31 10 -67.7 85 1 10 900.0

90 25 62 30 10 -66.7 108 1 10 900.0

80 10 18 44 10 -77.3 31 10 10 0.0

80 15 29 38 10 -73.7 46 1 10 900.0

80 20 50 30 10 -66.7 80 1 10 900.0

jM
et

er
 (

19
5)

80 25 63 29 10 -65.5 112 1 10 900.0

Concept Location using Formal Concept Analysis and Information Retrieval •

29

concept nodes, containing 38 methods (accounting for 48% of methods in lattice), which
must be visited in order to reach the first relevant method. In this case, the node accounts
for 38 of the 44 methods included in the minimal browsing area, unfavorably contributing
to an MPG of -77.27%. For this particular scenario increasing the number of terms
consistently reduces the number of methods of the MBA, illustrated by the MBA
improving to 29 when 25 terms are used, but increasing terms does not present a
universal or efficient solution to this problem. More research is required to better
understand and address this type of cases, which are only a few in our data set. We have
little reasons to believe that these cases are more prevalent in other systems; they are
most likely also outliers. Applying more sophisticated term selection algorithms, such as
the recently proposed approach of Kuhn [Kuhn 2009] which analyzes the log-likelihood
of term frequencies, may alleviate the problem encountered in this example. Selection of
appropriate terms may reduce the number of cases where several methods share the exact
set of selected terms. We provide complete details on all the features and bugs (including
other exceptional cases) in our online appendix.

5.7 Threats to validity

Several issues may have affected the results of the case study and thus may limit
generalizations. We made all efforts to minimize the effect of these issues and we
discuss them here.

One of the issues is that in our case studies we use the number of documents to build
concept lattices that range from 80-100. However, if there are no relevant results in this
range, we cannot compute any of the measures we used for evaluation. The assumption
is that if the relevant results are ranked lower than 100, a new query needs to be
formulated; nonetheless it is unlikely that a developer would inspect more than 100
methods before deciding to reformulate a query. Our evaluation measures take into
account the number of nodes that need to be inspected. However, they do not take into
account any costs associated while inspecting any individual nodes or elements in
concept lattices or ranked lists of the results. In order to consider this information, user
studies are required, which assume collecting low level information, such as interaction
events, from within the IDE [Fritz et al. 2007]. We are planning on addressing this issue
in our future work building on the results of prior user studies [de Alwis et al. 2007; Ko
et al. 2006; Robillard et al. 2004; Starke et al. 2009]. A user study is also required to
evaluate the practical usefulness of the attribute labels for navigational decisions during
concept location. Currently, we assume that the insight provided by labels allows
developers to make navigational decisions to reach the first relevant method with
minimal effort, which introduces another threat to validity. In other words, our case
study aims at evaluating a potential gain of using lattices as compared to the ranked lists
of the results. The actual gain of using lattices can be evaluated via user studies where
developers might use different strategies to browse and traverse lattices. Additionally, a
user study would address the assumption we make that equal effort is required to evaluate
a method, regardless of its size.

Although the software systems used in our evaluation come from a variety of
application domains and differ in project size, they are all implemented in Java and are
open source software systems. This issue prevents us from generalizing the results to
software systems written in other programming languages and those systems developed
as commercial software. On the other hand, there is no data to indicate how these factors
would impact the results.

Another issue is the extent to which the software and the features used in the case
study are representative of those actually used in practice. Although ArgoUML, Freenet,

