
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 1

Machine Learning-Based Prototyping of
Graphical User Interfaces for Mobile Apps

Kevin Moran, Member, IEEE, Carlos Bernal-Cárdenas, Student Member, IEEE,
Michael Curcio, Student Member, IEEE, Richard Bonett, Student Member, IEEE,

and Denys Poshyvanyk, Member, IEEE

Abstract—It is common practice for developers of user-facing software to transform a mock-up of a graphical user interface (GUI) into
code. This process takes place both at an application’s inception and in an evolutionary context as GUI changes keep pace with
evolving features. Unfortunately, this practice is challenging and time-consuming. In this paper, we present an approach that automates
this process by enabling accurate prototyping of GUIs via three tasks: detection, classification, and assembly. First, logical components
of a GUI are detected from a mock-up artifact using either computer vision techniques or mock-up metadata. Then, software repository
mining, automated dynamic analysis, and deep convolutional neural networks are utilized to accurately classify GUI-components into
domain-specific types (e.g., toggle-button). Finally, a data-driven, K-nearest-neighbors algorithm generates a suitable hierarchical GUI
structure from which a prototype application can be automatically assembled. We implemented this approach for Android in a system
called REDRAW. Our evaluation illustrates that REDRAW achieves an average GUI-component classification accuracy of 91% and
assembles prototype applications that closely mirror target mock-ups in terms of visual affinity while exhibiting reasonable code
structure. Interviews with industrial practitioners illustrate ReDraw’s potential to improve real development workflows.

Index Terms—GUI, CNN, Mobile, Prototyping, Machine-Learning, Mining Software Repositories.

F

1 INTRODUCTION

MOST modern user-facing software applications are
GUI-centric, and rely on attractive user interfaces (UI)

and intuitive user experiences (UX) to attract customers,
facilitate the effective completion of computing tasks, and
engage users. Software with cumbersome or aesthetically
displeasing UIs are far less likely to succeed, particularly
as companies look to differentiate their applications from
competitors with similar functionality. This phenomena can
be readily observed in mobile application marketplaces such
as the App Store [1], or Google Play [2], where many
competing applications (also known as apps) offering similar
functionality (e.g., task managers, weather apps) largely
distinguish themselves via UI/UX [3]. Thus, an important
step in developing any GUI-based application is drafting
and prototyping design mock-ups, which facilitates the in-
stantiation and experimentation of UIs in order to evaluate
or prove-out abstract design concepts. In industrial settings
with larger teams, this process is typically carried out by
dedicated designers who hold domain specific expertise in
crafting attractive, intuitive GUIs using image-editing soft-
ware such as Photoshop [4] or Sketch [5]. These teams are
often responsible for expressing a coherent design language
across the many facets of a company’s digital presence,
including websites, software applications and digital mar-
keting materials. Some components of this design process
also tend to carry over to smaller independent development
teams who practice design or prototyping processes by cre-
ating wireframes or mock-ups to judge design ideas before

• All authors are with the Department of Computer Science, College of
William & Mary, Williamsburg, VA, 23185.
E-mail: {kpmoran, cebernal, mjcurcio, rfbonett, denys}@cs.wm.edu

Manuscript received May 2018;

committing to spending development resources implement-
ing them. After these initial design drafts are created it is
critical that they are faithfully translated into code in order
for the end-user to experience the design and user interface
in its intended form.

This process (which often involves multiple iterations)
has been shown by past work and empirical studies to be
challenging, time-consuming, and error prone [6], [7], [8],
[9], [10] particularly if the design and implementation are
carried out by different teams (which is often the case in
industrial settings [10]). Additionally, UI/UX teams often
practice an iterative design process, where feedback is col-
lected regarding the effectiveness of GUIs at early stages.
Using prototypes would be preferred, as more detailed
feedback could be collected; however, with current practices
and tools this is typically too costly [11], [12]. Furthermore,
past work on detecting GUI design violations in mobile apps
highlights the importance of this problem from an indus-
trial viewpoint [10]. According to a study conducted with
Huawei, a major telecommunications company, 71 unique
application screens containing 82 design violations resulting
from the company’s iterative design and development pro-
cess were empirically categorized using a grounded-theory
approach. This resulted in a taxonomy of mobile design vio-
lations spanning three major categories and 14 subcategories
and illustrates the difficulties developers can have faithfully
implementing GUIs for mobile apps as well as the burden
that design violations introduced by developers can place
on the overarching development process.

Many fast-moving startups and fledgling companies at-
tempting to create software prototypes in order to demon-
strate ideas and secure investor support would also greatly
benefit from rapid application prototyping. Rather than

ar
X

iv
:1

80
2.

02
31

2v
2 

 [
cs

.S
E

] 
 5

 J
un

 2
01

8



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 2

spending scarce time and resources on iteratively designing
and coding user interfaces, an accurate automated approach
would likely be preferred. This would allow smaller com-
panies to put more focus on features and value and less on
translating designs into workable application code. Given
the frustrations that front-end developers and designers face
with constructing accurate GUIs, there is a clear need for
automated support.

To help mitigate the difficulty of this process, some
modern IDEs, such as XCode [13], Visual Studio [14], and
Android Studio [15], offer built-in GUI editors. However,
recent research suggests that using these editors to create
complex, high-fidelity GUIs is cumbersome and difficult
[11], as users are prone to introducing bugs and presen-
tation failures even for simple tasks [16]. Other commer-
cial solutions include offerings for collaborative GUI-design
and for interactive previewing of designs on target devices
or browsers (displayed using a custom framework, with
limited functionality) [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], but none offer an end-to-
end solution capable of automatically translating a mock-
up into accurate native code (with proper component types)
for a target platform. It is clear that a tool capable of even
partially automating this process could significantly reduce
the burden on the design and development processes.

Unfortunately, automating the prototyping process for
GUIs is a difficult task. At the core of this difficulty is the
need to bridge a broad abstraction gap that necessitates
reasoning accurate user interface code from either pixel-
based, graphical representations of GUIs or digital design
sketches. Typically, this abstraction gap is bridged by a
developer’s domain knowledge. For example, a developer
is capable of recognizing discrete objects in a mock-up
that should be instantiated as components on the screen,
categorizing them into proper categories based on their
intended functionalities, and arranging them in a suitable
hierarchical structure such that they display properly on a
range of screen sizes. However, even for a skilled developer,
this process can be time-consuming and prone to errors
[10]. Thus, it follows that an approach which automates
the GUI prototyping process must bridge this image-to-
code abstraction gap. This, in turn, requires the creation
of a model capable of representing the domain knowledge
typically held by a developer, and applying this knowledge
to create accurate prototypes.

Given that, within a single software domain, the de-
sign and functionality of GUIs can vary dramatically, it
is unlikely that manually encoded information or heuris-
tics would be capable of fully supporting such complex
tasks. Furthermore, creating, updating, and maintaining
such heuristics manually is a daunting task. Thus, we pro-
pose to learn this domain knowledge using a data-driven
approach that leverages machine learning (ML) techniques
and the GUI information already present in existing apps
(specifically screenshots and GUI metadata) acquired via
mining software repositories (MSR).

More specifically, we present an approach that decon-
structs the prototyping process into the tasks of: detection,
classification, and assembly. The first task involves detect-
ing the bounding boxes of atomic elements (e.g., GUI-
components which cannot be further decomposed) of a user

interface from a mock-up design artifact, such as pixel-based
images. This challenge can be solved either by parsing in-
formation regarding objects representing GUI-components
directly from mock-up artifacts (e.g., parsing exported meta-
data from Photoshop), or using CV techniques to infer
objects [8]. Once the GUI-components from a design artifact
have been identified, they need to be classified into their
proper domain-specific types (e.g., button, dropdown menu,
progress bar). This is, in essence, an image classification
task, and research on this topic has shown tremendous
progress in recent years, mainly due to advancements in
deep convolutional neural networks (CNNs) [30], [31], [32],
[33], [34]. However, because CNNs are a supervised learning
technique, they typically require a large amount of train-
ing data, such as the ILSVRC dataset [35], to be effective.
We assert that automated dynamic analysis of applications
mined from software repositories can be applied to collect
screenshots and GUI metadata that can be used to auto-
matically derive labeled training data. Using this data, a
CNN can be effectively trained to classify images of GUI-
Components from a mock-up (extracted using the detected
bounding boxes) into their domain specific GUI-component
types. However, classified images of components are not
enough to assemble effective GUI code. GUIs are typically
represented in code as hierarchal trees, where logical groups
of components are bundled together in containers. We illus-
trate that an iterative K-nearest-neighbors (KNN) algorithm
and CV techniques operating on mined GUI metadata and
screenshots can construct realistic GUI-hierarchies that can
be translated into code.

We have implemented the approach described above
in a system called REDRAW for the Android platform. We
mined 8,878 of the top-rated apps from Google Play and ex-
ecuted these apps using a fully automated input generation
approach (e.g., GUI-ripping) derived from our prior work
on mobile testing [36], [37]. During the automated app ex-
ploration the GUI-hierarchies for the most popular screens
from each app were extracted. We then trained a CNN on
the most popular native Android GUI-component types as
observed in the mined screens. REDRAW uses this classifier
in combination with an iterative KNN algorithm and addi-
tional CV techniques to translate different types of mock-
up artifacts into prototype Android apps. We performed
a comprehensive set of three studies evaluating REDRAW

aimed at measuring (i) the accuracy of the CNN-based clas-
sifier (measured against a baseline feature descriptor and
Support Vector Machine based technique), (ii) the similarity
of generated apps to mock-up artifacts (both visually and
structurally), and (iii) the potential industrial applicability of
our system, through semi-structured interviews with mobile
designers and developers at Google, Huawei and Facebook.
Our results show that our CNN-based GUI-component clas-
sifier achieves a top-1 average precision of 91% (i.e., when
the top class predicted by the CNN is correct), our generated
applications share high visual similarity to their mock-up
artifacts, the code structure for generated apps is similar
to that of real applications, and REDRAW has the potential
to improve and facilitate the prototyping and development
of mobile apps with some practical extensions. Our evalua-
tion also illustrates how REDRAW outperforms other related
approaches for mobile application prototyping, REMAUI [8]



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 3

and pix2code [38]. Finally, we provide a detailed discussion
of the limitations of our approach and promising avenues
for future research that build upon the core ideas presented.

In summary, our paper makes the following noteworthy
contributions:

• The introduction of a novel approach for prototyping
software GUIs rooted in a combination of techniques
drawn from program analysis, MSR, ML, and CV; and
an implementation of this approach in a tool called
REDRAW for the Android platform;

• A comprehensive empirical evaluation of REDRAW,
measuring several complementary quality metrics, of-
fering comparison to related work, and describing feed-
back from industry professionals regarding its utility;

• An online appendix [39] showcasing screenshots of
generated apps and study replication information;

• As part of implementing REDRAW we collected a large
dataset of mobile application GUI data containing
screenshots and GUI related metadata for over 14k
screens and over 190k GUI-components;

• Publicly available open source versions of the REDRAW

code, datasets, and trained ML models [39].

2 BACKGROUND & RELATED WORK

In this section we introduce concepts related to the mock-
up driven development process referenced throughout the
paper, introduce concepts related to deep convolutional
neural networks, and survey related work, distilling the
novelty of our approach in context.

2.1 Background & Problem Statement

The first concept of a mock-up driven development practice
we reference in this paper is that of mock-up artifacts, which
we define as:

Definition 1 - Mock-Up Artifact: An artifact of the software de-
sign and development process which stipulates design guidelines
for GUIs and its content.

In industrial mobile app development, mock-up artifacts
typically come in the form of high fidelity images (with
or without meta-data) created by designers using software
such as Photoshop [4] or Sketch [5]. In this scenario, de-
pending on design and development workflows, metadata
containing information about the constituent parts of the
mock-up images can be exported and parsed from these arti-
facts 1. Independent developers may also use screenshots of
existing apps to prototype their own apps. In this scenario,
in addition to screenshots of running applications, runtime
GUI-information (such as the html DOM-tree of a web app
or the GUI-hierarchy of a mobile app) can be extracted
to further aid in the prototyping process. However, this
is typically not possible in the context of mock-up driven
development (which our approach aims to support), as
executable apps do not exist.

The second concept we define is that of GUI-components
(also commonly called GUI-widgets). In this paper, we use
the terms GUI-component and component interchangeably. We
define these as:

1. For example, by exporting Scalable Vector Graphics (.svg) or
html formats from Photoshop.

Definition 2 - GUI-Component: Atomic graphical elements
with pre-defined functionality, displayed within a GUI of a soft-
ware application.

GUI-components have one of several domain dependent
types, with each distinct type serving a different functional
or aesthetic purpose. For example, in web apps common
component types include dropdown menus and check-
boxes, just to name a few.

The notion of atomicity is important in this definition, as
it differentiates GUI-components from containers. The third
concept we define is that of a GUI-container:

Definition 3 - GUI-Container: A logical construct that groups
member GUI-components and typically defines spatial display
properties of its members.

In modern GUI-centric apps, GUI-components are rarely
rendered on the screen using pre-defined coordinates. In-
stead, logical groupings of containers form hierarchical
structures (or GUI-hierarchies). These hierarchies typically
define spatial information about their constituent compo-
nents, and in many cases react to changes in the size of the
display area (i.e., reactive design) [40]. For instance, a GUI-
component that displays text may span the text according
to the dimensions of its container.

Given these definitions, the problem that we aim to solve
in this paper is the following:

Problem Statement: Given a mock-up artifact, generate a pro-
totype application that closely resembles the mock-up GUI both
visually, and in terms of expected structure of the GUI-hierarchy.

As we describe in Sec. 3, this problem can be broken down
into three distinct tasks including the detection and classi-
fication of GUI-components, and the assembly of a realistic
GUI-hierarchy and related code. In the scope of this paper,
we focus on automatically generating GUIs for mobile apps
that are visually and structurally similar (in terms of their
GUI hierarchy). To accomplish this we investigate the ability
of our proposed approach to automatically prototype appli-
cations from two types of mock-up artifacts, (i) images of
existing applications, and (ii) Sketch [5] mock-ups reverse
engineered from existing popular applications. We utilize
these types of artifacts as real mockups are typically not
available for open source mobile apps and thus could not be
utilized in our study. It should be noted that the two types
of mock-up artifacts used in this paper may not capture
certain ambiguities that exist in mock-ups created during
the course of a real software design process. We discuss the
implications of this in Sec. 6.

2.1.1 Convolutional Neural Network (CNN) Background
In order to help classify images of GUI-components into
thier domain specific types, REDRAW utilizes a Convo-
lutional Neural Network (CNN). To provide background
for the unfamiliar reader, in this sub-section we give an
overview of a typical CNN architecture, explaining elements
of the architecture that enable accurate image classification.
However, for more comprehensive descriptions of CNNs,
we refer readers to [30] & [41].



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 4

Convolutional 
Layer

Max 
Pooling Max 

Pooling

Convolutional 
Layer

Fully
Connected

Layers

Predictions

Feature Extraction Classification

ImageButton: 0.8
TextView: 0.0
ProgressBar: 0.0
Button: 0.1
EditText: 0.0
Checkbox: 0.1

Fig. 1: Typical Components of CNN Architecture
CNN Overview: Fig. 1 illustrates the basic components of
a traditional CNN architecture. As with most types of ar-
tificial neural networks, CNNs typically encompass several
different layers starting with an input layer where an image
is passed into the network, then to hidden layers where ab-
stract features, and weights representing the “importance”
of features for a target task are learned. CNNs derive their
name from unique “convolutional” layers which operate
upon the mathematical principle of a convolution [42]. The
purpose of the convolutional layers, shown in blue in Figure
1, are to extract features from images. Most images are
stored as a three (or four) dimensional matrix of numbers,
where each dimension of the matrix represents the intensity
of a color channel (e.g., RGB). Convolutional layers operate
upon these matrices using a filter (also called kernel, or fea-
ture detector), which can be thought of as a sliding window
of size n by m that slides across an set of matricies repre-
senting an image. This window applies a convolution op-
eration (i.e., an element-wise matrix multiplication) creating
a feature map, which represents extracted image features. As
convolution layers are applied in succession, more abstract
features are learned from the original image. Max Pooling
layers also operate as a sliding window, pooling maximum
values in the feature maps to reduce dimensionality. Finally,
fully-connected layers and a softmax classifier act as a multi-
layer perceptron to perform classification. CNN training
is typically performed using gradient descent, and back-
propagation of error gradients.
Convolutional Layers: Convolutional layers extract feature
maps from images to learn high level features. The size
of this feature map results from three parameters: (i) the
number of filters used, (ii) the stride of the sliding window,
and (iii) whether or not padding is applied. Leveraging
multiple filters allows for multi-dimensional feature maps,
the stride corresponds to the distance the sliding window
moves during each iteration, and padding can be applied to
learn features from the borders of an input image. These
feature maps are intended to represent abstract features
from images, which inform the prediction process.
Rectified Linear Units (ReLUs): Traditionally, an element of
non-linearity is introduced after each convolutional layer, as
the convolution operator is linear in nature, which may not
correspond to non-linear nature of data being learned. The
typical manner in which this non-linearity is introduced is
through Rectified Linear Units (ReLUs). The operation these
units perform is simple in nature, replacing all negative
values in a feature map with zeros. After the convolutions
and ReLU operations have been performed, the resulting
feature map is typically subjected to max pooling (Fig. 1).
Max Pooling: Max pooling again operates as as sliding
window, but instead of performing a convolution, simply

pools the maximum value from each step of the sliding
window. This allows for a reduction in the dimensionality
of the data while extracting salient features.
Fully Connected Layers: The layers described thus far in
the network have been focused on deriving features from
images. Therefore, the final layers of the network must
utilize these features to compute predictions about classes
for classifications. This is accomplished via the fully con-
nected layers, which act as a multi-layer perceptron typically
utilizing a softmax activation function.
CNN Training Procedure: Training a CNN is accomplished
through back-propagation. After the initialization of all the
network parameters, initial weights are set to random val-
ues. Then input images are fed through the network layers
in the forward direction, and the total error across all output
classes is calculated. This error is back-propagated through
the network and gradient descent is used to calculate error
gradients for the network weights which are then updated
to minimize the output error. A learning rate controls the
degree to which weights are updated based on the gradient
calculations. This process is repeated over the entire training
image set, which allows for training both feature extraction
and classification in one automated process. After training
is complete, the network should be capable of effective
classification of input images.

