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Abstract—Test Case Prioritization (TCP) is an increasingly important regression testing technique for reordering test cases according
to a pre-defined goal, particularly as agile practices gain adoption. To better understand these techniques, we perform the first
extensive study aimed at empirically evaluating four static TCP techniques, comparing them with state-of-research dynamic TCP
techniques across several quality metrics. This study was performed on 58 real-word Java programs encompassing 714 KLoC and
results in several notable observations. First, our results across two effectiveness metrics (the Average Percentage of Faults Detected
APFD and the cost cognizant APFDc) illustrate that at test-class granularity, these metrics tend to correlate, but this correlation does
not hold at test-method granularity. Second, our analysis shows that static techniques can be surprisingly effective, particularly when
measured by APFDc. Third, we found that TCP techniques tend to perform better on larger programs, but that program size does not
affect comparative performance measures between techniques. Fourth, software evolution does not significantly impact comparative
performance results between TCP techniques. Fifth, neither the number nor type of mutants utilized dramatically impact measures of
TCP effectiveness under typical experimental settings. Finally, our similarity analysis illustrates that highly prioritized test cases tend to
uncover dissimilar faults.

Index Terms—Regression testing, test case prioritization, static, dynamic, mutation analysis.
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1 INTRODUCTION

MODERN software evolves at a constant and rapid pace;
developers continually add new features and fix bugs

to ensure a satisfied user base. During this evolutionary
process, it is crucial that developers do not introduce new
bugs, known as software regressions. Regression testing is
a methodology for efficiently and effectively validating
software changes against an existing test suite aimed at
detecting such bugs [46], [74]. One of the key tasks of the
contemporary practice of continuous regression testing, is
test case prioritization (TCP).

Regression test prioritization techniques reorder test ex-
ecutions in order to maximize a certain objective function,
such as exposing faults earlier or reducing the execution
time cost [46]. This practice can be readily observed in
applications to large industrial codebases such as at Mi-
crosoft, where researchers have built test prioritization sys-
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tems for development and maintenance of Windows for a
decade [61], [11]. In academia, there exists a large body
of research that studies the design and effectiveness of
regression TCP techniques [67], [73], [57], [56], [46], [41].
Traditionally, TCP techniques leverage one of several code
coverage measurements of tests from a pervious software
version as a representation of test effectiveness on a more
recent version. These approaches use this coverage-based
test adequacy criterion to iteratively compute each test’s
priority, and then rank them to generate a prioritized list.
Researchers have proposed various forms of this traditional
approach to TCP, including greedy (total and additional
strategies) [73], [57], [56], adaptive random testing [32],
and search-based strategies [45].

While dynamic TCP techniques can be useful in practice,
they may not be always applicable due to certain notable
shortcomings, including: 1) the time cost of executing an
instrumented program to collect coverage information [25],
[50]; 2) expensive storage and maintenance of coverage
information [50], [76]; 3) imprecise coverage metrics due
to code changes during evolution or thread scheduling of
concurrent systems [44], and 4) the absence of coverage
information for newly added tests [46] or systems/modules
that disallow code instrumentation [44] (e.g., code instru-
mentation may break the time constraints of real-time sys-
tems). Thus, to offer alternative solutions that that do not
exhibit many of these shortcomings, researchers have pro-
posed a number of TCP techniques that rely solely upon
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static information extracted from the text of source and test
code. Unfortunately, since the introduction of purely static
TCP techniques, little research has been conducted to fully
investigate the effectiveness of static techniques on mod-
ern software. This begs several important questions in the
context of past work on dynamic techniques, such as: How
does the effectiveness of static and dynamic techniques compare
on modern software projects? Do static and dynamic techniques
uncover similar faults? How efficient are static techniques when
compared to one another? The answers to these questions are
of paramount importance as they will guide future research
directions related to TCP techniques.

Several empirical studies have been conducted in an at-
tempt to examine and understand varying aspects of differ-
ent TCP approaches [56], [21], [16], [55], [63]. However, there
are clear limitations of prior studies that warrant further
experimental work on TCP techniques: 1) recently proposed
TCP techniques, particularly static techniques, have not
been thoroughly evaluated against each other or against
techniques that operate upon dynamic coverage informa-
tion; 2) no previous study examining static TCP approaches
has comprehensively examined the impact of different test
granularities (e.g., prioritizing entire test classes or individ-
ual test methods), the efficiency of the techniques, or the
similarities in terms of uncovered faults; 3) prior studies
have typically failed to investigate the application of TCP
techniques to sizable real-world software projects, and none
of them have investigated the potential impact of program
size (i.e., LOC) on the effectiveness of TCP techniques; 4)
prior studies have not comprehensively investigated the
impact of the quantities of faults used to evaluate TCP
approaches; and 5) no previous study has attempted to gain
an understanding of the impact of fault characteristics on
TCP evaluations.

Each of these points are important considerations that
call for thorough empirical investigation. For instance,
studying the effectiveness and similarity of faults uncovered
for both static and dynamic techniques could help inform
researchers of potential opportunities to design more effec-
tive and robust TCP approaches. Additionally, evaluating a
set of popular TCP techniques on a large group of sizable
real-world java programs would help bolster the general-
izability of performance results for these techniques. An-
other important consideration that arises from limitations
of past studies is that an increasing number of studies use
mutants as a proxy for real faults to evaluate performance
characteristics of TCP techniques. Thus, understanding the
effect that mutant quantities and operators have on muta-
tion analysis-based TCP evaluations should help researchers
design more effective and reliable experiments, or validate
existing experimental settings for continued use in future
work. Therefore, in this paper we evaluate the effectiveness
of TCP approaches in terms of detecting mutants.

To answer the unresolved questions related to the un-
derstanding of TCP techniques and address the current gap
in the existing body of TCP research we perform an ex-
tensive empirical study comparing four popular static TCP
techniques, i.e., call-graph-based (with total and additional
strategies) [76], string-distance-based [43], and topic-model
based techniques [63] to four state-of-the-art dynamic TCP
techniques (i.e., the greedy-total [56], greedy-additional [56],

adaptive random [32], and search-based techniques [45])
on 58 real-world software systems. All of the studied TCP
techniques were implemented based on the papers that
initially proposed them and the implementation details are
explained in Section 3.4. It is important to note that dif-
ferent granularities of dynamic coverage information may
impact the effectiveness of dynamic TCP techniques. In this
paper, we examine statement-level coverage for dynamic
techniques, since previous work [46], [50] has illustrated
that statement-level coverage is at least as effective as other
common coverage criteria (e.g., method and branch cov-
erage) in the TCP domain. In our evaluation criteria we
examine the effectiveness of the studied techniques in terms
of the Average Percentage of Faults Detected (APFD) and
its cost cognizant version APFDc. Additionally, we analyze
the implications of these two metrics as efficacy measures
of TCP techniques and discuss the implications of this
analysis. We also analyze the impact of subject size and
software evolution on these metrics. Furthermore, during
our empirical study, we vary the operator types and the
quantities of injected mutants to investigate whether these
factors significantly affect the evaluation of TCP approaches.
We also examine the similarity of detected of faults for the
resultant prioritized sets of test cases generated by our stud-
ied TCP techniques at different test granularities (e.g., both
method and class levels). More specifically, we investigate
the total number and the relative percentages of different
types of mutants detected by the most highly prioritized
test cases for each TCP technique to further understand
their capabilities in detecting faults with varying attributes.
Finally, we examine the efficiency, in terms of execution time
(i.e., the processing time for TCP technique), of static TCPs
to better understand the time cost associated with running
these approaches.

Our study bears several notable findings. The first of
these is that there are statistically significant differences among
the APFD values of all studied techniques. When measuring
the average APFD values across our subject programs, we
found that the call-graph-based (with “additional” strategy)
technique outperforms all studied techniques at the test-
class level. At the test-method level, the call-graph and
topic-model based techniques perform better than other
static techniques, but worse than two dynamic techniques,
i.e., the additional and search-based techniques.

Second, our results demonstrate that APFDc values are
generally consistent with APFD values at test-class level but
relatively less consistent at test-method level. When examining
the effectiveness of TCP approaches in terms of the cost-
cognizant APFDc values, we found that the call-graph-
based (with “additional” strategy) technique outperforms
all studied dynamic and static techniques at both test-
class and test-method levels, indicating the limitations of
dynamic execution information in reducing actual regres-
sion testing time costs. Additionally, while APFDc values
vary dramatically across 58 subject programs, based on the
results of our analysis, there are no statistically significant
differences between TCP techniques based on APFDc values
at both of test-class and test-method level when controlling
for the subject program.

Third, our experiments indicate that the test granularity
dramatically impacts the effectiveness of TCP techniques. While



nearly all techniques perform better at method-level gran-
ularity based on both of APFD and APFDc values, the
static techniques perform comparatively worse to dynamic
techniques at method level as opposed to class level based
on APFD values.

Fourth, our study shows that differences in the subject size,
software version, mutant types, or mutant quantities tend not to
largely impact experimental results measuring TCP performance.
In terms of execution time, call-graph based techniques are
the most efficient of the static TCP techniques.

Finally, the results of our similarity analysis study suggest
that there is minimal overlap between the uncovered faults of
the studied dynamic and static TCPs, with the top 10% of
prioritized test-cases only sharing ≈ 25% - 30% of uncovered
faults. Thus, the most highly prioritized test cases from
different TCP techniques exhibit dissimilar capabilities in
detecting different types of mutants. This suggests that cer-
tain TCP techniques may be better at uncovering faults (or
mutants) that exhibit certain characteristics, and that aspects
of different TCP techniques may be combined together to
alter performance characteristics. Both of these findings are
promising avenues for future work.

To summarize, this paper makes the following notewor-
thy contributions summarized in Table 1.

2 BACKGROUND & RELATED WORK

In this section we formally define the TCP problem, in-
troduce our studied set of subject studied techniques, and
further differentiate the novelty and research gap that our
study fulfills.

Rothermel et al. [57] formally defined the test prioriti-
zation problem as finding T ′ ∈ P (T ), such that ∀T ′′, T ′′ ∈
P (T )∧T ′′ 6= T ′ ⇒ f(T ′) ≥ f(T ′′), where P (T ) denotes the
set of permutations of a given test suite T , and f denotes a
function from P (T ) to real numbers. All of the approaches
studied in this paper attempt to address the TCP problem
formally enumerated above with the objective function of
uncovering the highest number of faults with the smallest
set of most highly prioritized test cases. As defined in
previous work [28], [63], a white-box TCP approach requires
access to both the source code of subject programs, and
other types of information (e.g., test code), whereas black-
box techniques do not require the source code or test code
of subject programs, and grey-box techniques require access
to only the test-code. Most dynamic techniques (including
the ones considered in this study) are considered white-box
techniques since they require access to the subject system’s
source code. In our study, we limit our focus to white and
grey-box static TCP techniques that require only source code
and test cases, and the dynamic TCP techniques that only
require dynamic coverage and test cases as inputs for two
main reasons: 1) this represents fair comparison of similar
techniques that leverage traditional inputs (e.g., test cases,
source code and coverage info), and 2) the inputs needed
by other techniques (e.g., requirements, code changes, user
knowledge) are not always available in real-world subject
programs.

In the next two subsections, we introduce the underlying
methodology utilized by our studied static TCP techniques
(Section 2.1) and dynamic TCP techniques (Section 2.2).

TABLE 1: The List of Contributions
Contributions Descriptions
Static vs. Dynamic TCP To the best of the authors’ knowl-

edge, this is the first extensive em-
pirical study that compares the ef-
fectiveness, efficiency, and similar-
ity of uncovered faults of both static
and dynamic TCP techniques on a
large set of modern real-world pro-
grams;

Impact of Performance
Metrics

We evaluate the performance of
TCP techniques based on two pop-
ular metrics, APFD and APFDc,
and understand the relationship be-
tween the performance of these two
metrics for TCP evaluation;

Impact of Test Case Gran-
ularity

We evaluate the performance of
TCP techniques at two different test
granularities, and investigate the
impacts of test granularities on TCP
evaluation;

Impact of Program Subject
Size

We evaluate the impacts of subject
size on the effectiveness of the stud-
ied static and dynamic TCP tech-
niques;

Impact of Software Evolu-
tion

We evaluate the impacts of soft-
ware evolution on the effectiveness
of the studied static and dynamic
TCP techniques;

Impact of the Number of
Studied Faults

We conduct the first study investi-
gating the impact of different fault
quantities used in the evaluation on
the effectiveness of TCP techniques;

Impact of Fault Types We conduct the first study investi-
gating the impact of different fault
types used in the evaluation on the
effectiveness of TCP techniques;

Analysis of Similarity of
Uncovered Faults

We analyze the similarity of faults
uncovered between prioritized sets
of test cases generated by different
techniques;

Practical Guidelines for
Future Research

We discuss the relevance and po-
tential impact of the findings in the
study, and provide a set of learned
lessons to help guide future re-
search in TCP;

Open Source Dataset We provide a publicly available, ex-
tensive online appendix and dataset
of the results of this study to en-
sure reproducibility and aid future
research [48].

Details of our own re-implementation of these tools are dis-
cussed later in Section 3. Additionally, we discuss existing
empirical studies (Section 2.3).

