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Different studies show that programmers are more interested in finding definitions of functions and their uses 
than variables, statements, or ordinary code fragments.  Therefore, developers require support in finding 
relevant functions and determining how those functions are used.  Unfortunately, existing code search engines 
do not provide enough of this support to developers, thus reducing the effectiveness of code reuse.  We provide 
this support to programmers in a code search system called Portfolio that retrieves and visualizes relevant 
functions and their usages.  We have built Portfolio using a combination of models that address surfing behavior 
of programmers and sharing related concepts among functions.  We conducted two experiments: First, an 
experiment with 49 C/C++ programmers to compare Portfolio to Google Code Search and Koders using a 
standard methodology for evaluating Information Retrieval-based engines.  And second, an experiment with 19 
Java programmers to compare Portfolio to Koders.  The results show with strong statistical significance that 
users find more relevant functions with higher precision with Portfolio than with Google Code Search and 
Koders.  We also show that by using PageRank, Portfolio is able to rank returned relevant functions more 
efficiently. 
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________________________________________________________________________ 
1. INTRODUCTION 

Different studies show that when searching for functions to reuse, programmers prefer 
to find chains of function invocations rather than arbitrary functions in source code [Hill 
et al. 2009; Sim et al. 2011; Sim et al. 1998].  More specifically, developers use different 
tools including code search engines to answer three types of questions [Fritz and Murphy; 
Sillito et al. 2008].  First, programmers want to find relevant functions that implement 
high-level requirements.  Second, programmers must understand how a function is used 
in order to use it themselves.  Third, programmers must see the chain of function 
invocations in order to understand how concepts are implemented in these functions.  It is 
important that source code search engines support programmers in finding answers to 
these questions. 

In general, understanding code and determining how to use it is a manual and 
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laborious process that takes anywhere from 50% to 80% of programmers’ time [Corbi 
1989; Davison et al. 2000].  Many source code search engines return short code 
fragments, but these fragments do not give enough background or context to help 
programmers determine how to reuse these code fragments.  Programmers must then 
invest a significant intellectual effort (i.e., they need to overcome a high cognitive 
distance [Krueger 1992]) to understand how to reuse these code fragments.  On the other 
hand, if code fragments are retrieved as chains of function invocations, it makes it easier 
for developers to understand how to reuse these functions. 

A majority of code search engines treat code as plain text where all words have 
unknown semantics.  However, applications contain functional abstractions that provide a 
basic level of code reuse, since programmers define functions once and call them from 
different places in the code.  The idea of using functional abstractions to improve code 
search was proposed and implemented elsewhere [Bajracharya et al. 2010; Chatterjee et 
al. 2009; Grechanik et al. 2010; Stylos and Myers 2006]; however, these code search 
engines do not automatically analyze how functions are used in the context of other 
functions, despite the fact that understanding the chains of function invocations is a key 
question that programmers ask [Fritz and Murphy; Sillito, Murphy and De Volder 2008].  
Unfortunately, existing code search engines do little to ensure that they retrieve code 
fragments in a broader context of relevant functions that invoke one another to 
accomplish certain tasks. 

Our idea is that a code search engine should help programmers understand how to 
reuse the functions that the engine returns to programmers.  Programmers browse 
returned source code and follow function calls and function declarations.  Then, 
programmers attempt to understand the concepts implemented by these functions by 
determining the chain of function invocations [Robillard et al. 2004; Starke et al. 2009].  
That is, the function invocations are a key part of a programmer’s understanding of the 
concepts implemented by any one function.   

These chains of function invocations are easier for programmers to reuse than multiple 
examples from different components in the code.  For example, consider the query “mip 
map dithering texture image graphics”, which we use as an example query throughout 
this paper.  Programmers do not want to just see examples that implement mip map 
techniques, and others that render texture, and others that manipulate graphic images.  A 
programmer wants to accomplish the complete task of dithering mip map images that ac-
company a texture.  However, among relevant results, there are functions that implement 
mipmapping, functions that manipulate texture, and there are multiple functions that deal 
with graphic images.  Typically, programmers investigate these functions to determine 
which of them are relevant and determine how to compose these functions to achieve the 
goal that is expressed with the query.  A programmer wants to see code for the whole task 
of how to mip map images that accompany a texture in computer graphics.  A search 
engine can support programmers efficiently if it incorporates in its ranking how these 
functions call one another, and displays that information to the user. 

We designed a code search system called Portfolio that supports programmers in 
finding relevant functions that implement high-level requirements reflected in query 
terms (i.e., finding initial focus points), determining how these functions are used in a 
way that is highly-relevant to the query (i.e., building on found focus points), and 
visualizing dependencies of the retrieved functions. Portfolio works by combining 
various natural language processing (NLP) and indexing techniques with PageRank and 
spreading activation (SAN) algorithms. With NLP and indexing techniques, initial focus 
points are found that match key words from queries.  With PageRank, we model the 
behavior of programmers as they navigate through source code search results.  Finally, 
with SAN we elevate highly-relevant chains of function calls to the top of search results.  
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Our specific contributions are: 

 We have built Portfolio on two large source code repositories.  Developers 
can use Portfolio to search in close to 270 Million C/C++ LOC in projects 
from FreeBSD Ports1 and 440 Million Java LOC from Merobase2. 

 We conducted an experiment using standard Information Retrieval 
methodology [Manning et al. 2008] with 49 professional programmers to 
evaluate Portfolio and compare it with the well-known and successful source 
code search engines Google Code Search and Koders over a large C/C++ 
repository. The results show with strong statistical significance that users find 
more relevant code with higher precision with Portfolio than those with 
Google Code Search and Koders. We made the materials of this study 
publicly available for replication purposes3. 

 We also conducted an experiment with 19 participants to evaluate Portfolio 
against Koders when using a large Java repository.  We found that Portfolio 
outperformed Koders in terms of relevance of the source code and by 
ordering the relevant results higher on the list of results. 

 We have built and released tools for generating a function call graph of 
millions of lines of code for public use4.  These tools use approximation 
techniques based on regular expressions to quickly find functions and 
function calls.  We evaluated the precision of this solution and found that our 
tool extracts function calls with a precision of 76%.  Since building a static 
call graph is an undeciable problem [Landi 1992], our results shed light on 
the potential precision of such an approximation technique. 

 We show that by using PageRank, Portfolio is able to identify the most-
relevant functions of the located functions and show them earlier in the 
results.  We contribute to a growing body of research showing that PageRank 
can identify important functions in a call graph [Bajracharya and Lopes 2009; 
Inoue et al. 2003; Inoue, Yokomori, Yamamoto, Matsushita and Kusumoto 
2005; Revelle et al. 2010; Zaidman and Demeyer 2008] by running 
PageRank of a call graph with tens of millions of functions and function 
calls, and showing with strong statistical significance that PageRank 
improves the ordering of the search results. 

 We determined that experienced programmers report the same levels of 
relevant results using the source code search engines as inexperienced 
programmers.  This result provides evidence suggesting that the results from 
our study can be generalized for programmers of different experience levels. 

To the best of our knowledge, we are not aware of any existing code search engines 
that have been evaluated using a standard information retrieval methodology against 
commercial code search engines over a large codebase, and been shown to outperform 
these engines with strong statistical significance. Portfolio is available for public use5. 

                                                           
1 http://www.freebsd.org/ports (verified on 5/10/12) 
2 http://www.merobase.com/ (verified on 5/10/12) 
3 http://www.cs.wm.edu/semeru/portfolio/ExperimentMaterials.tar.gz (63MB, verified on 5/10/12) 
4 http://www.cs.wm.edu/semeru/portfolio/fundex_v1.0.tar.gz (verified on 5/10/12) 
5 http://www.searchportfolio.net/ (verified on 5/10/12) 
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2. OUR SEARCH MODEL 

The search model of Portfolio uses a key abstraction in which the search space is 
represented as a directed graph with nodes as functions and directed edges between nodes 
that specify usages of these functions (i.e., a call graph). For example, if a function g is 
invoked in the function f, then a directed edge exists from the node that represents the 
function f to the node that represents the function g. Recent work has shown that 
programmers benefit from contextual information, such as from the call graph, in order to 
navigate and locate relevant source code [Holmes et al. 2006; Lawrance et al. 2007; 
Lawrance et al. 2010; Lawrance et al. 2010]. Since the main goal of Portfolio is to enable 
programmers to find relevant functions and their usages, we need models that effectively 
represent the behavior of programmers while navigating a large graph of functional 
dependencies. These are navigation and association models that address surfing behavior 
of programmers and associations of terms in functions in the search graph. 

2.1 Navigation Model 

When using text search engines, users navigate among pages by following links 
contained in those pages. Similarly, in Portfolio, programmers can navigate between 
functions by following edges in the directed graph of functional dependencies using 
Portfolio’s visual interface. To model the navigation behavior of programmers, we adopt 
the model of the random surfer that is used in popular search engines such as Google. 
Following functional dependencies helps programmers to understand how to use found 
functions. The surfer model is called random because the surfer can “jump” to a new 
URL, or in case of source code, to a new function. These random jumps are called 
teleportations, and this navigation model is the basis for the popular ranking algorithm 
PageRank [Brin and Page 1998; Langville and Meyer 2006]. 