 • D. Poshyvanyk, M. Gethers, A. Marcus 30

iBatis, JMeter, Mylyn, and Rhino are real-world programs, this threat could be reduced if
we experiment with other programs of different sizes and domains, as well as locating
more concepts. In addition, the features related to the bugs used in our evaluation could
have been implemented in more methods than those suggested in an official patch, as
correcting the problem may involve only certain parts in the implementation. Once
again, the assessment of the effectiveness gains remains valid, as both methods are
equally influenced by this issue. The mappings for the features of Rhino and iBatis were
derived by Eaddy et al. [Eaddy et al. 2008a; Eaddy et al. 2008b]. Additionally, the data
provided for iBatis did not include descriptions of the concerns identified, which may
have caused some imprecision in the results. For Rhino, the authors used the ECMA
Specification to identify concepts and each concept was associated with a section in the
documentation [Eaddy et al. 2008b]. There were no specifications available for iBatis so
the authors derived concerns from the user's guide [Eaddy et al. 2008b]. We had to
manually map concerns to sections of the user's guide, which described the concern.
Although we tried to map concerns to sections where the name of the concern and the
section heading from the user's guide indicate a relationship, it is possible that someone
with more knowledge of the system would have been able to generate slightly different
mappings. The resulting mappings could have negatively or positively impacted the
results for iBatis.

5.8 Future work directions

The work done on this research thread so far provided solid results and also revealed
directions where this research can move into. We plan to compare this approach with at
least two other different strategies used to rank and select descriptive attributes to build
concept lattices, for example, the terminological weighting formula and the Okapi
[Cigarrán et al. 2004]. We also plan to design a heuristic-based approach to experiment
with different strategies for splitting identifiers [Dit et al. 2011a; Enslen et al. 2009],
mining abbreviations [Hill et al. 2008] or selecting attributes, which may be specific to
source code, for example, selecting only attributes that represent data types or only class
or methods names, etc. We plan to incorporate information about the rank of the method
into the structure of the concept lattice, which may be helpful in terms of choosing the
path while exploring a concept lattice. We will also investigate whether concept lattices
can guide in re-ranking results of the IR-based concept location technique. With the
emergence of various techniques to summarize software artifacts [Haiduc et al. 2010;
Rastkar et al. 2010; Sridhara et al. 2010], we intend to explore the idea of replacing
attribute labels with summaries of methods located in concept nodes of the lattice.
Finally, we will investigate the impact of concept lattices on query reformulation
strategies, which we did not address in this work.

6. CONCLUSIONS

In this paper we proposed a novel solution to address the problem of concept location in
source code by combining Formal Concept Analysis and Information Retrieval. In the
proposed approach, Latent Semantic Indexing is used to map concepts expressed in
textual change requests (e.g., bug reports or feature requests) to relevant parts of the
source code, presented as a ranked list of search results. The benefit of our approach
comes from automatically selecting most relevant attributes from a subset of source code
documents in the search results and organizing them in a concept lattice using Formal
Concept Analysis. We evaluated the proposed approach on six open-source systems with
several hundred features and bugs for each system and derive our conclusions based on
the analysis on different configurations of the corresponding concept lattices.

Concept Location using Formal Concept Analysis and Information Retrieval •

31

The proposed concept location method, which combines Information Retrieval and
Formal Concept Analysis, provides very good results (e.g., average maximum possible
precision gain exceeding 2,000% for configurations of Rhino) when considering a
relatively small subset of number of methods (e.g., 100 out of 3,000 in the case of
Rhino), hence it is easy to use for software of any size. It should be noted that our
primary metric for comparing the proposed technique is based on potential optimistic
gain while using concept lattices during concept location. Our approach outperforms in
the best case scenario the IR-based concept location technique for all the configurations
(e.g., average maximum possible precision gain for all systems range between 71%-
2,864% for configurations using 25 terms), whereas the best results are obtained while
increasing the number of terms and decreasing the number of documents. Additionally,
concept location with concept lattices using corpus stemming outperforms its carbon
copy, which does not utilize stemming (as indicated by average improvement of 567%
for all systems and configurations considered). Finally, concept lattices are shown to be
quite effective (up to 79 times improvement over simple ranking) in terms of grouping
relevant information and labeling topics, concepts, and relationships between them,
offering the user additional cues when exploring the results of a search.