2.1 Static TCP Techniques

Call-Graph-Based. This technique builds a call graph for
each test case to obtain a set of transitively invoked meth-
ods, called relevant methods [76]. The test cases with a
higher number of invoked methods in the corresponding
call-graphs are assigned a higher test ability and thus are
prioritized first. This approach is often implemented as one
of two variant sub-strategies, the total strategy prioritizes the
test cases with higher test abilities earlier, and the additional
strategy prioritizes the test cases with higher test abilities
excluding the methods that have already been covered by
the prioritized test cases. Further research by Mei et al.
extends this work to measure the test abilities of the test



cases according to the number of invoked statements as
opposed to the number of invoked methods [50]. The main
intuition behind such an extension is that by allowing for a
more granular representation of test ability (at the statement
level) leads to a more effective overall prioritization scheme.
This call-graph based technique is classified as a white box
approach, whereas the other two studied static TCP tech-
niques are grey-box approaches, requiring only test code.
We consider both types of static techniques in this paper in
order to thoroughly compare them to a set of techniques
that require dynamic computation of coverage.
String-Distance-Based. The key idea underlying this tech-
nique is that test cases that are textually different from
one another, as measured by similarity based on string-
edit distance, should be prioritized earlier [43]. The intuition
behind this idea is that textually dissimilar test cases have
a higher probability of executing different paths within a
program. This technique is a grey-box static technique since
the only information it requires is the test code. There are
four major variants of this technique differentiated by the
string-distance metric utilized to calculate the gap between
each pair of test cases: Hamming, Levenshtein, Cartesian,
and Manhattan distances. Based on prior experimental re-
sults [43], Manhattan distance performs best in terms of
detecting faults. Thus, in our study, we implemented the
string-based TCP based on the paper by Ledru et al. [43],
and chose Manhattan distance as the representative string
distance computation for this technique. Explicit details
regarding our implementation are given in Section 3.
Topic-Based. This static black-box technique further ab-
stracts the concept of using test case diversity for prioriti-
zation by utilizing semantic-level topic models to represent
tests of differing functionality, and gives higher prioritiza-
tion to test cases that contain different topics from those
already executed [63]. The intuition behind this technique is
that semantic topics, which abstract test cases’ functionality,
can capture more information than simple textual similarity
metrics, and are robust in terms of accurately differentiating
between dissimilar test cases. This technique constructs a
vector based on the code of each test case, including the
test case’s correlation values with each semantically derived
topic. It calculates the distances between these test case
vectors using a Manhattan distance measure, and defines
the distance between one test case and a set of test cases
as the minimum distance between this test case and all
test cases in the set. During the prioritization process, the
test case which is farthest from all other test cases is firstly
selected and put into the (originally empty) prioritized set.
Then, the technique iteratively adds the test case farthest
from the prioritized set into the prioritized set until all tests
have been added.
Other Approaches. In related literature, researchers have
proposed various other techniques to prioritize tests based
on software requirement documents [6] or system mod-
els [40]. Recently, Saha et al. proposed an approach that uses
software trace links between source code changes and test
code derived via Information Retrieval (IR) techniques and
sorts the test cases based according to the relationships in-
ferred via the trace links, with tests more cloesly correspond-
ing to changes being prioritized first [58]. These techniques
require additional information, such as the requirement

documents, system models, and code changes, which may
be unavailable or challenging to collect. In this study, we
center our focus on automated TCP techniques that require
only the source code and the test code of subjects, including
call-graph-based, string-based and topic-based techniques.

2.2 Dynamic TCP Techniques

Greedy Techniques. As explained in our overview of the
Call-Graph-based approach, there are typically two variants
of traditional “greedy” dynamic TCP techniques, the total
strategy and additional strategy, that prioritize test cases
based on code coverage information. The total strategy
prioritizes test cases based on their absolute code coverage,
whereas the additional strategy prioritizes test cases based
on each test case’s contribution to the total cumulative code
coverage. In our study, we implemented these techniques
based on prior work by Rothermel et al. [56]. The greedy-
additional strategy has been widely considered as one of the
most effective TCP techniques in previous work [32], [73].
Recently, Zhang et al. proposed a novel approach to bridge
the gap between the two greedy variants by unifying the
strategies based on the fault detection probability [73], [27].

Given that these dynamic TCP techniques utilize code
coverage information as a proxy for test effectiveness, and
many different coverage metrics exist, studies have exam-
ined several of these metrics in the domain of TCP in-
cluding statement coverage [56], basic block and method
coverage [16], Fault-Exposing-Potential (FEP) coverage [21],
transition and round-trip coverage [70]. For instance, Do et
al. use both method and basic block coverage information to
prioritize test cases [16]. Elbaum et al. proposed an approach
that prioritizes test cases based on their FEP and fault index
coverage [21], where test cases exposing more potential
faults will be assigned a higher priority. Kapfhammer et
al. use software requirement coverage to measure the test
abilities of test cases for test prioritization [36].
Adaptive Random Testing. Jiang et al. were the first to apply
Adaptive Random Testing [10] to TCP and proposed a novel
approach, called Adaptive Random Test Case Prioritization
(ART) [32]. ART randomly selects a set of test cases iter-
atively to build a candidate set, then it selects from the
candidate set the test case farthest away from the prioritized
set. The whole process is repeated until all test cases have
been selected. As a measure of distances between test cases,
ART first calculates the distance between each pair of test
cases using Jaccard distance based on their coverage, and
then calculates the distance between each candidate test
case and the prioritized set. Three different variants of this
approach exist (min, avg and max), differentiated by the type
of distance used to determine the similarity between one
test case and the prioritized set. For example, min is the
minimum distance between the test case and the prioritized
test case. The results from Jiang et al’s evaluation illustrates
that ART with min distance performs best for TCP. Thus, in
our empirical study, we implemented our ART based TCP
strategy following Jiang et al.’s paper [32] and chose min
distance to estimate the distance between one test case and
the prioritized set.
Search-based Techniques. Search-based TCP techniques
introduce meta-heuristic search algorithms into the TCP



domain, exploring the state space of test case combinations
to find the ranked list of test cases that detect faults more
quickly [45]. Li et al. have proposed two variants of search-
based TCP techniques, based upon hill-climbing and genetic
algorithms. The hill-climbing-based technique evaluates all
neighboring test cases in a given state space, locally search-
ing the ones that can achieve largest increase in fitness. The
genetic technique utilizes an evolutionary algorithm that
halts evolution when a predefined termination condition is
met, e.g., the fitness function value reaches a given value
or a maximal number of iterations has been reached. In our
empirical study, we examine the genetic-based test prioriti-
zation approach as the representative search-based test case
prioritization technique, as previous results demonstrate
that genetic-based technique is more effective in detecting
faults [45].
Other Approaches. Several other techniques that utilize
dynamic program information have been proposed, but
do not fit neatly into our classification system enumerated
above [30], [64], [51]. Islam et al. presented an approach
that reconciles information from traceability links between
system requirements and test cases and dynamic informa-
tion, such as execution cost and code coverage, to prioritize
test cases [30]. Nguyen et al. have designed an approach
that uses IR techniques to recover the traceability links
between change descriptions and execution traces for test
cases to identify the most relevant test cases for each change
description [51]. Unfortunately, these TCP techniques re-
quire information beyond the test code and source code
(e.g., execution cost, user knowledge, code changes) which
may not be available or well maintained depending on the
target software project. In this paper, we choose dynamic
techniques that require only code coverage and test cases for
comparison, which includes three techniques (i.e., Greedy
(with total, additional strategies), ART, and Search-based).
Recall that we do not aim to study the impact of coverage
granularity on the effectiveness of dynamic TCPs, and opt
to utilize only statement level coverage information in our
experiments. This is because previous work has established
that statement-level coverage is at least as effective as other
coverage types [46], [50].

2.3 Empirical studies on TCP techniques

Several studies empirically evaluating TCP techniques [37],
[56], [8], [69], [14], [23], [72], [60], [28], [46], [22], [21], [71],
[23], [55] have been published. In this subsection we discuss
the details of the studies most closely related to our own in
order to illustrate the novelty of our work and research gap
filled by our proposed study. Rothermel et al. conducted a
study on unordered, random, and dynamic TCP techniques
(e.g., coverage based, FEP-based) applied to C programs,
to evaluate their abilities of fault detection [56]. Elbaum et
al. conducted a study on several dynamic TCP techniques
applied to C programs in order to evaluate the impact
of software evolution, program type, and code granularity
on the effectiveness of TCP techniques [21]. Thomas et. al
[63] compared the topic-based TCP technique to the static
string-based, call-graph-based, and greedy-additional dy-
namic techniques at method-level on two subjects. However,
this study is limited by a small set of subject programs, a

comparison to only one dynamic technique at method-level
only, and no investigation of fault detection similarity, the
effects of software evolution or subject program size among
the approaches.

Do et al. have presented a study of dynamic test priori-
tization techniques (e.g., random, optimal, coverage-based)
on four Java programs with JUnit test suites. This study
breaks from past studies that utilize only small C programs
and demonstrates that these techniques can also be effective
on Java programs. However, findings from this study also
suggest that different languages and testing paradigms may
lead to divergent behaviors [16]. This group also conducted
an empirical study to analyze the effects of time constraints
on TCP techniques [12]. Henard et al. recently conducted
a study comparing white and black-box TCP techniques
in which the effectiveness, similarity, efficiency, and per-
formance degradation of several techniques was evaluated.
While this is one of the most complete studies in terms of
evaluation depth, it does not consider the static techniques
considered in this paper. Thus, our study is differentiated by
the unique goal of understanding the relationships between
purely static and dynamic TCPs.

To summarize, while each of these studies offers valu-
able insights, none of them provides an in-depth evaluation
and analysis of the effectiveness, efficiency, and similarity
of detected faults for static TCP techniques and compari-
son to dynamic TCP techniques on a set of mature open
source software systems. This highlights a clear research
gap that exists in prior work which empirically measures
the efficacy of TCP techniques. The work conducted in this
paper is meant to close this gap, and offer researchers and
practitioners an extensive, rigorous evaluation of popular
TCP techniques according to a varied set of metrics and
experimental investigations.

2.4 Mutation Analysis

Fault detection effectiveness is almost universally accepted
as the measurement by which to evaluate TCP approaches
[3], [33], [46]. However, extracting a suitable set of repre-
sentative real-world faults is typically prohibitively costly.
Thus, researchers and developers commonly evaluate the
effectiveness of TCP approaches using mutation analysis,
in which a set of program variants, called mutants, are
generated by seeding a large number of small syntactic
errors into a seemingly “correct” version of a program. For
a given subject program, mutation operators are utilized to
seed these faults (known as mutants) into an unmodified
version of the program. It is said that a mutant is killed by
a test case when this test case is able to detect a difference
between the unmodified program and the mutant. In the
context of TCP research, mutation analysis is applied to a
subject program to generate a large set of mutants, each
containing a minor fault, and then this set is used to evaluate
the effectiveness of a set of prioritized test cases.

Preliminary studies have shown mutants to be suitable
for simulating real bugs in software testing experiments
in controlled contexts [4], [33], and mutation analysis has
been used to evaluate many different types of testing ap-
proaches, including TCP techniques [21], [63], [28], [46],
[68]. For example, Henard et al. utilized mutation analysis



to compare white-box and black-box TCP techniques [28].
Lu et al. evaluated the test case prioritization techniques in
the context of evolving software systems using mutation
analysis [46]. Finally, Walcott et al. proposed a time-aware
test prioritization technique and evaluated their approach
using mutants [68].

Additionally, recent research has been undertaken that
aims to understand the relationship between different types
of mutants (e.g., operators) and whether or not they are a
suitable proxy for real faults [39], [2], [34], [35]. Ammann et
al. proposed a framework to reduce redundant mutants and
determine a minimal set of mutants for properly evaluating
test cases [2]. Kintis et al. introduced several alternatives
to mutation testing strategies to establish whether they
adversely affect measuring test effectiveness [39]. However,
pervious studies do not provide comments on the following
in the context of TCP: 1) none of these studies has investi-
gated the impact of the quantity of mutants utilized in TCP
experiments; and 2) previous work has not examined the
impact of mutants seeded according to different operators
on the effectiveness of TCP approaches. It is quite possible
that TCP may perform differently when detecting different
quantities or types of mutants, particularly across software
projects. Addressing these current shortcomings of past
studies would allow for the verification or refutation of pre-
vious widely used experimental settings for mutation-based
TCP evaluations. Thus, we aim to evaluate the effectiveness
of TCP techniques in terms of detecting different quantities
and types of mutants in order to understand their impact on
this quality metric.

2.5 Metrics for TCP techniques
The Average Percentage of Faults Detected (APFD) metric
is a well-accepted metric in the TCP domain [56], [76], [57],
[15], [18], [21], [17], which is used to measure the effective-
ness, in terms of fault detection rate, for each studied test
prioritization technique. Formally speaking, let T be a test
suite and T ′ be a permutation of T , the APFD metric for T ′

is computed according to the following metric:

APFD = 1−
∑m
i=1 TFi
n ∗m

+
1

2n
(1)

where n is the number of test cases in T , m is the number of
faults, and TFi is the position of the first test case in T ′ that
detects fault i.

Although APFD has been widely used for evaluating
TCP techniques, it assumes that each test incurs the same
time cost, an assumption which often doesn’t hold up in
practice. Thus, Elbaum et al. introduced another metric,
called APFDc [19]. APFDc is the cost-cognizant version of
APFD, which considers both the test case execution cost and
fault severity. While not as widely used as APFD, APFDc
has also been used to evaluate TCP approaches, resulting
in a more detailed evaluation. [24]. APFDc can be formally
defined as follows: let t1, t2, ..., tn be the execution costs for
all the n test cases. and f1, f2, ..., fm be the severities of the
m detected faults. The APFDc metric is calculated according
to the following equation:

APFDc =

∑m
i=1 fi ∗ (

∑n
j=TFi

tj − 1
2 tTFi

)∑n
i=1 ti ∗

∑m
i=1 fi

(2)

Similar to Equation 1, n is the number of test cases in T ,
m is the number of faults, and TFi is the position of the first
test case in T ′ that detects fault i. In our empirical study, we
evaluate the performance of TCP techniques based on both
of APFD and APFDc, in order to provide a complete picture
of the performance of TCP techniques from the perspective
of both effectiveness and efficiency. Additionally, we further
examine the relationship between these two metrics and the
resultant implications for the domain of TCP research.

3 EMPIRICAL STUDY

In this section, we state our research questions, and enu-
merate the subject programs, test suites, study design, and
implementation of studied techniques in detail.

3.1 Research Questions (RQs):

Our empirical study addresses the following RQs:

RQ1 How do static TCP techniques compare with each
other and with dynamic techniques in terms of effec-
tiveness measured by APFD?

RQ2 How do static TCP techniques compare with each
other and with dynamic techniques in terms of effec-
tiveness measured by APFDc?

RQ3 How does the test granularity impact the effectiveness
of both the static and dynamic TCP techniques?

RQ4 How does the program size (i.e., LOC) impact the
effectiveness of both the static and dynamic TCP
techniques?

RQ5 How do static and dynamic TCP techniques perform
as software evolves?

RQ6 How does the quantity of mutants impact the effec-
tiveness of the studied TCP techniques?

RQ7 How does mutant type impact the effectiveness of the
studied TCP techniques?

RQ8 How similar are different TCP techniques in terms of
detected faults?

RQ9 How does the efficiency of static techniques compare
with one another in terms of execution time cost?

To aid in answering RQ1 and RQ2, we introduce the fol-
lowing null and alternative hypotheses. The hypotheses are
evaluated at the 0.05 level of significance:

H0: There is no statistically significant difference in
the effectiveness between the studied TCPs.

Ha: There is a statistically significant difference in
the effectiveness between the studied TCPs.