2.2 Related Work

2.2.1 Reverse Engineering Mobile User Interfaces:
The most closely related research to the approach proposed
in this paper is REMAUI, which aims to reverse engineer
mobile app GUIs [8]. REMAUI uses a combination of Opti-
cal Character Recognition (OCR), CV, and mobile specific
heuristics to detect components and generate a static app.
The CV techniques utilized in REMAUI are powerful, and
we build upon these innovations. However, REMAUI has
key limitations compared to our work including: (i) it does
not support the classification of detected components into
their native component types and instead uses a binary
classification of either text or images, limiting the real-world
applicability of the approach, and (ii) it is unclear if the GUI-
hierarchies generated by REMAUI are realistic or useful from
a developer’s point of view, as the GUI-hierarchies of the
approach were not evaluated.

In comparison, the approach presented in this paper
(i) is not specific to any particular domain (although we
implement our approach for the Android platform as well)
as we take a data-driven approach for classifying and gen-
erating GUI-hierarchies, (ii) is capable of classifying GUI-
components into their respective types using a CNN, and
(iii) is able to produce realistic GUI-hierarchies using a data-
driven, iterative KNN algorithm in combination with CV
techniques. In our evaluation, we offer a comparison of
REDRAW to the REMAUI approach according to different
quality attributes in Sections 4 & 5.

In addition to REMAUI, an open access paper (i.e., non-
peer-reviewed) was recently posted that implements an
approach called pix2code [38], which shares common goals
with the research we present in this paper. Namely, the
authors implement an encoder/decoder model that they
trained on information from GUI-metadata and screenshots



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 5

to translate target screenshots first into a domain specific
language (DSL) and then into GUI code. However, this
approach exhibits several shortcomings that call into ques-
tion the real-world applicability of the approach: (i) the
approach was only validated on a small set of synthetically
generated applications, and no large-scale user interface
mining was performed; (ii) the approach requires a DSL
which will need to be maintained and updated over time,
adding to the complexity and effort required to utilize the
approach in practice. Thus, it is difficult to judge how well
the approach would perform on real GUI data. In contrast,
REDRAW is trained on a large scale dataset collected through
a novel application of automated dynamic analysis for user
interface mining. The data-collection and training process
can be performed completely automatically and iteratively
over time, helping to ease the burden of use for developers.
To make for a complete comparison to current research-
oriented approaches, we also include a comparison of the
prototyping capability for real applications between RE-
DRAW and the pix2code approach in Sections 4 & 5.

2.2.2 Mobile GUI Datasets

In order to train an accurate CNN classifier, REDRAW re-
quires a large number of GUI-component images labeled
with their domain specific types. In this paper, we collect
this dataset in a completely automated fashion by mining
and automatically executing the top-250 Android apps in
each category of Google Play excluding game categories,
resulting in 14,382 unique screens and 191,300 labeled GUI-
components (after data-cleaning). Recently, (while this pa-
per was under review) a large dataset of GUI-related infor-
mation for Android apps, called RICO, was published and
made available [43]. This dataset is larger than the one col-
lected in this paper, containing over 72k unique screens and
over 3M GUI-components. However, the REDRAW dataset
is differentiated by some key factors specific to the problem
domain of prototyping mobile GUIs:

1) Cropped Images of GUI-components: The REDRAW

dataset of mobile GUI data contains a set of labeled
GUI-components cropped from larger screenshots that
are ready for processing by machine learning classifiers.

2) Cleaned Dataset: We implemented several filtering pro-
cedures at the app, screen, and GUI-component level to
remove “noisy” components from the REDRAW dataset.
This is an important factor for training an effective, ac-
curate machine-learning classifier. These filtering tech-
niques were manually verified for accuracy.

3) Data Augmentation: In the extraction of our dataset,
we found that certain types of components were used
more often than others, posing problems for deriving
a balanced dataset of GUI-component types. To help
mitigate this problem, we utilized data-augmentation
techniques to help balance our observed classes.

We expand on the methodology for deriving the RE-
DRAW dataset in Section 3.2.4. The RICO dataset does not
exhibit the unique characteristics of the REDRAW dataset
stipulated above that cater to creating an effective machine-
learning classifier for classifying GUI-components. How-
ever, it should be noted that future work could adapt the
data cleaning and augmentation methodologies stipulated

in this paper to the RICO dataset to produce a larger training
set for GUI-components in the future.

2.2.3 Other GUI-Design and Reverse Engineering Tools:

Given the prevalence of GUI-centric software, there has been
a large body of work dedicated to building advanced tools
to aid in the construction of GUIs and related code [44],
[45], [46], [47], [48], [49], [50] and to reverse engineer GUIs
[51], [52], [53], [54], [55], [56]. While these approaches are
aimed at various goals, they all attempt to reason logical, or
programatic info from graphical representations of GUIs.

However, the research projects referenced above exhibit
one or more of the following attributes: (i) they do not
specifically aim to support the task of automatically trans-
lating existing design mock-ups into code [52], [53], [54],
[55], [56], (ii) they force designers or developers to com-
promise their workflow by imposing restrictions on how
applications are designed or coded [44], [45], [46], [47], [48],
[49] or (iii) they rely purely on reverse engineering existing
apps using runtime information, which is not possible in
the context of mock-up driven development [49], [51]. These
attributes indicate that the above approaches are either not
applicable in the problem domain described in this paper
(automatically generating application code from a mock-up
artifact) or represent significant limitations that severely hin-
der practical applicability. Approaches that tie developers or
designers into strict workflows (such as restricting the ways
mock-ups are created or coded) struggle to gain adoption
due to the competing flexibility of established image-editing
software and coding platforms. Approaches requiring run-
time information of a target app cannot be used in a typical
mock-up driven development scenario, as implementations
do not exist yet. While our approach relies on runtime data,
it is collected and processed independently of the target app
or mock-up artifact. Our approach aims to overcome the
shortcomings of previous research by leveraging MSR and
ML techniques to automatically infer models of GUIs for
different domains, and has the potential to integrate into
current design workflows as illustrated in Sec. 5.4.

In addition to research on this topic, there are several
commercial solutions which aim to improve the mock-up
and prototyping process for different types of applications
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28].
These approaches allow for better collaboration among de-
signers, and some more advanced offerings enable limited-
functionality prototypes to be displayed on a target platform
with support of a software framework. For instance, some
tools will display screenshots of mock-ups on a mobile
device through a preinstalled app, and allow designers to
preview designs. However, these techniques are not capable
of translating mock-up artifacts into GUI code, and tie
designers into a specific, potentially less flexible software or
service. While this paper was under review, a recent startup
has released software called Supernova Studio [29] that
claims to be able to translate Sketch files into native code
for iOS and Android. While this platform does contain some
powerful features, such as converting Sketch screen designs
into GUI code with “reactive” component coordinates, it
exhibits two major drawbacks: (i) it is inherently tied to the
Sketch application, and does not allow imports from other



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 6

Fig. 2: Overview of Proposed Approach for Automated GUI-Prototyping

design tools, and (ii) it is not capable of classifying GUI-
components into their respective types, instead relying on a
user to complete this process manually [57]. Thus, REDRAW

is complementary in the sense that our GUI-component
classification technique could be used in conjunction with
Supernova Studio to improve its overall effectiveness.

2.2.4 Image Classification using CNNs:
Large scale image recognition and classification has seen
tremendous progress mainly due to advances in CNNs [30],
[31], [32], [33], [34], [58]. These supervised ML approaches
are capable of automatically learning robust, salient features
of image categories from large numbers of labeled training
images such as the ILSVRC dataset [35]. Building on top of
LeCun’s pioneering work [58], the first approach to see a sig-
nificant performance improvement over existing techniques
(that utilized predefined feature extraction) was AlexNet
[30], which achieved a top-5 mean average error (MAE) of
≈ 15% on ILSVRC12. The architecture for this network was
relatively shallow, but later work would show the benefits
and tradeoffs of using deeper architectures. Zeiler and Fer-
gus developed the ZFNet [31] architecture which was able
to achieve a lower top-5 MAE than AlexNet (≈ 11%) and
devised a methodology for visualizing the hidden layers
(or activation maps) of CNNs. More recent approaches such
as GoogLeNet [33] and Microsoft’s ResNet [34] use deeper
architectures (e.g., 22 and 152 layers respectively) and have
managed to surpass human levels of accuracy on image
classification tasks. However, the gains in network learning
capacity afforded by deeper architectures come with a trade
off in terms of training data requirements and training
time. In this paper, we show that a relatively simple CNN
architecture can be trained in a reasonable amount of time
on popular classes of Android GUI-components, achieving
a top-1 average classification accuracy of 91%.

3 APPROACH DESCRIPTION

We describe our approach for GUI prototyping around the
three major phases of the process: detection, classification, &
assembly. Fig. 2 illustrates an overview of the process that

we will refer to throughout the description of the approach.
At a high-level, our approach first detects GUI-components
from a mock-up artifact by either utilizing CV techniques or
parsing meta-data directly from mock-up artifacts generated
using professional photo-editing software. Second, to classify
the detected GUI-components into proper types, we propose
to train a CNN using GUI data gleaned from large-scale
automated dynamic analysis of applications extracted by
mining software repositories. The trained CNN can then
be applied to mock-up artifacts to classify detected com-
ponents. Finally, to construct a suitable GUI-hierarchy (e.g.,
proper groupings of GUI-components in GUI-containers)
we utilize a KNN-based algorithm that leverages the GUI-
information extracted from the large-scale dynamic analysis
to assemble a realistic nested hierarchy of GUI-components
and GUI-containers. To illustrate our general approach, for
each phase we first describe the proposed methodology and
design decisions at a high level and then discuss the imple-
mentation details specific to our instantiation of REDRAW

for the Android platform.

3.1 Phase 1 - Detection of GUI-Components
The first task required of a GUI-prototyping approach is
detecting the GUI-components that exist in a mock-up ar-
tifact. The main goal of this phase is to accurately infer
the bounding boxes of atomic GUI-component elements (in
terms of pixel-based coordinates) from a mock-up artifact.
This allows individual images of GUI-components to be
cropped and extracted in order to be utilized in the later
stages of the prototyping process. This phase can be ac-
complished via one of two methodologies: (i) parsing data
from mock-up artifacts, or (ii) using CV techniques to detect
GUI-components. A visualization of this phase is illustrated
in Fig. 2- 1 . In the following subsections we describe the
detection procedure for both of these methodologies as well
as our specific implementation within REDRAW.

3.1.1 Parsing Data from Design Mockups
The first method for detecting the GUI-components that
exist in a mock-up artifact, shown in the bottom portion of



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 7

Fig. 2- 1 , is to utilize the information encoded into mock-
up artifacts. Given the importance of UI/UX in today’s
consumer facing software, many designers and small teams
of developers work with professional grade image editing
software, such as Photoshop [4] or Sketch [5] to create
either wireframe or pixel perfect static images of GUIs
that comprise mock-up artifacts. During this process photo-
editing or design software is typically used to create a blank
canvas with dimensions that match a target device screen or
display area (with some design software facilitating scaling
to multiple screen sizes [4], [5]). Then, images representing
GUI-components are placed as editable objects on top of this
canvas to construct the mock-up. Most of these tools are
capable of exporting the mock-up artifacts in formats that
encode spatial information about the objects on the canvas,
such as using the Scalable Vector Graphics (.svg) format or
html output [59]. Information about the layouts of objects,
including the bounding boxes of these objects, can be parsed
from these output formats, resulting in highly accurate
detection of components. Therefore, if this metadata for the
mock-up artifacts is available, it can be parsed to obtain
extremely accurate bounding boxes for GUI-components
that exist in a mock-up artifact which can then be utilized in
the remainder of the prototyping process.

Given the spatial information encoded in metadata that
is sometimes available in mock-up artifacts, one may ques-
tion whether this information can also be used to reconstruct
a hierarchical representation of GUI-components that could
later aid in the code conversion process. Unfortunately,
realistic GUI-hierarchies typically cannot be feasibly parsed
from such artifacts for at least the following two reasons:
(i) designers using photo-editing software to create mock-
ups tend to encode a different hierarchal structure than
a developer would, due to a designer lacking knowledge
regarding the best manner in which to programmatically
arrange GUI-components on a screen [10]; (ii) limitations
in photo-editing software can prohibit the creation of pro-
grammatically proper spatial layouts. Thus, any hierarchical
structure parsed out of such artifacts is likely to be specific
to designers’ preferences, or restricted based on the capa-
bilities of photo-editing software, limiting applicability in
our prototyping scenario. For example, a designer might
not provide enough GUI-containers to create an effective
reactive mobile layout, or photo-editing software might not
allow for relative positioning of GUI-components that scale
across different screen sizes.

3.1.2 Using CV Techniques for GUI-component Detection:
While parsing information from mock-ups results in highly
accurate bounding boxes for GUI-components this info
may not always be available, either due to limitations in
the photo-editing software being used or differing design
practices, such as digitally or physically sketching mockups
using pen displays, tablets, or paper. In these cases, a mock-
up artifact may consist only of an image, and thus CV tech-
niques are needed to identify relevant GUI-component info.
To support these scenarios, our approach builds upon the
CV techniques from [8] to detect GUI-component bounding
boxes. This process uses a series of different CV techniques
(Fig. 2- 1 ) to infer bounding boxes around objects corre-
sponding to GUI components in an image. First, Canny’s

edge detection algorithm [60] is used to detect the edges of
objects in an image. Then these edges are dilated to merge
edges close to one another. Finally, the contours of those
edges are used to derive bounding boxes around atomic
GUI-components. Other heuristics for merging text-based
components using Optical Character Recognition (OCR) are
used to merge the bounding boxes of logical blocks of text
(e.g., rather than detecting each word as its own component,
sentences and paragraphs of text are merged).

3.1.3 ReDraw Implementation - GUI Component Detection
In implementing REDRAW, to support the scenario where
metadata can be gleaned from mock-ups for Android ap-
plications we target artifacts created using the Marketch
[59] plugin for Sketch [5], which exports mock-ups as a
combination of html & javascript. Sketch is popular
among mobile developers and offers extensive customiza-
tion through a large library of plugins [61]. REDRAW parses
the bounding boxes of GUI-components contained within
the exported Marketch files.

To support the scenario where meta-data related to
mock-ups is not available, REDRAW uses CV techniques
to automatically infer the bounding boxes of components
from a static image. To accomplish this, we re-implemented
the approach described in [8]. Thus, the input to the GUI-
component detection phase of REDRAW is either a screen-
shot and corresponding marketch file (to which the mar-
ketch parsing procedure is applied), or a single screenshot
(to which CV-based techniques are applied). The end result
of the GUI-component detection process is a set of bounding
box coordinates situated within the original input screen-
shot and a collection of images cropped from the original
screenshot according to the derived bounding boxes that
depict atomic GUI-components. This information is later fed
into a CNN to be classified into Android specific component
types in Phase 2.2. It should be noted that only GUI-
components are detected during this process. On the other
hand GUI-containers and the corresponding GUI-hierarchy
are constructed in the assembly phase described in Sec. 3.3.

3.2 Phase 2 - GUI-component Classification
Once the bounding boxes of atomic GUI-component ele-
ments have been detected from a mock-up artifact, the next
step in the prototyping process is to classify cropped im-
ages of specific GUI components into their domain specific
types. To do this, we propose a data-driven and ML-based
approach that utilizes CNNs. As illustrated in Fig. 2-2.1 and
Fig. 2- 2.2 , this phase has two major parts: (i) large scale
software repository mining and automated dynamic analy-
sis, and (ii) the training and application of a CNN to classify
images of GUI-components. In the following subsections
we first discuss the motivation and implementation of the
repository mining and dynamic analysis processes before
discussing the rationale for using a CNN and our specific
architecture and implementation within REDRAW.

3.2.1 Phase 2.1 - Large-Scale Software Repository Mining
and Dynamic Analysis
Given their supervised nature and deep architectures, CNNs
aimed at the image classification task require a large amount



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 8

of training data to achieve precise classification. Training
data for traditional CNN image classification networks typ-
ically consists of a large set of images labeled with their
corresponding classes, where labels correspond to the pri-
mary subject in the image. Traditionally, such datasets have
to be manually procured, wherein humans painstakingly
label each image in the dataset. However, we propose a
methodology that automates the creation of labeled train-
ing data consisting of images of specific GUI-components
cropped from full screenshots and labels corresponding to
their domain specific type (e.g., Buttons, or Spinners in
Android) using fully-automated dynamic program analysis.