7. ACKNOWLEDGEMENTS

We are grateful to the anonymous TOSEM reviewers for their relevant and useful
comments and suggestions, which helped us in significantly improving the earlier
versions of this paper. This work is supported by NSF CCF-0916260, NSF CCF-
1016868, NSF CCF-0845706, and NSF CCF-1017263 grants. Any opinions, findings,
and conclusions expressed herein are the authors’ and do not necessarily reflect those of
the sponsors.

REFERENCES

ANTONIOL, G. and GUÉHÉNEUC, Y.G. 2006. Feature Identification: An Epidemiological Metaphor. IEEE
Transactions on Software Engineering 32, 9, 627-641.

BACCHELLI, A., D'AMBROS, M. and LANZA, M. 2010a. Extracting Source Code from E-Mails. In
Proceedings of the 18th IEEE International Conference on Program Comprehension (ICPC'10)2010a.

BACCHELLI, A., D'AMBROS, M., LANZA, M. and ROBBES, R. 2009. Benchmarking Lightweight
Techniques to Link E-Mails and Source Code. In 16th IEEE Working Conference on Reverse Engineering
(WCRE'09), Lille, France, 205-214.

BACCHELLI, A., LANZA, M. and ROBBES, R. 2010b. Linking e-mails and source code artifacts. In 32nd
ACM/IEEE International Conference on Software Engineering (ICSE'10), Cape Town, South Africa, 375-
384.

BAEZA-YATES, R.A. and RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison-Wesley.
BIGGERSTAFF, T.J., MITBANDER, B.G. and WEBSTER, D.E. 1994. The Concept Assignment Problem in

Program Understanding. In 15th IEEE/ACM International Conference on Software Engineering (ICSE'94)
482-498.

CARPINETO, C., OSIŃSKI, S., ROMANO, G. and WEISS, D. 2009. A survey of Web clustering engines.
ACM Computing Surveys (CSUR) 41, 3.

CHEN, K. and RAJLICH, V. 2000. Case Study of Feature Location Using Dependence Graph. In 8th IEEE
International Workshop on Program Comprehension (IWPC'00), Limerick, Ireland, 241-249.

CIGARRAN, J., PEÑAS, A., GONZALO, J. and VERDEJO, F. 2005. Evaluating Hierarchical Clustering of
Search Results. In 12th International Conference on String Processing and Information Retrieval
(SPIRE'05), 49-54.

CIGARRÁN, J.M., GONZALO, J., PEÑAS, A. and VERDEJO, F. 2004. Browsing Search Results via Formal
Concept Analysis: Automatic Selection of Attributes. In 2nd International Conference on Formal Concept
Analysis (ICFCA'04), Sydney, Australia, 74-87.

CLEARY, B., EXTON, C., BUCKLEY, J. and ENGLISH, M. 2009. An empirical analysis of information
retrieval based concept location techniques in software comprehension. Empirical Software Engineering
14, 1, 93-130.

 • D. Poshyvanyk, M. Gethers, A. Marcus 32
CUBRANIC, D., MURPHY, G.C., SINGER, J. and BOOTH, K.S. 2005. Hipikat: A Project Memory for

Software Development. IEEE Transactions on Software Engineering 31, 6, 446-465.
DE ALWIS, B., MURPHY, G.C. and ROBILLARD, M. 2007. A Comparative Study of Three Program

Exploration Tools. In 15th IEEE International Conference on Program Comprehension, 103-112.
DE LUCIA, A., FASANO, F., OLIVETO, R. and TORTORA, G. 2007. Recovering Traceability Links in

Software Artifact Management Systems using Information Retrieval Methods. ACM Transactions on
Software Engineering and Methodology (TOSEM) 16, 4.

DE LUCIA, A., OLIVETO, R. and VORRARO, L. 2008. Using structural and semantic metrics to improve
class cohesion. In IEEE International Conference on Software Maintenance (ICSM'08), 27-36.

DEERWESTER, S., DUMAIS, S.T., FURNAS, G.W., LANDAUER, T.K. and HARSHMAN, R. 1990.
Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41, 6,
391-407.