In the random surfer model, the content of functions and queries does not matter, 
navigations are guided only by edges in the graph that specify functional dependencies. 
Accordingly, PageRank reflects only the surfing behavior of users, and this rank is based 
on the popularity of a function that is determined by how many functions call it.  
However, the surfing model is query-independent since it ignores terms that are used in 
search queries. Our search model uses a query-independent navigation model in order to 
analyze the popularity of functions, and therefore the likelihood that programmers will 
navigate to those functions. Recent work has pointed out that programmers navigate to 
code also based on relevance [Lawrance, Burnett, Bellamy, Bogart and Swart 2010], and 
taking into consideration query terms may improve the precision of code searching. That 
is, if different functions share concepts that are related to query terms and these functions 
are connected using functional dependencies, then these functions should be ranked 
higher.  Therefore, we also introduce our association model, which depends on the query 
and is computed only during search time. 

 

Figure 1: Example of associations between different functions. 
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2.2 Association Model 

The main idea of an association model is to establish relevance among facts whose 
content does not contain terms that match user queries directly. Consider again the query 
“mip map dithering texture image graphics”. Among relevant results there are functions 
that implement mip map techniques, and others that render texture, and there are multiple 
functions that manipulate graphic images. This situation is schematically shown in Figure 
1, where the function F contains the term mip map (e.g., as an identifier name or in the 
comments), the function G contains the term dithering, the function P contains the terms 
graphics and image, and the term texture is used in the function Q. Function F calls the 
function G, which in turn calls the function H, which is also called from the function Q, 
which is in turn called from the function P. The functions F, P, and Q will be returned by 
a search engine that is based on matching query terms to those that are contained in 
documents. Meanwhile, the function H may be highly relevant to the query, but it is not 
retrieved since it has no words that match the search terms. In addition, the function G 
can be called from many other functions since its dithering functionality is generic; 
however, G is most useful in the context of other functions which implement the 
complete task described by the user’s query. A problem is how to ensure that the 
functions H and G end up on the list of highly relevant functions? 

To remedy this situation we employ an association model that is based on a Spreading 
Activation Network (SAN) [Collins and Loftus 1975; Crestani 1997]. In SANs, nodes 
represent documents, while edges specify properties that connect these documents. The 
edges’ direction and weight reflect the meaning and strength of associations among 
documents. For example, an article about clean energy and a different article about the 
melting polar ice cap are connected with an edge that is labeled with the common 
property “climate change”. Once applied to SAN, spreading activation computes new 
weights for nodes (i.e., ranks) that reflect implicit associations in the networks of these 
nodes. SANs have been used in source code search before, and in this case edges 
represented word occurrences in documents [Henninger 1996].  In Portfolio, we view 
function call graphs as SANs where nodes represent functions, edges represent functional 
dependencies, and weights represent a strength of associations, which includes the 
number of shared terms. After the user enters a query, a list of functions is retrieved and 
sorted based on the score that reflects the match between query terms and terms in 
functions. Once Portfolio identifies the top matching functions (using word occurrences, 
see Section 4.1), it computes SAN to propagate the relevance from these functions to 
others. The result is that every function will have a new score that reflects the 
associations between relevant functions in these functions and user queries. 

 
2.3 The Combined Model 

We compute the PageRank and spreading activation for the functions, and store these 
scores as ranking vectors of functions and scores.  The vector for PageRank, πPR, and 
spreading activation, πSAN, are computed separately and later linearly combined in a 
single ranking vector, πC = f (πPR, πSAN). PageRank is query independent and is pre-
computed automatically for a repository function call graph once, while πSAN is computed 
every time automatically in response to user queries. Assigning different weights in the 
linear combination of these rankings enables fine-tuning of Portfolio by specifying how 
each model contributes to the resulting ranking score. 
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3. PORTFOLIO ARCHITECTURE 

The architecture for Portfolio is shown in Figure 2.  There is a setup phase, where the 
different sets of data required for the search are extracted, and a search phase, where the 
user enters queries and receives functions relevant to those queries.  Portfolio is built on 
top of a Projects Archive, which is a collection of software projects with source code.  In 
this paper, we instantiate Portfolio with an archive of 18,203 C/C++ projects from 
FreeBSD Ports and 13,701 Java projects from Merobase [Hummel, Janjic and Atkinson 
2008]. 

The setup phase starts when the Function Graph Builder extracts all of the functional 
units and functional unit calls in the Projects Archive (1).  These functional units are 
functions in C/C++ or methods in Java.  The functional unit calls are the call 
relationships among these functions or methods, and the Function Graph Builder 
generates a Call Graph representing all of the extracted functional units as nodes and 
functional unit calls as edges (2).  Next, we run PageRank on the Call Graph (3) and 
obtain a PageRank value for each functional unit (4).  We pre-compute the PageRank 
values because the Call Graph is static and PageRank is not query-dependent [Langville 
and Meyer 2006].  The setup phase includes a Metadata Builder, which is responsible for 
extracting the Projects Metadata (5), which is the textual data about the projects, namely 
the comments and identifier names present in the functional units (6). 

The search phase occurs when a user enters a query into our Keyword Search 
component (8).  The query is a natural language query, and the Keyword Search 
component matches keywords in this query to keywords from the Projects Metadata (7).  
The Keyword Search assigns a textual similarity value to the functional units, and SAN 
propagates this value to other functional units in the Call Graph which are connected to 
the functional units given by Keyword Search (9).  This propagated textual similarity 
score is the score assigned to the functions located by SAN (11).  Then, the SAN score is 
linearly combined with the PageRank score (12).  Details on how the SAN and PageRank 
values are computed and combined are in Section 4.  The combined values are the final 
scores given by Portfolio to the located functional units.  These functional units are sent 
to the Visualizer (13), which presents to the user the functional units and the calls among 
those functional units (14). 
 
4. RANKING 

This section will discuss the three components that compute different scores in the 
Portfolio ranking mechanism.  First, a component that computes a score based on word 
occurrences (WOS).  Second, a component that computes a score based on the random 
surfer navigation model (PageRank) described in Section 2.1. Finally, a component that 
computes a score based on SAN connections between these calls based on the association 

Figure 2: Portfolio architecture. 
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model described in Section 2.2. These three components rely on two sources of 
information: textual data from comments and identifiers, and dependencies among 
functions.  WOS ranking is used to bootstrap SAN by providing rankings to functions 
based on query terms. The total ranking score is the weighted sum of the PageRank and 
SAN ranking scores. Each component produces results from different perspectives (i.e., 
word matches, navigation, and associations). Our goal is to produce a combined ranking 
by putting these orthogonal, yet complementary rankings together in a single score. 

4.1 WOS Ranking 

The purpose of WOS is to enable Portfolio to retrieve functions based on matches 
between words in queries and words in the source code of applications. This is a 
bootstrapping ranking procedure that serves as the input to the SAN algorithm. 

The WOS component uses the Vector Space Model (VSM), which is an algebraic 
model for representing documents used by search engines to rank matching documents 
according to their relevance to a given search query. This model is implemented in the 
Lucene Java Framework, which we use in Portfolio. Each document is modeled as a 
vector of terms contained in that document. In our search engine, the documents are the 
functions in a software repository, and the terms are the identifier names and comments 
in those functions.  We split the terms using the camel case and underscore conventions 
[Enslen et al. 2009], and remove all Java reserved words as stop words.  The weights of 
those terms in each document are calculated using the Term Frequency/Inverse 
Document Frequency (TF/IDF) formula. Using a variant of TF/IDF [Manning et al. 
2008], the weight for a term is calculated as: 




k kn

n
tf  

Figure 3: Example of SAN computation, wij = 0.8. Weights that are computed starting 
with the function TiledTexture are shown in orange, and Weights that are computed 

starting with the function ImageTexture are shown in green. 
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Where n is the number of occurrences of the term in the document, and 
kk

n is the 

sum of the number of occurrences of the term in all documents. WOS score for a 
document is the sum of all query terms that are presented in that document. 

 

4.2 PageRank 

PageRank is widely described in literature, so here we give its concise mathematical 
explanation as it is related to Portfolio [Brin and Page 1998; Langville and Meyer 2006]. 
The original formula for PageRank of a function Fi, denoted r(Fi), is the amortized sum 
of the PageRanks of all functions that invoke Fi: 

( )
( )

j Fi

j
i

F B j

r F
r F

F

   

where BFi is the set of functions that invoke Fi and |Fj| is the number of functions that 
the function Fj invokes. This formula is applied iteratively starting with r0(Fi) = 1/n, 
where n is the number of functions in the project archive indexed by Portfolio (8,557,405, 
see Section 6). The process is repeated until PageRank converges to some stable values 
or it is terminated after some number of steps. Functions that are called from many other 
functions have a significantly higher score than those that are used infrequently or not at 
all.  We used an existing Perl module to implement PageRank, with the default settings of 
that module6. 

4.3 Spreading Activation 

Spreading activation computes weights for nodes in two steps: pulses and termination 
checks. Initially, a set of starting nodes is selected using a number of top ranked functions 
(in this case, the top ten functions) using the WOS ranking. During pulses, new weights 
for different nodes are transitively computed from the starting nodes using the formula Nj 
= Σi f (Ni ×wi j), where the weight of the node Nj is equal to the sum of all nodes Ni that 
are incident to the node Nj (e.g., function j calls function i) with edges whose weights are 
wi j. This edge weight serves to give a reduced value to nodes further away from the 
initial nodes. Therefore, the weight is a value between 0 and 1. In Portfolio, we used a 
constant edge weight of 0.8; however, this value is configurable and could vary 
depending on the content of the nodes or other factors. The function f is typically called 
the threshold function that returns nonzero value only if the value of the argument is 
greater than some chosen threshold, which acts as a termination check preventing 
“flooding” of the SAN.  We set the threshold in the function f to terminate after 8 
iterations. 