Our key insight for this automated dynamic analysis
process is the following: during automated exploration of soft-
ware mined from large repositories, platform specific frameworks
can be utilized to extract meta-data describing the GUI, which
can then be transformed into a large labeled training set suitable
for a CNN. As illustrated in Fig. 2-2.1 , this process can
be automated by mining software repositories to extract
executables. Then a wealth of research in automated input
generation for GUI-based testing of applications can be used
to automatically execute mined apps by simulating user-
input. For instance, if the target is a mobile app, input
generation techniques relying on random-based [62], [63],
[64], [65], [66], systematic [36], [67], [68], [69], [70], model-
based [37], [67], [69], [71], [72], [73], [74], or evolutionary
[75], [76] strategies could be adopted for this task. As the
app is executed, screenshots and GUI-related metadata can
be automatically extracted for each unique observed screen
or layout of an app. Other similar automated GUI-ripping or
crawling approaches can also be adapted for other platforms
such as the web [77], [78], [79], [80], [81].

Screenshots can be captured using third party software
or utilities included with a target operating system. GUI-
related metadata can be collected from a variety of sources
including accessibility services [82], html DOM informa-
tion, or UI-frameworks such as uiautomator [83]. The
GUI-metadata and screenshots can then be used to extract
sub-images of GUI-components with their labeled types
parsed from the related metadata describing each screen.
The underlying quality of the resulting dataset relates to
how well the labels describe the type of GUI-components
displayed on a screen. Given that many of the software
UI-frameworks that would be utilized to mine such data
pull their information directly from utilities that render
application GUI-components on the screen, this information
is likely to be highly accurate. However, there are certain
situations where the information gleaned from these frame-
works contains minor inaccuracies or irrelevant cases. We
discuss these cases and steps that can be taken to mitigate
them in Sec. 3.2.4.

3.2.2 ReDraw Implementation - Software Repository Min-
ing and Automated Dynamic Analysis

To procure a large set of Android apps to construct our
training, validation, and test corpora for our CNN we mined
free apps from Google Play at scale. To ensure the repre-
sentativeness and quality of the apps mined, we extracted
all categories from the Google Play store as of June 2017.
Then we filtered out any category that primarily consisted

of games, as games tend to use non-standard types of GUI-
components that cannot be automatically extracted. This left
us with a total of 39 categories. We then used a Google Play
API library [84] to download the top 240 APKs from each
category, excluding duplicates that existed in more than one
category. This resulted in a total of 8,878 unique APKs after
accounting for duplicates cross-listed across categories.

To extract information from the mined APKs, we im-
plemented a large-scale dynamic analysis engine, called
the Execution Engine that utilizes a systematic automated
input generation approach based on our prior work on
CRASHSCOPE and MONKEYLAB [36], [37], [70], [85] to ex-
plore the apps and extract screenshots and GUI-related
information for visited screens. More specifically, our sys-
tematic GUI-exploration navigates a target apps’s GUI in
a Depth-First-Search (DFS) manner to exercise tappable,
long-tappable, and type-able (e.g., capable of accepting text
input) components. During the systematic exploration we
used Android’s uiautomator framework [83] to extract
GUI-related info as xml files that describe the hierarchy
and various properties of components displayed on a given
screen. We used the Android screencap utility to collect
screenshots. The uiautomator xml files contain various
attributes and properties of each GUI-component displayed
on an Android application screen, including the bounding
boxes (e.g., precise location and area within the screen)
and component types (e.g., EditText, Toggle Button). These
attributes allow for individual sub-images for each GUI-
component displayed on a given screen to be extracted from
the corresponding screenshot and automatically labeled
with their proper type.

The implementation of our DFS exploration strategy
utilizes a state machine model where states are considered
unique app screens, as indicated by their activity name
and displayed window (e.g., dialog box) extracted using
the adb shell dumpsys window command. To allow for
feasible execution times across the more than 8.8k apps in
our dataset while still exploring several app screens, we
limited our exploration strategy to exercising 50 actions per
app. Prior studies have shown that most automated input
generation approaches for Android tend to reach near-peak
coverage (e.g., between ≈ 20 and 40% statement coverage)
after 5 minutes of exploration [86]. While different input
generation approaches tend to exhibit different numbers
of actions per given unit of time, our past work shows
that our automated input generation approach achieves
competitive coverage to similar approaches [36], and our
stipulation of 50 actions comfortably exceeds 5 minutes per
app. Furthermore, our goal with this large scale analysis
was not to completely explore each application, but rather
ensure a diverse set of screens and GUI-Component types.
For each app the Execution Engine extracted uiautomator
files and screenshot pairs for the top six unique screens
of each app based on the number of times the screen was
visited. If fewer than six screens were collected for a given
app, then the information for all screens was collected. Our
large scale Execution Engine operates in a parallel fashion,
where a centralized dispatcher allocated jobs to workers,
where each worker is connected to one physical Nexus 7
tablet and is responsible for coordinating the execution of
incoming jobs. During the dynamic analysis process, each



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 9

Fig. 3: Heat-map of GUI Components by Category Before
Filtering
job consists of the systematic execution of a single app from
our dataset. When a worker finished with a job, it then
notified the dispatcher which in turn allocates a new job.
This process proceeded in parallel across 5 workers until all
applications in our dataset had been explored. Since Ads
are popular in free apps [87], [88], and are typically made
up of dynamic WebViews and not native components, we
used Xposed [89] to block Ads in apps that might otherwise
obscure other types of native components.

This process resulted in a dataset of GUI-information
and screenshots for 19,786 unique app screens containing
over 431,747 native Android GUI-components and contain-
ers which, to the best of the authors knowledge, is one
of the largest such datasets collected to date behind the
RICO dataset [43]. In Fig. 3 we illustrate the frequency in
logarithmic-scale of the top-19 observed components by app
category using a heat-map based on the frequency of com-
ponents appearing from apps within a particular category
(excluding TextViews as they are, unsurprisingly, the most
popular type of component observed, comprising ≈ 25%
of components). The distributions of components in this
dataset illustrate two major points. First, while ImageViews
and TextViews tend to comprise a large number of the
components observed in practice, developers also heavily
rely on other types of native Android components to imple-
ment key pieces of app functionality. For instance, Buttons,
CheckedTextViews, and RadioButtons combined were
used over 20k times across the apps in our dataset. Second,
we observed certain types of components may be more
popular for different categories of apps. For instance, apps
from the category of “MUSIC_AND_AUDIO” tend to make
much higher use of SeekBar and ToggleButton components
to implement the expected functionalities of a media player,
such as scrubbing through music and video files. These find-
ings illustrate that for an approach to be able to effectively

generate prototypes for a diverse set of mobile apps, it must
be capable of correctly detecting and classifying popular
types of GUI-components to support varying functionality.

3.2.3 Phase 2.2 - CNN Classification of GUI-Components
Once the labeled training data set has been collected, we
need to train a ML approach to extract salient features
from the GUI-component images, and classify incoming
images based upon these extracted features. To accomplish
this our approach leverages recent advances in CNNs. The
main advantage of CNNs over other image classification
approaches is that the architecture allows for automated ex-
traction of abstract features from image data, approximation
of non-linear relationships, application of the principle of
data-locality, and classification in an end-to-end trainable
architecture.
3.2.4 ReDraw Implementation - CNN Classifier
Once the GUI-components in a target mock-up artifact have
been detected using either mock-up meta-data or CV-based
techniques, REDRAW must effectively classify these compo-
nents. To accomplish this REDRAW implements a CNN ca-
pable of classifying a target image of a GUI-component into
one of the 15 most-popular types of components observed
in our dataset. In this subsection, we first describe the data-
cleaning process used to generate the training, validation,
and test datasets (examples of which are shown in Fig. 4)
before describing our CNN architecture and the training
procedure we employ.
Data Cleaning: We implemented several types of prepro-
cessing and filtering techniques to help reduce noise. More
specifically, we implemented filtering processes at three
differing levels of granularity: (i) application, (ii) screen &
(iii) GUI-component level.

While future versions of REDRAW may support non-
native apps, to provide an appropriate scope for rigorous
experimentation, we have implemented REDRAW with sup-
port for prototyping native Android applications. Thus, once
we collected the xml and screenshot files, it is important to
apply filters in order to discard applications that are non-
native, including games and hybrid applications. Thus, we
applied the following app-level filtering methodologies:

• Hybrid Applications: We filtered applications that uti-
lize Apache Cordova [90] to implement mobile apps us-
ing web-technologies such as html and CSS. To accom-
plish this we first decompiled the APKs using Apktool
[91] to get the resources used in the application. We then
discarded the applications that contained a www folder
with html code inside.

• Non-Standard GUI Frameworks: Some modern apps
utilize third party graphical frameworks or libraries
to create highly-customized GUIs. While such frame-
works tend to be used heavily for creating mo-
bile games, they can also be used to create UIs for
for more traditional applications. One such popu-
lar framework is the Unity [92] game engine. Thus,
to avoid applications that utilize this engine we fil-
tered out applications that contain the folder structure
com/unity3d/player inside the code folder after de-
compilation with Apktool.

This process resulted in the removal of 223 applications
and a dataset consisting of of 8,655 apps to which we



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 10

Image

Image
Button

TextView

Toggle
Button

Progress Bar

Edit
Text

Switch

Checked TextView

Radio
Button

Fig. 4: Example of a subset of ReDraw’s training data
set consisting of GUI-Component sub-images and domain
(Android) specific labels. Images and corresponding Labels
are grouped according to the dashed-lines.

then applied screen-level filtering. At the Screen-level, we
implemented the following pre-processing techniques:

• Filtering out Landscape screens: To keep the height and
width of all screens consistent, we only collected data
from screens that displayed in the portrait orientation.
Thus, we checked the size of the extracted screenshots
and verified that the width and the height correspond
to 1200x1920, the landscape oriented screen size used
on our target Nexus 7 devices. However, there are
some corner cases in which the images had the correct
portrait size but it was on landscape. So, to overcome
this we checked the extracted uiautomator xml file
and validated the size of the screen to ensure a portrait
orientation.

• Filtering Screens containing only Layout components:
In Android, Layout components are used as con-
tainers that group together other types of functional
components such as Buttons and Spinners. However,
some screens may consist only of layout components.
Thus to ensure variety in our dataset, we analyzed
the uiautomator xml files extracted during dynamic
analysis to discard screens that are only comprised of
Layout components such as LinearLayout, GridLayout,
and FrameLayout among others.

• Filtering WebViews: While many of the most popular
Android apps are native, some apps may be hybrid
in nature, that is utilizing web content within a native
app wrapper. Because such apps use components that
cannot be extracted via uiautomator we discard them
from our dataset by removing screens where a WebView
occupied more than 50% of the screen area.

After these filtering techniques were applied, 2,129 ap-
plications and 4,954 screens were removed, and the result-
ing dataset contained 14,382 unique screens with 431,747
unique components from 6,538 applications. We used the
information in the uiautomator xml files to extract the
bounding boxes of leaf-level GUI-components in the GUI-
hierarchies. We only extract leaf-level components in order
to align our dataset with components detected from mock-
ups. Intuitively it is unlikely that container components (e.g.,
non-leaf nodes) would exhibit significant distinguishable

Im
ag

eV
ie

w

Im
ag

eB
ut

to
n

Bu
tto

n

Sp
in

ne
r

Ra
tin

gB
ar

Nu
m

be
rP

ick
er

To
gg

le
Bu

tto
n

Se
ek

Ba
r

Sw
itc

h

Pr
og

re
ss

Ba
r

Ra
di

oB
ut

to
n

Ch
ec

kB
ox

Ch
ec

ke
dT

ex
tV

ie
w

Ed
itT

ex
t

FAMILY_EDUCATION
FAMILY_ACTION
FAMILY_PRETEND
FAMILY_BRAINGAMES
FAMILY_MUSICVIDEO
FAMILY
FAMILY_CREATE
MUSIC_AND_AUDIO
BUSINESS
SPORTS
BEAUTY
LIBRARIES_AND_DEMO
VIDEO_PLAYERS
COMICS
ART_AND_DESIGN
WEATHER
PHOTOGRAPHY
TOOLS
NEWS_AND_MAGAZINES
PERSONALIZATION
COMMUNICATION
DATING
SOCIAL
BOOKS_AND_REFERENCE
LIFESTYLE
PARENTING
HEALTH_AND_FITNESS
HOUSE_AND_HOME
EVENTS
PRODUCTIVITY
FINANCE
MAPS_AND_NAVIGATION
FOOD_AND_DRINK
MEDICAL
TRAVEL_AND_LOCAL
SHOPPING
AUTO_AND_VEHICLES
EDUCATION
ENTERTAINMENT

GUI Components

G
oo

gl
e 

Pl
ay

 C
at

eg
or

ie
s

Heatmap Components by Category

0 2 4 6
Value

0
0.

3
0.

6

Color Key
and Density Plot

De
ns

ity

Im
ag

eV
ie

w

Im
ag

eB
ut

to
n

Bu
tto

n

Sp
in

ne
r

Ra
tin

gB
ar

Nu
m

be
rP

ick
er

To
gg

le
Bu

tto
n

Se
ek

Ba
r

Sw
itc

h

Pr
og

re
ss

Ba
r

Ra
di

oB
ut

to
n

Ch
ec

kB
ox

Ch
ec

ke
dT

ex
tV

ie
w

Ed
itT

ex
t

FAMILY_EDUCATION
FAMILY_ACTION
FAMILY_PRETEND
FAMILY_BRAINGAMES
FAMILY_MUSICVIDEO
FAMILY
FAMILY_CREATE
MUSIC_AND_AUDIO
BUSINESS
SPORTS
BEAUTY
LIBRARIES_AND_DEMO
VIDEO_PLAYERS
COMICS
ART_AND_DESIGN
WEATHER
PHOTOGRAPHY
TOOLS
NEWS_AND_MAGAZINES
PERSONALIZATION
COMMUNICATION
DATING
SOCIAL
BOOKS_AND_REFERENCE
LIFESTYLE
PARENTING
HEALTH_AND_FITNESS
HOUSE_AND_HOME
EVENTS
PRODUCTIVITY
FINANCE
MAPS_AND_NAVIGATION
FOOD_AND_DRINK
MEDICAL
TRAVEL_AND_LOCAL
SHOPPING
AUTO_AND_VEHICLES
EDUCATION
ENTERTAINMENT

GUI Components

G
oo

gl
e 

Pl
ay

 C
at

eg
or

ie
s

Heatmap Components by Category

0 2 4 6
Value

0
0.

3
0.

6

Color Key
and Density Plot

De
ns

ity

Fig. 5: Heat-map of GUI Components by Category After
Filtering
features that a ML approach would be able to derive in order
to perform accurate classification (hence, the use of our
KNN-based approach is described in Sec. 3.3). Furthermore,
it is unclear how such a GUI-container classification net-
work would be used to iteratively build a GUI-structure. We
performed a final filtering of the extracted leaf components:

• Filtering Noise: We observed that in rare cases the
bounds of components would not be valid (e.g., extend-
ing beyond the borders of the screen, or represented as
zero or negative areas) or components would not have
a type assigned to them. Thus, we filter out these cases.

• Filtering Solid Colors: We also observed that in certain
circumstances, extracted components were made up of
a single solid color, or in rarer cases two solid colors.
This typically occurred due to instances where the view
hierarchy of a screen had loaded, but the content was
still rendering on the page or being loaded over the
network, when a screenshot was captured. Thus, we
discarded such cases.

• Filtering Rare GUI-Components: In our dataset we
found that some components only appeared very few
times, therefore, we filtered out any component with
less than 200 instances in the initial dataset, leading to
15 GUI-component types in our dataset.

The data-cleaning process described above resulted in
the removal of 240,447 components resulting in 191,300
labeled images of GUI-components from 6,538 applications.
We provide a heat-map illustrating the popularity of com-
ponents across apps from diferent Google Play categories in
Fig. 5 To ensure the integrity of our dataset, we randomly
sampled a statistically significant sample of 1,000 GUI-
component images (corresponding to confidence interval
of ±3.09 at a 95% confidence level), and had one author
manually inspect all 1,000 images and labels to ensure the
dataset integrity.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 11

Fig. 6: Screenshots of synthetically generated applications
containing toggle buttons and switches

Data Augmentation: Before segmenting the resulting data
into training, test, and validation sets, we followed proce-
dures from previous work [30] and applied data augmenta-
tion techniques to increase the size of our dataset in order to
ensure proper training support for underrepresented classes
and help to combat overfitting to the training set. Like
many datasets procured using “naturally” occurring data,
our dataset suffers from imbalanced classes. That is, the
number of labeled images in our training set are skewed
toward certain classes, resulting in certain classes that have
high support, and others that have low support. Thus, to
balance our dataset, we performed two types of data aug-
mentation: synthetic app generation and color perturbation. For
the sake of clarity, we will refer to data collected using our
automated dynamic analysis approach as organic data (i.e.,
the data extracted from Google Play) and data generated
via synthetic means as synthetic data (i.e., generated either
via synthetic app generation or color perturbation).