DIT, B., GUERROUJ, L., POSHYVANYK, D. and ANTONIOL, G. 2011a. Can Better Identifier Splitting
Techniques Help Feature Location? In 19th IEEE International Conference on Program Comprehension
(ICPC'11), Kingston, Ontario, Canada, 11-20.

DIT, B., REVELLE, M., GETHERS, M. and POSHYVANYK, D. 2011b. Feature Location in Source Code: A
Taxonomy and Survey. Journal of Software Maintenance and Evolution: Research and Practice.

EADDY, M., AHO, A.V., ANTONIOL, G. and GUÉHÉNEUC, Y.G. 2008a. CERBERUS: Tracing
Requirements to Source Code Using Information Retrieval, Dynamic Analysis, and Program Analysis. In
16th IEEE International Conference on Program Comprehension (ICPC'08), Amsterdam, The
Netherlands, 53-62.

EADDY, M., ZIMMERMANN, T., SHERWOOD, K., GARG, V., MURPHY, G., NAGAPPAN, N. and AHO,
A.V. 2008b. Do Crosscutting Concerns Cause Defects? IEEE Transaction on Software Engineering 34, 4,
497-515.

EISENBARTH, T., KOSCHKE, R. and SIMON, D. 2003. Locating Features in Source Code. IEEE
Transactions on Software Engineering 29, 3, 210 - 224.

ENSLEN, E., HILL, E., POLLOCK, L. and VIJAY-SHANKER, K. 2009. Mining Source Code to
Automatically Split Identifiers for Software Analysis. In 6th IEEE Working Conference on Mining
Software Repositories (MSR'09), Vancouver, BC, Canada 71-80.

FERENC, R., SIKET, I. and GYIMOTHY, T. 2004. Extracting Facts from Open Source Software. In 20th IEEE
International Conference on Software Maintenance (ICSM'04) IEEE Computer Society: Los Alamitos
CA, Chicago, Illinois, 60-69.

FLURI, B., WÜRSCH, M., GIGER, E. and GALL, H. 2009. Analyzing the Co-Evolution of Comments and
Source Code. Software Quality Journal 17, 4, 367-394.

FRITZ, T., MURPHY, G.C. and HILL, E. 2007. Does a programmer's activity indicate knowledge of code? In
6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, 341 - 350.

GANTER, B. and WILLE, R. 1996. Formal Concept Analysis. Springer-Verlag, Berlin, Heidelberg, New York.
GAY, G., HAIDUC, S., MARCUS, M. and MENZIES, T. 2009. On the Use of Relevance Feedback in IR-

Based Concept Location. In 25th IEEE International Conference on Software Maintenance (ICSM'09),
Edmonton, Canada, 351-360.

GOLD, N., HARMAN, M., LI, Z. and MAHDAVI, K. 2006. Allowing Overlapping Boundaries in Source Code
using a Search Based Approach to Concept Binding. In 22nd IEEE International Conference on Software
Maintenance (ICSM'06), Philadelphia, PA, 310-319.

GRANT, S., CORDY, J.R. and SKILLICORN, D.B. 2008. Automated Concept Location Using Independent
Component Analysis In 15th Working Conference on Reverse Engineering (WCRE'08), Antwerp,
Belgium, 138-142.

HAIDUC, S., APONTE, J., MORENO, L. and MARCUS, A. 2010. On the Use of Automated Text
Summarization Techniques for Summarizing Source Code. In 17th IEEE Working Conference on Reverse
Engineering (WCRE'10), Beverly, Massachusetts, USA.

HAYES, J.H., DEKHTYAR, A. and SUNDARAM, S.K. 2006. Advancing candidate link generation for
requirements tracing: the study of methods. IEEE Transactions on Software Engineering 32, 1, 4-19.

HILL, E., FRY, Z.P., BOYD, H., SRIDHARA, G., NOVIKOVA, Y., POLLOCK, L. and VIJAY-SHANKER,
K. 2008. AMAP: Automatically Mining Abbreviation Expansions in Programs to Enhance Software
Maintenance Tools. In 5th Working Conference on Mining Software Repositories, Leipzig, Germany.