3.2 Subject Programs, Test Suites and Faults

We conduct our study on 58 real-world Java programs
from GitHub [1]. The program names and sizes in terms
of lines of code (LOC) are shown in Table 2, where the
sizes of subjects vary from 1,151 to 82,998 LoC. Our subjects
are larger in size and quantity than previous work in the
TCP domain [46], [28], [63], [43], [32]. Our methodology
for collecting these subject programs is as follows. We first
collect a set of 399 Java programs from GitHub that contain
integrated JUnit test cases and can be compiled successfully.
Then, we discarded programs which were relatively small



TABLE 2: The stats of the subject programs: Size: #Loc; TM:
#test cases at method level; TC: #test cases at class level; All:
#all mutation faults; Detected: #faults can be detected by test
cases.

Tests Mutants
Subject Programs Size #TM #TC Detected All

P1-geojson-jackson 1,151 44 13 301 717
P2-statsd-jvm-profiler 1,355 29 12 290 708
P3-stateless4j 1,756 61 10 392 696
P4-jarchivelib 1,940 22 12 655 948
P5-JSONassert 1,957 121 10 935 1,116
P6-java-faker 2,069 28 11 392 600
P7-jackson-datatype-joda 2,409 57 8 675 1,212
P8-Java-apns 3,234 87 15 412 1,122
P9-pusher-websocket-java 3,259 199 11 851 1,470
P10-gson-fire 3,421 55 14 847 1,064
P11-jackson-datatype-guava 3,994 91 15 313 1,832
P12-dictomaton 4,099 53 11 2,024 10,857
P13-jackson-uuid-generator 4,158 45 6 802 2,039
P14-JAdventure 4,416 35 10 738 5,098
P15-exp4j 4,617 285 9 1,365 1,563
P16-jumblr 4,623 103 15 610 1,192
P17-efflux 4,940 41 10 1,190 2,840
P18-metrics-core 5,027 144 28 1,656 5,265
P19-low-gc-membuffers 5,198 51 18 1,861 3,654
P20-xembly 5,319 58 16 1,190 2,546
P21-scribe-java 5,355 99 18 563 1,622
P22-jpush-api-java-client 5,462 65 10 822 2,961
P23-gdx-artemis 6,043 31 20 968 1,687
P24-protoparser 6,074 171 14 3,346 4,640
P25-commons-cli 6,601 317 26 2,362 2,801
P26-mp3agic 6,939 205 19 3,362 6,391
P27-webbit 7,363 131 25 1,268 3,833
P28-RestFixture 7,421 268 30 2,234 3,278
P29-LastCalc 7,707 34 13 2,814 6,635
P30-jackson-dataformat-csv 7,850 98 27 1,693 6,795
P31-skype-java-api 8,264 24 16 885 6,494
P32-lambdaj 8,510 252 35 3,382 4,341
P33-jackson-dataformat-xml 8,648 134 45 1,706 4,149
P34-jopt-simple 8,778 511 79 2,325 2,525
P35-jline2 8,783 130 16 3,523 8,368
P36-javapoet 9,007 246 16 3,400 4,601
P37-Liqp 9,139 235 58 7,962 18,608
P38-cassandra-reaper 9,896 40 12 1,186 5,105
P39-JSqlParser 10,335 313 19 15,698 32,785
P40-raml-java-parser 11,126 190 36 4,678 6,431
P41-redline-smalltalk 11,228 37 9 1,834 10,763
P42-user-agent-utils 11,456 62 7 376 688
P43-javaewah 13,293 229 11 6,307 11,939
P44-jsoup-learning 13,505 380 25 7,761 13,230
P45-wsc 13,652 16 8 1,687 17,942
P46-rome 13,874 443 45 4,920 10,744
P47-JActor 14,171 54 43 132 1,375
P48-RoaringBitmap 16,341 286 15 9,709 13,574
P49-JavaFastPFOR 17,695 42 8 46,429 64,372
P50-jprotobuf 21,161 48 18 1,539 10,338
P51-worldguard 24,457 148 12 1,127 25,940
P52-commons-jxpath 24,910 411 39 13,611 24,369
P53-commons-io 27,263 1125 92 7,630 10,365
P54-nodebox 32,244 293 40 7,824 36,793
P55-asterisk-java 39,542 220 39 3,299 17,664
P56-ews-java-api 46,863 130 28 2,419 31,569
P57-commons-lang 61,518 2388 114 25,775 32,291
P58-joda-time 82,998 4,026 122 20,957 28,382

Total 714,414 15,441 1,463 245,012 542,927

in size (i.e., less than 1,000 LOC), or that had a very small
number of test cases (i.e., less than 15 test cases at method
level and five test cases at class level). Finally, we ran a set
of tools to collect both the static and dynamic information
(Section 3.4) and discarded programs for which the tools
were not applicable. After this process we obtained our set
of 58 subject programs.

To perform this study, we checked out the most current
master branch of each program, and provide the version
IDs in our online appendix [48]. For each program, we used
the original JUnit test suites for the corresponding program
version. Since one of the goals of this study is to understand
the impact of test granularity on the effectiveness of TCP
techniques, we introduce two groups of experiments in our
empirical study based on two test-case granularities: (i) the
test-method and (ii) the test-class granularity. The numbers

TABLE 3: Muation Operators Used

ID Mutation Operator
M0 Conditional Boundary Mutator
M1 Constructor Call Mutator
M2 Increments Mutator
M3 Inline Constant Mutator
M4 Invert Negs Mutator
M5 Math Mutator
M6 Negate Conditionals Mutator
M7 Non-Void Method Call Mutator
M8 Remove Conditional Mutator
M9 Return Vals Mutator
M10 Void Method Call Mutator
M11 Remove Increments Mutator
M12 Member Variable Mutator
M13 Switch Mutator
M14 Argument Propagation Mutator

of test cases on test-method level and test-class level are
shown in Columns 3 & 4 of Table 2 respectively.

One goal of this empirical study is to compare the effec-
tiveness of different test prioritization techniques by evalu-
ating their fault detection capabilities. Thus, each technique
will be evaluated on a set of program faults introduced
using mutation analysis. As mutation analysis has been
widely used in regression test prioritization evaluations [73],
[13], [46], [75] and has been shown to be suitable in simu-
lating real program faults [4], [33], this is a sensible method
of introducing program defects. We applied all of the 15
available mutation operators from the PIT [54] mutation
tool (Version 1.1.7) to generate mutants for each project. All
mutation operators are listed in Table 3 and their detailed
definitions can be found on the PIT website [52] and on our
online appendix [48]. We utilized PIT to determine the set
of faults that can be detected by the test suites for each of
our subject programs. When running the subject program’s
JUnit test suite via the PIT Maven plugin, test cases are
automatically executed against each mutant, PIT records the
corresponding test cases capable of killing each mutant. By
analyzing the PIT reports, we obtained the information (e.g.,
fault locations) for each mutation fault and all the test cases
that can detect it. Note that the typical implementation of
PIT stops executing any remaining tests against a mutant
once the mutant is killed by some earlier test to save time.
However, for the purpose of obtaining a set of ”killable”
mutants, this is undesirable. Thus, we modified PIT to force
it to execute the remaining tests against a mutant even when
the mutant has been killed. Since not all produced mutants
can be detected/covered by test cases, only mutants that
can be detected by at least one test case are included in our
study. The number of detected mutants and the number of
all injected mutants are shown in Columns 5 and 6 of Table 2
respectively. As the table shows, the numbers of detected
mutants range from 132 to 46,429. There are of course
certain threats to validity introduced by such an analysis,
namely the the potential bias introduced by the presence of
equivalent and trivial mutants [5], [2]. We summarize the
steps we take in our methodology to mitigate this threat in
Section 5.

3.3 Design of the Empirical Study
As discussed previously (Section 2), we limit the focus of
this study to TCP techniques that do not require additional



TABLE 4: Studied TCP Techniques

Type Tag Description

Static

TPcg−tot Call-graph-based (total strategy)
TPcg−add Call-graph-based (additional strategy)
TPstr The string-distance-based

TPtopic−r Topic-model-based using R-lda package
TPtopic−m Topic-model-based using Mallet

Dynamic

TPtotal Greedy total (statement-level)
TPadd Greedy additional (statement-level)
TPart Adaptive random (statement-level)

TPsearch Search-based (statement-level)

inputs, such as code changes or software requirements
that may require extra effort or time to collect or may be
unavailable. We select two white-box and two black-box
static techniques, and four white-box dynamic techniques
with statement-level coverage as the subject techniques for
this study, which are listed in Table 4. We sample from
both white and black box approaches as the major goal
of this study is to examine the effectiveness and trade-
offs of static and dynamic TCPs under the assumption that
both the source code of the subject application, as well
as the test cases are available. It is worth noting that our
evaluation employs two versions of the static topic model-
based technique, as when contacting the authors of [63],
they suggested that an implementation using the Mallet [49]
tool would yield better results than their initial implemen-
tation in R [63]. There are various potential coverage gran-
ularities for dynamic techniques, such as statement-level,
method-level and class-level. Previous research showed that
statement-level TCP techniques perform the best [50], [27].
Thus, in our study, we choose statement-level coverage for
the dynamic TCP techniques. We now describe the experi-
mental procedure utilized to answer each RQ posed above.

RQ1: The goal of RQ1 is to compare the effectiveness
of different TCP techniques, by evaluating their fault de-
tection capabilities. Following existing work [73], [46], we
fixed the number of faults for each subject program. That
is, we randomly chose 500 different mutation faults and
partitioned the set of all faults into groups of five (e.g.,
a mutant group) to simulate each faulty program version.
Thus, 100 different faulty versions (i.e., 500/5 = 100) were
generated for each program. If a program has less than
500 mutation faults, we use all detected mutation faults for
this program and separate these faults into different groups
(five faults per group). For the static techniques, we simply
applied the techniques as described in Sections 2 & 3.4 to
the test and source code of each program to obtain the
list of prioritized test cases for each mutant group. For the
dynamic techniques, we obtained the coverage information
of the test-cases for each program. We then used this cov-
erage information to implement the dynamic approaches as
described in Sections 2 & 3.4. Then we are able to collect the
fault detection information for each program according to
the fault locations.

To measure the effectiveness in terms of rate of fault
detection for each studied test prioritization technique, we
utilize the well-accepted Average Percentage of Faults De-
tected (APFD) metric in TCP domain [56], [76], [57], [15],
[18], [21], [17]. Recall that every subject program has 100
mutant groups (five mutations per group). Thus, we created
100 faulty versions for each subject (each version contains
five mutations) and ran all studied techniques over these 100
faulty versions. That is, running each technique 100 times

for each subject. Then, we performed statistical analysis
based on the APFD results of these 100 versions. To test
whether there is a statistically significant difference between
the effectiveness of different techniques, we first performed
an one-way ANOVA analysis on the mean APFD values
for all subjects and a Tukey HSD test [62], following the
evaluation procedures utilized in related work [50], [46].
The ANOVA test illustrates whether there is a statistically
significant variance between all studied techniques and the
Tukey HSD test further distinguishes techniques that are
significantly different from each other, as it classifies them
into different groups based on their mean APFD values [62].
These statistical tests give a statistically relevant overview
of whether the mean APFD values for the subject programs
differ significantly. Additionally, we performed a Wilcoxon
signed-rank test between each pair of TCP techniques for
their average APFD value across all subject techniques, to
further illustrate the relationship between individual subject
programs. We choose to include this non-parametric test
since we cannot make assumptions about wether or not the
data under consideration is normally distributed.

RQ2: Although APFD has been widely used for TCP
evaluation, it assumes that each test takes the same amount
of time, which may not be always accurate in practice.
The goal of this RQ is to examine the effectiveness of TCP
techniques in terms of the APFDc metric, which considers
both the execution time and severities of detected faults. We
also compare the results of the APFDc with those of the
APFD for understanding the performance of different types
of metrics in the TCP area. However, there is no clearly-
defined way to estimate the severities for the detected faults,
and no widely-used tool to collect this information, making
it hard to measure fault severity. Therefore, following pre-
vious work [24], we consider all faults to share the same
severity level. Thus, in the context of our empirical study,
APFDc reduces to the following equation:

APFDc =

∑m
i=1

∑n
j=TFi

tj − 1
2 tTFi∑n

i=1 ti ∗m
(3)

where n is the number of test cases in T , m is the number
of faults, TFi is the position of the first test case in T ′ that
detects fault, and i, t1, t2, ..., tn are the execution costs for
all the n test cases. To measure test execution costs, we use
the Maven Surefire Plugin to trace the start and end events
of each test to record the corresponding execution time.
Similar as RQ1, we performed both of an one-way ANOVA
analysis on the mean AFPDc values for all subjects and a
Tukey HSD test to further understand the whether there is a
statistically significant variance between the performance of
the studied techniques in terms of APFDc values. In addi-
tion, we further examined the relationship between the two
metrics, AFPD and APFDc, to understand the differences
in effectiveness of TCP techniques. We utilize the Kendall
rank correlation coefficient τ [59] to compare the results
of these two metrics. Kendall rank correlation coefficient
τ is commonly used to examine the relationship between
two ordering quantities (i.e., observations of two variables).
The coefficient ranges in value from −1 to 1, with values
closer to 1 indicating similarity and values closer to −1
indicating dissimilarity. When the value is close to 0, these
two quantities are considered independent. For example,



in the context of our study, we have two quantities, APFD
and APFDc values. Thus, in the context of our study, if the
values of APFD values across all TCP techniques are similar
to APFDc values, the Kendall tau rank coefficient τ would
be closer to 1. Otherwise, it would be closer to −1. Since
there is no guarantee that the relationship between APFD
and APFDc values are linear, we chose Kendall τb coefficient
in our study, following prior work [26]:

τb =
nc − nd√

(n0 − n1)(n0 − n2)
nc = # of concordant pairs

nd = # of discordant pairs

n0 = n(n− 1)/2

n1 =
∑
i

ti(ti − 1)/2

n2 =
∑
j

uj(uj − 1)/2

ti = # of tied values in ith tie group for 1st quantity

uj = # of tied values in jth tie group for 2nd quantity

(4)

RQ3 The goal of this RQ is to analyze the impact of
different test granularities on the effectiveness of TCP tech-
niques. Thus, we choose two granularities: test-method and
test-class levels. The test-method level treats each JUnit test
method as a test case, while test-class level treats each JUnit
test class as a test case. We examine both the effectiveness
and similarity of detected faults for both granularities.

RQ4 The goal of this RQ is to investigate the impact of
different program sizes on the effectiveness of TCP tech-
niques. Thus, we measure the size for each subject program
in terms of its Lines of Code (LOC). To examine whether
TCP technqiues tend to perform differently on programs of
different sizes we classify the programs into two groups, a
set of smaller programs and a set of larger programs. These
two groups were created by ordering our subject programs
in increasing order of LOC and splitting the ordered list
in the middle. This results in two groups of 29 subject
programs, the first group containing smaller programs and
the second group containing larger programs.