Consider an example of SAN computation that is shown in Figure 3. This example is 
closely related to the motivating example query “mip map dithering texture image 
graphics.” The first ranking component, WOS, assigned the weights 0.65 and 0.30 to the 
two functions TiledTexture and ImageTexture correspondingly. We label these functions 
with 1. All weights are to the right (rounded off to the second digit). Their subscripts 
indicate the order in which weights are computed from the first function weights. For 
example, the weight is computed for the function CreateTextureFromImage by 

                                                           
6 http://search.cpan.org/~axiak/Algorithm-PageRank-XS-0.04/lib/Algorithm/PageRank/XS.pm (accessed and 
verified 5/10/12) 
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multiplying the WOS weight for the function TiledTexture by the SAN edge weight 0.8. 
Several functions (e.g., load, initRendered) get different weights by following different 
propagation paths from the initial function nodes. In these cases, we use the highest value 
for each node; the final value assigned to initRenderer is 0.27. 

4.4 Combining Ranking 

The combined rank is S = πPR λPR + πSAN λSAN, where λ is the interpolation weight for 
each type of the score and π is the value of the score from PageRank or SAN. We pre-
compute the PageRank values, which are independent of queries, unlike the scores WOS 
and SAN, which are query-dependent. Note that we only use the PageRank score to rank 
the results returned by WOS and SAN.  Adjusting the weights (λ) enables 
experimentation with how underlying structural and textual information in application 
affects resulting ranking scores.  Throughout this paper, λPR = 0.3 and λSAN = 0.7. 

 
5. PORTFOLIO INTERFACES 

Portfolio is available as an online tool via a visual web interface and a SOAP interface 
for integration into different projects.  This section discusses these two interfaces to our 
search engine. 

5.1 Portfolio Visual Interface 

After the user submits a search query, the Portfolio search engine presents functions 
relevant to the query in a browser window as it is shown in Figure 4. The left side 
contains the ranked list of retrieved functions and project names, while the right side 
contains a static call graph that contains these and other functions. Edges of this graph 
indicate the directions of function invocations. Hovering a cursor over a function on the 
list shows a label over the corresponding function on the call graph. Font sizes reflect the 
combined ranking; the higher the ranking of the function, the bigger the font size used to 
show it on the graph. Clicking on the label of a function shows its source code. 

Figure 4: The visual interface of Portfolio. The left side contains a list of ranked retrieved functions 
for the motivating example query and the right side contains a call graph that contains these 
functions; edges of this graph indicate the directions of function invocations. Hovering a cursor 
over a function on the list shows a label over the corresponding function on the call graph. Font 
sizes reflect the score; the higher the score of the function, the bigger the font size used to show it on 
the graph. Clicking on the label of a function loads its source code in a separate browser window.  
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5.2 Portfolio SOAP Interface 

Programmers can build source code search directly into their own applications (or 
even IDEs) by using our SOAP web service, as shown in Figure 5.  We have made three 
SOAP API calls available.  First, search takes a query as input and returns a list of 
results.  Second, code gives the source code of a specified function from the list.  Third, 
edges finds other functions in the repository that call the specified function.  All of these 
SOAP functions are described at our website7. 

 
6. FUNCTION GRAPH BUILDER 

Our search engine relies on the function call graph of projects.  This call graph is a 
static call graph including all functions in the entire repository of source code.  Existing 
static call graph generators vary in their performance and correctness [Landi 1992; 
Milanova et al. 2004; Murphy et al. 1998], but rely on complex procedures such as 
modification of the compilation process.  These complex procedures are intended to 
improve the accuracy of the results, but as a side effect increase the amount of time 
required for the analysis.  Given our available resources, these existing approaches are 
too computationally expensive for use over our archives of tens of thousands of projects 
and hundreds of millions of lines of code. 

We introduce our function graph builder, which approximates the call graph of these 
thousands of projects by matching function invocations to function definitions based on 
two factors:  The name of the function and the location of the function definition.  Our 
graph builder is based on the same approach used by the Linux Cross Reference8.  First, 
we locate function definitions and their positions in the source code by using regular 
expressions.  Next, we identify function invocations and extract the name of the function 
being called.  Then, we search different visible scopes in order to match the invocation to 
the definition (e.g., a function defined within the same class, file, package, or imported 
class).  We avoid computing a full parser or abstract syntax tree in order to reduce the 
computational expense.  Our approach is an approximation of a full lexical and semantic 
analyzer and introduces imprecision in the resulting call graph.  We evaluate the extent of 
this imprecision in Section 6.1. 

Our function graph builder yields a call graph of the entire project archive, including 
calls from functions in one project to functions in a different project (inter-project calls) 
as well as among functions in the same project (intra-project calls).  We extracted a call 
graph for 18,203 C/C++ projects from FreeBSD Ports containing 8,557,405 functions and 
32,279,450 function calls, 5,252,474 of which are inter-project calls.  For Java, we 
analyzed 13,701 projects from Merobase and extracted 14,499,588 methods and 

                                                           
7 http://www.searchportfolio.net/, follow the “Programmer Access” link 
8 http://lxr.linux.no/ (accessed and verified on 5/10/12) 

#!/usr/bin/perl -w 
 
use SOAP::Lite; 
 
print SOAP::Lite 
  -> uri('http://www.cs.wm.edu/portfolio') 
  -> proxy('http://www.cs.wm.edu/~cmc/cgi-bin/portfolio/soapserver.pl') 
  -> search("record midi file", "10") 
  -> result; 
 

Figure 5: Example of using the SOAP interface from Perl.  See the Portfolio website for more details. 
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10,942,126 method calls, of which 3,533,668 were inter-project calls.  Note that the call 
graph for Java is separate from the call graph for C/C++, that is we instantiated two 
versions of Portfolio engine - one for C/C++ and one for Java.  Our function graph 
builder is available from our website. 

6.1 Precision of the Function Graph Builder 

The imprecision from the Function Graph Builder may influence the results from 
Portfolio.  Therefore, in this section, we present an evaluation of the correctness of our 
call graph as extracted by the Builder.  The purpose of this evaluation is to determine the 
level of precision under which the results from Section 7 and 8 can be generalized. 

For this evaluation, we randomly selected a representative sample of 25 different 
C/C++ projects9 in from FreeBSD Ports and we asked 12 graduate student developers 
from DePaul University to manually inspect source code of these projects to verify some 
of the dependencies produced by the Call Graph Builder used in Portfolio. Each 
participant received five projects, as well as the list of function calls (dependencies) for 
those projects, extracted by our Function Graph Builder.  The participants then evaluated 
each function call to determine whether the call was correct.  The participant was 
required to read the source code of the function making the call, and then decide whether 
the call actually occurs in that function.  We asked the participants to provide a brief 
rationale for each decision they make. 

                                                           
9 The 25 projects we sampled ranged from 1,075 to 103,643 LOC, with an average of 17,293 LOC.  We 
extracted on average 3,172 dependencies from each project.  The smallest project in terms of dependencies had 
105 dependencies, while the largest had 17,965.  The projects used in this case-study may be downloaded from 
http://www.cs.wm.edu/semeru/files/ports_subset_01-24-10.tar.gz. 

Experiment Group Search Engine Task Set 

1 
G1 
G2 
G3 

Portfolio 
GCS 

Koders 

T1 
T2 
T3 

2 
G1 
G2 
G3 

Koders 
Portfolio 

GCS 

T2 
T3 
T1 

3 
G1 
G2 
G3 

GCS 
Koders 

Portfolio 

T3 
T1 
T2 

Table 2: Details about the participants in the case studies and code search engine (C.S.E.) use. 

Exp. Participant Pro Studs ≥ 2 years 
experience 

Frequently 
use C.S.E. 

Never use 
C.S.E. 

Used 
G.C.S. 

Used 
Koders 

1 49 44 5 33 9 16 10 3 
2 19 - 19 13 - 5 2 - 

Experiment Group Search Engine Task Set 

1 
G1 
G2 

Portfolio 
Koders 

T1 
T2 

2 
G1 
G2 

Koders 
Portfolio 

T3 
T4 

Table 1: Designs of (a) the first, C/C++ and (b) second, Java user study.  Each group used a different 
search engine with different sets of tasks in a set of two or three experiments. 

(a) C/C++ user study design 

(b) Java user study design 
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This experiment was performed online via a web interface where participants 
submitted their results and the participants had three months to complete the evaluation 
of the projects.  The web interface randomly selected calls from the assigned projects to 
each participant.  Given the relatively long time span of the experiment, to ensure that the 
participants carefully examined each function call, we inserted two incorrect function 
calls into each project.  We then confirmed that the participants labeled these calls as 
incorrect.  This embedded check supplied additional confidence in these results. 

Since some projects contained a large number of dependencies, several participants 
did not evaluate every dependency in their assigned projects.  In this case, we ignored 
dependencies that were not evaluated by at least three participants.  We then combined 
the results given by each participant through voting, similar as it was done for building 
feature location benchmarks in the literature [Robillard et al. 2007].  If a majority of the 
participants rated the extracted function call as correct, then we count the extracted call as 
correct.  Otherwise, we count the extracted call as incorrect. 