HILL, E., POLLOCK, L. and VIJAY-SHANKER, K. 2007. Exploring the Neighborhood with Dora to Expedite
Software Maintenance. In 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE'07), 14-23.

HILL, E., POLLOCK, L. and VIJAY-SHANKER, K. 2009. Automatically Capturing Source Code Context of
NL-Queries for Software Maintenance and Reuse. In 31st IEEE/ACM International Conference on
Software Engineering (ICSE'09), Vancouver, British Columbia, Canada.

JIANG, H., NGUYEN, T., CHE, I.X., JAYGARL, H. and CHANG, C. 2008. Incremental Latent Semantic
Indexing for Effective, Automatic Traceability Link Evolution Management. In 23rd IEEE/ACM
International Conference on Automated Software Engineering (ASE'08), L'Aquila, Italy.

Concept Location using Formal Concept Analysis and Information Retrieval •

33
KERSTEN, M. and MURPHY, G.C. 2006. Using Task Context to Improve Programmer Productivity. In 14th

ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE), Portland,
Oregon, USA, 1-11.

KO, A.J., MYERS, B.A., COBLENZ, M.J. and AUNG, H.H. 2006. An Exploratory Study of How Developers
Seek, Relate, and Collect Relevant Information during Software Maintenance Tasks. IEEE Transactions
on Software Engineering (TSE) 32, 12, 971-987.

KUHN, A. 2009. Automatic labeling of software components and their evolution using log-likelihood ratio of
word frequencies in source code. In Proceedings of the 6th IEEE International Working Conference on
Mining Software Repositories (MSR'09)2009.

KUHN, A., DUCASSE, S. and GÎRBA, T. 2007. Semantic Clustering: Identifying Topics in Source Code.
Information and Software Technology 49, 3, 230-243.

LIENHARD, A., DUCASSE, S. and AREVALO, G. 2005. Identifying Traits with Formal Concept Analysis. In
20th IEEE/ACM international Conference on Automated Software Engineering (ASE'05), Long Beach,
CA, USA, 66 - 75.

LIU, D., MARCUS, A., POSHYVANYK, D. and RAJLICH, V. 2007. Feature Location via Information
Retrieval based Filtering of a Single Scenario Execution Trace. In 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE'07), Atlanta, Georgia, 234-243.

LO, K.K., CHAN, M.K. and BANIASSAD, E. 2006. Isolating and Relating Concerns in Requirements using
Latent Semantic Analysis. In ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA'06), 383 - 396

LORMANS, M. and VAN DEURSEN, A. 2006. Can LSI help Reconstructing Requirements Traceability in
Design and Test? In 10th European Conference on Software Maintenance and Reengineering (CSMR'06),
47-56.

LUKINS, S., KRAFT, N. and ETZKORN, L. 2008. Source Code Retrieval for Bug Location Using Latent
Dirichlet Allocation. In 15th Working Conference on Reverse Engineering (WCRE'08), Antwerp,
Belgium, 155-164.

MALETIC, J.I., COLLARD, M.L. and MARCUS, A. 2002. Source Code Files as Structured Documents. In
10th IEEE International Workshop on Program Comprehension (IWPC'02), Paris, France, 289-292.

MARCUS, A. and MALETIC, J.I. 2001. Identification of High-Level Concept Clones in Source Code. In
Automated Software Engineering (ASE'01), San Diego, CA, 107-114.

MARCUS, A., MALETIC, J.I. and SERGEYEV, A. 2005a. Recovery of Traceability Links Between Software
Documentation and Source Code. International Journal of Software Engineering and Knowledge
Engineering 15, 4, 811-836.

MARCUS, A., POSHYVANYK, D. and FERENC, R. 2008. Using the Conceptual Cohesion of Classes for
Fault Prediction in Object Oriented Systems. IEEE Transactions on Software Engineering 34, 2, 287-300.