RQ5: The goal of this RQ is to understand the effective-
ness of TCP techniques in a software evolution scenario. To
accomplish this we apply different TCP techniques across
different versions of each subject program. More specifically,
tests are prioritized using the information from a given
previous program version, and the prioritized set of test
cases is then applied to faulty variants of the most recent
program version. The faulty variants are created using the
same methodology described for RQ1. This methodology
closely follows that of previous work [46] and allows us
to investigate whether the performance of TCP techniques
remains stable, decreases, or increases as software evolves.
In our study, we collect different versions for each subject
program exactly following the methodology proposed in
[46]. For each subject, we start from the most current version
and collect one version per ten commits moving backward
through the commit history. We then discard those programs
that did not successfully compile and those that are not
applicable to our tools. Due to the extremely large volume
of data and the time cost of running these experiments,

we randomly chose 12 subject programs to investigate this
research question. Note that the numbers of versions (i.e.,
66) and subject programs (i.e., 12) used in this work are
larger than all prior TCP work considering evolutionary
scenarios (e.g., the recent work by Lu et.al. [46] used 53
versions of 8 real-world programs).

RQ6: The goal of this RQ is to examine the impact of
mutant quantity on the effectiveness for TCP techniques in
terms of APFD and APFDc values. In our default experi-
mental setting, we have 100 groups of mutation faults, and
each group contains five mutants following prior work [50],
[73], [27], [46]. However, in practice, the number of faults
within a buggy version can be more than or less than five.
Therefore, to better understand the impact of fault quantity
per group, we generate different number of faults (i.e., 1 to
10) within each of the 100 constructed fault groups for each
subject program. Note that we may have less than 100 fault
groups when the number of mutants are small for some
subjects. That is, we repeat all our prior experiments 10
times, each time recording the APFD and APFDc values
for all studied techniques under 100 fault groups with
a different number of faults (from 1 to 10). Finally, we
perform Kendall rank τb coefficient analysis to understand
the relationship between the results for the mutation groups
with different sizes and the results of the default setting
(i.e., with 5 faults within each group). That is, we perform
Kendall analysis to compare each fault-quantity setting (i.e.,
100 groups mutation faults and the size of each fault group
varies from 1 to 10) to the mutation faults with the default
setting. Intuitively, if the values of Kendall τb coefficient are
close to 1, the TCP techniques perform similarly between
fault groups of varying sizes and fault groups with the
default size, implying that the quantity of mutation faults
does not impact TCP evaluation.

RQ7: The goal of this RQ is to understand the impact
of the mutant types (i.e., those mutants generated with
different operators) on the effectiveness for TCP techniques
in terms of APFD and APFDc values. Intuitively, we first
classified mutants into different groups based on their cor-
responding operators. That is, the mutation faults generated
by the same operators would be classified into the same
group. In our empirical study, we utilized all 15 built-
in mutation operators in PIT. Thus, we have 15 types of
mutation faults for each subject program. We evaluate TCP
techniques across these 15 types of mutation faults with
the default setting, where for each operator we randomly
choose 500 mutants and separate them into 100 groups (each
group contains 5 mutation faults). Note that we may have
less than 100 fault groups when the number of mutants
are small for some mutant types. Then, TCP techniques
are evaluated based on these groups of mutation faults.
Finally, we compare the results for different types of mu-
tation faults with our default fault seeding (i.e., randomly
including different types of faults) under the same default
setting (i.e., 100 mutated groups and each group contains
5 mutation faults). Similar as RQ4, we chose Kendall rank
tau coefficient to measure the relationship between them to
check if the type of mutation fault impacts TCP evaluation.

RQ8: The goal of this RQ is to analyze the similarity of
detected faults for different techniques to better understand
the level of equivalency of differing strategies. It is clear



that this type of analysis is important, as while popular
metrics such as APFD measure the effectiveness between two
different techniques, this does not reveal the similarity of
the test cases in terms of uncovered faults. For instance,
let us consider two TCP techniques A and B. If technique
A achieves an APFD of ≈ 60% and technique B achieves
an APFD of ≈ 20%, while this gives a measure of relative
effectiveness, the APFD does not reveal how similar or
orthogonal the techniques are in terms of the faults detected.
For instance, all of the faults uncovered by top ten test cases
from technique B could be different than those discovered
by top ten test cases from technique A, suggesting that the
techniques may be complimentary. To evaluate the similarity
between different TCP techniques, we utilize and build
upon similarity analysis used in recent work [28], [29] and
construct binary vector representations of detected faults
for each technique and then calculate the distance between
these vectors as a similarity measure.

We employ two methodologies in order to give a com-
prehensive view of the similarity of the studied TCPs. At the
core of both of these techniques is a measure of similarity us-
ing the Jaccard distance to determine the distance between
vectorized binary representations of detected faults (where
a 1 signifies a found fault and a 0 signifies an undiscovered
fault) for different techniques across individual or groups of
subject programs. We use the following definition [28]:

J(T iA, T
i
B) =

| T iA ∩ T iB |
| T iA ∪ T iB |

(5)

where T iA represents the binary vectorized discovered faults
of some studied technique A after the execution of the ith

test case in the techniques prioritized set, and T iB repre-
sents the same meaning for some studied technique B and
0 ≤ J(T iA, T

i
B) ≤ 1. While we use the same similarity

metric as in [28], we report two types of results: 1) results
comparing the similarity of the studied static and dynamic
techniques using the average Jaccard coefficient across all
subjects at different test-case granularities, and 2) results
comparing each technique in a pair-wise manner for each
subject program. For the second type of analysis, we exam-
ine each possible pair of techniques and rank each subject
program according to Jaccard coefficient as highly similar
(1.0 - 0.75), similar (0.749 - 0.5), dissimilar (0.49 - 0.25), or
highly dissimilar (0.249-0). This gives a more informative
view of how similar two techniques might be for different
subject programs. To construct both types of binary fault
vectors, we use the same fault selection methodology used
to calculate the APFD, that is, we randomly sample 500
faults from the set of discoverable faults for each subject.

In addition, we also want to understand whether the
studied TCP techniques’ most highly prioritized test cases
uncover comparatively different numbers of mutants gen-
erated by different operators. Thus, for different cut points,
particularly the top cut points (e.g. 10%), we examine the
both the total number and relative percentages of different
types of mutants detected by each TCP technique to better
understand the types of mutants which are easily detected
by most highly prioritized test cases for different techniques.

RQ9: The final goal of our study is to understand the effi-
ciency of static techniques, in terms of execution costs. Note
that, we only focus on the efficiency of static techniques,

since dynamic techniques are typically run on the previous
version of a program to collect coverage information, and
thus the temporal overhead is quite high and well-studied.
To evaluate the efficiency of static techniques, we collect two
types of time information: the time for pre-processing and
the time for prioritization. The time for pre-processing con-
tains different phases for different techniques. For example,
TPcg−tot and TPcg−add need to build the call graphs for each
test case. TPstr needs to analyze the source code to extract
identifiers and comments for each test case. Besides, TPtopic
needs to pre-process extracted textual information and use
the R-LDA package and Mallet [49] to build topic models.
The time for prioritization refers to the time cost for TCP on
different subjects.

3.4 Tools and Experimental Hardware
We reimplemented all of the studied dynamic and static
TCPs in Java according to the specifications and descriptions
in their corresponding papers since the implementations
were not available from the original authors and had to
be adapted to our subjects. Three of the authors carefully
reviewed and tested the code to make sure the reimplemen-
tation is reliable.
TPcg−tot/TPcg−add: Following the paper by Zhang et al. [76],
we use the IBM T. J. Watson Libraries for Analysis (WALA) [66]
to collect the RTA static call graph for each test, and traverse
the call graphs to obtain a set of relevant methods for each
test case. Then, we implement two greedy strategies (i.e.,
total and additional) to prioritize test cases.
TPstr: Based on the paper by Ledru et al. [43], each test case
is treated as one string without any preprocessing. Thus, we
directly use JDT [31] to collect the textual test information
for each JUnit test, and then calculate the Manhattan dis-
tances between test cases to select the one that is farthest
from the prioritized test cases.
TPtopic−r and TPtopic−m: Following the topic-based TCP
paper [63], we first use JDT to extract identifiers and com-
ments from each JUnit test, and then pre-process those (e.g.,
splitting, removing stop words, and stemming). To build
topic models, we used the R-LDA package [42] for TPtopic−r
and Mallet [49] for TPtopic−m. All parameters are set with
previously used values [63], [9]. Finally, we calculated the
Manhattan distances between test cases, and selected the
ones that are farthest from the prioritized test cases.
Dynamic TCP techniques: We use the ASM bytecode ma-
nipulation and analysis toolset [7] to collect the coverage in-
formation for each test. Specifically, in our empirical study, it
obtains a set of statements that can be executed by each test
method or test class. The greedy techniques are replicated
based on the paper by Rothermel et al. [56]. For the ART
and search-based techniques, we follow the methodology
described in their respective papers [32], [45].
Experimental Hardware: The experiments were carried out
on Thinkpad X1 laptop with Intel Core i5-4200 2.30 GHz
processor and 8 GB DDR3 RAM and eight servers with 16,
3.3 GHz Intel(R) Xeon(R) E5-4627 CPUs, and 512 GB RAM,
and one server with eight Intel X5672 CPUs and 192 GB
RAM. All the execution time information (i.e., both of the
execution time to run TCP techniques and the execution
time for each test case) was collected on the laptop to ensure
that the analysis for time costs is consistent.
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(a) The values of APFD on test-class level across all subject programs.
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(b) The values of APFDc on test-class level across all subject programs.

Fig. 1: The box-and-whisker plots represent the values of APFD and APFDc for different TCP techniques at test-class level.
The x-axis represents the APFD and APFDc values. The y-axis represents the different techniques. The central box of each
plot represents the values from the lower to upper quartile (i.e., 25 to 75 percentile).

TABLE 5: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc values at test-class level, which are
depicted in Figure 1. The last column shows the results for Kendall tau Rank Correlation Coefficient τb between the average
APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.778 0.790 0.777 0.675 0.745 0.738 0.769 0.633 0.765 1.777e-18
0.722HSD A A A B A A A B A

APFDc Avg 0.652 0.679 0.667 0.574 0.657 0.614 0.650 0.612 0.649 0.154HSD A A A A A A A A A

TABLE 6: Results for the ANOVA, and Tukey HSD tests on the average APFD and APFDc values at test-method level, which
are depicted in Figure 2. The last column shows the results for Kendall tau Rank Correlation Coefficient τb between the average
APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.764 0.818 0.813 0.781 0.817 0.809 0.898 0.798 0.885 2.568e-28
0.556HSD C B B BC B B A BC A

APFDc Avg 0.638 0.737 0.671 0.678 0.679 0.633 0.708 0.669 0.735 0.053HSD A A A A A A A A A

4 RESULTS

In this section, we outline the experimental results to answer
the RQs listed in Section 3.

4.1 RQ1 & RQ2 & RQ3: Effectiveness of Studied Tech-
niques Measured by APFD and APFDc at Different Gran-
ularities
4.1.1 Results at Test Class Level
The values of APFD across all subjects at the test class
level are shown in Figure 1a and Table 5. Based on the
results, we observe that, somewhat surprisingly at the test-
class level, the static TPcg−add technique performs the best
across all studied TCP techniques (including all dynamic
techniques) with an average APFD value of 0.790 (see
Table 5). Among the static techniques, TPcg−add performs
best, followed by TPcg−tot, TPstr, TPtopic−m and TPtopic−r .
The best performing dynamic technique at class-level is

TPadd followed by TPsearch, TPtotal, and TPart. It is notable
that at test-class level granularity, the most effective static
technique TPcg−add performs even better than the most
effective dynamic technique TPadd in terms of APFD, i.e.,
0.790 versus 0.769. The experimental results on APFDc val-
ues further confirm the above finding. Shown in Figure 1b
and Table 5, the static TPcg−add technique outperforms all
the studied TCP techniques with an average APFDc value
of 0.679, whereas even the most effective dynamic TPadd
only achieves an average APFDc value of 0.650. Further-
more, the Kendall τb Rank Correlation value of 0.722 also
demonstrates that APFDc values are generally consistent
with APFD values at the test class level. Therefore, at the
test-class level, the call-graph based strategies can even
outperform dynamic-coverage based strategies, which is no-
table. Additionally, overall the static techniques outperform
the dynamic techniques at the test-class level. One potential
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(a) The values of APFD on test-method level across all subject programs.
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(b) The values of APFDc on test-method level across all subject programs.

Fig. 2: The box-and-whisker plots represent the values of APFD and APFDc for different TCP techniques at test-method
level. The x-axis represents the APFD and APFDc values. The y-axis represents the different techniques. The central box of
each plot represents the values from the lower to upper quartile (i.e., 25 to 75 percentile).

(a) The values of APFD and APFDc for different TCP tech-
niques across all subject programs on test-class level.

(b) The values of APFD and APFDc for different TCP tech-
niques across all subject programs on test-method level.

Fig. 3: The box-and-whisker plots represent the values of
APFDc for different TCP techniques at different test granu-
larities. The x-axis represents the APFDc values. The y-axis
represents the different techniques. The central box of each
plot represents the values from the lower to upper quartile
(i.e., 25 to 75 percentile).

reason for this is that many program statements are covered
several times by tests at the test-class level, making the
traditional dynamic techniques less precise, since they do
not consider the number of times that a statement is covered.

While Figure 1 shows the detailed APFD and APFDc
values for each studied subject at test-class level, Figure 3a
further shows the ranges of APFD and APFDc values across

all subjects at test-class level, reflecting the robustness of
the studied approaches across both metrics. For APFD,
the range of average values across all subjects at test-class
level for TPadd is the smallest (i.e.,0.523-0.947), implying
that the performance of TPadd is usually stable despite
differing subjects for this metric. Conversely, the ranges of
APFD values for TPstr and TPart are much larger (0.391-
0.917 for TPstr , 0.187-0.852 for TPart), implying that their
performance varies across different types of subjects. How-
ever, we observe different trends for the APFDc metric. The
ranges of APFDc values are all much larger than those of
APFD values. This is most likely due to the fact that APFDc
considers execution times, which we found to be randomly
distributed, resulting in a larger variation in results across
different subjects.