Overall, the participants in our experiment evaluating our Function Graph Extractor 
checked 1,630 function calls in 25 different projects.  The participants reported that 
76.6% of the functions calls were correct.  Moreover, the reported levels of correct calls 
ranged from 66.2% to 89.85% for any given project.  We attribute the difference in 
correctly-extracted calls among different projects to the fact that our Function Graph 
Extractor relies on matching the function calls to function names within the scope of the 
function call. Different projects use class inheritance and method overloading differently. 

 
7. EVALUATION 

Typically, search engines are evaluated using manual relevance judgments by experts 
[Manning, Raghavan and Schütze 2008].  To determine how effective Portfolio is, we 
conducted an experiment with 49 C/C++ programmers and a follow-up experiment with 
19 Java programmers.  We designed these experiments to answer the following research 
questions (RQ): 

RQ1  For C/C++, does Portfolio return functions that are more relevant than the 
functions returned by Google Code Search and Koders? 

RQ2 For Java, does Portfolio return functions that are more relevant than the 
functions returned by Koders? 

RQ3 Do the levels of relevance reported by programmers depend on the experience 
level of the programmers? 

RQ4 Does our application of PageRank cause relevant functions to be ranked 
higher than irrelevant functions? 

The rationale behind RQ1 is that we want to compare Portfolio to large-scale code 
search engines, which are used by tens of thousands of programmers on a daily basis.  
Therefore, we compare Portfolio to Google Code Search and Koders, which are both 
commercial-grade code search engines, which search large repositories of code.  We 
dedicated one experiment to studying RQ1.  Because the participants in this experiment 
were C/C++ programmers, we limited the repositories that each search engine used to 
those languages.  We studied RQ2 in a second experiment with Java programmers.  In 
this second experiment, our goal was to evaluate Portfolio against the best-performing 
competitor from the first experiment, over a different programming language. 

We analyze the results of the first experiment in more depth in RQ3.  The rationale 
behind RQ3 is that programmers with more experience may judge the relevance of the 
results differently than programmers with less experience, because more-experienced 
programmers are likely to better understand the retrieved source code.  Note that we do 
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not combine the results from the first and second experiments for RQ3.  We use only the 
results from the first experiment because of the potential confounding effects of mixing 
results from multiple user studies, different programmers, and different programming 
languages searched.  We instead focus on results from the first experiment for three 
reasons.  First, the first study included a much larger number of programmers than the 
second study.  Second, a large majority of the participants from the first experiment were 
professional programmers from Accenture as opposed to student programmers (the 
experience level of the professionals was recorded by Accenture’s human resources 
department).  Finally, we evaluated three source code search engines in the first study, 
compared to two in the second study, which gives our results a greater potential to be 
generalized. 

We pose RQ4 because we use PageRank to sort the list of functions that are located 
using textual similarity and spreading activation.  Our goal is to determine whether our 
use of PageRank leads to the relevant functions (as opposed to the irrelevant functions) 
being located at the top of the list of search results.  Recall from Section 4.5 that we only 
use PageRank to rank the list of results; we do not use it to add functions to the list.  
Without PageRank, the list will be ranked only by the textual similarity and spreading 
activation algorithms. While it would also be possible to study keyword search 
component (aka Information Retrieval, IR) in Portfolio as a standalone technique and 
compare it to IR+SAN and IR+SAN+PageRank, we assume that we accomplish this task 
while comparing Portfolio to Google Code Search and Koders that solely rely on 
keyword search.    

7.1 First Experiment Design 

We used a cross validation experimental design in which participants were randomly 
divided into three groups. The experiment was sectioned in three sub-experiments (see 
Table 1a) in which each group was given a different search engine (i.e., Google Code 
Search, Koders, or Portfolio) to locate code fragments or functions for given tasks. Each 
group used a different set of tasks in each sub-experiment. The same task was performed 
by different participants on different engines in each sub-experiment. Before each 
experiment, we gave a one-hour tutorial on using these search engines. 

In the course of the experiment, participants translated tasks into a sequence of 
keywords that described key concepts they needed to find.  Once participants obtained 
lists of code fragments or functions that were ranked in descending order, they examined 
the functions to determine if the functions matched the tasks. Each participant worked 
individually, assigning a confidence level, C, to the examined functions using a four-level 
Likert scale.  We asked the participants to examine only the top ten functions that 
resulting from their searches since the time for each sub-experiment was limited to two 
hours and because recent work shows that users rarely read beyond the first ten results 
[Granka et al. 2004]. 

While we aim for ten results evaluated by each participant for each query, in practice 
there are cases where fewer than ten results were evaluated.  Low numbers of results may 
occur because of time pressures on the participants or because the search engine returned 
fewer than ten results.  Moreover, the participants completed different tasks at different 
speeds, and participants evaluated different numbers of queries for each engine.  These 
concerns resulted in an unbalanced data set and form the basis for certain threats to 
validity (see Section 7.6). 

Programmers may interpret a task and form a keyword query, but may decide to refine 
the query based on new information or better understanding of the task.  In this case, we 
allowed programmers to refine their queries multiple times until they decided on a single 
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query.  The programmers then evaluated the search engine results for that final query. 
The guidelines for assigning confidence levels are the following: 

1. Completely irrelevant - There is absolutely nothing that the participant can use 
from this retrieved code fragments, nothing in it is related to keywords that 
the participant chose based on the descriptions of the tasks. 

2. Mostly irrelevant - The retrieved function is only remotely relevant to a given 
task; it is unclear how to reuse it. 

3. Mostly relevant - The retrieved function is relevant to a given task and participant 
can understand with some modest effort how to reuse it to solve a given task. 

4. Highly relevant - The participant is highly-confident that the function can be 
reused and s/he clearly sees show to use it. 

7.2 Second Experiment Design 

As work subsequent to the first user study of Portfolio for C/C++, we developed a 
version of Portfolio capable of searching a Java repository (see Section 6).  We 
conducted a user study to evaluate this Java version of Portfolio.  The design of this study 
was similar to the original study, except that we compared Portfolio only to the best-
performing search engine as indicated by the results from the first study.  In this case, we 
selected Koders as the competitive approach because Koders outperformed Google Code 
Search.  We split the study into two experiments, and rotated each engine to a different 
group with different sets of tasks, as shown in Table 1b.  The participants then evaluated 
the top ten results from the assigned engine according to the Likert scale in Section 7.1. 

7.3 Participants 

Forty-nine C/C++ programmers participated in the first case study, while 19 Java 
programmers participated in the second study.  Forty-four of the participants in the first 
study were professional programmers from Accenture, while five were computer science 
graduate students from the University of Illinois at Chicago.  For the second study, we 
recruited 19 computer science graduate students from the College of William & Mary.  
Further details about these participants are in Table 2. All participants have bachelor 
degrees and a majority have master degrees in technical disciplines. 

7.4 Metrics and Statistical Analyses 

This section covers the metrics and statistical analyses we used to measure the results 
of our first experiment.  These metrics are derived from the confidence level, C, defined 
in Section 7.1. 

7.4.1 Precision 
Two main measures for evaluating the effectiveness of retrieval are precision and 

recall [Witten et al. 1999]. The precision is calculated as: 

functionsretrievedoftotal

relevantarethatfunctionsretrievedof
Pr #

#
  

The precision of a ranking method is the fraction of the top r ranked documents that 
are relevant to the query, where r = 10 in this experiment. Relevant code fragments or 
functions are counted only if they are ranked with the confidence levels 4 or 3. Since we 
limit the investigation of the retrieved code fragments or functions to the top ten, the 
recall is not measured in this experiment (e.g., the participants evaluated up to ten results 
for each  query, but there may be more than ten relevant results in the repository). 

We created the variable precision, P as a categorization of the response variable 
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confidence, C (i.e., includes results as relevant if ranked as 3 or 4 by users, and results as 
irrelevant if ranked as 1 or 2 by users). We did it for two reasons: improve discrimination 
of subjects in the resulting data and additionally validate statistical evaluation of results. 
Precision, P imposes a stricter boundary on what is considered reusable code. For 
example, consider a situation where one participant assigns the level two to all returned 
functions, and another participant assigns level three to half of these functions and level 
one to the other half. Even though the average of C = 2 in both cases, the second 
participant reports much higher precision, P = 0.5 while the precision that is reported by 
the first participant is zero. Achieving statistical significance with a stricter discriminative 
response variable will give assurance that the result is not accidental. 

7.4.2 Normalized Discounted Cumulative Gain 
Normalized Discounted Cumulative Gain (NDCG) is a metric for evaluating search 

engines [Anquetil and Lethbridge 1998], and has been used to evaluate source code 
search engines before [Bajracharya, Ossher and Lopes 2010].  Unlike precision or 
confidence, NDCG considers the order of the results given by search engines, such that 
relevant results at the top of the list of results are rewarded.  NDCG is a normalization of 
the metric Discounted Cumulative Gain, which is computed as follows: 
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2
2

1 logi

i

i

C
CG  

Where C1 is the confidence of the result in position 1, and Ci is the confidence of the 
result in position i.  NDCG is computed as NG = G / iG, where iG is the ideal DCG (e.g., 
all ten results are highly-relevant, and confidence is always 4).  For brevity, we refer to 
NDCG as NG throughout the rest of this paper. 