To generate synthetic data for underrepresented
components, we implemented an app synthesizer
capable of generating Android apps consisting of only
underrepresented components. The app synthesizer
is a Java application that is capable of automatically
generating single-screen Android applications containing
four instances of GUI-components (with randomized
attributes) for 12 GUI-component classes in our dataset that
had less than 10K observable instances. The synthesizer
places the four GUI-components of the specified type on
a single app screen with randomized sizes and values
(e.g., numbers for a number picker, size and state for a
toggle button). Two screenshots of synthesized applications
used to augment the Toggle button and Switch classes
are illustrated in Fig. 6. We ran these apps through our
Execution Engine, collecting the uiautomator xml files and
screenshots from the single generated screen for each app.
After the screenshots and uiautomator files were collected,
we extracted only the target underrepresented components
from each screenshot (note that in Fig. 6 there is a header
title and button generated when creating a standard
Android app), all other component types are ignored.
250 apps for each underrepresented GUI-component were
synthesized, resulting in creating an extra 1K components

Input Layer
Filter Size=7, numFilters =64, 

padding=3, stride=2

Filter Size=7, numFilters =64, 
padding=3, stride=2

poolSize=3x3, stride=1

Filter Size=3, numFilters =96

poolSize=2x2, stride=1

Dropout Rate = 0.5

1024 nodes

Dropout Rate = 0.5

1024 nodes

15 nodes

Network Layers Parameters

Convolutional Layer + ReLU

MaxPooling Layer

Dropout Layer

FullyConnected + ReLU

Softmax Layer

Convolutional Layer + ReLU

Convolutional Layer + ReLU

MaxPooling Layer

Dropout Layer

FullyConnected + ReLU

FullyConnected + ReLU

Fig. 7: REDRAW CNN Architecture

for each class and 12K total additional GUI-components.

While our application generator helps to rectify the im-
balanced class support to an extent, it does not completely
balance our classes and may be prone to overfitting. Thus,
to ensure proper support across all classes and to combat
overfitting, we follow the guidance outlined in related work
[30] to perform color perturbation on both the organic and
synthetic images in our dataset. More specifically, our color
perturbation procedure extracts the RGB values for each
pixel in an input image and converts the values to the
HSB (Hue, Saturation, Brightness) color space. The HSB
color space represents colors as part of a cylindrical or cone
model where color hues are represented by degrees. Thus, to
shift the colors of a target image, our perturbation approach
randomly chooses a degree value by which each pixel in the
image is shifted. This ensures that color hues that were the
same in the original image, all shift to the same new color
hue in the perturbed image, preserving the visual coherency
of the perturbed images. We applied color perturbation to
the training set of images until each class of GUI-component
had at least 5K labeled instances, as described below.
Data Segmentation: We created a the training, validation,
and test datasets for our CNN such that the training dataset
contained both organic and synthetic data, but the test and
validation datasets contained only organic data, unseen in
the training phase of the CNN. To accomplish this, we
randomly segmented our dataset of organic components
extracted from Google Play into training (75%), validation
(15%), and test (10%) sets. Then for the training set, we
added the synthetically generated components to the set
of organic GUI-component training images, and performed
color perturbation on only the training data (after segmen-
tation) until each class had at least 5K training examples.
Thus, the training set contained both organic and syntheti-
cally generated data, and the validation and test sets con-
tained only organic data. This segmentation methodology
closely follows prior work on CNNs [30].
ReDraw’s CNN Architecture: Our CNN architecture is
illustrated in Fig. 7. Our network uses an architecture similar
to that of AlexNet [30], with two less convolutional layers (3



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 12

Algorithm 1: KNN Container Determination
Input: InputNodes // Either leaf components or

other containers
Output: Containers // Groupings of input components

1 while canGroupMoreNodes() // While groupings exist
2 do

// For each screen in the mined data
3 foreach Screen S ∈ Dataset do
4 TargetNodes = S.getTargetNodes()

score = TargetNodes()∩InputNodes
TargetNodes()∪InputNodes

// IOU

5 if score > curmax then
6 curmax = score
7 MatchedScreen = S
8 end
9 end

10 TargetNodes = MatchedScreen.getTargetNodes()
InputNodes.remove(TargetNodes ∩ InputNodes)
Containers.addContainers(MatchedScreen)

11 end

instead of 5), and is implemented in MATLAB using the Neu-
ral Network [93], Parallel Computing [94], and Computer
Vision [95] toolkits. While “deeper” architectures do exist
[31], [33], [34] and have been shown to achieve better per-
formance on large-scale image recognition benchmarks, this
comes at the cost of dramatically longer training times and a
larger set of parameters to tune. Since our goal is to classify
15 classes of the most popular Android GUI-components,
we do not need the capacity of deeper networks aiming
to classify thousands of image categories. We leave deeper
architectures and larger numbers of image categories as
future work. Also, this allowed our CNN to converge in
a matter of hours rather than weeks, and as we illustrate,
still achieve high precision.

To tune our CNN, we performed small scale experiments
by randomly sampling 1K images from each class to build a
small training/validation/test set (75%, 15%, 10%) for faster
training times (Note, these datasets are separate from the
full set used to train/validate/test the network described
earlier). During these experiments we iteratively recorded
the accuracy on our validation set, and recorded the final
accuracy on the test set. We tuned the location of layers
and parameters of the network until we achieved peak test
accuracy with our randomly sampled dataset.

Training the CNN: To train REDRAW’S network we utilized
our derived training set; we trained our CNN end-to-end
using back-propagation and stochastic gradient descent
with momentum (SGDM), in conjunction with a technique
to prevent our network from overfitting to our training
data. That is, every five epochs (e.g., entire training set
passing through the network once) we test the accuracy of
our CNN on the validation set, saving a copy of the learned
weights of the classifier at the same time. If we observe
our accuracy decrease for more than two checkpoints, we
terminate the training procedure. We varied our learning
rate from 0.001 to 1 × 10−5 after 50 epochs, and then
dropped the rate again to 1 × 10−6 after 75 epochs until
training terminated. Gradually decreasing the learning rate
allows for the network to “fine-tune” the learned weights
over time, leading to an increase in overall classification
precision [30]. Our network training time was 17 hours, 12
minutes on a machine with a single Nvidia Tesla K40 GPU.

Input Screen Matched Target Screen
from Collected Dataset

First Iteration

Second Iteration

Constructed GUI 
Hierarchy

Fig. 8: Illustration of KNN Hierarchy Construction

Using the CNN for Classification: Once the CNN has
been trained, new, unseen images can fed into the network
resulting a series of classification scores corresponding to
each class. In the case of ReDraw, the component class with
the highest confidence is assigned to be the label for a given
target image. We present an evaluation of the classification
accuracy of REDRAW’S CNN using the dataset described in
this subsection later in Sec. 4 & 5.

3.3 Phase 3 - Application Assembly

The final task of the prototyping process is to assemble
app GUI code, which involves three phases (Fig. 2- 3 ): (i)
building a proper hierarchy of components and containers,
(ii) inferring stylistic details from a target mock-up artifact,
and (iii) assembling the app.

3.3.1 Deriving GUI-Hierarchies
In order to infer a realistic hierarchy from the classified set of
components, our approach utilizes a KNN technique (Alg. 1)
for constructing the GUI hierarchy. This algorithm takes the
set of detected and classified GUI-components represented
as nodes in a single level tree (InputNodes) as input. Then,
for each screen in our dataset collected from automated
dynamic analysis, Alg. 1 first extracts a set of TargetNodes
that correspond the hierarchy level of the InputNodes (Alg.
1 -line 4), which are leaf nodes for the first pass of the algo-
rithm. Next, the InputNodes are compared to each set of
extracted (TargetNodes) using a similarity metric based on
the intersection over union (IOU) of screen area occupied by
the bounding boxes of overlapping components (Alg. 1 -line
5). A matching screen is selected by taking the screen with
the highest combined IOU score between the InputNodes
and TargetNodes. Then, the parent container components



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 13

Listing 1: ReDraw’s Skeleton Main Activity Class
1 public class MainActivity extends Activity {
2 @Override
3 protected void onCreate(Bundle

savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 setContentView(R.layout.main_activity);
6 }
7 }

Listing 2: Snippet from layout.xml file generated by Re-
Draw for the Yelp Application

1 <LinearLayout android:id="@+id/LinearLayout452"
android:layout_height="127.80186dp"
android:layout_marginStart="0.0dp"
android:layout_marginTop="0.0dp"
android:layout_width="400.74304dp"
android:orientation="vertical" android:text=
"" android:textSize="8pt">

2 <Button android:id="@+id/Button454"
android:layout_height="58.45201dp"
android:layout_marginStart="0.0dp"
android:layout_marginTop="0.0dp"
android:layout_width="400.74304dp"
android:text="Sign up with Google"
android:textSize="8pt" style="@style/
Style65"/>

3 <Button android:id="@+id/Button453"
android:layout_height="50.526318dp"
android:layout_marginStart="3.4674923dp"
android:layout_marginTop="18.82353dp"

android:layout_width="393.31268dp"
android:text="Sign up with Facebook"
android:textSize="8pt" style="@style/
Style66"/>

4 </LinearLayout>

from the components in the matched screen are selected
as parent components to the matched InputNodes. The
matched InputNodes are then removed from the set, and
the algorithm proceeds to match the remaining InputNodes
that were not matched during the previous iteration. This
procedure is applied iteratively (including grouping con-
tainers in other containers) until a specified number of levels
in the hierarchy are built or all nodes have been grouped.
An illustration of this algorithm is given in Figure 8, where
matched components are highlighted in blue and containers
are represented as green boxes.

It should be noted that all attributes of a com-
ponent container are inherited during the hierarchy
construction, including their type (e.g., LinearLayout,
RelativeLayout). We can specify the number of compo-
nent levels to ensure that hierarchies do not grow so large
such that they would cause rendering delays on a device.
The result of this process is a hierarchy built according
to its similarity to existing GUI-hierarchies observed in
data. Given different types of containers may behave dif-
ferently, this technique has the advantage that, in addition
to leaf level GUI-components being properly classified by
the CNN, proper types of container components are built
into the GUI-hierarchy via this KNN-based approach.

3.3.2 Inferring Styles and Assembling a Target App
To infer stylistic details from the mock-up, our approach
employs the CV techniques of Color Quantization (CQ),
and Color Histogram Analysis (CHA). For GUI-components

Listing 3: Snippet from style.xml file generated by Re-
Draw for the Yelp Application

1 <style name="Style63" parent="AppTheme">
2 <item name="android:textColor">#FEFEFF</item>
3 </style>
4 <style name="Style64" parent="AppTheme">
5 <item name="android:textColor">#FEFEFF</item>
6 </style>
7 <style name="Style65" parent="AppTheme">
8 <item name="android:background">#DD4B39</item

>
9 <item name="android:textColor">#FEFEFF</item>

10 </style>

whose type does not suggest that they are displaying an
image, our approach quantizes the color values of each
pixel and constructs a color histogram. The most popular
color values can then be used to inform style attributes of
components when code is generated. For example, for a
component displaying text, the most prevalent color can be
used as a background and the second most prevalent color
can be used for the font.

3.3.3 ReDraw Implementation - App Assembly

ReDraw assembles Android applications, using the KNN
approach for GUI-hierarchy construction (see Sec. 3.3.1) and
CV-based detection of color styles. The input to Alg. 1 is the
set of classified “leaf-node” components from the CNN, and
the output is a GUI-hierarchy. To provide sufficient data for
the KNN-algorithm, a corpus including all of the info from
the ”cleaned” screens of the GUI-hierarchies mined from
our large scale dynamic analysis process is constructed. This
corpus forms the dataset TargetNodes to which the InputNode
components are matched against during hierarchy construc-
tion. The GUI-hierarchy generated by the KNN for the target
”leaf-node” components is then used to infer stylistic details
from the original mock-up artifact. More specifically, for
each component and container, we perform CQ and CHA
to extract the dominant colors for each component. For
components which have a text element, we apply optical
character recognition (OCR) using the open source Tesseract
[96] library on the original screenshot to obtain the strings.

Currently, our approach is able to infer three major types
of stylistic detail from target components:

• Background Color: To infer the background color of
components and containers, ReDraw simply utilizes the
dominant color in the CHA for a specific component as
the background color.

• Font Color: To infer the font color for components,
ReDraw uses the dominant color in the CHA as the
background text and the second most dominant color
as the font color.

• Font Size: ReDraw is able to infer the font size of
textual components by using the pixel based height of
the bounding boxes of text-related components.

These techniques are used for both variants of the RE-
DRAW approach (e.g., mock-up based and CV based). There
is ample opportunity for future work to improve upon
the inference of stylistic details, particularly from mock-up
artifacts. More specifically, future work could expand this
process to further adapt the style of “standard” components
to match stylistic details observed in a mock-up artifact.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 14

Depending upon the export format for a mock-up, ReDraw
could also potentially infer additional styles such as the
font utilized or properties of component shapes (e.g., button
bevels). While REDRAW’S current capabilities for inferring
stylistic details are limited to the above three categories,
in Section 5 we illustrate that these are sufficient to enable
REDRAW to generate highly visually similar applications in
comparison to target images.

REDRAW encodes the information regarding the GUI-
hierarchy, stylistic details, and strings detected using OCR
into an intermediate representation (IR) before translating
it into code. This IR follows the format of uiautomator
xml files that describes dynamic information from an An-
droid screen. Thus, after REDRAW encodes the GUI in-
formation into the uiautomator-based IR, it then gener-
ates the necessary resource xml files (e.g., files in the res
folder of an Android app project directory) by parsing the
uiautomator-based IR xml file. This process generates the
following two types of resource code for the generated
app: (i) the layout.xml code describing the general GUI
structure complete with strings detected via OCR; and (ii)
a style.xml file that stipulates the color and style infor-
mation for each component gleaned via the CV techniques,
and ReDraw generates the xml source files following the
best practices stipulated in the Android developer guide-
lines [40], such as utilizing relative positioning, and proper
padding and margins. In addition to these resource xml files
REDRAW also generates a skeleton Java class encompassing
the MainActivity which renders the GUI stipulated in the
resource xml files, as well as other various files required
to build and package the code into an apk. The Skeleton
MainActivity Java class is shown in Listing 1 and snippets
from generated layout.xml & style.xml files for a screen
from the Yelp application are shown in Listings 2 & 3.
The layout.xml snippet of code generated by ReDraw
illustrates the use of margins and relative dp values to
stipulate the spatial properties of GUI-containers and GUI-
components and references the style.xml file to stipulate
color information. Listing 3 illustrates the corresponding
styles and colors referenced by the layout.xml file.

4 EMPIRICAL STUDY DESIGN

The goal of our empirical study is to evaluate REDRAW

in terms of (i) the accuracy of the CNN GUI-component
classifier, (ii) the similarity of the generated GUI-hierarchies
to real hierarchies constructed by developers, (iii) the visual
similarity of generated apps compared to mock-ups, and
(iv) ReDraw’s suitability in an industrial context. The context
of this study consists of (i) a set of 191,300 labeled images
of Android GUI-components extracted from 14,382 unique
app screens mined from 6,538 APKs from the Google Play
store (see Sec. 3.2.2 for details) to assess the accuracy of the
CNN-classifier, (ii) 83 additional screens (not included in
the dataset to train and test the CNN-classifier) extracted
from 32 of the highest rated apps on Google Play (top-3 in
each category), (iii) nine reverse engineered Sketch mockups
from eight randomly selected highly rated Google Play
Apps to serve as mock-up artifacts, and (iv) two additional
approaches for prototyping Android applications REMAUI

[8] and pix2code [38]. The quality focus of this study is the
effectiveness of REDRAW to generate prototype apps that

TABLE 1: Labeled GUI-Component Image Datasets
GUI-C Type Total # (C) Tr (O) Tr (O+S) Valid Test
TextView 99,200 74,087 74,087 15,236 9,877
ImageView 53,324 39,983 39,983 7,996 5,345
Button 16,007 12,007 12,007 2,400 1,600
ImageButton 8,693 6,521 6,521 1,306 866
EditText 5,643 4,230 5,000 846 567
CheckedTextView 3,424 2,582 5,000 505 337
CheckBox 1,650 1,238 5,000 247 165
RadioButton 1,293 970 5,000 194 129
ProgressBar 406 307 5,000 60 39
SeekBar 405 304 5,000 61 40
NumberPicker 378 283 5,000 57 38
Switch 373 280 5,000 56 37
ToggleButton 265 199 5,000 40 26
RatingBar 219 164 5,000 33 22
Spinner 20 15 5,000 3 2
Total 191,300 143,170 187,598 29,040 19,090

Abbreviations for column headings: “Total#(C)”=Total # of GUI-
components in each class after cleaning; “Valid”= Validation; “Tr(O)”=
Training Data (Organic Components Only); “Tr(O+S)”= Training Data
(Organic + Synthetic Components).

are both visually similar to target mock-up artifacts, with
GUI-hierarchies similar to those created by developers. To
aid in achieving the goals of our study we formulated the
following RQs:

• RQ1: How accurate is the CNN-based image classifier for
classifying Android GUI-components?

• RQ2: How similar are GUI-hierarchies constructed us-
ing REDRAW’S KNN algorithm compared to real GUI-
hierarchies?

• RQ3: Are the prototype applications that REDRAW generates
visually similar to mock-up artifacts?

• RQ4: Would actual mobile developers and designers consider
using REDRAW as part of their workflow?