To further investigate the finding that static techniques
tend to have a higher variance in terms of effectiveness
depending on the program type, we investigated further
by inspecting several subject programs. One illustrative
example is that scribe-java scores 0.646 and 0.606 for the
average values of APFD under TPstr and TPtopic−r re-
spectively, which are notably worse than the results of
TPcg−tot (0.718) and TPcg−add (0.733). To understand the
reason for this discrepancy, we analyzed the test code and
found that Scribe-java is documented/written more poorly
than other programs. For instance, the program uses mean-
ingless comments and variable names such as ‘param1’,
‘param2’, ‘v1’, ‘v2’ etc. This confirms the previously held
notion [63] that static techniques which aim to prioritize test-
cases through text-based diversity metrics experience per-
formance degradation when applied to test cases written in
a poor/generic fashion. It also suggests that researchers may
take the subject characteristics into account when choosing
TCP techniques in future work.



TABLE 7: The table shows the results of Wilcoxon signed rank test on the average APFD values for each pair of TCP techniques.
The techniques T1 to T9 refer to TPcg−tot, TPcg−add, TPstr , TPtopic−r , TPtopic−m, TPtotal, TPadd, TPart, TPsearch respectively. For
each pair of TCP techniques, there are two sub-cells. The first one refers to the p-value at test-class level and the second one
refers to the p-value at test-method level. The p-values are classfied into three categories, 1) p>0.05, 2) 0.01<p<0.05, 3) p<0.01.
The p-values for categories p>0.05 and p<0.01 are presented as p>0.05 and p<0.01 respectively. If a p-value is less than 0.05, the
corresponding cell is shaded.

T2 T3 T4 T5 T6 T7 T8 T9
T1 0.02 <0.01 >0.05 <0.01 <0.01 >0.05 <0.01 <0.01 0.02 <0.01 >0.05 <0.01 <0.01 <0.01 >0.05 <0.01
T2 - - >0.05 >0.05 <0.01 <0.01 <0.01 >0.05 <0.01 >0.05 >0.05 <0.01 <0.01 >0.05 >0.05 <0.01
T3 - - - - <0.01 <0.01 <0.01 >0.05 <0.01 >0.05 >0.05 <0.01 <0.01 >0.05 >0.05 <0.01
T4 - - - - - - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.05 0.02 <0.01 <0.01
T5 - - - - - - - - >0.05 >0.05 0.03 <0.01 <0.01 0.04 0.05 <0.01
T6 - - - - - - - - - - <0.01 <0.01 <0.01 >0.05 <0.01 <0.01
T7 - - - - - - - - - - - - <0.01 <0.01 0.04 <0.01
T8 - - - - - - - - - -- - - - - <0.01 <0.01

TABLE 8: The table shows the results of Wilcoxon signed rank test on the average APFDc values for each pair of TCP techniques.
This table follows exactly the same format as Table 7.

T2 T3 T4 T5 T6 T7 T8 T9
T1 0.02 <0.01 0.03 >0.05 0.04 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 <0.01 >0.05 >0.05 >0.05 <0.01
T2 - - >0.05 0.01 <0.01 <0.01 >0.05 0.04 >0.05 <0.01 >0.05 >0.05 >0.05 <0.01 >0.05 >0.05
T3 - - - - 0.02 >0.05 >0.05 >0.05 >0.05 0.05 >0.05 0.03 >0.05 >0.05 >0.05 <0.01
T4 - - - - - - <0.01 >0.05 >0.05 >0.05 <0.01 >0.05 >0.05 >0.05 <0.01 <0.01
T5 - - - - - - - - >0.05 0.04 >0.05 >0.05 >0.05 >0.05 >0.05 <0.01
T6 - - - - - - - - - - <0.01 <0.01 >0.05 >0.05 0.01 <0.01
T7 - - - - - - - - - - - - >0.05 >0.05 >0.05 >0.05
T8 - - - - - - - - - - - - - - >0.05 <0.01

4.1.2 Results at Test Method Level

To further answer RQ3 we ran all of the subject TCP
techniques on the subject programs at the test-method level
so that we can compare to the results at the test-class level
outlined above (see Section 4.1.1). The results are shown
in Figure 2 and Table 6. In terms of APFD, when exam-
ining the static techniques with the test-method granularity,
they perform differently as compared to the results on
the test-class level. For example, although TPcg−add still
performs the best among static techniques, it is inferior to
the most effective dynamic technique TPadd (0.818 versus
0.898). This finding is consistent with previous studies [27].
Also, surprisingly, TPtopic−m (0.817) achieves almost the
same average APFD values as TPcg−add, followed by TPstr,
TPtopic−r and TPcg−tot respectively. It is worth noting that
the effectiveness of the topic-model based technique varies
quite dramatically depending on the tools used for its im-
plementation: Mallet [49] significantly outperforms the R-
based implementation. Also, there is less variation in the
APFD values at the test-method level compared to those at
the test-class level, as shown in Figure 2 and Figure 3.

In terms of APFDc, the results for test-method level
are generally consistent with the results on test-class level.
For example, while TPsearch tend to be the most effective
dynamic technique, the static TPcg−add outperforms all the
studied static and dynamic techniques. The likely reason
is that dynamic techniques tend to favor tests with higher
coverage, which tend to cost more time to execute, leading
to limited effectiveness in actual time cost reduction. The
results of the HSD analysis on the APFDc values at the
test-method level, indicate that all techniques are grouped
into the same level (level A), implying that different TCP
techniques share similar performance based on APFDc val-
ues, which is also consistent with the results of APFDc
values at the test-class level. When examining the ranges of
APFDc values for the test-method level (see Fig. 2 and Fig.

3), we find the APFDc values vary dramatically between
subject programs. When comparing the results of APFD
and APFDc values at the test-method level, the Kendall
τb rank coefficient τb is 0.556, impling that the APFDc
results are less consistent with the APFD results at the test-
method level. The reason is likely that test execution time
distributions which are uncontrolled have large impacts the
more effective/stable test-method-level results.

In addition, as a whole, the effectiveness of the dy-
namic techniques outpaces that of the static techniques at
method-level granularity for the APFD metric, with TPadd
performing the best of all studied techniques (0.898). For
the cost-cognizant APFDc metric, although there are no
clear trends, the static techniques tend to perform even
better than dynamic techniques, indicating the limitations
of dynamic information for actual regression testing time
reduction. Overall, on average, almost all static and dynamic
TCPs perform better on the test-method level as compared
to the results on the test-class level in terms of both APFD
and APFDc. Logically, this is not surprising, as using a
finer level of granularity (e.g., prioritizing individual test-
methods) gives each technique more flexibility, which leads
to more accurate targeting and prioritization.

Finally, to check for statistically significant variations in
the mean APFD and APFDc values across all subjects and
confirm/deny our null hypothesis for RQ1 and RQ2, we
examine the results of the one-way ANOVA and Tukey HSD
tests. The ANOVA test for APFD values, given in the second
to last column of Tables 5 & 6, are both well below our
established significance threshold of 0.05, thus signifying
that the subject programs are statistically different from one
another. This rejects the null hypothesisH0 and we conclude
that there are statistically significant differences between
different TCP techniques in terms of APFD. The results of
the Tukey HSD test also illustrate the statistically significant
differences between the static and dynamic techniques by



grouping the techniques into categories with A representing
the best performance and the following letters (e.g., B)
representing groups with worse performance. We see that
the groupings are similar for static and dynamic techniques.
In order to illustrate the individual relationships between
strategies, we present the results of the Wilcoxon signed
rank test for all pairs of techniques at both granularity levels
in Tables 7 and 8. The shaded cells represent statistically
significant differences between techniques across all the
subjects (e.g., p < 0.05). The Wilcoxon signed rank test
further confirms that different techniques have statistically
different APFD values at both test-class and test-method
levels, as indicated by the shaded boxes. On the contrary, the
results for APFDc ANOVA and HSD tests lead to different
observations – different techniques generally do not have
statistically different APFDc values (as shown in Tables 5
& 6), indicating that both static and dynamic techniques
tend to perform similalrly for APFDc values. The Wilcoxon
signed rank test for APFDc values of all pairs of techniques
is shown in Table 8. The small number of shaded cells (i.e.,
p < 0.05) further confirms that different techniques tend
to perform equivalently for APFDc. The likely reason for
this is that APFDc is impacted by an additional randomly-
distributed factor, i.e., tests tend to have randomly dis-
tributed execution times, leading to the observed results.
It should be noted that in contrast to our previous work
[47], our results for the HSD show less variance between the
different approaches for APFD at both test-class and test-
method level. This means that the approaches were grouped
in fewer differing groups by the HSD test, indicating per-
formance that is more comparatively similar. This illustrates
the affect of generalizing across more subject programs.

In summary we answer RQ1, RQ2 & RQ3 as follows:

RQ1: There is a statistically significant difference
between the APFD values of the two types (e.g., static
and dynamic) of studied techniques. On average, static
technique TPcg−add is the most effective technique at
test-class level, whereas dynamic technique TPadd is the
most effective technique at test-method level. Overall,
the static techniques outperform the dynamic ones at
test-class level, but the dynamic techniques outperform
the static ones at test-method level.

RQ2: For the APFDc values, there is no statistically
significant difference between the studied static and
dynamic techniques. APFDc values are generally con-
sistent with APFD values at test-class level but rela-
tively less consistent at test-method level. Similar to the
results from RQ1, on average, static TPcg−add technique
is the most effective technique at the test-class level, and
the static techniques outperform the dynamic ones as a
whole at test-class level. However, at test-method level,
TPcg−add also performs best overall, indicating the su-
periority of static techniques to dynamic techniques in
actual regression testing time reduction. Additionally,
APFDc values vary more dramatically across all subject
programs compared to AFPD.

RQ3: The test granularity significantly impacts the
effectiveness of TCP techniques in terms of both APFD
and APFDc, although the APFDc metric is affected to a
much lesser extent. All the studied techniques perform
better at test-method level as compared to test-class
level. There is also less variation in the APFD values at
method-level as compared to class-level, which signifies
that the performance as measured by this metric is
more stable at test-method level across the studied
techniques.

4.2 Impact of Subject Program’s Size
Since developers may apply TCP techniques to subject
systems in various sizes in practice, it is important to un-
derstand the potential impact of program size on the perfor-
mance of TCP techniques. Thus we examine the differences
between the performance of our studied TCP techniques on
our 29 smaller subject systems and 29 larger subject systems.
Table 9 and Table 10 present the TCP results at the test-class
level on smaller and larger subject systems, respectively;
similarly, Table 11 and Table 12 present the TCP results at
the test-method level on smaller and larger subject systems,
respectively.

From the tables, we can make the following observa-
tions. First, TCP techniques tend to perform better on larger
subject systems than smaller subject systems. For example,
for both test-class and test-method level, all the studied
TCP techniques perform better on larger subject systems in
terms of both APFD and APFDc. One potential reason is
that larger subject systems tend to have more tests, leaving
enough room for TCP techniques to reach optimization
thresholds. This finding also demonstrates the scalability
of the studied TCP techniques. Second, at the test-class
level, static TCP techniques tend to outperform dynamic
TCP techniques in terms of both APFD and APFDc on both
subsets of subject systems; in contrast, at the test-method
level, static TCP techniques are inferior to dynamic TCP
techniques on both subsets of subjects in terms of APFD,
while TPcg−add outperforms all the other studied dynamic
and static TCP techniques on both subsets of subjects in
terms of APFDc. This finding is consistent with our findings
in RQ1 and RQ2, indicating that subject size does not impact
our findings when comparing the relative performance of
the studied TCP techniques according to APFD and APFDc.
Third, most studied TCP techniques perform better at test-
method level as compared to test-class level in terms of
both APFD and APFDc on both subsets of our subjects. This
observation is also consistent with our comparative findings
for RQ3.

RQ4: All the studied TCP techniques tend to per-
form better on larger subject systems, indicating the
scalability of the studied TCP techniques. However,
when comparing the performance of different TCP
techniques to each other on either the large or small
programs, we find results consistent to using the entire



TABLE 9: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc values at test-class level across smaller
subject programs. The last column shows the results for Kendall tau Rank Correlation Coefficient τb between the average APFDc
and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.759 0.764 0.758 0.658 0.729 0.707 0.746 0.629 0.743 5.42E-8
0.5HSD A A A BC AB ABC A C A

APFDc Avg 0.618 0.633 0.653 0.563 0.652 0.558 0.592 0.585 0.591 0.503HSD A A A A A A A A A

TABLE 10: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc values at test-class level across larger
subject programs. The last column shows the results for Kendall tau Rank Correlation Coefficient τb between the average APFDc
and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.796 0.816 0.796 0.692 0.762 0.769 0.791 0.637 0.787 7.73E-10
0.667HSD B B B B B B A B A

APFDc Avg 0.686 0.724 0.681 0.586 0.661 0.670 0.708 0.640 0.706 0.132HSD A A A A A A A A A

TABLE 11: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc values at test-method level across
smaller subject programs. The last column shows the results for Kendall tau Rank Correlation Coefficient τb between the average
APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.751 0.799 0.799 0.771 0.804 0.797 0.885 0.791 0.878 2.29E-15
0.444HSD B B B B B B A B A

APFDc Avg 0.604 0.700 0.670 0.655 0.673 0.605 0.657 0.645 0.696 0.572HSD A A A A A A A A A

TABLE 12: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc values at test-method level across
larger subject programs. The last column shows the results for Kendall tau Rank Correlation Coefficient τb between the average
APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.777 0.837 0.827 0.791 0.829 0.821 0.912 0.805 0.892 3.21E-12
0.333HSD C BC C C C C A C AB

APFDc Avg 0.673 0.774 0.671 0.702 0.686 0.660 0.759 0.692 0.774 0.086HSD A A A A A A A A A

set of programs (both in terms of APFD(c) and differing
test-case granularities). Thus we can conclude that pro-
gram size has little effect when comparing the relative
performance of TCP techniques on a given subject.

4.3 Impact of Software Evolution
Figure 4 and Figure 5 present the impact of software evo-
lution on the studied TCP techniques at the test-class and
test-method levels, respectively. In each figure, each row
presents both the APFD and APFDc results on the corre-
sponding subject. In each sub-figure, the x-axis presents the
versions used as the old version during software evolution
(note that the most recent versions are always used as the
new version during software evolution), while the y-axis
presents the APFD or APFDc values. We show the APFD or
APFDc distributions of different technique using box-plots
of different colors, where the boxes represent the 25th to 75th
percentiles, the centerlines represent the median values, and
the dots represent the outlier points. Due to the limited
space, we only show the results of two subject programs.
The results of all twelve subject programs can be found
in our online appendix [48]. Following prior work [46],
using different versions as the old version during software
evolution allows us to understand the impact of software
evolution on TCP in details. To illustrate, for a project with n
versions, where (n >2), we will have a set of n−1 results for

applying each studied TCP technique. That is, running TCPs
on older program versions and then applying the prioritized
set of test cases on the faulty variants of the most recent
version (i.e., the latest versions with mutants) allows us to
understand the performance of TCP techniques in an evolu-
tionary scenario. Note that more recent project versions may
have tests not included in older project versions; we ignore
such tests since the studied techniques would not be able to
prioritize those tests based on old project versions.