7.4.3 ANOVA and Randomization Tests 
We compute the metrics C, P, and NG based on the results of the first experiment.  To 

answer our first two research questions, we establish the statistical significance of the 
differences in those metrics using two tests: First, we use one-way ANOVA to establish 
the statistical significance of differences in the metrics from our experiments. Second, we 
use randomization tests to establish the directionality of any differences. For RQ3, we 
used a two-tailed Student’s t-Test to compare the difference of means between levels of C 
as reported by participants with different experience levels.  Finally, for RQ4, we used a 
paired two-sample Student’s t-Test to compare the mean NG given by our engine, under 
different configurations, for the same set of queries.  One-way ANOVA has been 
successfully used to evaluate search engine results before [Grechanik, Fu, Xie, McMillan, 
Poshyvanyk and Cumby 2010; McMillan, Grechanik, Poshyvanyk, Xie and Fu 2011].  
ANOVA assumes that the population is normally distributed, and we meet this criterion 
because of the law of large numbers, which states that if a sufficiently large sample is 
used (minimum 30 participants), then the central limit theorem applies [Sirkin 2006].  We 
had 49 participants in our first experiment, so we assume that our population is normally 
distributed.  If we determine with ANOVA that the difference of means is statistically 
significant, our next step is to establish the directionality of the difference of means.  
Recent work has recommended the use of randomization tests for evaluating the results 
of IR-based engines [Smucker et al. 2007].  Therefore, we use randomization tests in our 
studies.  We used the default 100 iterations for randomization as given by Smucker at al. 
[Smucker, Allan and Carterette 2007].  In determining statistical significance, we used 
the traditional measure of alpha equals 0.05. 

7.4.4 Task Design 
We designed 15 tasks for participants to work on during the first experiment in a way 
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that these tasks belong to domains that are easy to understand, and they have similar 
complexity. The authors of this paper visited various programming forums and internet 
groups to extract descriptions of tasks from the questions that programmers asked. In 
addition, we interviewed several programmers at Accenture who explained what tasks 
they worked on in the past year. Additional criteria for these tasks are that they should 
represent the diverse real-world programming tasks for which programmers use source 
code search engines [Bajracharya and Lopes 2009] and should not be biased towards any 
of the search engines that are used in this experiment. We avoid bias to any search engine 
by using engines with large repositories of source code that contain a variety of tasks.  
These tasks represent real-world programming tasks. They span from specific file (e.g., 
music files) manipulation (e.g., read/write) to image processing (e.g., rotate image, adjust 
white balance) to addressing security concern (e.g., encryption/decryption). The 
description of these tasks and the results of the experiment are available for download for 
replication purposes10. 

The following three tasks are examples from the set of 15 tasks we used in our 
experiments: 

• Implement a module for reading and playing midi files. 

• Implement a module that adjusts different parameters of a picture, including 
                                                           
10 http://www.cs.wm.edu/semeru/portfolio/ExperimentMaterials.tar.gz (accessed and verified on 5/10/12) 

(a) Confidence level, C. (b) Precision, P. 

Figure 6: Statistical summary of the results of the first experiment for C, P, and NG.  The central 
box extends from the lower to upper quartile.  The thick white line is the mean.  The thin black 

line is the median.  The thin vertical line extends from the minimum to the maximum value. 

(c) Normalized Discounted Gain, NG 

H P F Fcrit Decision 
H0-NULL 5e-108 261.3 3 Reject 

Table 3: Results of hypothesis for one‐way ANOVA. 

Var Approach Samples Min Max Median Mean StdDev 

C 
Portfolio 
Google 
Koders 

1276 
1373 
1486 

1 
1 
1 

4 
4 
4 

3 
2 
2 

2.86 
1.97 
2.45 

1.07 
1.11 
1.12 

P 
Portfolio 
Google 
Koders 

184 
198 
208 

0 
0 
0 

1 
1 
1 

0.7 
0.25 
0.5 

0.65 
0.35 
0.49 

0.28 
0.33 
0.30 

NG 
Portfolio 
Google 
Koders 

184 
198 
208 

0 
0 
0 

1 
1 

0.97 

0.50 
0.27 
0.42 

0.51 
0.29 
0.42 

0.43 
0.57 
0.42 

Table 4: Statistical summary of the first experiment for dependent variable specified in the 
column Var.  We report the extremal values, median, mean, and standard deviation. 
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brightness, contrast and white balance. 

• Build a program for managing USB devices. The program should implement 
routines such as opening, closing, writing and reading from an USB device. 

7.5 Hypotheses 

We introduce the null hypothesis H0-NULL to evaluate the statistical significance of the 
difference in means for C, P, and NG as reported by the participants in the first user 
study, and are designed to answer RQ1.  H1-NULL is a hypothesis for answering RQ3, while 
we answer RQ4 by evaluating H2-NULL. 

H0-NULL There is no statistical difference in the mean value of C, P, or NG as 
reported by the case study participants using Portfolio, Google Code 
Search, or Koders. 

H1-NULL There is no statistical difference in the mean value of C as reported by 
the case study participants who had at least 2 years C/C++ experience 
and those who had less than 2 years C/C++ experience. 

H2-NULL There is no statistical difference in the mean value of NG as calculated 
when the list of results from Portfolio was ordered with PageRank 
enabled and when ordered with PageRank disabled. 

We also form nine hypotheses (H3 to H11) that state that C, P, and NG for Google 
Code Search and Koders are higher than for Portfolio when searching over C/C++.  
Similarly, three hypotheses (H12 to H14) state that C, P, and NG for Koders are higher 

(a) Confidence level, C. (b) Precision, P. 

Figure 7: Statistical summary of the results of the second experiment for C, P, and NG.  The 
central box extends from the lower to upper quartile.  The thick red line is the mean.  The thin 

black line is the median.  The thin vertical line extends from the minimum to the maximum 

(c) Normalized Discounted Gain, NG 

H P F Fcrit Decision 
H0-NULL 1.22e-6 23.9 3.85 Reject 

Table 5: Results of hypothesis for one‐way ANOVA. 

Var Approach Samples Min Max Median Mean StdDev 

C 
Portfolio 
Koders 

541 
405 

1 
1 

4 
4 

3 
2 

2.62 
2.28 

1.06 
1.06 

P 
Portfolio 
Koders 

61 
62 

0 
0 

1 
1 

0.53 
0.40 

0.53 
0.44 

0.30 
0.32 

NG 
Portfolio 
Koders 

61 
62 

0 
0 

0.98 
0.75 

0.52 
0.30 

0.51 
0.33 

0.25 
0.22 

Table 6: Statistical summary of the second experiment for dependent variable specified in 
the column Var.  We report the extremal values, median, mean, and standard deviation. 
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than for Portfolio when searching over Java.  These hypotheses are only evaluated in the 
case where H0-NULL is rejected for either C/C++ or for Java. 

 

7.6 Threats to Validity 

In this section, we discuss threats to the validity of the experiments and how we 
address these threats. 

7.6.1 Internal Validity 
Internal validity refers to the degree of validity of statements about cause-effect 

inferences. In the context of our experiment, threats to internal validity come from 
confounding the effects of differences among participants, tasks, and time pressure. 

Participants. Since evaluating hypotheses is based on the data collected from 
participants, we identify two threats to internal validity: C++ proficiency and motivation 
of participants. Even though we selected participants who have strong working 
knowledge of C++ as it was documented by human resources at Accenture, we did not 
conduct an independent assessment of how proficient these participants are in C++. This 
threat is mitigated by the fact that out of 44 participants from Accenture, 31 have worked 
on successful commercial projects as C++ programmers for more than two years. The 
number of participants for our Java study 

The other threat to validity is that not all the participants could be motivated 
sufficiently to evaluate retrieved code fragments or functions. We addressed this threat by 
asking participants to explain in a couple of sentences why they chose to assign certain 
confidence levels to the retrieved source code, and we discarded 27 results for all search 
engines that were not sufficiently explained (or had no explanations associated with 
them). 

Time pressure. Each experiment lasted for two hours. For some participants, this was 

Figure 8: Confidence level as reported by experienced (EXP) and inexperienced (IN) 
programmers in the first experiment. 

H P t tcrit Decision 
H1-NULL 0.054 1.93 1.96 Not Reject 

Table 7: Results of hypothesis for one-way ANOVA. 

Var Experience Samples Min Max Median Mean StdDev 

C 
≥ 2 years 
< 2 years 

2883 
1252 

1 
1 

4 
4 

2 
2 

2.45 
2.37 

1.158 
1.162 

Table 8: Statistical summary of reported C by participants’ experience level. 
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not enough time to explore all 50 retrieved code fragments for five tasks (ten results for 
each of five tasks). Therefore, one threat to validity is that some participants could try to 
accomplish more tasks by shallowly evaluating retrieved code. To counter this threat we 
notified participants that their results would be discarded if we did not see sufficient re-
ported evidence of why they evaluated retrieved code fragments and functions with 
certain confidence levels. 

7.6.2 External Validity 
To make the results of this experiment generalizable, we must address threats to 

external validity, which refer to the generalizability of a casual relationship beyond the 
circumstances of our experiment. The fact that supports the validity of this experimental 
design is that the participants are highly representative of professional C/C++ 
programmers. However, a threat to external validity concerns the usage of search tools in 
the industrial settings, where requirements are updated on a regular basis. Programmers 
use these updated requirements to refine their queries and locate relevant code fragments 
or functions using multiple iterations of working with search engines. We addressed this 
threat only partially, by allowing programmers to refine their queries multiple times. 