It should be noted that in answering RQ2-RQ4 we use
two types of mock-up artifacts (existing application screen-
shots, and reverse engineered Sketch mock-ups) as a proxy
for real GUI-design mock-ups, and these artifacts are not a
perfect approximation. More specifically, screenshots repre-
sent a finalized GUI-design, whereas real GUI design mock-
ups may not be complete and might include ambiguities or
design parameters that are able to be properly implemented
in code (i.e., unavailable fonts or impractical spatial layouts).
Thus, we do not claim to measure REDRAW’S performance
on incomplete or “in-progress” design mock-ups. However,
it was not possible to obtain actual GUI design mock-
ups for our study, and our target screenshots and reverse
engineered mock-ups stem from widely used applications.
We discuss this point further in Sec. 6.

4.1 RQ1: Effectiveness of the CNN
To answer RQ1, as outlined in Sec. 3.2.4 we applied a large
scale automated dynamic analysis technique and various
data cleaning procedures which resulted in a total of 6,538
apps, 14,382 unique screens, and 191,300 labeled images of
GUI-components. To normalize support across classes and
prepare training, validation and test sets in order measure
the effectiveness of our CNN we applied data augmenta-
tion, and segmentation techniques also described in detail in
Sec. 3.2.4. The datasets utilized are illustrated, broken down
by class, in Table 1. We trained the CNN on the training
set of data, avoiding overfitting using a validation set as
described in Sec. 3.2.4. To reiterate, all of the images in the
test and validation sets were extracted from real applications
and were separate (e.g., unseen) from the training set. To



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 15

evaluate the effectiveness of our approach we measure the
average top-1 classification precision across all classes on
the Test set of data:

P =
TP

TP + FP

where TP corresponds to true positives, or instances where
the top class predicted by the network is correct, and FP
corresponds to false positives, or instances where the top
classification prediction of the network is not correct. To
illustrate the classification capabilities of our CNN, we
present a confusion matrix with precision across classes in
Sec. 5. The confusion matrix illustrates correct true posi-
tives across the highlighted diagonal, and false positives in
the other cells. To help justify the need and applicability
of a CNN-based approach, we measure the classification
performance of our CNN against a baseline technique, as
recent work has suggested that deep learning techniques
applied to SE tasks should be compared to simpler, less
computationally expensive alternatives [97]. To this end, we
implemented a baseline Support Vector Machine (SVM) for
classification based image classification approach [98] that
utilizes a ”Bag of Visual Words” (BOVW). At a high level,
this approach extracts image features using the Speeded-Up
Robust Feature (SURF) detection algorithm [99], then uses
K-means clustering to cluster similar features together, and
utilizes an SVM trained on resulting feature clusters. We
utilized the same training/validation/test set of data used
to the train the CNN and followed the methodology in [98]
to vary the number of K-means clusters from k = 1, 000 to
k = 5, 000 in steps of 50, finding that k = 4, 250 achieved
the best performance in terms of classification precision for
our dataset. We also report the confusion matrix of precision
values for the BOVW technique.

4.2 RQ2: GUI Hierarchy Construction

In order to answer RQ2 we aim to measure the similar-
ity of the GUI-hierarchies in apps generated by REDRAW

compared to a ground truth set of hierarchies and a set
of hierarchies generated by two baseline mobile app proto-
typing approaches, REMAUI and pix2code. To carry out this
portion of the study, we selected 32 apps from our cleaned
dataset of Apks by randomly selecting one of the top-10
apps from each category (grouping all “Family” categories
together). We then manually extracted 2-3 screenshots and
uiautomator xml files per app, which were not included
in the original dataset used to train, validate or test the
CNN. After discarding screens according to our filtering
techniques, this resulted in a set of 83 screens. Each of
these screens was used as input to REDRAW, REMAUI, and
pix2code from which a prototype application was gener-
ated. Ideally, a comparison would compare the GUI-related
source code of applications (e.g., xml files located in the
res folder of Android project) generated using various
automated techniques however, the source code of many of
the subject Google Play applications is not available. There-
fore, to compare GUI-hierarchies, we compare the runtime
GUI-hierarchies extracted dynamically from the generated
prototype apps for each approach using uiautomator, to
the set of “ground truth” uiautomator xml files extracted
from the original applications. The uiautomator represen-

tation of the GUI is a reflection of the automatically gener-
ated GUI-related source code for each studied prototyping
approach displayed at runtime on the device screen. This
allows us to make an accurate comparison of the hierarchal
representation of GUI-components and GUI-containers for
each approach.

To provide a performance comparison to REDRAW, we
selected the two most closely related approaches in related
research literature, REMAUI [8] and pix2code [38] , to provide
a comparative baseline. To provide a comparison against
pix2code, we utilized the code provided by the authors of
the paper on GitHub [100] and the provided training dataset
of synthesized applications. We were not able to train the
pix2code approach on our mined dataset of Android ap-
plication screenshots for two reasons: (i) pix2code uses a
proprietary domain specific language (DSL) that training
examples must be translated to and the authors do not pro-
vide transformation code or specifications for the DSL, (ii)
the pix2code approach requires the GUI-related source code
of the applications for training, which would have needed
to be reverse engineered from the Android apps in our
dataset from Google Play. To provide a comparison against
REMAUI [8], we re-implemented the approach based on the
details provided in the paper, as the tool was not available
as of the time of writing this paper2.

As stated in Sec. 3.1 REDRAW enables two different
methodologies for for detecting GUI-components from a
mock-up artifact: (i) CV-based techniques and (ii) parsing
information directly from mock-up artifacts. We consider
both of these variants in our evaluation which we will
refer to as REDRAW-CV (for the CV-based approach) and
REDRAW-Mockup (for the approach that parses mock-up
metadata). Our set of 83 screens extracted from Google Play
does not contain traditional mock-up artifacts that would
arise as part of the app design and development process
(e.g., Photoshop or Sketch files) and reverse engineering
these artifacts is an extremely time-consuming task (see
Sec. 4.4). Thus, because manually reverse-engineering mock-
ups from 83 screens is not practical, REDRAW-Mockup was
modified to parse only the bounding-box information of
leaf node GUI-components from uiautomator files as a
substitute for mock-up metadata.

We compared the runtime hierarchies of all generated
apps to the original, ground truth runtime hierarchies (ex-
tracted from the original uiautomator xml files) by decon-
structing the trees using pre-order and using the Wagner-
Fischer [102] implementation of Levenshtein edit distance
for calculating similarity between the hierarchical (i.e., tree)
representations of the runtime GUIs. The hierarchies were
deconstructed such that the type and nested order of compo-
nents are included in the hierarchy deconstruction. We im-
plemented the pre-order traversal in this way to avoid small
deviations in other attributes included in the uiautomator
information, such as pixel values, given that the main goal
of this evaluation is to measure hierarchical similarities.

In our measurement of edit distance, we consider three
different types of traditional edit operations: insertion, dele-
tion, and substitution. In order to more completely measure

2. REMAUI is partially available as a web-service [101], but it did not
work reliably and we could not generate apps using this interface.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 16

TABLE 2: Semi-Structured Interview Questions for Devel-
opers & Designers

Q# Question Text
Q1 Given the scenario where you are creating a new user

interface, would you consider adopting ReDraw in your
design or development workflow? Please elaborate.

Q2 What do you think of the visual similarity of the Re-
Draw applications compared to the original applications?
Please elaborate.

Q3 Do you think that the GUI-hierarchies (e.g., groupings of
components) generated by ReDraw are effective? Please
elaborate.

Q4 What improvements to ReDraw would further aid the
mobile application prototyping process at your com-
pany? Please elaborate.

the similarity of the prototype app hierarchies to the ground
truth hierarchies, we introduced a weighting schema repre-
senting a “penalty” for each type of edit operation, wherein
the default case each operation carries an identical weight
of 1/3. We vary the weights of each edit and calculate
a distribution of edit distances which are dependent on
the fraction of the total penalty that a given operation
(i.e., insertion, deletion, or substitution) occupies, and carry
out these calculations varying each operation separately.
The operations that are not under examination split the
difference of the remaining weight of the total penalty
equally. For example, when insertions are given a penalty
of 0.5, the penalties for deletion and substitution are set
to 0.25 each. This helps to better visualize the minimum
edit distance required to transform a REDRAW, pix2code, or
REMAUI generated hierarchy to the original hierarchy and
also helps to to better describe the nature of the inaccuracies
of the hierarchies generated by each method.

4.3 RQ3: Visual Similarity
One of REDRAW’S goals is to generate apps that are vi-
sually similar to target mock-ups. Thus to answer RQ3,
we compared the visual similarity of apps generated by
REDRAW, pix2code, and REMAUI, using the same set of 83
apps from RQ2. The subjects of comparison for this section
of the study were screenshots collected from the prototype
applications generated by REDRAW-CV, REDRAW-Mockup,
pix2code, and REMAUI. Following the experimental settings
used to validate REMAUI [8], we used the open source
PhotoHawk [103] library to measure the mean squared error
(MSE) and mean average error (MAE) of screenshots from the
generated prototype apps from each approach compared to
the original app screenshots. To examine whether the MAE
and MSE varied to a statistically significant degree between
approaches, we compare the MAE & MSE distributions
for each possible pair of approaches using a two-tailed
Mann-Whitney test [104] (p-value). Results are declared as
statistically significant at a 0.05 significance level. We also
estimate the magnitude of the observed differences using
the Cliff’s Delta (d), which allows for a nonparametric effect
size measure for ordinal data [105].
4.4 RQ4: Industrial Applicability
Ultimately, the goal of REDRAW is integration into real
application development workflows, thus as part of our
evaluation, we aim to investigate REDRAW’s applicability
in such contexts. To investigate RQ4 we conducted semi-
structured interviews with a front-end Android developer

at Google, an Android UI designer from Huawei, and a
mobile researcher from Facebook. For each of these three
participants, we randomly selected nine screens from the
set of apps used in RQ2-RQ3 and manually reversed en-
gineered Sketch mock-ups of these apps. We verified the
visual fidelity of these mock-ups using the GVT tool [10],
which has been used in prior work to detect presentation
failures, ensuring that there were no reported design vi-
olations reported in the reverse-engineered mockups. This
process of reverse-engineering the mock-ups was extremely
time-consuming to reach acceptable levels, with well over
ten hours invested into each of the nine mock-ups. We
then used REDRAW to generate apps using both CV-based
detection and utilizing data from the mock-ups. Before the
interviews, we sent participants a package containing the
ReDraw generated apps, complete with screenshots and
source code, and the original app screenshots and Sketch
mock-ups. We then asked a series of questions (delineated
in Table 2) related to (i) the potential applicability of the
tool in their design/development workflows, (ii) aspects of
the tool they appreciated, and (iii) areas for improvement.
Our investigation into this research question is meant to
provide insight into the applicability of REDRAW to fit into
real design development workflows, however, we leave full-
scale user studies and trials as future work with industrial
collaborators. This study is not meant to be comparative, but
rather to help gauge REDRAW’S industrial applicability.

5 EXPERIMENTAL RESULTS

5.1 RQ1 Results: Effectiveness of the CNN

The confusion matrices illustrating the classification preci-
sion across the 15 Android component classes for both the
CNN-classifier and the Baseline BOVW approach are shown
in Tables 3 & 4 respectively. The first column of the matrices
illustrate the number of components in the test set, and the
numbers in the matrix correspond to the percentage of each
class on the y-axis, that were classified as components on
the x-axis. Thus, the diagonal of the matrices (highlighted
in blue) corresponds to correct classifications. The overall
top-1 precision for the CNN (based on raw numbers of
components classified) is 91.1%, whereas for the BOVW
approach the overall top-1 precision is 64.7%. Hence, it is
clear that the CNN-based classifier that REDRAW employs
outperforms the baseline, illustrating the advantage of the
CNN architecture compared to a heuristic-based feature
extraction approach. In fact, REDRAW’S CNN outperforms
the baseline in classification precision across all classes.

It should be noted that REDRAW’S classification preci-
sion does suffer for certain classes, namely ProgressBars
and ToggleButtons. We found that the classification ac-
curacy of these component types was hindered due to
multiple existing styles of the components. For instance, the
ProgressBar had two primary styles, traditional progress
bars, which are short in the y-direction and long in the x-
direction, and square progress bars that rendered a progress
wheel. With two very distinct shapes, it was difficult for our
CNN to distinguish between the drastically different images
and learn a coherent set of features to differentiate the two.
While the CNN may occasionally misclassify components,
the confusion matrix illustrates that these misclassifications



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 17

TABLE 3: Confusion Matrix for REDRAW

Total TV IV Bt S ET IBt CTV PB RB TB CB Sp SB NP RBt
TV 9877 94% 3% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
IV 5345 5% 93% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Bt 1600 11% 6% 81% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
S 37 5% 3% 0% 87% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0%
ET 567 14% 3% 2% 0% 81% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
IBt 866 4% 23% 1% 0% 0% 72% 0% 0% 0% 0% 0% 0% 0% 0% 0%
CTV 337 7% 0% 0% 0% 0% 0% 93% 0% 0% 0% 0% 0% 0% 0% 0%
PB 41 15% 29% 0% 0% 0% 0% 0% 56% 0% 0% 0% 0% 0% 0% 0%
RB 22 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
TBt 26 19% 22% 7% 0% 0% 0% 0% 0% 0% 52% 0% 0% 0% 0% 0%
CB 165 12% 7% 0% 0% 1% 0% 0% 0% 0% 0% 81% 0% 0% 0% 0%
Sp 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
SB 39 10% 13% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 78% 0% 0%
NP 40 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 95% 0%
RBt 129 4% 3% 2% 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 89%

TABLE 4: Confusion Matrix for BOVW Baseline

Total TV IV Bt S ET IBt CTV PB RB TB CB Sp SB NP RBt
TV 9877 59% 4% 9% 1% 6% 2% 8% 6% 0% 1% 2% 0% 1% 0% 2%
IV 5345 4% 51% 4% 1% 2% 11% 2% 18% 1% 1% 3% 0% 2% 0% 2%
Bt 1600 6% 6% 59% 1% 5% 4% 7% 4% 0% 1% 1% 0% 0% 3% 1%
S 37 5% 0% 3% 65% 0% 0% 5% 22% 0% 0% 0% 0% 0% 0% 0%
ET 567 6% 2% 4% 1% 62% 1% 4% 15% 0% 0% 1% 0% 0% 4% 1%
IBt 866 2% 16% 3% 0% 2% 61% 1% 9% 1% 1% 2% 0% 2% 0% 3%
CTV 337 3% 1% 7% 1% 3% 0% 81% 1% 0% 0% 2% 0% 0% 0% 2%
PB 41 0% 24% 2% 0% 2% 5% 2% 54% 0% 0% 2% 2% 2% 0% 2%
RB 22 0% 5% 0% 0% 0% 0% 0% 27% 68% 0% 0% 0% 0% 0% 0%
TBt 26 7% 7% 19% 0% 0% 0% 11% 15% 0% 33% 0% 0% 0% 0% 7%
CB 165 4% 2% 3% 1% 2% 1% 2% 12% 1% 0% 72% 0% 0% 0% 1%
Sp 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
SB 39 0% 5% 0% 0% 0% 0% 0% 18% 3% 0% 5% 0% 68% 0% 3%
NP 40 3% 0% 5% 0% 3% 0% 5% 0% 0% 0% 0% 0% 0% 84% 0%
RBt 129 6% 3% 5% 1% 3% 0% 6% 18% 0% 1% 1% 0% 1% 0% 55%

Abbreviations for column headings representing GUI-component types: TextView (TV), ImageView (IV), Button (Bt), Switch
(S), EditText (ET), ImageButton (IBt), CheckedTextView (CTV), ProgressBar (PB), RadioButton (RB), ToggleButton (TBt),
CheckBox (CB), Spinner (Sp), SeekBar (SB), NumberPicker (NP), RadioButton (RBt)

are typically skewed toward similar classes. For example,
ImageButtons are primarily misclassified as ImageViews,
and EditTexts are misclassified as TextViews. Such mis-
classifications in the GUI-hierarchy would be trivial for
experienced Android developers to fix in the generated
app while the GUI-hierarchy and boilerplate code would
be automatically generated by ReDraw. The strong perfor-
mance of the CNN-based classifier provides a solid base for
the application generation procedure employed by ReDraw.
Based on these results, we answer RQ1:

RQ1: ReDraw’s CNN-based GUI-component clas-
sifier was able to achieve a high average preci-
sion (91%) and outperform the baseline BOVW
approach’s average precision (65%).

5.2 RQ2 Results: Hierarchy Construction

An important part of the app generation process is the
automated construction of a GUI-hierarchy to allow for
the proper grouping, and thus proper displaying, of GUI-
components into GUI-containers. Our evaluation of Re-
Draw’s GUI-hierarchy construction compares against the
REMAUI and pix2code approaches by decomposing the run-
time GUI-hierarchies into trees and measuring the edit
distance between the generated trees and target trees (as
described in Section 4.2). By varying the penalty prescribed
to each edit operation, we can gain a more comprehen-
sive understanding of the similarity of the generated GUI-

hierarchies by observing, for instance, whether certain hier-
archies were more or less shallow than real applications, by
examining the performance of insertion and deletion edits.