MARCUS, A., RAJLICH, V., BUCHTA, J., PETRENKO, M. and SERGEYEV, A. 2005b. Static Techniques
for Concept Location in Object-Oriented Code. In 13th IEEE International Workshop on Program
Comprehension (IWPC'05), St. Louis, Missouri, USA, 33-42.

MARCUS, A., SERGEYEV, A., RAJLICH, V. and MALETIC, J. 2004. An Information Retrieval Approach to
Concept Location in Source Code. In 11th IEEE Working Conference on Reverse Engineering
(WCRE'04), Delft, The Netherlands, 214-223.

MENS, K. and TOURWE, T. 2005. Delving source code with formal concept analysis. Computer Languages,
Systems & Structures 31, 3-4, 183-198.

POSHYVANYK, D., GUÉHÉNEUC, Y.G., MARCUS, A., ANTONIOL, G. and RAJLICH, V. 2007. Feature
Location using Probabilistic Ranking of Methods based on Execution Scenarios and Information
Retrieval. IEEE Transactions on Software Engineering 33, 6, 420-432.

POSHYVANYK, D., MARCUS, A. and DONG, Y. 2006a. JIRiSS - an Eclipse plug-in for Source Code
Exploration. In 14th IEEE International Conference on Program Comprehension (ICPC'06), Athens,
Greece, 252-255.

POSHYVANYK, D., MARCUS, A., DONG, Y. and SERGEYEV, A. 2005. IRiSS - A Source Code
Exploration Tool. In 21st IEEE International Conference on Software Maintenance (ICSM'05), Budapest,
Hungary, 69-72.

POSHYVANYK, D., MARCUS, A., FERENC, R. and GYIMÓTHY, T. 2009. Using Information Retrieval
based Coupling Measures for Impact Analysis. Empirical Software Engineering 14, 1, 5-32.

POSHYVANYK, D. and MARCUS, D. 2007. Combining Formal Concept Analysis with Information Retrieval
for Concept Location in Source Code. In 15th IEEE International Conference on Program
Comprehension (ICPC'07), Banff, Alberta, Canada, 37-48.

POSHYVANYK, D., PETRENKO, M., MARCUS, A., XIE, X. and LIU, D. 2006b. Source Code Exploration
with Google In 22nd IEEE International Conference on Software Maintenance (ICSM'06), Philadelphia,
PA, 334 - 338.

RAJLICH, V. and GOSAVI, P. 2004. Incremental Change in Object-Oriented Programming. In IEEE Software,
2-9.

 • D. Poshyvanyk, M. Gethers, A. Marcus 34
RASTKAR, S., MURPHY, G. and MURRAY, G. 2010. Summarizing Software Artifacts: A Case Study of Bug

Reports. In 32nd ACM/IEEE International Conference on Software Engineering (ICSE'10), 505-514.
RATIU, D. and DEISSENBOECK, F. 2007. From Reality to Programs and (Not Quite) Back Again. In 15th

IEEE International Conference on Program Comprehension (ICPC'07), Banff, Alberta, Canada, 91-102.
REN, X., SHAH, F., TIP, F., RYDER, B.G. and CHESLEY, O. 2004. Chianti: a Tool for Change Impact

Analysis of Java Programs. In 19th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications(OOPSLA '04), Vancouver, BC, Canada, 432-448.

REVELLE, M., DIT, B. and POSHYVANYK, D. 2010. Using Data Fusion and Web Mining to Support Feature
Location in Software. In 18th IEEE International Conference on Program Comprehension (ICPC'10),
Braga, Portugal, 14-23.

REVELLE, M. and POSHYVANYK, D. 2009. An Exploratory Study on Assessing Feature Location
Techniques. In 17th IEEE International Conference on Program Comprehension (ICPC'09), Vancouver,
British Columbia, Canada, 218-222.

ROBILLARD, M. 2005. Automatic Generation of Suggestions for Program Investigation. In Joint European
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Lisbon, Portugal, 11 - 20

ROBILLARD, M.P. 2008. Topology Analysis of Software Dependencies. ACM Transactions on Software
Engineering and Methodology 17, 4, 1-36.