Another threat to external validity comes from different sizes of software repositories. 
Koders.com claims to search more than 3 Billion LOC in all programming languages, 
which is also close to the number of LOC reported by Google Code Search. Even though 
we populated Portfolio’s repository with close to 270 Mil LOC of C/C++ code and 440 
Mil LOC of Java code, it still remains a threat to external validity. 

 
 

Figure 9: Normalized Discounted Cumulative Gain for Portfolio with PageRank enabled 
(PortfolioSAN+PR) and disabled (PortfolioSAN). 

Lang. P t tcrit Decision 
C/C++ < 1e-4 10.6 1.65 Reject 
Java < 1e-4 4.08 1.67 Reject 

Table 10: Results of hypothesis for a paired t‐Test for RQ4. 

Lang Approach Samples Min Max Median Mean StdDev 

C/C++ 
PortfolioSAN+PR 

PortfolioSAN 
181 
181 

0 
0 

1 
1 

0.494 
0.353 

0.503 
0.341 

0.433 
0.686 

Java 
PortfolioSAN+PR 

PortfolioSAN 
61 
61 

0 
0 

0.984 
0.748 

0.525 
0.300 

0.518 
0.332 

0.256 
0.222 

Table 11: Statistical summary of Normalized Gain (NG) with and without PageRank. 

(a) Experiment 1, C/C++ (b) Experiment 2, Java 
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8. ANALYSIS OF THE USER STUDIES 

In this section, we report the results of our experiments and answer our research 
questions. 

8.1 RQ1 – Portfolio, Google, and Koders using C/C++ 

Figure 6 shows a statistical summary of C, P, and NG as reported by participants in 
our first experiment.  The mean confidence level for Portfolio is higher than for Google 
or Koders, suggesting that Portfolio returns more-relevant results than either of those 
engines.  Moreover, the proportion of results that are relevant (measured by precision, P) 
is highest for Portfolio, and those relevant results appear nearer to the top of the list of 
results (measured by discounted gain, NG). 

The results of our ANOVA evaluation of H0-NULL are in Tables 3 and 4.  The value of 
F exceeds Fcrit, and p is less than 0.05.  Therefore, we find evidence to reject the H0-NULL.  
To evaluate the directionality of the means for each metric, we pose hypotheses H3 to H11 
for each of these metrics, as described in Section 7.5.  In each case, we reject the 
hypothesis and conclude that participants who use Portfolio report higher relevance when 
finding functions in source code than those who use Google Code Search or Koders.  In 
addition, we find that the participants who used Koders report higher relevance in the 
results than when using Google Code Search. 

8.2 RQ2 – Portfolio and Koders using Java 

A statistical summary of C, P, and NG for the second experiment is in Figure 7.  The 
mean values of all the metrics are higher for Portfolio than for Koders.  Tables 5 and 6 
show the results from our ANOVA test to evaluate the significance of these differences.  
The value of F exceeds Fcrit, and p is less than 0.05, and we reject H0-NULL.  In evaluating 
the directionality of the means, we found statistically-significant differences in the means 
for C and NG (i.e., p from our randomization test was less than 0.05 for H12 and H14).  On 

“mscdex emulate” 
Function Name SAN PR SAN+PR User Ranking 

isoDrive 78.70 60.334 73.19 4 
initialisation 73.18 59.481 69.07 4 
Activate 71.79 59.481 68.10 3 
MSCDEX_AddDrive 63.58 59.240 62.28 3 
main 63.13 59.197 61.95 3 
AddDrive 63.08 59.325 61.95 1 
MSCDEX_Interrupt_Handler 63.05 59.240 61.91 4 
MSCDEX_IOCTL_Input 63.08 59.169 61.91 4 
DOS_SetupPrograms 62.05 59.240 61.21 1 
UpdateMscdex 61.91 59.240 61.11 2 

 
NG 79.50 78.19 79.94 

 Table 9: The top ten functions returned by Portfolio for the query mscdex emulate.  The 
first column is the function name.  The second column is the Spreading Activation score 
given by Portfolio.  The third column is the PageRank score for the function.  The fourth 
column is the final score assigned by Portfolio to the function (a combination of SAN 
and PR, see Section 4.4).  The fifth column is the confidence score given by a participant 
in our experiment when that participant used Portfolio with the query mscdex emulate.  
The rows labeled NG indicate the Normalized Discounted Cumulative Gain for the 
results when ordering the functions by SAN, PR, and SAN combined with PR.  Notice 
that NG is higher when using the combination of SAN and PR than with SAN or PR 
alone. 
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the other hand, we found no statistically-significant difference between the values of P 
for Portfolio and Koders. 

We conclude that Portfolio outperformed Koders over the Java repository because the 
participants reported higher levels of relevance according to two of the three metrics.  In 
terms of the proportion of results that were relevant for each query (the metric P), 
Portfolio and Koders are statistically equal.  Nevertheless, Portfolio’s performance in 
terms of C and NG indicates that not only are the results from Portfolio more relevant on 
average (C) than from Koders, but those relevant results occur higher on the list in 
Portfolio than in Koders. 

8.3 RQ3 – Experience Relationships 

We divided the reported C based on the programming experience of the participants 
(Figure 8).  From the first experiment, we created two groups: one in which participants 
had at least 2 years of C/C++ experience, and another group that had less than 2 years 
experience.  Tables 7 and 8 show the results of our analysis of the null hypothesis for this 
study.  In this case, t is less than tcrit and p is greater than 0.05.  Therefore, we do not find 
evidence to reject H1-NULL, and therefore conclude that there is no statistically-strong 
relationship between the reported C based on experience. 

8.4 RQ4 – Effectiveness of PageRank 

We use PageRank to rank the list of results returned by the IR engine and SAN.  
PageRank only contributes to the ranking of the results – it does not add new functions to 
the list of results in Portfolio.  For example, Table 9 shows the search results from 
Portfolio with PageRank enabled and disabled.  The functions on the list are the same, 
and C and P will be the same whether or not we use PageRank.  On the other hand, NG 
measures the order of the list, such that NG rewards search engines for returning more-
relevant results higher in the list. 

We ran Portfolio using every query generated by the participants for each experiment.  
Then, we matched the C that they reported for the results when using a given query.  We 
ran Portfolio again with the same queries with PageRank disabled, and computed the NG 
for each case.  Figure 9 is a summary of the values we computed for NG.  In Table 10, we 
show the results from evaluating H2-NULL.  In Table 11, we show that t is greater than tcrit 
and p is less than 0.05 in both cases, and therefore find evidence to reject H2-NULL.  
Therefore, we conclude that our use of PageRank results in more-relevant functions to be 
ranked higher than less-relevant functions.  Thus, we conclude that PageRank is an 
important component of our solution, since it helps to promote more-relevant functions in 
the results. 

 
9. QUALITATIVE ANALYSIS OF USER COMMENTS 

Forty-five of the participants in our first experiment answered an exit survey related to 
source code search activities.  The survey included the nine questions in Table 13 similar 
to previous surveys [Sim, Umarji, Ratanotayanon and Lopes 2011].  Scanned copies of 
the surveys are available on our website for analysis by other researchers, and in this 
section we focus on three main findings.  First, 33 of the 45 respondents found the call 
graph visualization in Portfolio helpful in understanding the search results.  Of the users 
who did not find it useful, many reported wanting to see a visualization of other data, 
such as a UML representation or integration with a development environment.  These 
results point to a strong need for source code search techniques that support visualization 
of the results. 
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Our second main finding was that the programmers mostly wanted to find code 
snippets to directly reuse in their projects as well as API call examples.  Forty users 
answered a question related to the goal of searching, and 30 reported looking for code 
snippets to directly reuse.  Twenty-eight wanted to find examples of API call usage.  
Sixteen were looking for specific algorithms, and only six wanted some other artifact.  
Portfolio helps fill the need of programmers looking for relevant source code snippets as 
well as for API usage examples (by showing those API calls in the visualization), though 
some programmers reported wanting further support for searching exclusively API calls.  
Providing this support is an area of our future work. 

Finally, we found that the respondents overwhelmingly turn to general-purpose search 
engines when looking for source code.  Thirty-six programmers used general-purpose 
search engines to search for source code, and many of the programmers wrote that the 
context behind the source code was very important.  The programmers searched through 
mailing lists and developer forums to find this context, but overall reported 
dissatisfaction during source code search activities.  For example, one programmer 
commented that he “finds a few [results] via Google search, but was unlikely to find what 
I [was] looking for.”  Another developer stated that “my next project needs SQL code, I 
had to find not the code, but how it was used and its function calls.”  In Portfolio, we 
provide usage information about functions by showing how those functions are used in 
the context of many other functions. 

 
10. PERFORMANCE EVALUATION 

We illustrated in Section 8 how Portfolio outperformed Google Code Search and Koders 
in returning relevant results. In this section, we evaluate the performance of Portfolio in 
terms of speed of the source code search.  Code search speed is another important metric 
for code search engine because it related to the usability of the search engine. We used 
Apache JMeter11, an open source load testing tool, to load test Portfolio and measure its 
performance. We wrote JMeter scripts to mimic multiple users accessing Portfolio 
simultaneously and record the response time. The results are summarized in Table 12. 
The results show that the more users access Portfolio at the same time, the higher 
response time we get. The median response time for 50 users is less than 10 seconds 
when Portfolio is running on a server with an Intel Xeon X5550 CPU and 24 GB of ram. 
 