The results for our comparison based on Tree edit dis-
tance are illustrated in Fig. 9 A-C. Each graph illustrates
the results for a different edit operation and the lines delin-
eated by differing colors and shapes represent the studied
approaches (REDRAW Mock-Up or CV-based, REMAUI, or
pix2code) with the edit distance (e.g., closeness to the target
hierarchy) shown on the y-axis and the penalty prescribed
to the edit operation on the x-axis. For each of the graphs,
a lower point or line indicates that a given approach was
closer to the target mock-up hierarchy. The results indicate
that in general, across all three variations in edit distance
penalties, REDRAW-MockUp produces hierarchies that are
closer to the target hierarchies than REMAUI and pix2code.
Of particular note is that as the cost of insertion operations
rises both REDRAW-CV and REDRAW-MockUp outperform
REMAUI. In general REDRAW-Mockup requires fewer than
ten edit operations across the three different types of opera-
tions to exactly match the target app’s GUI-hierarchy. While
REDRAW’S hierarchies require a few edit operations to
exactly match the target, this may be acceptable in practice,
as there may be more than one variation of an acceptable hi-
erarchy. Nevertheless, REDRAW-Mockup is closer than other
related approaches in terms of similarity to real hierarchies.

Another observable phenomena exhibited by this data
is the tendency for REMAUI and pix2code to generate rela-
tively shallow hierarchies. We see that as the penalty for in-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 18

A) Insertion Edits B) Deletion Edits C) Substitution Edits

Fraction of PenaltyFraction of PenaltyFraction of Penalty

Ed
it 

Di
st

an
ce

Ed
it 

Di
st

an
ce

Ed
it 

Di
st

an
ce

Fig. 9: Hierarchy similarities based on edit distances

sertion increases, both REDRAW-CV and REDRAW-Mockup
outperform REMAUI and pix2code. This is because ReDraw
simply does not have to perform as many insertions into
the hierarchy to match the ground truth. Pix2code and
REMAUI are forced to add more inner nodes to the tree
because their generated hierarchies are too shallow (i.e.
lacking in inner nodes). From a development prototyping
point of view, it is more likely easier for a developer to
remove redundant nodes than it is to create new nodes,
requiring them reasoning what amounts to a new hierarchy
after the automated prototyping process. These results are
unsurprising for the REMAUI approach, as the authors used
shallowness as a proxy for suitable hierarchy construction.
However, this evaluation illustrates that the shallow hierar-
chies generated by REMAUI and pix2code do match the target
hierarchies as well as those generated by REDRAW-Mockup.
While minimal hierarchies are desirable from the point
of view of rendering content on the screen, we find that
REMAUI’s hierarchies tend to be dramatically more shallow
compared to REDRAW’S which exhibit higher similarity to
real hierarchies. Another important observation is that the
substitution graph illustrates the general advantage that
the CNN-classifier affords during hierarchy construction.
REDRAW-Mockup requires far fewer substitution operations
to match a given target hierarchy than REMAUI, which is at
least in part due to REDRAW’S ability to properly classify
GUI-components, compared to the text/image binary clas-
sification afforded by REMAUI. From these results, we can
answer RQ2:

RQ2: REDRAW-MockUp is capable of generating
GUI-hierarchies closer in similarity to real hierar-
chies than REMAUI or pix2code. This signals that
ReDraw’s hierarchies can be utilized by developers
with low effort.

5.3 RQ3 Results: Visual Similarity

An effective GUI-prototyping approach should be capable
of generating apps that are visually similar to the target
mock-up artifacts. We measured this by calculating the
MAE and MSE across all pixels in screenshots from gener-
ated apps for ReDraw-MockUp, REDRAW-CV, REMAUI, and
pix2code (Fig. 10.) compared to the original app screenshots.
This figure depicts a box-and-whisker plot with points cor-

responding to a measurement for each of the studied 83
subject applications. The black bars indicate mean values.
In general, the results indicate that all approaches gener-
ated apps that exhibited high overall pixel-based similarity
to the target screenshots. REDRAW-CV outperformed both
REMAUI and pix2code in MAE, whereas all approaches
exhibited very low MSE, with REMAUI very slightly out-
performing both ReDraw variants. The apps generated by
pix2code exhibit a rather large variation from the target
screenshots used as input. This is mainly due to the artificial
nature of the training set utilized by pix2code which in
turn generates apps only with a relatively rigid, pre-defined
set of components. The results of the Mann-Whitney test
reported in Table 5 & 6 illustrate wether the similarity
between each combination of approaches was statistically
significant. For MAE, we see that when REDRAW-CV and
REDRAW-Mockup are compared to REMAUI, the results are
not statistically significant, however, when examining the
MSE for these same approaches the result is statistically
significant with a medium effect effect size according to the
Cliff’s delta measurement. Thus, it is clear that on average
REDRAW and REMAUI both generate prototype applications
that are closely similar to a target visually, with REMAUI

outperforming REDRAW in terms of MSE to a statistically
significant degree (with the overall MSE being extremely
low < 0.007 for both approaches) and REDRAW outperform-
ing REMAUI in terms of average MAE (although not to a
statistically significant degree). This is encouraging, given
that REMAUI directly copies images of components (includ-
ing those that are not images, like buttons) and generates
text-fields. Reusing images for all non-text components is
likely to lead to more visually similar (but less function-
ally accurate) apps than classifying the proper component
type and inferring the stylistic details of such components.
When comparing both variants of REDRAW and REMAUI

to pix2code, the results are all statistically significant, with
ranging effect sizes. Thus, both REDRAW and REMAUI out-
perform pix2code in terms of generating prototypes that are
visually similar to a target.

While in general the visual similarity for apps generated
by REDRAW is high, there are instances where REMAUI out-
performed our approach. Typically this is due to instances
where REDRAW misclassifies a small number of components
that cause visual differences. For example, a button may be



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 19

ReDraw−MU(MAE)
ReDraw−CV(MAE)

REMAUI(MAE)
Pix2Code(MAE)

ReDraw−MU(MSE)
ReDraw−CV(MSE)

REMAUI(MSE)
Pix2Code(MSE)

0.0 0.2 0.4 0.6 0.8

Fig. 10: Pixel-based mean average error and mean squared error of screenshots: REDRAW, REMAUI, and pix2code apps

TABLE 5: Pixel-based comparison by MAE: Mann-Whitney
test (p-value) and Cliff’s Delta (d).

Test p-value d
ReDrawMU vs ReDrawCV 0.835 0.02 (Small)
ReDrawMU vs REMAUI 0.542 0.06 (Small)
ReDrawMU vs pix2Code < 0.0002 -0.34 (Medium)
pix2Code vs ReDrawCV < 0.0001 0.35 (Medium)
pix2Code vs REMAUI < 0.0001 0.39 (Medium)
REMAUI vs ReDrawCV 0.687 -0.04 (Small)

classified and rendered as a switch in rare cases. However,
REMAUI does not suffer from this issue as all components
deemed not to be text are copied to the generated app as an
image. While this occasionally leads to more visually similar
apps, the utility is dubious at best, as developers will be
required to add proper component types, making extensive
edits to the GUI-code. Another instance that caused some
visual inconsistencies for REDRAW was text overlaid on top
of images. In many cases, a developer might overlay a
snippet of text over an image to create a striking effect (e.g.,
Netflix often overlays text across movie-related images).
However, this can cause an issue for REDRAW’S prototyping
methodology. During the detection process, REDRAW rec-
ognizes images and overlaid text in a mockup. However,
given the constraints of our evaluation, REDRAW simply re-
uses the images contained within screenshot as is, which
might include overlaid text. Then, ReDraw would render
a TextView or EditText over the image which already
includes the overlaid text causing duplicate lines of text to be
displayed. In a real-world prototyping scenario, such issues
can be mitigated by designers providing “clean” versions of
the images used in a mockup, so that they could be utilized
in place of “runtime” images that may have overlaid text.
Overall, the performance of REDRAW is quite promising in
terms of the visual fidelity of the prototype apps generated,
with the potential for improvement if adopted into real
design workflows.

We illustrate some of the more successful generated
apps (in terms of visual similarity to a target screenshot)
in Fig. 11; screenshots and hierarchies for all generated apps
are available in a dataset in our online appendix [39]. In
summary, we can answer RQ3 as follows:

RQ3: The apps generated by ReDraw exhibit high
visual similarity compared to target screenshots.

5.4 RQ4 Results: Industrial Applicability

To understand the applicability of REDRAW from an in-
dustrial prospective we conducted a set of semi-structured
interviews with a front-end Android developer @Google, a

TABLE 6: Pixel-based comparison by MSE: Mann-Whitney
test (p-value) and Cliff’s Delta (d).

Test p-value d
ReDrawMU vs ReDrawCV 0.771 0.03 (Small)
ReDrawMU vs REMAUI < 0.0001 0.45 (Medium)
ReDrawMU vs pix2Code < 0.003 -0.27 (Small)
pix2Code vs ReDrawCV < 0.002 0.28 (Small)
pix2Code vs REMAUI < 0.0001 0.61 (Large)
REMAUI vs ReDrawCV <0.0001 -0.42 (Medium)

mobile designer @Huawei, and a mobile researcher @Face-
book. We asked them four questions (see Sec. 4) related to
(i) the applicability of REDRAW, (ii) aspects of REDRAW they
found beneficial, and (iii) areas for improvement.

5.4.1 Front End Android Developer @Google

The first individual works mostly on Google’s search prod-
ucts, and his team practices the process of mock-up driven
development, where developers work in tandem with a
dedicated UI/UX team. Overall, the developer was quite
positive about REDRAW explaining that it could help to
improve the process of writing a new Android app ac-
tivity from scratch, however, he noted that “It’s a good
starting point... From a development standpoint, the thing I
would appreciate most is getting a lot of the boilerplate code
done [automatically]”. In the “boilerplate” code statement,
the developer was referring to the large amount of layout
and style code that must be written when creating a new
activity or view. He also admitted that this code is typically
written by hand stating, “I write all my GUI-code in xml, I
don’t use the Android Studio editor, very few people use it”.
He also explained that this GUI-code is time-consuming
to write and debug stating, “If you are trying to create a
new activity with all its components, this can take hours”, in
addition to the time required for the UI/UX team to verify
proper implementation. The developer did state that some
GUI-hierarchies he examined tended to have redundant
containers, but that these can be easily fixed stating, “There
are going to be edge cases for different layouts, but these are easily
fixed after the fact”.

The aspect of REDRAW that this developer saw the
greatest potential for, is its use in an evolutionary context.
During the development cycle at Google, the UI/UX team
will often propose changes to existing apps, whose GUI-
code must be updated accordingly. The developer stated
that REDRAW had the potential to aid this process: “The key
thing is fast iteration. A developer could generate the initial view
[using ReDraw], clean up the layouts, and have a working app.
If a designer could upload a screenshot, and without any other
intervention [ReDraw] could update the [existing] xml this would



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 20

Fig. 11: Examples of apps generated with REDRAW exhibiting high visual and structural similarity to target apps

be ideal.” The developer thought that if REDRAW was able
to detect existing GUI-components in a prior app version,
and update the layouts and styles of these components
according to a screenshot, generating new components as
necessary, this could greatly improve the turn around time
of GUI-changes and potentially increase quality. He even
expressed optimism that the approach could learn from
developer corrections on generated code over time, stating
“It would be great if you could give it [ReDraw] developer fixes
to the automatically generated xml and it could learn from this.”

5.4.2 Mobile UI/UX Designer @Huawei
We also interviewed a dedicated UI/UX designer at
Huawei, with limited programming experience. His pri-
mary job is to create mock-up artifacts that stipulate de-
signs of mobile apps, communicate these to developers,
and ensure they are implemented to spec. This interview
was translated from Chinese into English. This designer
also expressed interest in REDRAW, stating that the visual

similarity of the apps was impressive for an automated
approach, “Regarding visual, I feel that it’s very similar”, and
that such a solution would be sought after at Huawei, “If it
[a target app] can be automatically implemented after the design,
it should be the best design tool [we have]”. While this designer
does not have extensive development experience, he works
closely with developers and stated that the quality of the
reusability of the code is a key point for adoption, “In my
opinion, for the developers it would be ideal if the output code
can be reused”. This is promising as REDRAW was shown
to generate GUI-hierarchies that are comparatively more
similar to real apps than other approaches.
5.4.3 Mobile Researcher @Facebook
The last participant was a mobile systems researcher at
Facebook. This participant admitted that Facebook would
most likely not use REDRAW in its current state, as they are
heavily invested in the React Native ecosystem. However,
he saw the potential of the approach if it were adopted for



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 21

this domain, stating “I can see this as a possible tool to prototype
designs”. He was impressed by the visual similarity of the
apps, stating, “The visual similarity seems impressive”.

In the end, we can answer RQ4:

RQ4: REDRAW has promise for application into in-
dustrial design and development workflows, partic-
ularly in an evolutionary context. However, modi-
fications would most likely have to be made to fit
specific workflows and prototyping toolchains.

6 LIMITATIONS & THREATS TO VALIDITY

In this section we describe some limitations and possible
routes for future research in automated software prototyp-
ing, along with potential threats to validity of our approach
and study.

6.1 Limitations and Avenues for Future Work
While REDRAW is a powerful approach for prototyping
GUIs of mobile apps, it is tied to certain practical limita-
tions, some of which represent promising avenues for future
work in automated software prototyping. First, REDRAW

is currently capable of prototyping a single screen for an
application, thus if multiple screens for a single app are
desired, they must be prototyped individually and then
manually combined into a single application. It would be
relatively trivial to modify the approach and allow for mul-
tiple screens within a single application with a simple swipe
gesture to switch between them for software demo pur-
poses however, we leave this a future work. Additionally,
future work might examine a learning-based approach for
prototyping and linking together multiple screens, learning
common app transitions via dynamic analysis and applying
the learned patterns during prototyping.

Second, the current implementation of KNN-hierarchy
construction is tied to the specific screen size of the devices
used during the data-mining and automated dynamic anal-
ysis. However, it is possible to utilize display independent
pixel (dp) vslues to generalize this algorithm to function
independently of screen size, we leave this as future work.

Third, as discussed in Section 3.3.2, REDRAW is currently
limited to detecting and assembling a distinct set of stylistic
details from mock-up artifacts including: (i) background
colors; (ii) font colors, and (iii) font sizes. REDRAW was able
to produce prototype applications that exhibited high visual
similarity to target screenshots using only these inferences.
However, a promising area for future work on automated
prototyping of software GUIs involves expanding the stylis-
tic details that can be inferred from a target mock-up artifact.
Future work could perform more detailed studies on the
visual properties of individual components from prototype
screens generated from screenshots of open source apps.
This study could then measure how well additional inferred
styles of individual components match the original devel-
oper implemented components.

Our current CNN classifier is capable of classifying
incoming images into one of 15 of the most popular An-
droid GUI-components. Thus, we do not currently support
certain, rarely used component types. Future work could
investigate network architectures with more capacity (e.g.,

deeper architectures) to classify larger numbers of compo-
nent types, or even investigate emerging architectures such
as Hierarchical CNNs [106]. Currently, REDRAW requires
two steps for detecting and classifying components, however,
future approaches could examine the applicability of CNN-
based object detection networks [107], [108] that may be
capable of performing these two steps in tandem.

6.2 Internal Validity

Threats to internal validity correspond to unexpected factors
in the experiments that may contribute to observed results.
One such threat stems from our semi-structured interview
with industrial developers. While evaluating industrial ap-
plicability of REDRAW, threats may arise from our man-
ual reverse engineering of Sketch mock-ups. However, we
applied a state of art tool for detecting design violations
in GUIs [10] in order to ensure their validity, sufficiently
mitigating this threat.

During our experimental investigation of RQ2-RQ4, we
utilized two different types of mock-up artifacts, (i) images
of existing application screens (RQ2 & RQ3, and (ii) reverse
engineered mock-ups from existing application screens. The
utilization of these artifacts represents a threat to internal
validity as they are used as a proxy for real mock-up arti-
facts. However, real mock-ups created during the software
design process may exhibit some unique characteristics
not captured by these experimental proxies. For example,
software GUI designs can be highly fluid, and oftentimes,
may not be complete when handed off to a developer for
implementation. Furthermore, real mock-ups may stipulate
a design that cannot be properly instantiated in code (i.e.,
unavailable font types, components organized in spatial
layouts that are not supported in code). We acknowledge
that our experiments do not measure the performance of
REDRAW in such cases. However, collecting real mock-up
artifacts was not possible in the scope of our evaluation, as
they are typically not included in the software repositories
of open source applications. We performed a search for
such artifacts on all Android projects hosted on GitHub
as of Spring 2017, and found that no repository contained
mock-ups created using Sketch. As stated earlier, it was not
practically feasible to reverse-engineer mock-ups for all 83
applications utilized in our dataset for these experiments.
Furthermore, these screenshots represent production-grade
app designs that are used daily by millions of users, thus
we assert that these screenshots and mock-ups represent
a reasonable evaluation set for REDRAW. We also did not
observe any confounding results when applying REDRAW

to our nine reverse engineered Sketch mock-ups, thus we
assert that this threat to validity is reasonably mitigated.

Another potential confounding factor is our dataset of
labeled components used to train, validate, and test the
CNN. To help ensure a correct, coherent dataset, we applied
several different data filtering, cleaning, and augmentation
techniques, inspired by past work on image classification
using CNNs described in detail in Sec. 3.2.4. Furthermore,
we utilized the uiautomator tool included in the Android
SDK, which is responsible for reporting information about
runtime GUI-objects, and is generally accurate as it is tied
directly to Android sub-systems responsible for rendering



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 22

the GUI. To further ensure the validity of our dataset, we
randomly sampled a statistically significant portion of our
dataset and manually inspected the labeled images after
our data-cleaning process was applied. We observed no
irregularities and thus mitigating a threat related to the
quality of the dataset. It is possible that certain components
can be specifically styled by developers to look like other
components (e.g., a textview styled to look like a button) that
could impact the CNN component classifications. However,
our experiments illustrate that in our real-world dataset
overall accuracy is still high, suggesting that such instances
are rare. Our full dataset and code for training the CNN are
available on REDRAW’S website to promote reproducibility
and transparency [39].