ROBILLARD, M.P., COELHO, W. and MURPHY, G.C. 2004. How effective developers investigate source
code: an exploratory study. IEEE Transactions on Software Engineering (TSE) 30, 12, 889- 903.

SALTON, G. and MCGILL, M. 1983. Introduction to Modern Information Retrieval. McGraw-Hill, New York,
NY, USA.

SAVAGE, T., REVELLE, M. and POSHYVANYK, D. 2010. FLAT^3: Feature Location and Textual Tracing
Tool. In 32nd ACM/IEEE International Conference on Software Engineering (ICSE'10), Cape Town,
South Africa, 255-258.

SHEPHERD, D. 2007. Natural Language Program Analysis: Combining Natural Language Processing with
Program Analysis to Improve Software Maintenance Tools. In Computer Science University of Delaware,
176.

SHEPHERD, D., FRY, Z., GIBSON, E., POLLOCK, L. and VIJAY-SHANKER, K. 2007. Using Natural
Language Program Analysis to Locate and Understand Action-Oriented Concerns. In 6th International
Conference on Aspect Oriented Software Development (AOSD'07), 212-224.

SILLITO, J., MURPHY, G.C. and DE VOLDER, K. 2008. Asking and Answering Questions during a
Programming Change Task. IEEE Transactions on Software Engineering (TSE) 34, 4, 434-451.

SIMMONS, S., EDWARDS, D., WILDE, N., HOMAN, J. and GROBLE, M. 2006. Industrial tools for the
feature location problem: an exploratory study. Journal of Software Maintenance: Research and Practice
18, 6, 457-474.

SNELTING, G. 2005. Concept Lattices in Software Analysis. In Formal Concept Analysis, 272-287.
SRIDHARA, G., HILL, E., MUPPANENI, D., POLLOCK, L. and VIJAY-SHANKER, K. 2010. Towards

Automatically Generating Comments for Java Methods. In 25th IEEE/ACM International Conference on
Automated Software Engineering (ASE'10).

STARKE, J., LUCE, C. and SILLITO, J. 2009. Searching and Skimming: An Exploratory Study. In 25th IEEE
International Conference on Software Maintenance (ICSM'09), Edmonton, Alberta, Canada.

TAIRAS, R. and GRAY, J. 2009. An Information Retrieval Process to Aid in the Analysis of Code Clones.
Empirical Software Engineering 14, 1, 33-56.

TONELLA, P. 2003. Using a Concept Lattice of Decomposition Slices for Program Understanding and Impact
Analysis. IEEE Transactions on Software Engineering 29, 6, 495-509.

TONELLA, P. and CECCATO, M. 2004. Aspect Mining through the Formal Concept Analysis of Execution
Traces. In 11th IEEE Working Conference on Reverse Engineering (WCRE'04), 112 - 121

VAN GEET, J. and DEMEYER, S. 2009. Feature Location in COBOL Mainframe Systems: an Experience
Report In 25th IEEE International Conference on Software Maintenance (ICSM'09), Edmonton, Alberta,
Canada, 361-370.

WILDE, N., BUCKELLEW, M., PAGE, H., RAJLICH, V. and POUNDS, L. 2003. A Comparison of Methods
for Locating Features in Legacy Software. Journal of Systems and Software 65, 2, 105-114.

WILDE, N., GOMEZ, J.A., GUST, T. and STRASBURG, D. 1992. Locating User Functionality in Old Code.
In IEEE International Conference on Software Maintenance (ICSM'92), Orlando, FL, 200-205.

YIN, R.K. 2003. Applications of Case Study Research. Sage Publications, Inc, CA, USA.
ZHAO, W., ZHANG, L., LIU, Y., SUN, J. and YANG, F. 2006. SNIAFL: Towards a Static Non-interactive

Approach to Feature Location. ACM Transactions on Software Engineering and Methodologies (TOSEM)
15, 2, 195-226.