                                                           
11 http://jmeter.apache.org (accessed and verified 5/10/12) 

# of users Average (ms) Median 90% Minimum Maximum 
5 2723 2289 4453 2052 4453 
10 2948 2797 3761 2390 4501 
15 3913 3852 4789 3141 5151 
20 5404 5347 6498 3055 7259 
25 6655 6477 7896 4437 8539 
30 7455 7542 9592 3820 10251 
35 9051 8738 11915 5848 12916 
40 9272 9066 14454 3334 17728 
45 10470 9687 15047 5802 16631 
50 10611 9938 17163 5879 18249 

Table 12: The Performance for Portfolio. The first column is the number of users 
who access Portfolio simultaneously. The second, third, fourth, fifth and sixth 
column is the average, the median, the 90% percentile, the minimum, and the 
maximum response time in milliseconds correspondingly. 
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11. DISCUSSION 

We showed in Section 8.1 that Portfolio outperforms both Google Code Search and 
Koders in terms of relevance of the results.  In Section 8.4, we determined that PageRank 
is a key factor in Portfolio’s improvement of the ordering of the results.  However, 
PageRank does not explain why Portfolio outperforms Google and Koders in terms of 
overall relevance, because Portfolio only uses PageRank to rank the final list of function; 
it does not use PageRank to retrieve functions.  In this section, we explore how our 
combination of Spreading Activation with textual similarity retrieved more relevant 
results than with textual similarity alone. 

Spreading Activation propagates the textual similarity score from functions that 
contain query keywords to other functions that are connected to those functions in the call 
graph (see Section 4.3).  In doing so, Portfolio locates chains of function invocations 
relevant to the query, and many of these functions do not contain keywords from the 
query.  Nevertheless, during our first case study, we found that the programmers rated 
these functions as relevant.  Table 14 contains a breakdown of the results from Portfolio 
from the first case study (see Section 6.1).  We divided the results in terms of relevance 
reported by the case study participants and in terms of proximity to functions that contain 
keywords12. 

A recent study found that 100% recall of relevant results can be achieved by looking 
at functions two edges away from functions containing query keywords [Hill et al. 2011].  
We confirm these results in our case study.  All of the relevant functions found by 
Portfolio were within two dependencies of a function containing a keyword from the 
query.  Crucially, however, only 48% of the functions actually contained a query 
keyword.  Over half of all the results, and 53% of all relevant results, did not contain a 
keyword from the query.  Source code search engines that only consider keyword 
matches, such as Google Code Search and Koders, miss these relevant functions.  
Portfolio finds these functions in the context of a chain of function invocations, and 
displays them to the user. 

 

                                                           
12 The proximity is calculated as the number of edges that must be traversed in order to move from the result to 
a function that contains a keyword.  For example, in Figure 1, if the query was “mip map”, the function H 
would be 2 edges away from F. 

# Question 
1 Did you find the call-graph visualization in Portfolio useful during your searches? 
2 How often do you search for source code on the Internet? 
3 What information sources do you use when searching for source code? 
4 What search sites do you use to search for source code? 
5 Which of the following programming and/or scripting languages have you had some experience 

with? 
6 What do you hope to find when looking for source code online? 
7 Please describe one or two scenarios when you were looking for source code on the Internet.  

Please address details such as: What were you trying to find?  How did you formulate your queries?  
What information sources did you use to find the source code?  Which implementation language 
were you working with?  What criteria did you use to decide on the best match? 

8 After searching, once you have identified some possible candidates, what are the criteria that guide 
you to finally select source code that you will use? 

9 If you could have the ideal search engine while searching for source code on the Internet, what 
additional features would you like to have? 

Table 13: The nine questions we asked in the exit questionnaire. 
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12. RELATED WORK 

In this section, we compare Portfolio to other approaches, different code mining 
techniques, and tools have that been proposed to find relevant software components. 
These tools and approaches are shown in Table 15. A main intention of this table is to 
illustrate how Portfolio differs from other listed related approaches. 

To compare Portfolio with other related approaches we introduce different variables 
that describe different properties of code search approaches. The variable Granularity 
specifies how search results are returned by different approaches, specifically at the 
project, function, or unstructured text granularity levels. The variable Usage specifies if 
an approach provides additional information on how retrieved code units are used. The 
variable Search Method specifies what kind of search algorithm or technique a given 
code search approach uses, i.e., Pagerank, Spreading activation, simple Word matching, 
parameter Type matching, or Query expansion. Finally, the variable Visualization tells if 
an approach shows code fragments as text or it uses a graphical representation of search 
results to illustrate code usage for programmers. 

Code Conjurer [Hummel, Janjic and Atkinson 2008] is an Eclipse plug-in that extracts 
interface and test information from a developer's coding activities and uses this 
information to issue test-driven searches to a code-search engine. It presents components 
matching the developer's needs as reuse recommendations without disturbing the 
development work. Unfortunately, there is no comprehensive evaluation of Code 
Conjurer, and its architectural details are not published. Based on available facts, Code 
Conjurer conceptually differs from Portfolio in that it does not model how developers 
search for relevant code, it rather concentrates on not disrupting programmers’ work by 
allowing them to stay within the Eclipse programming environment. 

CodeFinder iteratively refines code repositories in order to improve the precision of 
returned software components [Henninger 1996]. Unlike Portfolio, CodeFinder heavily 
depends on the descriptions (often incomplete) of software components to use word 
matching, while Portfolio uses Pagerank and SANs to help programmers navigate and 
understand usages of retrieved functions. That is, Portfolio can still find relevant code 
even if there are no precise matches between words in the code and in queries. 

The Codebroker system uses source code and comments written by programmers to 
query code repositories to find relevant artifacts [Ye and Fischer 2002; Ye and Fischer 
2005]. Similar to CodeFinder, Codebroker depends upon the descriptions of documents 
and meaningful names of program variables and types, so that it can match words 
precisely to return relevant code, and it is often the case that precise word matches do not 

 Proximity to Keyword  
 0 1 2  
4 128 95 33 256 
3 110 114 22 246 
2 99 94 20 213 
1 79 68 14 161 

   
R

el
ev

an
ce

 

 416 371 89 Totals 

Table 14: A breakdown of the results from Portfolio rated by participants in the first case study.  
There are 876 functions in all.  These functions were obtained during the first case study by 
participants using Portfolio.  The participants rated each function on a scale from 1 to 4 (Section 7.1).  
The rows in this table correspond to these ratings (e.g. 256 functions were rated “4”, highly-relevant, 
by participants using Portfolio).  The columns correspond to the proximity of the function, in the call 
graph, to another function that contains a keyword from the query.  Distance 0 means that a 
keyword occurred in that function.  Distance 1 means that the function did not contain a keyword 
from the query, but was 1 edge away from a keyword-containing function in the call graph.  Note 
that less than half of all retrieved functions contained a keyword from the query. 
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result in relevant code. In contrast, Portfolio goes beyond matching words by using SAN 
and Pagerank to locate relevant code that cannot be returned using word matching. 

The tool Ferret uses different “spheres” of program information as a way of 
integrating the relationships among program artifacts [de Alwis and Murphy 2008].  
These spheres are then used to answer conceptual questions about the artifacts.  Like the 
search model in Portfolio, the sphere model is based on the relationships among various 
objects.  Ferret is implemented with four different spheres including static and dynamic 
function call data.  The main difference between Portfolio and Ferret is that Portfolio 
locates relevant source code from large repositories of software, whereas Ferret answers 
questions specific to a particular programming context. 

Similar to the Portfolio’s model, Robillard et al. proposed a model to represent 
different requirements in source code, and this model combines different knowledge 
about program artifacts and their relationships [Robillard and Murphy 2007].  Portfolio 
expands on modeling of requirements with association and navigation models of 

Granularity 
Approach 

Unit Usage 
Search 
Method 

Result 

 
AMC [Hill and Rideout 2004] U N W T 
Code Conjurer [Hummel et al. 2008] F,U Y W,T T 
CodeBroker [Ye and Fischer 2002] P,U Y W,Q T 
CodeFinder [Henninger 1996] F,U Y W,Q T 
CodeGenie [Lemos et al. 2007] P N W T 
Dora [Hill et al. 2007] U N W T 
Exemplar [McMillan et al. 2011] A Y W T 
Ferret [de Alwis and Murphy 2008] F,U N W,T T 
Google Code Search U N W T 
Gridle [Puppin and Silvestri 2006] U N W T 
Hipikat [Cubranic et al. 2005] P Y W,Q T 
Koders U N W T 
Krugle U N W T 
MAPO [Zhong et al. 2009] F N W,Q T 
Mica [Stylos and Myers 2006] U,F Y W,Q T 
ParseWeb [Thummalapenta and Xie 2007] U,F N W,Q T 
Portfolio [McMillan et al. 2011] F,P Y P,S,W G 
Prospector [Mandelin et al. 2005] F N T T 
S6 [Reiss 2009] F,P,U Y W,Q T 
SNIFF [Chatterjee, Juvejar and Sen 2009] F,U Y T,W T 
Sourceforge A N W T 
Sourcerer [Bajracharya and Lopes 2009] F,P,U Y P,W T 
SPARS-J [Inoue et al. 2005] F Y P T 
SpotWeb [Thummalapenta and Xie 2008] U N W T 
SSI [Bajracharya, Ossher and Lopes 2010] F N P,W,T T 
Strathcona [Holmes and Murphy 2005] F Y W T 
xSnippet [Sahavechaphan and Claypool 2006] F Y T,W T 

Table 15: Comparison of Portfolio with other related approaches. Column Granularity specifies 
how search results are returned by each approach (Projects, Functions, or Unstructured text), and if 
the usage of these resulting code units is shown (Yes or No). The column Search Method specifies 
the search algorithms or techniques that are used in the code search engine, i.e., Pagerank, Spreading 

activation, simple Word matching, parameter Type matching, or Query expansion techniques. 
Finally, the last column tells if the search engine shows a list of code fragments as Text or it uses a 

Graphical representation of search results to illustrate code usage for programmers. 