If software evolution impacts TCP effectiveness, using
earlier program versions for test prioritization would likely
be less effective than using more up-to-date versions for
test prioritization due to code changes. In other words,
APFD/APFDc values should increase when using newer
versions for prioritization. However, we observe no such
trend for either APFD or APFDc for any TCP technique on
any studied subject at the test-class or test-method level.
This observation confirms prior work [46], [28] that code
changes do not impact the effectiveness of dynamic TCP
techniques in terms of APFD. Furthermore, our work is
the first to illustrate that the same finding holds for static
TCP techniques as well as the more practical APFDc met-
ric. These results most likely arise due to the fact that
all studied TCP techniques approximate fault detection
capabilities based on a certain set of criteria (such as call
graphs, textual information, or code coverage), and software
evolution usually does not result in large relative changes
between commits for these different criteria (e.g., some tests



(a) TCP results on geojson-jackson (APFD)

(b) TCP results on geojson-jackson (APFDc)

(c) TCP results on javapoet (APFD)

(d) TCP results on javapoet (APFDc)

Fig. 4: Test-Class-level test prioritization in evolution

may always have higher code coverage throughout project
evolution).

We also find that the performance comparison in terms
of APFD between dynamic and static TCP techniques is not
impacted by software evolution. For instance, static TCP
techniques tend to outperform dynamic TCP techniques in
terms of both APFD at the test-class granularity on most
subjects, while dynamic TCP techniques tend to outperform
static TCP techniques in terms of APFD at the test-method
granularity on most subjects. APFDc values tend to exhibit
more variance during software evolution. For example, for
the javapoet subject at test-class level, the static TPstr
technique outperforms all other techniques when using V8

information to prioritize tests for V8, while the dynamic
TPart technique performs the best when using V1 informa-
tion to prioritize tests for V8. One potential explanation for
this observation is that tests with similar fault detection ca-
pabilities may have totally different execution times during
evolution, causing high variances between APFDc values.

RQ5: On average, software evolution does not have
a clear impact on the measured effectiveness of the
studied TCP techniques. Corroborating results of RQ1

and RQ2, we find that the APFD values for techniques
tend to exhibit lower variance than APFDc values.



(a) TCP results on geojson-jackson (APFD)

(b) TCP results on geojson-jackson (APFDc)

(c) TCP results on javapoet (APFD)

(d) TCP results on javapoet (APFDc)

Fig. 5: Test-Method-level test prioritization in evolution

4.4 Impact of Mutant Quantities on TCP Effectiveness

Prior works examining TCP techniques generally directly
seed a certain number of faults to form a faulty version (or
groups of faulty versions) to investigate TCP effectiveness
according to the APFD or APFDc, similar to the setup
used in our study to answer RQ1-RQ3. However, we wish
to further analyze the impacts of the quantity of mutants
utilized in experimental settings and whether or not this
impacts the effectiveness of techniques. The experimental
results for APFD and APFDc are shown Tables 13 and
14, respectively. In each table, Column 1 lists the test-
case granularities studied, column 2 lists the number of

mutants seeded into each faulty version/group, columns
3-11 present the APFD/APFDc results for each studied
technique, and finally the last column presents the Kendall
τb Rank Correlation Coefficient between the average values
with each fault quantity and our default settings (shown
in Tables 5 and 6). From the tables, we make the following
observations. For both APFD and APFDc values, the mutant
quantity does not dramatically impact the results for all of
the studied techniques. For example, at the test-class level,
the average APFD values of TPcg−add range from 0.786
to 0.790 for all the studied fault quantity settings, while
its APFDc values range from 0.678 to 0.681. This finding
indicates that the effectiveness of the studied techniques



TABLE 13: Results for average APFD values on different sizes of mutation faults. The last column shows the results for Kendall
tau Rank Correlation Coefficient τb between the average APFD values with different sizes of mutation faults and the average
APFD values shown in Tables 5 and 6.

Granularity Sizes TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch τb

Test-class

1 0.772 0.786 0.775 0.67 0.741 0.737 0.771 0.639 0.767 0.944
2 0.776 0.788 0.775 0.671 0.745 0.738 0.771 0.639 0.768 1
3 0.776 0.788 0.777 0.673 0.746 0.738 0.769 0.638 0.766 0.944
4 0.777 0.789 0.777 0.675 0.745 0.739 0.771 0.637 0.768 0.944
5 0.777 0.789 0.778 0.675 0.746 0.739 0.771 0.635 0.767 0.944
6 0.777 0.79 0.777 0.675 0.746 0.738 0.77 0.634 0.767 1
7 0.778 0.79 0.777 0.675 0.746 0.738 0.769 0.633 0.766 1
8 0.778 0.79 0.777 0.676 0.746 0.738 0.77 0.633 0.766 1
9 0.778 0.79 0.777 0.676 0.746 0.738 0.769 0.633 0.766 1
10 0.778 0.79 0.777 0.676 0.747 0.738 0.77 0.634 0.766 1

Test-method

1 0.759 0.82 0.813 0.777 0.814 0.807 0.901 0.798 0.885 1
2 0.763 0.82 0.816 0.781 0.818 0.809 0.902 0.802 0.887 1
3 0.763 0.818 0.814 0.78 0.815 0.81 0.9 0.8 0.886 1
4 0.764 0.819 0.814 0.782 0.817 0.811 0.901 0.802 0.887 1
5 0.764 0.818 0.814 0.782 0.818 0.811 0.9 0.8 0.887 1
6 0.762 0.817 0.813 0.781 0.816 0.809 0.9 0.8 0.886 1
7 0.763 0.817 0.813 0.781 0.816 0.81 0.9 0.8 0.886 1
8 0.763 0.818 0.812 0.781 0.816 0.81 0.899 0.8 0.886 1
9 0.763 0.818 0.812 0.781 0.816 0.81 0.899 0.799 0.885 1
10 0.764 0.818 0.813 0.781 0.816 0.809 0.899 0.799 0.885 1

TABLE 14: Results for average APFDc values on different sizes of mutation faults. This table follows the same format as Table 13.

Granularity Sizes TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch τb

Test-class

1 0.655 0.681 0.668 0.572 0.658 0.619 0.653 0.622 0.652 0.944
2 0.653 0.679 0.668 0.571 0.66 0.616 0.652 0.621 0.652 0.944
3 0.653 0.679 0.669 0.574 0.66 0.617 0.651 0.619 0.65 0.944
4 0.652 0.678 0.667 0.575 0.657 0.617 0.652 0.615 0.651 1
5 0.652 0.678 0.668 0.575 0.659 0.616 0.651 0.614 0.651 1
6 0.653 0.68 0.667 0.575 0.658 0.616 0.65 0.613 0.65 1
7 0.653 0.68 0.667 0.575 0.658 0.616 0.65 0.613 0.65 1
8 0.654 0.681 0.667 0.576 0.659 0.617 0.651 0.613 0.65 1
9 0.654 0.68 0.668 0.576 0.659 0.617 0.651 0.613 0.65 1
10 0.654 0.68 0.668 0.576 0.659 0.616 0.651 0.613 0.65 1

Test-method

1 0.637 0.745 0.671 0.681 0.681 0.634 0.715 0.675 0.739 0.889
2 0.639 0.739 0.675 0.683 0.684 0.634 0.714 0.675 0.739 0.944
3 0.639 0.738 0.672 0.681 0.679 0.634 0.711 0.672 0.738 0.889
4 0.638 0.737 0.671 0.68 0.68 0.634 0.711 0.672 0.737 0.944
5 0.638 0.737 0.672 0.68 0.681 0.635 0.711 0.671 0.738 0.944
6 0.636 0.738 0.671 0.678 0.68 0.634 0.711 0.671 0.737 0.944
7 0.637 0.738 0.671 0.679 0.68 0.635 0.711 0.671 0.737 1
8 0.638 0.739 0.67 0.679 0.68 0.635 0.71 0.671 0.737 0.944
9 0.638 0.738 0.67 0.679 0.679 0.635 0.71 0.67 0.737 0.944
10 0.638 0.737 0.67 0.678 0.679 0.634 0.709 0.67 0.736 1

when seeding any number of mutants into each group will
be roughly equivalent, demonstrating the validity of the
mutant seeding processes of prior TCP work [46], [50], [73],
[27]. The largest impact that fault quantities had were for
the APFDc metric at the test-method level. The likely reason
for this is that the test-method level techniques prioritize
tests at a finer granularity, and thus are more sensitive to
the impact of execution time. For example, APFDc of fault
groups with only one fault in each group only considers
the time to detect only the first fault (while APFDc of fault
groups with 5 faults in each group considers the time to
detect all the 5 faults), leading to the higher variance.

RQ6: The quantity of mutants used, as stipulated
in the experimental settings of mutation analysis-based
evaluations of TCP approaches, does not significantly
impact the effectiveness of TCP techniques in terms of
either APFD or APFDc, demonstrating the validity of
the fault seeding process of prior work in this context.

4.5 Impact of Mutant Types on TCP Effectiveness
To answer RQ7, we further investigate whether different
mutant types may impact TCP results in terms of either
APFD and APFDc. The experimental results for APFD and
APFDc are shown Tables 15 and 16, respectively. In each
table, column 1 lists the test-case granularities studied,
column 2 lists the different types of mutants seeded into
each faulty version, columns 3-11 present the APFD/APFDc
results for each studied technique, and finally the last col-
umn presents the Kendall τb Rank Correlation Coefficient
between the average APFD/APFDc values with each fault
type and our default settings (shown in Tables 5 and 6).

From the tables, we can make the following
observations. First, overall the vast majority of the
studied mutant types tend to have a medium to high
coefficient (i.e., the range of Kendall correlation coefficient
values is from 0.5 to 1.0). This implies that the performance
of TCP techniques when applied to detecting only certain
mutant types highly correlates to the performance observed
when applied to detecting all mutants. This indicates
that the findings in prior work on TCP (including this
work) generally hold across mutants seeded with differing
mutation operators.



TABLE 15: Results for average APFD values on different types of mutation faults. The last column shows the results for Kendall
tau Rank Correlation Coefficient τb between the average APFD values with different types of mutation faults and the average
APFD values shown in Tables 5 and 6.

Gra. Types TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch τb

Class

NegateConditionals 0.785 0.796 0.792 0.699 0.762 0.749 0.788 0.677 0.784 0.889
RemoveConditional 0.792 0.803 0.794 0.703 0.764 0.755 0.792 0.679 0.788 0.944

ConstructorCall 0.784 0.797 0.787 0.682 0.757 0.74 0.772 0.663 0.766 0.944
NonVoidMethodCall 0.774 0.783 0.774 0.668 0.74 0.731 0.761 0.626 0.756 1

Math 0.782 0.787 0.776 0.685 0.748 0.706 0.775 0.657 0.772 1
MemberVariable 0.798 0.816 0.772 0.69 0.752 0.776 0.794 0.676 0.79 0.778
InlineConstant 0.76 0.778 0.776 0.687 0.752 0.707 0.752 0.641 0.75 0.889

Increments 0.791 0.815 0.792 0.725 0.784 0.726 0.8 0.7 0.796 0.722
ArgumentPropagation 0.775 0.787 0.775 0.676 0.751 0.738 0.769 0.624 0.766 1
ConditionalsBoundary 0.787 0.81 0.809 0.709 0.776 0.737 0.78 0.69 0.778 0.944

Switch 0.859 0.838 0.882 0.822 0.856 0.849 0.867 0.757 0.864 0.5
VoidMethodCall 0.782 0.781 0.771 0.659 0.72 0.757 0.749 0.623 0.748 0.778

InvertNegs 0.744 0.805 0.849 0.669 0.738 0.63 0.757 0.726 0.743 0.667
ReturnVals 0.781 0.802 0.779 0.671 0.748 0.732 0.762 0.651 0.759 1

RemoveIncrements 0.755 0.797 0.761 0.684 0.738 0.685 0.762 0.645 0.759 0.778

Method

NegateConditionals 0.787 0.842 0.845 0.809 0.851 0.829 0.921 0.828 0.911 0.889
RemoveConditional 0.792 0.846 0.848 0.813 0.852 0.834 0.925 0.832 0.914 0.889

ConstructorCall 0.756 0.816 0.8 0.782 0.806 0.791 0.886 0.808 0.873 0.833
NonVoidMethodCall 0.755 0.809 0.811 0.766 0.815 0.804 0.891 0.783 0.874 0.889

Math 0.745 0.801 0.789 0.776 0.795 0.777 0.902 0.809 0.882 0.778
MemberVariable 0.799 0.858 0.837 0.809 0.843 0.838 0.914 0.832 0.905 0.944
InlineConstant 0.735 0.777 0.785 0.766 0.788 0.774 0.881 0.794 0.869 0.667

Increments 0.771 0.853 0.857 0.835 0.865 0.81 0.942 0.854 0.926 0.722
ArgumentPropagation 0.752 0.821 0.824 0.768 0.829 0.81 0.899 0.793 0.881 0.889
ConditionalsBoundary 0.761 0.825 0.827 0.806 0.833 0.809 0.901 0.819 0.89 0.833

Switch 0.86 0.881 0.932 0.871 0.946 0.902 0.968 0.892 0.952 0.778
VoidMethodCall 0.771 0.805 0.792 0.766 0.8 0.81 0.871 0.779 0.862 0.778

InvertNegs 0.752 0.843 0.813 0.69 0.784 0.726 0.849 0.799 0.812 0.611
ReturnVals 0.766 0.842 0.82 0.785 0.819 0.792 0.889 0.803 0.876 0.889

RemoveIncrements 0.737 0.84 0.861 0.807 0.868 0.777 0.935 0.846 0.907 0.722

Second, we observe that there are several mutant types
with low correlation with our default fault seeding, e.g., the
Invert Negs Mutator and the Switch Mutator have
the lowest correlation in both studied test granularities for
both APFD and APFDc. Upon further investigation, we
found one likely explanation to be the small number of mu-
tants generated by such mutators. For example, the number
of Invert Negs Mutator is quite small as compared to
other type of mutation faults (since it is only applicable to
the cases of negative numbers), thus the results are dra-
matically different as compared to the results of mutation
faults with the default setting. The Switch Mutator also
has small Kendall correlation coefficient values as compared
to other mutators. This is due to the fact that like the Invert
Negs Mutator – the number of Switch Mutator faults
is quite small as compared to other type of mutation faults
(since it is only applicable to the cases of switches, which
are not intensively used in common programs). Thus, the
results are dramatically different as compared to the results
of mutation faults with the default setting. Furthermore,
we also observe that some mutation faults are more sub-
tle than others. For example, the mutation faults created
by Invert Negs Mutator tend to be more subtle than
other types of mutation faults. For example, the Invert
Negs Mutator operator simply inverts negation of an
integer and floating point number (e.g., changing “return
-i;” into “return i;”), while Non-Void Method Call
Mutator or Void Method Call Mutator directly re-
moves an entire method invocation. The subtle muta-
tion faults introduced by Invert Negs Mutator can be
harder to detect, making various static and dynamic tech-
niques perform worse on those faults since the coverage or
call graph information won’t provide precise guidance.