During our evaluation of REDRAW’S ability to gener-
ate suitable GUI-hierarchies, we compared them against
the actual hierarchies of the original target applications.
However, it should be noted, that the notion of a correct
hierarchy may vary between developers, as currently, there
is no work that empirically quantifies what constitutes a
good GUI-hierarchy for Android applications. For instance,
some developers may prefer a more rigid layout with fewer
container components, whereas others may prefer more
components to ensure that their layout is highly reactive
across devices. We compared the hierarchies generated by
ReDraw to the original apps to provide an objective mea-
surement on actual implementations of popular apps, which
we assert provides a reasonable measurement of the ef-
fectiveness of REDRAW’S hierarchy construction algorithm.
It should also be noted that performing this comparison
on apps of different popularity levels may yield different
results. We chose to randomly sample the apps from the
top-10 of each Google Play category, to investigate wether
REDRAW is capable of assembling GUI-hierarchies of “high-
quality” apps as measured by popularity.

6.3 Construct Validity

Threats to construct validity concern the operationalization
of experimental artifacts. One potential threat to construct
validity lies in our reimplementation of the REMAUI tool. As
stated earlier, the original version of REMAUI’s web tool
was not working at the time of writing this paper. We reim-
plemented REMAUI according to the original description in
the paper, however we excluded the list generation feature,
as we could not reliably re-create this feature based on the
provided description. While our version may vary slightly
from the original, it still represents an unsupervised CV-
based technique against which we can compare REDRAW.
Furthermore, we offer our reimplementation of REMAUI (a
Java program with opencv [109] bindings) as an open source
project [39] to facilitate reproducibility and transparency in
our experimentation.

Another potential threat to construct validity lies in our
operationalization of the pix2code project. We closely fol-
lowed the instructions given in the README of the pix2code
project on GitHub to train the machine translation model
and generate prototype applications. Unfortunately, the
dataset used to train this model differs from the large scale
dataset used to train the REDRAW CNN and inform the
KNN-hierarchy construction, however, this is due to the fact

pix2code requires the source code of training applications
and employs a custom domain specific language, leading
to incompatibilities to our dataset. We include the pix2code
approach as a comparative baseline in this paper as it is one
of the few approaches aimed at utilizing ML to perform au-
tomated GUI prototyping, and utilizes an architecture based
purely upon neural machine translation, differing from our
architecture. However, it should be noted that if trained on
a proper dataset, with more advanced application assembly
techniques, future work on applying machine translation to
automated GUI-prototyping may present better results than
those reported in this paper for pix2code.

6.4 External Validity

Threats to external validity concern the generalization of the
results. While we implemented REDRAW for Android and
did not measure its generalization to other domains, we
believe the general architecture that we introduce in this
paper could transfer to other platforms or types of appli-
cations. This is tied to the fact that other GUI-frameworks
are typically comprised sets of varying types of widgets,
and GUI-related information can be automatically extracted
via dynamic analysis using one of a variety of techniques
including accessibility services [82]. While there are likely
challenges that will arise in other domains, such as a higher
number of component types and the potential for an im-
balanced dataset, we encourage future work on extending
ReDraw to additional domains.

REDRAW relies upon automated dynamic analysis and
scraping of GUI-metadata from explored application screens
to gather training data for its CNN-based classifier. How-
ever, it is possible that other application domains do not
adequately expose such metadata in an easily accessible
manner. Thus, additional engineering work or modification
of platforms may be required in order to effectively extract
such information. If information for a particular platform is
difficult to extract, future work could look toward transfer
learning as a potential solution. In other words, the weights
for a network trained on GUI metadata that is easily ac-
cessible (e.g., from Android apps) could then be fine-tuned
on a smaller number of examples from another application
domain, potentially providing effective results.

7 CONCLUSION & FUTURE WORK

In this paper we have presented a data-driven approach
for automatically prototyping software GUIs, and an im-
plementation of this approach in a tool called REDRAW for
Android. A comprehensive evaluation of REDRAW demon-
strates that it is capable of (i) accurately detecting and
classifying GUI-components in a mock-up artifact, (ii) gen-
erating hierarchies that are similar to those that a developer
would create, (iii) generating apps that are visually similar
to mock-up artifacts, and (iv) positively impacting industrial
workflows. In the future, we are planning on exploring
CNN architectures aimed at object detection to better sup-
port the detection task. Additionally, we are planning on
working with industrial partners to integrate REDRAW, and
our broader prototyping approach, into their workflows.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 23

ACKNOWLEDGMENT

We would like to thank Ben Powell, Jacob Harless, Ndukwe
Iko, and Wesely Hatin from William & Mary for their
assistance on the component of our approach that gen-
erates GUI code. We would also like to thank Steven
Walker and William Hollingsworth for their assistance in
re-implementing the REMAUI approach. Finally, we would
like to thank Martin White and Nathan Owen for their
invaluable guidance at the outset of this project and the
anonymous reviewers for their insightful comments which
greatly improved this paper. This work is supported in part
by the NSF CCF-1525902 grant. Any opinions, findings, and
conclusions expressed herein are the authors and do not
necessarily reflect those of the sponsors.

REFERENCES

[1] “Apple app store https://www.apple.com/ios/app-store/.”
[2] “Google play store https://play.google.com/store?hl=en.”
[3] “Why your app’s ux is more important than you think http://

www.codemag.com/Article/1401041.”
[4] “Adobe photoshop http://www.photoshop.com.”
[5] “The sketch design tool https://www.sketchapp.com.”
[6] A. B. Tucker, Computer Science Handbook, Second Edition. Chap-

man & Hall/CRC, 2004.
[7] B. Myers, “Challenges of hci design and implementation,”

Interactions, vol. 1, no. 1, pp. 73–83, Jan. 1994. [Online]. Available:
http://doi.acm.org.proxy.wm.edu/10.1145/174800.174808

[8] T. A. Nguyen and C. Csallner, “Reverse engineering mobile
application user interfaces with remaui,” in Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 248–259. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2015.32

[9] V. Lelli, A. Blouin, and B. Baudry, “Classifying and qualifying
gui defects,” in 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), April 2015, pp. 1–10.

[10] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk,
“Automated reporting of gui design violations in mobile apps,”
in Proceedings of the 40th International Conference on Software En-
gineering Companion, ser. ICSE ’18. Piscataway, NJ, USA: IEEE
Press, 2018, p. to appear.

[11] J. A. Landay and B. A. Myers, “Interactive sketching for the
early stages of user interface design,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’95. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1995, pp. 43–50. [Online]. Available:
http://dx.doi.org/10.1145/223904.223910

[12] B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and A. Ko, “How
designers design and program interactive behaviors,” in 2008
IEEE Symposium on Visual Languages and Human-Centric Comput-
ing, Sept 2008, pp. 177–184.

[13] “Xcode https://developer.apple.com/xcode/.”
[14] “Visual-studio https://www.visualstudio.com.”
[15] “Android-studio https://developer.android.com/studio/index.

html.”
[16] C. Zeidler, C. Lutteroth, W. Stuerzlinger, and G. Weber,

Evaluating Direct Manipulation Operations for Constraint-Based
Layout. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 513–529. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-40480-1 35

[17] “Mockup.io https://mockup.io/about/.”
[18] “Proto.io https://proto.io.”
[19] “Fuild-ui https://www.fluidui.com.”
[20] “Marvelapp https://marvelapp.com/prototyping/.”
[21] “Pixate http://www.pixate.com.”
[22] “Xiffe http://xiffe.com.”
[23] “Mockingbot https://mockingbot.com.”
[24] “Flinto https://www.flinto.com.”
[25] “Justinmind https://www.justinmind.com.”
[26] “Protoapp https://prottapp.com/features/.”
[27] “Irise https://www.irise.com/mobile-prototyping/.”
[28] “Appypie http://www.appypie.com/app-prototype-builder.”

[29] “Supernova studio https://supernova.studio.”
[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2012, pp.
1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

[31] M. D. Zeiler and R. Fergus, Visualizing and Understanding
Convolutional Networks. Cham: Springer International
Publishing, 2014, pp. 818–833. [Online]. Available:
https://doi.org/10.1007/978-3-319-10590-1 53

[32] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014. [Online]. Available: http://arxiv.org/abs/
1409.1556

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Computer Vision and Pattern Recognition (CVPR),
2015. [Online]. Available: http://arxiv.org/abs/1409.4842

[34] K. He, X. Zhang, S. Ren, and J. Sun, in 2016 IEEE Conference on
Computer Vision and Pattern Recognition, ser. CVPR’16.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “Imagenet large scale visual
recognition challenge,” Int. J. Comput. Vision, vol. 115,
no. 3, pp. 211–252, Dec. 2015. [Online]. Available: http:
//dx.doi.org/10.1007/s11263-015-0816-y

[36] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome,
and D. Poshyvanyk, “Automatically discovering, reporting and
reproducing android application crashes,” in Proceedings of the
IEEE International Conference on Software Testing, Verification and
Validation (ICST’16). IEEE, 2016, pp. 33–44.

[37] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran,
and D. Poshyvanyk, “Mining android app usages for generat-
ing actionable gui-based execution scenarios,” in 12th Working
Conference on Mining Software Repositories (MSR’15), 2015, p. to
appear.

[38] T. Beltramelli, “pix2code: Generating code from a graphical user
interface screenshot,” CoRR, vol. abs/1705.07962, 2017. [Online].
Available: http://arxiv.org/abs/1705.07962

[39] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and
D. Poshyvanyk, “Redraw online appendix https://www.
android-dev-tools.com/redraw.”

[40] “Android ui-development https://developer.android.com/
guide/topics/ui/overview.html.”

[41] U. Karn, “An intuitive explanation of convolu-
tional neural nets https://ujjwalkarn.me/2016/08/11/
intuitive-explanation-convnets/.”

[42] “Convolution operator http://mathworld.wolfram.com/
Convolution.html.”

[43] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for
building data-driven design applications,” in Proceedings of the
30th Annual Symposium on User Interface Software and Technology,
ser. UIST ’17, 2017.

[44] A. Coyette, S. Kieffer, and J. Vanderdonckt, “Multi-fidelity
prototyping of user interfaces,” in Proceedings of the 11th IFIP
TC 13 International Conference on Human-computer Interaction, ser.
INTERACT’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
150–164. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1776994.1777015

[45] A. Caetano, N. Goulart, M. Fonseca, and J. Jorge, “Javasketchit:
Issues in sketching the look of user interfaces,” in AAAI Spring
Symposium on Sketch Understanding, ser. SSS’02, 2002, pp. 9–14.

[46] J. A. Landay and B. A. Myers, “Sketching interfaces: toward more
human interface design,” Computer, vol. 34, no. 3, pp. 56–64, Mar
2001.

[47] S. Chatty, S. Sire, J.-L. Vinot, P. Lecoanet, A. Lemort,
and C. Mertz, “Revisiting visual interface programming:
Creating gui tools for designers and programmers,” in
Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’04. New York,
NY, USA: ACM, 2004, pp. 267–276. [Online]. Available:
http://doi.acm.org/10.1145/1029632.1029678

https://www.apple.com/ios/app-store/
https://play.google.com/store?hl=en
http://www.codemag.com/Article/1401041
http://www.codemag.com/Article/1401041
http://www.photoshop.com
https://www.sketchapp.com
http://doi.acm.org.proxy.wm.edu/10.1145/174800.174808
http://dx.doi.org/10.1109/ASE.2015.32
http://dx.doi.org/10.1145/223904.223910
https://developer.apple.com/xcode/
https://www.visualstudio.com
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
http://dx.doi.org/10.1007/978-3-642-40480-1_35
http://dx.doi.org/10.1007/978-3-642-40480-1_35
https://mockup.io/about/
https://proto.io
https://www.fluidui.com
https://marvelapp.com/prototyping/
http://www.pixate.com
http://xiffe.com
https://mockingbot.com
https://www.flinto.com
https://www.justinmind.com
https://prottapp.com/features/
https://www.irise.com/mobile-prototyping/
http://www.appypie.com/app-prototype-builder
https://supernova.studio
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1705.07962
https://www.android-dev-tools.com/redraw
https://www.android-dev-tools.com/redraw
https://developer.android.com/guide/topics/ui/overview.html
https://developer.android.com/guide/topics/ui/overview.html
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
http://mathworld.wolfram.com/Convolution.html
http://mathworld.wolfram.com/Convolution.html
http://dl.acm.org/citation.cfm?id=1776994.1777015
http://dl.acm.org/citation.cfm?id=1776994.1777015
http://doi.acm.org/10.1145/1029632.1029678


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 24

[48] J. Seifert, B. Pfleging, E. del Carmen Valderrama Bahamóndez,
M. Hermes, E. Rukzio, and A. Schmidt, “Mobidev: A tool for
creating apps on mobile phones,” in Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile
Devices and Services (MobileHCI’11), ser. MobileHCI ’11. New
York, NY, USA: ACM, 2011, pp. 109–112. [Online]. Available:
http://doi.acm.org/10.1145/2037373.2037392

[49] X. Meng, S. Zhao, Y. Huang, Z. Zhang, J. Eagan, and
R. Subramanian, “Wade: Simplified gui add-on development
for third-party software,” in Proceedings of the 32Nd Annual
ACM Conference on Human Factors in Computing Systems, ser.
CHI ’14. New York, NY, USA: ACM, 2014, pp. 2221–2230.
[Online]. Available: http://doi.acm.org.proxy.wm.edu/10.1145/
2556288.2557349

[50] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S.
Bernstein, “Apparition: Crowdsourced user interfaces that come
to life as you sketch them,” in Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, ser. CHI
’15. New York, NY, USA: ACM, 2015, pp. 1925–1934. [Online].
Available: http://doi.acm.org/10.1145/2702123.2702565

[51] T.-H. Chang, T. Yeh, and R. Miller, “Associating the visual
representation of user interfaces with their internal structures
and metadata,” in Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, ser. UIST ’11. New
York, NY, USA: ACM, 2011, pp. 245–256. [Online]. Available:
http://doi.acm.org/10.1145/2047196.2047228

[52] M. Dixon, D. Leventhal, and J. Fogarty, “Content and
hierarchy in pixel-based methods for reverse engineering
interface structure,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’11. New
York, NY, USA: ACM, 2011, pp. 969–978. [Online]. Available:
http://doi.acm.org/10.1145/1978942.1979086

[53] M. Dixon and J. Fogarty, “Prefab: Implementing advanced
behaviors using pixel-based reverse engineering of interface
structure,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10. New York,
NY, USA: ACM, 2010, pp. 1525–1534. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753554

[54] A. Hinze, J. Bowen, Y. Wang, and R. Malik, “Model-driven gui
& interaction design using emulation,” in Proceedings of the 2Nd
ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, ser. EICS ’10. New York, NY, USA: ACM, 2010,
pp. 273–278. [Online]. Available: http://doi.acm.org/10.1145/
1822018.1822061

[55] E. Shah and E. Tilevich, “Reverse-engineering user interfaces
to facilitate porting to and across mobile devices and
platforms,” in Proceedings of the Compilation of the Co-located
Workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11,
NEAT’11, & VMIL’11, ser. SPLASH ’11 Workshops. New
York, NY, USA: ACM, 2011, pp. 255–260. [Online]. Available:
http://doi.acm.org/10.1145/2095050.2095093

[56] H. Samir and A. Kamel, “Automated reverse engineering of
java graphical user interfaces for web migration,” in 2007 ITI
5th International Conference on Information and Communications
Technology, ser. ICICT’07, Dec 2007, pp. 157–162.

[57] “Supernova studio component classifica-
tion limitation https://blog.prototypr.io/
introducing-supernova-studio-35335de5044c.”

[58] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998.

[59] “The marketch plugin for sketch https://github.com/tudou527/
marketch.”

[60] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-8, no. 6, pp. 679–698, Nov 1986.

[61] “Sketch extensions https://www.sketchapp.com/extensions/.”
[62] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input

generation system for android apps,” in Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE’13. New York, NY, USA: ACM, 2013, pp. 224–
234. [Online]. Available: http://doi.acm.org/10.1145/2491411.
2491450

[63] “Android ui/application exerciser monkey http://developer.
android.com/tools/help/monkey.html.”

[64] “Intent fuzzer https://www.isecpartners.com/tools/
mobile-security/intent-fuzzer.aspx.”