       •         C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, C. Fu 26 

functions in the context of source code search.  Locating implementations of these 
requirements in the context of specific programs is an extensive research area, and these 
techniques have used Information Retrieval [Marcus et al. 2004], execution information 
[Dit et al. 2011; Poshyvanyk et al. 2007], and formal concept analysis [Poshyvanyk et al. 
2012]. 

Dora is a tool for software maintenance to help programmers locate the regions of 
their programs that relate to a given starting function [Hill, Pollock and Vijay-Shanker 
2007]. Similar to Portfolio, Dora determines which functions connect to the starting 
function, and then filters those functions to determine the “neighborhood” of functions 
relevant to the programmer’s task.  Just like Portfolio, Dora also determines a group of 
relevant functions near a starting point in a call graph. On the other hand, Dora uses 
textual similarity of functions in order to filter dissimilar functions out of the results.  
This filtering is unlike Portfolio, which locates relevant functions even if those functions 
do not contain keywords from the query or the set of starting points. 

Portfolio is fundamentally different from SSI, which determines the similarity of 
source code based on the API calls used in that code, and builds an index of the source 
code that includes terms from similar source code [Bajracharya, Ossher and Lopes 2010].   
Unlike Portfolio, SSI searches by only matching keywords from the query to keywords in 
the expanded index.  In this way, SSI can return groups of functions that use the same 
API calls.  In contrast, Portfolio locates functions that are connected to each other in the 
call graph, thereby finding relevant functions that may otherwise be missed by SSI. 

Even though it returns code snippets rather than the code for entire functions, Mica is 
similar to Portfolio since it uses API calls from the Java Development Kit to guide code 
search. Mica uses help documentation to refine the results of the search [Stylos and 
Myers 2006], which may not be always available and it may not have sufficient quality, 
while Portfolio automatically retrieves functions from arbitrary code repositories and it 
uses models that rely on functional abstractions to help programmers evaluate the 
potential of code reuse faster and with higher precision. Possible future work may be to 
explore a connection between Mica and Portfolio to use external help documentation to 
improve the quality of code search. 

Exemplar, SNIFF, and Mica use documentation for API calls for source code search 
[Chatterjee, Juvejar and Sen 2009; Grechanik, Fu, Xie, McMillan, Poshyvanyk and 
Cumby 2010; Stylos and Myers 2006]. SNIFF then performs the intersection of types in 
these code chunks to retain the most relevant and common part of the code chunks. 
SNIFF also ranks these pruned chunks using the frequency of their occurrence in the 
indexed code base. In contrast to SNIFF, Portfolio uses navigation and association 
models that reflect the behavior of programmers to improve the precision of the search 
engine. In addition, Portfolio offers a visualization of usages of functions that it retrieves 
automatically from existing source code, thus avoiding the need for third-party 
documentation for API calls. 

Exemplar is a search engine that returns applications based on the API calls that those 
applications use [Grechanik, Fu, Xie, McMillan, Poshyvanyk and Cumby 2010; 
McMillan, Grechanik, Poshyvanyk, Fu and Xie 2011].  Exemplar matches keywords in a 
query to keywords in the documentation of API calls, and then returns applications that 
use those API calls.  The key difference between Exemplar and Portfolio is that Portfolio 
considers how the search results are related to one another.  Exemplar locates software 
applications that are relevant to the query.  In contrast, Portfolio locates chains of 
function invocations that implement the tasks in user queries.  In Portfolio, we use 
Spreading Activation to propagate the textual similarity of functions to other functions 
connected via the call graph.  Then, we rank those functions by combining the score from 
Spreading Activation with the PageRank value of the functions as computed in the call 
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graph of thousands of projects. 
Web-mining techniques have been applied to graphs derived from program artifacts 

before [Saul et al. 2007]. Notably, Inoue et al. proposed Component Rank [Inoue, 
Yokomori, Fujiwara, Yamamoto, Matsushita and Kusumoto 2003; Inoue, Yokomori, 
Yamamoto, Matsushita and Kusumoto 2005] as a method to highlight the most-
frequently used classes by applying a variant of PageRank to a graph composed of Java 
classes and an assortment of relations among them. Quality of match (QOM) ranking 
measures the overall goodness of match between two given components [Puppin and 
Silvestri 2006; Tansalarak and Claypool 2005], where these components are represented 
as multidimensional vectors containing words from these components, and then these 
vectors are co-clustered using a measure of similarity between them. Unlike QOM, 
Portfolio retrieves functions based on surfing behavior of programmers and associations 
between concepts in these functions. Gridle also applies PageRank to a graph of Java 
classes [Puppin and Silvestri 2006]. In Portfolio, we apply PageRank to a graph with 
nodes as functions and edges as call relationships among the functions. In addition, we 
use spreading activation on the call graph to retrieve chains of relevant function 
invocations, rather than single fragments of code. 

Portfolio is also related to the Sourcerer source code search engine.  Bajracharya  et al. 
combine PageRank and textual similarity to rank source code components [Bajracharya 
and Lopes 2009], and find that PageRank significantly improves the quality of the search 
results relative to using only textual similarity.  In this paper, we confirm this result in 
RQ4, and expand on it with Portfolio, which uses Spreading Activation to locate groups 
of functions that relate to the developer query. Specifically, with Spreading Activation, 
Portfolio locates functions which do not contain keywords from the query, but are 
connected via the call graph to other functions which do contain keyword matches.  
Sourcerer will not locate relevant functions unless those functions are textually-similar to 
the query. 

Programming task-oriented tools like Prospector, Hipikat, Strathcona, and xSnippet 
assist programmers in writing complicated code [Cubranic, Murphy, Singer and Booth 
2005; Holmes and Murphy 2005; Holmes, Walker and Murphy 2006; Mandelin, Xu, 
Bodík and Kimelman 2005; Sahavechaphan and Claypool 2006]. However, their utilities 
are not applicable when searching for relevant functions given a query containing high-
level concepts with no source code.  Similarly, in keyword programming, keywords 
written by a developer are immediately translated into a few lines of code and placed into 
the developer’s project [Little and Miller 2007; Little and Miller 2008]. Portfolio differs 
from keyword programming because we locate chains of invocations that implement 
tasks described by queries, rather than a few lines of code. Given a proper support for 
keyword programming, Portfolio can be used to enhance its ability to find chains of 
relevant functions to replace keywords with implementations.  

Robillard proposed an algorithm for calculating program elements of likely interest to 
a developer [Robillard 2005; Robillard 2008]. Portfolio is similar to this algorithm in that 
it uses relations between functions in the retrieved projects to compute the level of 
interest (ranking) of the project. However, Robillard does not use models that reflect the 
surfing behavior of programmers and association models that improve the precision of 
search. We think there is a potential in exploring possible connections between 
Robillard’s approach and Portfolio. 

S6 is a code search engine that uses a set of user-guided program transformations to 
map high-level queries into a subset of relevant code fragments [Reiss 2009], not 
necessarily functions. Like Portfolio, S6 uses query expansion; however, it requires 
additional low-level details from the user, such as data types of test cases. Adding these 
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low-level details requires programmers to know implementation details before 
performing code search, which often defeats the purpose of code search to find 
implementations based only on high-level information from requirements. 

13. CONCLUSION 

We have presented Portfolio, a source code search engine, and compared it to Google 
Code Search and Koders, two large and popular source code search engines.  We found 
with strong statistical significance that Portfolio outperformed these engines in terms of 
confidence, precision, and normalized discounted cumulative gain.  The experiment we 
performed for these findings was based on standard information retrieval methodology 
for evaluating search engines, and the participants in the experiment were professional 
programmers at a large software company. 

We also evaluated the tools that generate the data on which Portfolio relies, and we 
released these tools to the public.  These tools can generate a call graph of tens of 
thousands of projects and millions of lines of code.  We implemented Portfolio with this 
data and computed the PageRank for over 8.5 million C/C++ functions and 14 million 
Java methods in call graphs with tens of millions of edges.  Portfolio combines textual 
similarity and Spreading Activation algorithms to retrieve relevant functions, and then 
uses these algorithms plus PageRank to rank the list of results.  We also display a call 
graph to the user which shows how the functions interact in a specific context. 

We have substantiated the findings of other researchers.  Specifically, we found that 
PageRank significantly improves the ranking of the results, such that more relevant 
functions occur near the top of the list of results.  We also found that all of the relevant 
functions in our experiment occurred within two edges of a function containing a query 
keyword.  On the other hand, over half of the relevant functions did not contain a 
keyword from the query.  Our results strongly point to the need for source code search 
engines to explore the call graph to find relevant source code.  We have built, released, 
and evaluated Portfolio, a source code search engine that helps programmers by 
displaying this relevant source code. 
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