RQ7: The mutation operators used to seed faults,
as stipulated in the experimental settings of mutation
analysis-based evaluations of TCP approaches, do not
significantly impact the effectiveness of TCP techniques
in terms of either APFD or APFDc, demonstrating the
comparative validity of the fault seeding process of
prior work in this context.

4.6 Similarity between Uncovered Faults for Different
TCP techniques

The overall results for the fault similarity analysis are shown
in Figure 6. The two figures represent the results comparing
the average Jaccard similarity of the studied static tech-
niques to the studied dynamic techniques for all subject
programs across 500 randomly sampled faults at different
prioritization cut points. These results indicate that there
is only a small amount of similarity between these two
classifications of techniques at the higher level cut points.
More specifically, for test-method level, only ≈ 30% of
the detected faults are similar between the two types of
techniques for the top 10% of the prioritized test cases, and
at test-class level only about ≈ 25% are similar for the top
10% of prioritized test cases. This result illustrates one of the
key findings of this study: The studied static and dynamic
TCP techniques do not uncover similar program faults at the
top cut points of prioritized test cases. The potential reason
for these results is that different techniques use different
types of information to prioritize test cases. For example, the
studied static techniques typically aim to promote diversity
between prioritized test cases using similarity/diversity
metrics such as textual distance or call-graph information.



TABLE 16: Results for average APFDc values on different types of mutation faults. The last column shows the results for Kendall
tau Rank Correlation Coefficient τb between the average APFDc values with different types of mutation faults and the average
APFDc values shown in Tables 5 and 6.

Gra. Types TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch τb

Class

NegateConditionals 0.646 0.67 0.671 0.591 0.666 0.614 0.653 0.639 0.652 0.778
RemoveConditional 0.655 0.677 0.673 0.594 0.668 0.62 0.659 0.64 0.658 0.833

ConstructorCall 0.651 0.682 0.672 0.575 0.664 0.609 0.644 0.627 0.64 0.944
NonVoidMethodCall 0.642 0.665 0.652 0.556 0.645 0.598 0.628 0.593 0.625 1

Math 0.658 0.66 0.653 0.576 0.636 0.559 0.635 0.611 0.634 0.778
MemberVariable 0.668 0.699 0.656 0.587 0.66 0.649 0.671 0.641 0.667 0.556
InlineConstant 0.62 0.647 0.651 0.57 0.644 0.567 0.617 0.607 0.619 0.778

Increments 0.636 0.663 0.655 0.584 0.657 0.584 0.639 0.633 0.639 0.667
ArgumentPropagation 0.655 0.668 0.653 0.571 0.66 0.613 0.644 0.593 0.644 0.889
ConditionalsBoundary 0.64 0.673 0.674 0.591 0.655 0.604 0.643 0.639 0.647 0.722

Switch 0.806 0.775 0.803 0.663 0.779 0.736 0.763 0.822 0.759 0.333
VoidMethodCall 0.628 0.631 0.624 0.519 0.602 0.606 0.602 0.579 0.605 0.611

InvertNegs 0.537 0.579 0.705 0.498 0.666 0.472 0.746 0.747 0.714 0
ReturnVals 0.652 0.685 0.661 0.56 0.649 0.603 0.636 0.619 0.635 0.889

RemoveIncrements 0.605 0.639 0.664 0.546 0.628 0.544 0.602 0.649 0.602 0.5

Method

NegateConditionals 0.647 0.749 0.691 0.699 0.7 0.637 0.724 0.694 0.757 0.889
RemoveConditional 0.653 0.753 0.696 0.704 0.706 0.643 0.73 0.701 0.762 0.889

ConstructorCall 0.632 0.728 0.651 0.667 0.658 0.621 0.698 0.68 0.715 0.778
NonVoidMethodCall 0.617 0.716 0.653 0.648 0.664 0.619 0.688 0.637 0.709 0.889

Math 0.631 0.723 0.655 0.679 0.683 0.581 0.722 0.709 0.748 0.778
MemberVariable 0.673 0.773 0.701 0.708 0.703 0.657 0.731 0.715 0.761 0.778
InlineConstant 0.598 0.683 0.622 0.654 0.636 0.573 0.67 0.659 0.699 0.722

Increments 0.606 0.739 0.671 0.706 0.695 0.611 0.731 0.713 0.763 0.667
ArgumentPropagation 0.609 0.709 0.662 0.646 0.674 0.611 0.698 0.64 0.713 0.833
ConditionalsBoundary 0.605 0.716 0.641 0.682 0.661 0.612 0.695 0.68 0.73 0.722

Switch 0.752 0.787 0.786 0.78 0.796 0.768 0.812 0.777 0.839 0.722
VoidMethodCall 0.626 0.683 0.615 0.619 0.63 0.599 0.635 0.613 0.666 0.833

InvertNegs 0.7 0.816 0.6 0.537 0.655 0.651 0.66 0.713 0.752 0.389
ReturnVals 0.63 0.742 0.661 0.671 0.669 0.608 0.687 0.664 0.711 0.889

RemoveIncrements 0.597 0.752 0.699 0.697 0.726 0.575 0.709 0.73 0.743 0.667

TABLE 17: The tables show the classification of subjects on different granularities using Jaccard distance. The four values in each
cell are the numbers of subject projects, the faults of which detected by two techniques are highly dissimilar, dissimilar, similar
and highly similar respectively. The technique enumeration is consistent with Table 7.

(a) This table shows the classification of subjects at the cut point 10% on test-class level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

TP1 – – – – 3 2 16 37 11 13 18 16 28 20 3 7 14 18 17 9 11 19 13 15 15 14 16 13 32 18 5 3 15 15 13 15
TP2 3 2 16 37 – – – – 11 14 15 18 27 23 3 5 13 24 14 7 11 20 14 13 14 16 13 15 30 23 4 1 13 17 10 18
TP3 11 13 18 16 11 14 15 18 – – – – 30 13 10 5 12 12 14 20 20 15 12 11 18 18 13 9 33 15 6 4 18 18 12 10
TP4 28 20 3 7 27 23 3 5 30 13 10 5 – – – – 14 15 12 17 26 17 11 4 24 15 15 4 31 13 7 7 24 16 13 5
TP5 14 18 17 9 13 24 14 7 12 12 14 20 14 15 12 17 – – – – 19 24 7 8 21 20 10 7 30 16 7 5 21 20 9 8
TP6 11 19 13 15 11 20 14 13 20 15 12 11 26 17 11 4 19 24 7 8 – – – – 2 13 11 32 28 13 9 8 2 12 14 30
TP7 15 14 16 13 14 16 13 15 18 18 13 9 24 15 15 4 21 20 10 7 2 13 11 32 – – – – 25 16 13 4 0 0 2 56
TP8 32 18 5 3 30 23 4 1 33 15 6 4 31 13 7 7 30 16 7 5 28 13 9 8 25 16 13 4 – – – – 25 15 15 3
TP9 15 15 13 15 13 17 10 18 18 18 12 10 24 16 13 5 21 20 9 8 2 12 14 30 0 0 2 56 25 15 15 3 – – – –

Total 129 119 101 115 122 139 89 114 153 118 100 93 204 132 74 54 144 149 90 81 119 133 91 121 119 112 93 140 234 129 66 35 118 113 88 145

(b) This table shows the classification of subjects at the cut point 10% on test-method level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

TP1 – – – – 3 14 28 13 11 23 17 7 11 29 15 3 12 20 20 6 6 14 19 19 6 19 22 11 21 23 11 3 3 21 20 14
TP2 3 14 28 13 – – – – 7 18 24 9 5 22 26 5 6 19 28 5 1 21 25 11 2 14 23 19 14 21 19 4 3 14 25 16
TP3 11 23 17 7 7 18 24 9 – – – – 4 21 27 6 0 3 17 38 7 16 23 12 4 12 26 16 15 22 20 1 5 12 29 12
TP4 11 29 15 3 5 22 26 5 4 21 27 6 – – – – 6 22 26 4 7 27 21 3 5 26 23 4 12 25 19 2 4 26 22 6
TP5 12 20 20 6 6 19 28 5 0 3 17 38 6 22 26 4 – – – – 7 17 24 10 6 5 34 13 13 24 20 1 7 7 34 10
TP6 6 14 19 19 1 21 25 11 7 16 23 12 7 27 21 3 7 17 24 10 – – – – 1 11 29 17 19 21 16 2 2 11 26 19
TP7 6 19 22 11 2 14 23 19 4 12 26 16 5 26 23 4 6 5 34 13 1 11 29 17 – – – – 10 19 26 3 1 3 6 48
TP8 21 23 11 3 14 21 19 4 15 22 20 1 12 25 19 2 13 24 20 1 19 21 16 2 10 19 26 3 – – – – 13 17 23 5
TP9 3 21 20 14 3 14 25 16 5 12 29 12 4 26 22 6 7 7 34 10 2 11 26 19 1 3 6 48 13 17 23 5 – – – –

Total 73 163 152 76 41 143 198 82 53 127 183 101 54 198 179 33 57 117 203 87 50 138 183 93 35 109 189 131 117 172 154 21 38 111 185 130

In contrast, the studied dynamic TCPs consider statement-
level dynamic coverage to prioritize test cases. This finding
raises interesting questions for future work regarding the
possibility of combining static and dynamic information and
the relative importance of faults that differing techniques
might uncover. It should be noted that different coverage
granularities for dynamic TCPs may also effect the results
of similarity, however we leave such an investigation for
future work. From these figures we can also conclude that
the techniques are slightly more similar at method level than
at class level.

To further illustrate this point we calculated the Jaccard
coefficients for each pair of TCPs for each subject program,
and show the results in Table 17 and Table 18. For each pair

of techniques we group the subjects into the categories de-
scribed in Section 3. Due to space limitations, we only show
results for the top 10% and top 50% of prioritized test-cases,
a complete dataset can be found at [48]. The results confirm
the conclusions drawn from Figure 6. It is clear that when
comparing the studied static and dynamic techniques, more
subjects are classified into the highly-dissimilar and dissimilar
categories at the top 10% cut point for both of test-method
and test-class levels. Another relevant conclusion that can
be made is that the dissimilarity between techniques is
not universal across all subjects. That is, even though two
techniques may be dissimilar across several subjects, there
are some cases where similarity still exists. This suggests
that only certain types of programs that exhibit different



TABLE 18: The tables show the classification of subjects on different granularities using Jaccard distance. The four values in each
cell are the numbers of subject projects, the faults of which detected by two techniques are highly dissimilar, dissimilar, similar
and highly similar respectively. The technique enumeration is consistent with Table 7.

(a) This table shows the classification of subjects at the cut point 50% on test-class level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

TP1 – – – – 0 2 10 46 0 1 10 47 1 6 30 21 1 3 17 37 0 6 17 35 0 2 22 34 2 9 29 18 0 2 22 34
TP2 0 2 10 46 – – – – 1 0 9 48 0 6 28 24 0 2 17 39 0 2 23 33 0 1 17 40 2 7 24 25 0 1 16 41
TP3 0 1 10 47 1 0 9 48 – – – – 1 6 23 28 0 2 11 45 1 4 19 34 1 1 16 40 2 9 21 26 1 1 16 40
TP4 1 6 30 21 0 6 28 24 1 6 23 28 – – – – 0 7 20 31 0 7 32 19 1 3 29 25 4 9 19 26 1 3 29 25
TP5 1 3 17 37 0 2 17 39 0 2 11 45 0 7 20 31 – – – – 0 7 20 31 0 4 17 37 3 7 25 23 0 4 18 36
TP6 0 6 17 35 0 2 23 33 1 4 19 34 0 7 32 19 0 7 20 31 – – – – 0 2 18 38 2 15 28 13 0 2 18 38
TP7 0 2 22 34 0 1 17 40 1 1 16 40 1 3 29 25 0 4 17 37 0 2 18 38 – – – – 2 11 13 32 0 0 0 58
TP8 2 9 29 18 2 7 24 25 2 9 21 26 4 9 19 26 3 7 25 23 2 15 28 13 2 11 13 32 – – – – 2 10 13 33
TP9 0 2 22 34 0 1 16 41 1 1 16 40 1 3 29 25 0 4 18 36 0 2 18 38 0 0 0 58 2 10 13 33 – – – –

Total 4 31 157 272 3 21 144 296 7 24 125 308 8 47 210 199 4 36 145 279 3 45 175 241 4 24 132 304 19 77 172 196 4 23 132 305

(b) This table shows the classification of subjects at the cut point 50% on test-method level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

TP1 – – – – 1 0 20 37 0 3 20 35 1 1 31 25 1 3 17 37 0 1 13 44 0 1 17 40 1 1 23 33 0 1 17 40
TP2 1 0 20 37 – – – – 0 1 10 47 0 1 16 41 0 0 15 43 0 2 16 40 0 0 9 49 0 0 12 46 0 0 10 48
TP3 0 3 20 35 0 1 10 47 – – – – 0 2 18 38 0 0 3 55 0 1 12 45 0 0 6 52 0 1 10 47 0 0 8 50
TP4 1 1 31 25 0 1 16 41 0 2 18 38 – – – – 0 2 12 44 0 2 20 36 0 0 13 45 0 0 14 44 0 0 14 44
TP5 1 3 17 37 0 0 15 43 0 0 3 55 0 2 12 44 – – – – 0 0 16 42 0 0 5 53 0 1 7 50 0 0 6 52
TP6 0 1 13 44 0 2 16 40 0 1 12 45 0 2 20 36 0 0 16 42 – – – – 0 0 10 48 0 0 19 39 0 0 9 49
TP7 0 1 17 40 0 0 9 49 0 0 6 52 0 0 13 45 0 0 5 53 0 0 10 48 – – – – 0 0 3 55 0 0 2 56
TP8 1 1 23 33 0 0 12 46 0 1 10 47 0 0 14 44 0 1 7 50 0 0 19 39 0 0 3 55 – – – – 0 0 2 56
TP9 0 1 17 40 0 0 10 48 0 0 8 50 0 0 14 44 0 0 6 52 0 0 9 49 0 0 2 56 0 0 2 56 – – – –

Total 4 11 158 291 1 4 108 351 0 8 87 369 1 8 138 317 1 6 81 376 0 6 115 343 0 1 65 398 1 3 90 370 0 1 68 395
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(a) Class-level results
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(b) Method-level Results

Fig. 6: Average Jaccard similarity of faults detected between
static and dynamic techniques across all subjects at method
and class-level granularity.

characteristics may present the opportunity of performance
improvement for TCPs by using both static and dynamic
information. In addition, at the cut point for the top 50%
of prioritized test cases, it is obvious that fewer subjects are
classified into the highly-dissimilar and dissimilar categories.
This is not surprising, because as the cut point increases the
different techniques tend to discover more faults, limiting
the potential for variance.