[65] R. Sasnauskas and J. Regehr, “Intent fuzzer: Crafting intents
of death,” in Proceedings of the 2014 Joint International Workshop
on Dynamic Analysis and Software and System Performance
Testing, Debugging, and Analytics, ser. WODA+PERTEA’14. New
York, NY, USA: ACM, 2014, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/2632168.2632169

[66] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing
the android apps with intent-filter tag,” in Proceedings of
International Conference on Advances in Mobile Computing &
Multimedia, ser. MoMM ’13. New York, NY, USA: ACM,
2013, pp. 68:68–68:74. [Online]. Available: http://doi.acm.org/
10.1145/2536853.2536881

[67] T. Azim and I. Neamtiu, “Targeted and depth-first exploration
for systematic testing of android apps,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages &#38; Applications, ser. OOPSLA
’13. New York, NY, USA: ACM, 2013, pp. 641–660. [Online].
Available: http://doi.acm.org/10.1145/2509136.2509549

[68] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated
concolic testing of smartphone apps,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE’12. New York,
NY, USA: ACM, 2012, pp. 59:1–59:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393666

[69] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,
and A. M. Memon, “Using gui ripping for automated testing
of android applications,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE’12. New York, NY, USA: ACM, 2012, pp. 258–261. [Online].
Available: http://doi.acm.org/10.1145/2351676.2351717

[70] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome,
and D. Poshyvanyk, “Crashscope: A practical tool for automated
testing of android applications,” in Proceedings of the 39th
International Conference on Software Engineering Companion, ser.
ICSE-C ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 15–18.
[Online]. Available: https://doi.org/10.1109/ICSE-C.2017.16

[71] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach
for automated gui-model generation of mobile applications,”
in Proceedings of the 16th International Conference on Fundamental
Approaches to Software Engineering, ser. FASE’13. Berlin,
Heidelberg: Springer-Verlag, 2013, pp. 250–265. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-37057-1 19

[72] W. Choi, G. Necula, and K. Sen, “Guided gui testing
of android apps with minimal restart and approximate
learning,” in Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages
&#38; Applications, ser. OOPSLA ’13. New York, NY,
USA: ACM, 2013, pp. 623–640. [Online]. Available: http:
//doi.acm.org/10.1145/2509136.2509552

[73] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan,
“Puma: Programmable ui-automation for large-scale dynamic
analysis of mobile apps,” in Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’14. New York, NY, USA: ACM, 2014,
pp. 204–217. [Online]. Available: http://doi.acm.org/10.1145/
2594368.2594390

[74] R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated
generation of oracles for testing user-interaction features of
mobile apps,” in Proceedings of the 2014 IEEE International
Conference on Software Testing, Verification, and Validation, ser. ICST
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp.
183–192. [Online]. Available: http://dx.doi.org/10.1109/ICST.
2014.31

[75] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective
automated testing for android applications,” in Proceedings of the
25th International Symposium on Software Testing and Analysis, ser.
ISSTA’16. New York, NY, USA: ACM, 2016, pp. 94–105. [Online].
Available: http://doi.acm.org/10.1145/2931037.2931054

[76] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented
evolutionary testing of android apps,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE’14. New York, NY, USA: ACM, 2014,
pp. 599–609. [Online]. Available: http://doi.acm.org/10.1145/
2635868.2635896

[77] S. Roy Choudhary, M. R. Prasad, and A. Orso, “X-pert: A
web application testing tool for cross-browser inconsistency
detection,” in Proceedings of the 2014 International Symposium

http://doi.acm.org/10.1145/2037373.2037392
http://doi.acm.org.proxy.wm.edu/10.1145/2556288.2557349
http://doi.acm.org.proxy.wm.edu/10.1145/2556288.2557349
http://doi.acm.org/10.1145/2702123.2702565
http://doi.acm.org/10.1145/2047196.2047228
http://doi.acm.org/10.1145/1978942.1979086
http://doi.acm.org/10.1145/1753326.1753554
http://doi.acm.org/10.1145/1822018.1822061
http://doi.acm.org/10.1145/1822018.1822061
http://doi.acm.org/10.1145/2095050.2095093
https://blog.prototypr.io/introducing-supernova-studio-35335de5044c
https://blog.prototypr.io/introducing-supernova-studio-35335de5044c
https://github.com/tudou527/marketch
https://github.com/tudou527/marketch
https://www.sketchapp.com/extensions/
http://doi.acm.org/10.1145/2491411.2491450
http://doi.acm.org/10.1145/2491411.2491450
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://www.isecpartners.com/tools/mobile-security/intent-fuzzer.aspx
https://www.isecpartners.com/tools/mobile-security/intent-fuzzer.aspx
http://doi.acm.org/10.1145/2632168.2632169
http://doi.acm.org/10.1145/2536853.2536881
http://doi.acm.org/10.1145/2536853.2536881
http://doi.acm.org/10.1145/2509136.2509549
http://doi.acm.org/10.1145/2393596.2393666
http://doi.acm.org/10.1145/2351676.2351717
https://doi.org/10.1109/ICSE-C.2017.16
http://dx.doi.org/10.1007/978-3-642-37057-1_19
http://doi.acm.org/10.1145/2509136.2509552
http://doi.acm.org/10.1145/2509136.2509552
http://doi.acm.org/10.1145/2594368.2594390
http://doi.acm.org/10.1145/2594368.2594390
http://dx.doi.org/10.1109/ICST.2014.31
http://dx.doi.org/10.1109/ICST.2014.31
http://doi.acm.org/10.1145/2931037.2931054
http://doi.acm.org/10.1145/2635868.2635896
http://doi.acm.org/10.1145/2635868.2635896


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 25

on Software Testing and Analysis, ser. ISSTA 2014. New
York, NY, USA: ACM, 2014, pp. 417–420. [Online]. Available:
http://doi.acm.org/10.1145/2610384.2628057

[78] J. Thomé, A. Gorla, and A. Zeller, “Search-based security testing
of web applications,” in Proceedings of the 7th International
Workshop on Search-Based Software Testing, ser. SBST 2014. New
York, NY, USA: ACM, 2014, pp. 5–14. [Online]. Available:
http://doi.acm.org/10.1145/2593833.2593835

[79] S. Roy Choudhary, H. Versee, and A. Orso, “Webdiff: Automated
identification of cross-browser issues in web applications,”
in Proceedings of the 2010 IEEE International Conference on
Software Maintenance, ser. ICSM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2010.5609723

[80] S. R. Choudhary, M. R. Prasad, and A. Orso, “Crosscheck:
Combining crawling and differencing to better detect cross-
browser incompatibilities in web applications,” in Proceedings of
the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, ser. ICST ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 171–180. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2012.97

[81] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an
innovative tool for automated testing of gui-driven software,”
Automated Software Engineering, pp. 1–41, 2013. [Online].
Available: http://dx.doi.org/10.1007/s10515-013-0128-9

[82] M. Grechanik, Q. Xie, and C. Fu, “Creating gui testing tools using
accessibility technologies,” in 2009 International Conference on Soft-
ware Testing, Verification, and Validation Workshops, ser. ICSTW’09,
April 2009, pp. 243–250.

[83] “Android uiautomator http://developer.android.com/tools/
help/uiautomator/index.html.”

[84] “Google-api https://github.com/NeroBurner/googleplay-api.”
[85] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and

D. Poshyvanyk, “Auto-completing bug reports for android ap-
plications,” in in Proceedings of 10th Joint Meeting of the European
Software Engineering Conference and the 23rd ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE’15),
Bergamo, Italy, Ausgust-September 2015 2015, p. to appear.

[86] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet?” in 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2015), 2015.

[87] I. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. Hassan, “On the relationship between the number of ad
libraries in an android app and its rating,” IEEE Software, no. 1,
pp. 1–1, 2014.

[88] J. Gui, S. Mcilroy, M. Nagappan, and W. G. Halfond, “Truth in
advertising: The hidden cost of mobile ads for software develop-
ers,” in Proceedings of the 37th International Conference on Software
Engineering, ser. ICSE’15. Florence, Italy: IEEE Press, 2015, pp.
100–110.

[89] rovo89, “Xposed module repository http://repo.xposed.info/.”
[90] “Apache cordova https://cordova.apache.org.”
[91] “apktool https://code.google.com/p/android-apktool/.”
[92] “Unity game engine https://unity3d.com.”
[93] “Matlab neural network toolboxhttps://www.mathworks.com/

products/neural-network.html.”
[94] “Tesseract ocr library https://www.mathworks.com/products/

parallel-computing.html.”
[95] “Tesseract ocr library https://www.mathworks.com/products/

computer-vision.html.”
[96] “Tesseract ocr library https://github.com/tesseract-ocr/

tesseract/wiki.”
[97] W. Fu and T. Menzies, “Easy over hard: A case study on

deep learning,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE’17. New
York, NY, USA: ACM, 2017, pp. 49–60. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106256

[98] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on statistical
learning in computer vision, ser. ECCV’04, vol. 1, no. 1-22. Prague,
2004, pp. 1–2.

[99] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-
up robust features (surf),” Comput. Vis. Image Underst., vol.
110, no. 3, pp. 346–359, Jun. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.cviu.2007.09.014

[100] “Pix2code github repository https://github.com/
tonybeltramelli/pix2code.”

[101] “Remaui web version http://pixeltoapp.com.”
[102] “Wagner-fischer algorithm https://en.wikipedia.org/wiki/

WagnerFischer algorithm.”
[103] “Photohawk library http://datascience.github.io/photohawk/.”
[104] W. Conover, Practical Nonparametric Statistics. Wiley, 1998.
[105] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical

approach. Lawrence Earlbaum Associates, 2005.
[106] Z. Wang, X. Wang, and G. Wang, “Learning fine-grained

features via a CNN tree for large-scale classification,”
CoRR, vol. abs/1511.04534, 2015. [Online]. Available: http:
//arxiv.org/abs/1511.04534

[107] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
Towards real-time object detection with region proposal
networks,” in Proceedings of the 28th International Conference on
Neural Information Processing Systems, ser. NIPS’15. Cambridge,
MA, USA: MIT Press, 2015, pp. 91–99. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2969239.2969250

[108] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” in Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition, ser. CVPR ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp.
580–587. [Online]. Available: http://dx.doi.org/10.1109/CVPR.
2014.81

[109] “Opencv https://opencv.org.”

Kevin Moran is currently a Post-Doctoral re-
searcher in the Computer Science Department
at the College of William & Mary. He is also
a member of the SEMERU research group. He
graduated with a B.A. in Physics from the Col-
lege of the Holy Cross in 2013 and an M.S. de-
gree from William & Mary in August of 2015. He
received a Ph.D. degree from William & Mary in
August 2018. His main research interest involves
facilitating the processes of software engineer-
ing, maintenance, and evolution with a focus on

mobile platforms. He has published in several top peer-reviewed soft-
ware engineering venues including: ICSE, ESEC/FSE, TSE, USENIX,
ICST, ICSME, and MSR. He was recognized as the second-overall grad-
uate winner in the ACM Student Research competition at ESEC/FSE15.
Moran is a member of IEEE and ACM and has served as an external
reviewer for ICSE, FSE, ASE, ICSME, APSEC, and SCAM. More infor-
mation available at http://www.kpmoran.com.

Carlos Bernal-Cárdenas received the BS de-
gree in systems engineering from the Universi-
dad Nacional de Colombia in 2012 and his M.E.
in Systems and Computing Engineering in 2015.
He is currently Ph.D. candidate in Computer Sci-
ence at the College of William & Mary as a mem-
ber of the SEMERU research group advised by
Dr Denys Poshyvanyk. His research interests
include software engineering, software evolution
and maintenance, information retrieval, software
reuse, mining software repositories, mobile ap-

plications development, and user experience. He has published in sev-
eral top peer-reviewed software engineering venues including: ICSE,
ESEC/FSE, ICST, and MSR. He has also received the ACM SigSoft Dis-
tinguished paper award at ESEC/FSE’15. Bernal-Cárdenas is a student
member of IEEE and ACM and has served as an external reviewer for
ICSE, ICSME, FSE, APSEC, and SCAM. More information is available
at http://www.cs.wm.edu/∼cebernal/.

Michael Curcio is an undergraduate student in
the Computer Science Department at the Col-
lege of William & Mary. He is currently a member
of the SEMERU research group and is pursuing
an undergraduate honors thesis on the topic of
automating software design workflows. His re-
search interests lie in applications of deep learn-
ing to software engineering and design tasks.
Curcio is an IEEE student member.

http://doi.acm.org/10.1145/2610384.2628057
http://doi.acm.org/10.1145/2593833.2593835
http://dx.doi.org/10.1109/ICSM.2010.5609723
http://dx.doi.org/10.1109/ICST.2012.97
http://dx.doi.org/10.1007/s10515-013-0128-9
http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/uiautomator/index.html
https://github.com/NeroBurner/googleplay-api
http://repo.xposed.info/
https://cordova.apache.org
https://code.google.com/p/android-apktool/
https://unity3d.com
https://www.mathworks.com/products/neural-network.html
https://www.mathworks.com/products/neural-network.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/computer-vision.html
https://www.mathworks.com/products/computer-vision.html
https://github.com/tesseract-ocr/tesseract/wiki
https://github.com/tesseract-ocr/tesseract/wiki
http://doi.acm.org/10.1145/3106237.3106256
http://dx.doi.org/10.1016/j.cviu.2007.09.014
https://github.com/tonybeltramelli/pix2code
https://github.com/tonybeltramelli/pix2code
http://pixeltoapp.com
https://en.wikipedia.org/wiki/WagnerÃ¢Â�Â�Fischer_algorithm
https://en.wikipedia.org/wiki/WagnerÃ¢Â�Â�Fischer_algorithm
http://datascience.github.io/photohawk/
http://arxiv.org/abs/1511.04534
http://arxiv.org/abs/1511.04534
http://dl.acm.org/citation.cfm?id=2969239.2969250
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2014.81
https://opencv.org
http://www.kpmoran.com
http://www.cs.wm.edu/~cebernal/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018 26

Richard Bonett is a MS/PhD student at The Col-
lege of William & Mary and a member of the SE-
MERU research group. He graduated from The
College of William & Mary with a B.S. in Com-
puter Science in Spring 2017. His primary re-
search interests lie in Software Engineering, par-
ticularly in the development and evolution of mo-
bile applications. Bonett has recently published
at MobileSoft’17. More information is available at
http://www.cs.wm.edu/∼rfbonett/.

Denys Poshyvanyk is the Class of 1953 Term
Distinguished Associate Professor of Computer
Science at the College of William & Mary in
Virginia. He received the MS and MA degrees
in Computer Science from the National Uni-
versity of Kyiv-Mohyla Academy, Ukraine, and
Wayne State University in 2003 and 2006, re-
spectively. He received the PhD degree in Com-
puter Science from Wayne State University in
2008. He served as a program co-chair for IC-
SME’16, ICPC’13, WCRE’12 and WCRE’11. He

currently serves on the editorial board of IEEE Transactions on Software
Engineering (TSE), Empirical Software Engineering Journal (EMSE,
Springer) and Journal of Software: Evolution and Process (JSEP, Wiley).
His research interests include software engineering, software main-
tenance and evolution, program comprehension, reverse engineering,
software repository mining, source code analysis and metrics. His
research papers received several Best Paper Awards at ICPC’06,
ICPC’07, ICSM’10, SCAM’10, ICSM’13 and ACM SIGSOFT Distin-
guished Paper Awards at ASE’13, ICSE’15, ESEC/FSE’15, ICPC’16
and ASE’17. He also received the Most Influential Paper Awards at
ICSME’16 and ICPC’17. He is a recipient of the NSF CAREER award
(2013). He is a member of the IEEE and ACM. More information avail-
able at: http://www.cs.wm.edu/∼denys/.

http://www.cs.wm.edu/~rfbonett/
http://www.cs.wm.edu/~denys/

	1 Introduction
	2 Background & Related Work
	2.1 Background & Problem Statement
	2.1.1 Convolutional Neural Network (CNN) Background

	2.2 Related Work
	2.2.1 Reverse Engineering Mobile User Interfaces:
	2.2.2 Mobile GUI Datasets
	2.2.3 Other GUI-Design and Reverse Engineering Tools:
	2.2.4 Image Classification using CNNs: 


	3 Approach Description
	3.1 Phase 1 - Detection of GUI-Components
	3.1.1 Parsing Data from Design Mockups
	3.1.2 Using CV Techniques for GUI-component Detection:
	3.1.3 ReDraw Implementation - GUI Component Detection

	3.2 Phase 2 - GUI-component Classification
	3.2.1 Phase 2.1 - Large-Scale Software Repository Mining and Dynamic Analysis
	3.2.2 ReDraw Implementation - Software Repository Mining and Automated Dynamic Analysis
	3.2.3 Phase 2.2 - CNN Classification of GUI-Components
	3.2.4 ReDraw Implementation - CNN Classifier

	3.3 Phase 3 - Application Assembly
	3.3.1 Deriving GUI-Hierarchies
	3.3.2 Inferring Styles and Assembling a Target App
	3.3.3 ReDraw Implementation - App Assembly


	4 Empirical Study Design
	4.1 RQ1: Effectiveness of the CNN
	4.2 RQ2: GUI Hierarchy Construction
	4.3 RQ3: Visual Similarity
	4.4 RQ4: Industrial Applicability

	5 Experimental Results
	5.1 RQ1 Results: Effectiveness of the CNN
	5.2 RQ2 Results: Hierarchy Construction
	5.3 RQ3 Results: Visual Similarity
	5.4 RQ4 Results: Industrial Applicability
	5.4.1 Front End Android Developer @Google
	5.4.2 Mobile UI/UX Designer @Huawei
	5.4.3 Mobile Researcher @Facebook


	6 Limitations & Threats to Validity
	6.1 Limitations and Avenues for Future Work
	6.2 Internal Validity
	6.3 Construct Validity
	6.4 External Validity

	7 Conclusion & Future Work
	References
	Biographies
	Kevin Moran
	Carlos Bernal-Cárdenas
	Michael Curcio
	Richard Bonett
	Denys Poshyvanyk