There are two potential reasons why we might observe
higher numbers of dissimilar faults detected at the highest
cut points: 1) different types of mutants are being detected;

and 2) mutants of the same type in different locations are
being detected. To investigate whether our observations
are due to different fault types, we examine the counts
and the percentages for different types of mutants that are
detected by top 10% test cases at both the test-class and
test-method level. The results are shown in Figures 7 and 8.
When observing that the ratio for different types of mutation
faults detected by different TCP techniques, we find that, as
a whole, all TCP techniques detect a similar ratio of each
mutant type, implying that mutant type is generally not the
cause for the dissimilar faults at the higher cut points, but
rather, mutants of the same type present different locations
in source code are the more likely explanation.

RQ8: The studied static and dynamic TCP tech-
niques tend to discover dissimilar faults for the most
highly prioritized test cases. Specifically, at the test-
method level static and dynamic techniques agree only
on ≈ 35% of uncovered faults for the top 10% of priori-
tized test cases. Additionally, a subset of subjects exhibit
higher levels of detected fault similarity, suggesting that
only software systems with certain characteristics may
benefit from differing TCP approaches. Furthermore,
the most highly prioritized test cases by different TCP
techniques share similar capabilities in detecting differ-
ent types of mutation faults.

4.7 Efficiency of Static TCP Techniques
The results of time costs for the studied static techniques
at both of test-method and test-class levels are shown in
Table 19. Note that, the time of pre-processing for TPcg−tot
and TPcg−add are the same for both method and class
levels. As the table shows, all studied techniques require
similar time to pre-process the data at both method and
class levels and to rank test cases on class level. But the
times for prioritization are quite different at method level.
We find that TPcg−tot and TPcg−add take much less time
to prioritize test cases (totaling 23.78 seconds and 37.02
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Fig. 7: Counts and percentage for different types of mutation faults across all subjects at cut point 10% for class-level
granularity. The types of mutation faults are classified based on the mutation operators shown in Table 3.
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Fig. 8: Counts and percentage for different types of mutation faults across all subjects at cut point 10% for method-level
granularity. The types of mutation faults are classified based on the mutation operators shown in Table 3.

TABLE 19: Execution costs for the static TCP techniques. The table lists the average, min, max, and sum of costs across all
subject programs for both test-class level and test-method level (i.e., cost at test-class level/cost at test-method level). Time
is measured in second.

Techniques Pre-processing Test Prioritization
Avg. Min Max Sum Avg. Min Max Sum

TPcg−tot 244.14/244.14 1.21/1.21 13785.86/13785.86 14159.97/14159.97 0.20/0.41 0/0 3.10/10.58 11.37/23.78
TPcg−add 244.14/244.14 1.21/1.21 113785.86/13785.86 14159.97/14159.97 0.18/0.64 0/0 2.87/19.98 10.59/37.02

TPstr 0.35/0.37 0.04/0.04 2.95/2.41 20.04/21.63 4.03/1,359.24 0.01/0.02 115.82/57,134.30 233.76/78,835.97
TPtopic−r 0.41/1.55 0.03/0.09 3.81/14.80 24.99/89.63 0.15/832.95 0/0.01 1.72/40,594.66 8.50/48,310.93
TPtopic−m 1.51/3.79 0.13/0.22 12.10/50.14 87.76/219.93 0.19/268.51 0/0.07 1.98/10,925.26 10.95/15,573.71

seconds), as compared to TPstr (totalling 78,835.97 sec-
onds), TPtopic−r (totalling 48,310.93 seconds) and TPtopic−m
(totalling 15,573.71 seconds). In particular, the following
three techniques, TPstr , TPtopic−r , and TPtopic−m take much
longer time on some subjects (e.g., P53 and P58 ). These
subjects have a large number of test cases (see Table 2),
implying that TPstr, TPtopic−r and TPtopic−m will take more
time as the number of test cases increases. Overall, all
techniques take a reasonable amount of time to preprocess
data and prioritize test cases. At test-method level, TPcg−tot
and TPcg−add are much more efficient. TPstr , TPtopic−r
and TPtopic−m require more time to prioritize increasing
numbers of test cases.

RQ9: On test-method level, TPcg−tot and TPcg−add
are the most efficient in prioritizing test cases. TPstr,
TPtopic−r and TPtopic−m take more time when the num-
ber of test cases increases. The time of pre-processing
and prioritization on test class level for all static tech-
niques are quite similar.

5 THREATS TO VALIDITY

Threats to Internal Validity: In our implementation, we
used PIT to generate mutation faults to simulate real pro-
gram faults. One potential threat is that the mutation faults
may not reflect all “natural” characteristics of real faults.
However, mutation faults have been widely used in the
domain of software engineering research and have, under
proper circumstances, been demonstrated to be representa-
tive of the actual program faults [33]. Further threats related
to mutation testing include the potential bias introduced
by equivalent and trivial mutants. In the context of our
experimental settings, equivalent mutants will not be de-
tected by test cases. As explained in Section 3, we ignore
all mutants that cannot be detected by test cases. Thus, we
believe that this threat is sufficiently mitigated. To answer
RQ1-RQ3, we randomly selected 500 faults (100 groups
and five faults per group) for each subject system, which
may impact the evaluation of TCP performance. However,
this follows the guidelines and methodology of previous
studies [73], [46], minimizing this threat. Additionally, we
also introduce two research questions, RQ4 and RQ5, to
investigate the impact of mutant quantities and type on
TCP evaluation, allowing us to examine the validity of past
evaluations of TCP effectiveness. There is also a potential



threat due to trivial/subsumed mutants (e.g., those that are
easily distinguished from the original program) outlined in
recent work [28], [53]. The trivial or subsumed mutants may
potentially impact the results (e.g., inflate the APFD values).
However, we do not specifically control the trivial and sub-
sumed mutants, following the body of previous work in the
TCP area [73], [50], [46], since in practice real faults may also
be trivial or subsume each other. In addition, we involve a
large set of randomly selected mutants, further mitigating
this threat to validity. We encourage future studies to further
examine this potential threat.

To perform this study we reimplemented eight TCP
techniques presented in prior work. It is possible that there
may be some slight differences between the original authors’
implementations and our own. However, we performed
this task closely following the technical details of the prior
techniques and set parameters following the guidelines in
the original publications. Additionally, the authors of this
paper met for and open code review regarding the studied
approaches. Furthermore, based on our general findings, we
believe our implementations to be accurate.
Threats to External Validity: The main external threat to
our study is that we experimented on 58 software systems,
which may impact the generalizability of the results. Involv-
ing more subject programs would make it easier to reason
about how the studied TCP techniques would perform
on software systems of different languages and purposes.
However, we chose 58 systems with varying sizes (1.2KLoC
- 83.0 KLoC) and different numbers of detectable mutants
(132 - 46,429), which makes for a highly representative
set of Java programs, more so than any past study. Addi-
tionally, some subjects were used as benchmarks in recent
papers [58]. Thus, we believe our study parameters have
sufficiently mitigated this threat to a point where useful and
actionable conclusions can be drawn in the context of our
research questions. In addition, we seeded mutants using
operators provided in PIT. It is possible that having different
types of operators or using different mutation analysis tool
may impact the results of our study. However, PIT is one
of the most popular mutation analysis tools and has been
widely used in software testing research. Thus, we believe
our design of the study has mitigated this threat. Finally,
while it would be interesting to investigate the effectiveness
of TCPs on detecting real regression faults, this is a difficult
task. A large set of real regression faults is notoriously hard
to collect in practice. This is mainly due to the fact that dur-
ing real-world software development, the developers usu-
ally run regression tests before committing new revisions to
the code repositories, and will fix any regression faults be-
fore the commits, leaving few real regression faults recorded
in the code repositories. On the other hand, mutants have
been shown to be suitable for simulating real faults for
software-testing experimentation [33], [3] (including test-
prioritization experimentation [15]). Furthermore, mutation
testing is widely used in recent TCP research work [46], [28].
Thus, in this paper we evaluate TCP effectiveness in terms
of detecting mutants, and leave the investigation of TCP
performance on real regression faults as future work.

Finally, we selected four static TCP techniques to exper-
iment with in our empirical study. There are some other
recent works proposing static TCP techniques [6], [58], but

we focus only on those which do not require additional in-
puts, such as code changes or requirements in this empirical
study. Also, we only compared the static techniques with
four state-of-art dynamic TCP techniques with statement-
level coverage. We do not study the potential impact of dif-
ferent coverage granularities on dynamic TCPs. However,
these four techniques are highly representative of dynamic
techniques and have been widely used in TCP evaluation
[46], [56], [16], and statement-level coverage has been shown
to be at least as effective as other coverage types [46].

6 LESSONS LEARNED
In this section we comment on the lessons learned from this
study and their potential impact on future research:
Lesson 1: Our study illustrates that different test granulari-
ties impact the effectiveness of TCP techniques, and that the
finer, method-level, granularity achieves better performance
in terms of APFD and APFDc, detecting regression faults
more quickly. This finding should encourage researchers
and practitioners to use method-level granularity, and per-
haps explore even finer granularities for regression test-
case prioritization. Additionally, researchers should evalu-
ate their newly proposed approaches on different test gran-
ularities to better understand the effectiveness of new ap-
proaches. Moreover, APFDc values are relatively less consis-
tent with APFD values at test-method level and vary more
dramatically as compared to AFPD values. This suggests
that researchers should evaluate novel TCP approaches in
terms of different types of metrics to better investigate the
approaches’ effectiveness.
Lesson 2: The performance of different TCPs varies across
different subject programs. One technique may perform
better on some subjects but perform worse on other sub-
jects. For example, TPtopic performs better than TPcg−add
on webbit, but performs worse than TPcg−add on wsc. This
finding suggests that the characteristics of each subject are
important to finding suitable TCPs. Furthermore, we find
that the selection of subject programs and the selection of
implementation tools may carry a large impact regarding
the results of the evaluation for TCPs (e.g., there can be
large variance in the performance of different techniques
depending on the subject, particularly for static approaches).
This finding illustrates that the researchers need to evaluate
their newly proposed techniques on a large set of real subject
programs to make their evaluation reliable. To facilitate this
we provide links to download our subject programs and
data at [48]. Additionally, a potential avenue for future
research may be an adaptive TCP technique that is able
to analyze certain characteristics of a subject program (e.g.,
complexity, test suite size, libraries used) and modify the
prioritization technique to achieve peak performance.
Lesson 3: Our study demonstrates that while TCP tech-
niques tend to perform better on larger programs, subject
size does not significantly impact comparative measures of
APFD and APFDc between TCP techniques. Thus, when the
performance of TCP techniques are compared against each
other on either large or small programs, similar results can
be expected. This finding illustrates scalability of various
TCP techniques. Also, our experimental results show that
software evolution does not have clear impact on compara-
tive TCP effectiveness.



Lesson 4: Our study demonstrates that mutant quantity and
type selected in the experimental settings for measuring
the effectiveness of TCP techniques does not dramatically
impact the results in terms of APFD or APFDc metrics.
This finding provides practical guidelines for researchers,
confirming the comparative validity of the mutant seeding
process of prior TCP work, and also provides evidence that
the fault quantity and type factors are less important to
investigate in future work.
Lesson 5: Our findings illustrate that the studied static and
dynamic TCP techniques agree on only a small number of
found faults for the top ranked test-methods and classes
ranked by the techniques, and the most highly prioritized
test cases by different TCP techniques share similar capa-
bilities in detecting different types of mutation faults. This
suggests several relevant avenues for future research. For
instance, (i) it may be useful to investigate specific TCP tech-
niques to detect important faults faster when considering
the fault severity/importance [20], [65], [38] instead of fault
types (e.g., different mutant types) during testing; (ii) dif-
fering TCP techniques could be used to target specific types
of faults or even faults in specific locations of a program;
and (iii) static and dynamic information could potentially be
combined in order to achieve higher levels of effectiveness.
Furthermore, the similarity study performed in this paper
has not been a core part of many TCP evaluations, and we
assert that such an analysis should be encouraged moving
forward. While APFD and APFDc provide a clear picture of
the relative effectiveness of techniques, it cannot effectively
illustrate the difference set of detected faults between two
techniques. This is a critical piece of information when
attempting to understand new techniques and how they
relate to existing research.

7 CONCLUSION

In this work, we perform an extensive study empirically
comparing the effectiveness, efficiency, and similarity of
detected faults for static and dynamic TCP techniques on 58
real-world Java programs mined from GitHub. The exper-
iments were conducted at both test-method and test-class
levels to understand the impact of different test granularities
on the effectiveness of TCP techniques. The results indi-
cate that the studied static techniques tend to outperform
the studied dynamic techniques at the test-class level in
terms of both APFD and APFDc metrics, whereas dynamic
techniques tend to outperform the static techniques at test-
method level in terms of APFD. APFDc values are generally
consistent with APFD values at test-class level but relatively
less consistent with APFDc at test-method level. In addition,
APFDc values vary more dramatically across all subject
programs as compared to APFD values. We also observed
that subject size, software evolution, and mutant quantities
and types within each faulty group/version do not signif-
icantly impact comparative measures of TCP effectiveness.
Additionally, we found that the faults uncovered by static
and dynamic techniques for the highest prioritized test cases
uncover mostly dissimilar faults, which suggests promising
avenues for future work. Finally, we found evidence sug-
gesting that different TCP techniques tend to perform dif-
ferently across subject programs, which suggests that certain

program characteristics may be important when considering
which type of TCP technique to use.
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