
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 1

Using Transfer Learning for Code-Related Tasks
Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino,

Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota

Abstract—Deep learning (DL) techniques have been used to support several code-related tasks such as code summarization and
bug-fixing. In particular, pre-trained transformer models are on the rise, also thanks to the excellent results they achieved in Natural
Language Processing (NLP) tasks. The basic idea behind these models is to first pre-train them on a generic dataset using a
self-supervised task (e.g., filling masked words in sentences). Then, these models are fine-tuned to support specific tasks of interest (e.g.,
language translation). A single model can be fine-tuned to support multiple tasks, possibly exploiting the benefits of transfer learning. This
means that knowledge acquired to solve a specific task (e.g., language translation) can be useful to boost performance on another task
(e.g., sentiment classification). While the benefits of transfer learning have been widely studied in NLP, limited empirical evidence is
available when it comes to code-related tasks. In this paper, we assess the performance of the Text-To-Text Transfer Transformer (T5)
model in supporting four different code-related tasks: (i) automatic bug-fixing, (ii) injection of code mutants, (iii) generation of assert
statements, and (iv) code summarization. We pay particular attention in studying the role played by pre-training and multi-task fine-tuning
on the model’s performance. We show that (i) the T5 can achieve better performance as compared to state-of-the-art baselines; and (ii)
while pre-training helps the model, not all tasks benefit from a multi-task fine-tuning.

Index Terms—Deep Learning, Empirical Software Engineering

F

1 INTRODUCTION

Several code-related tasks have been recently automated by
researchers exploiting Deep Learning (DL) techniques [78].
Several of these works customize DL models proposed in
the Natural Language Processing (NLP) field to support
code-related tasks, and most of them share one common
characteristic: They shape the problem at hand as a text-to-
text transformation, in which the input and the output of the
model are text strings. For instance, Tufano et al. [75] used an
encoder-decoder architecture, commonly adopted in Neural
Machine Translation (NMT) [16], [32], [66], to predict code
changes usually recommended by reviewers in a code review
process. Both the input and output are represented as a
stream of tokens (i.e., textual format), with the input being
the code submitted for review and the output a revised
code implementing changes likely to be required in the code
review process. While this is only one concrete example,
similar observations hold for techniques automating bug
fixing [15], [24], [47], [72], learning generic code changes [70],
supporting code migration [51], [52], code summarization
[23], [31], [38], [41], code reviews [74], [75], pseudo-code

• A. Mastropaolo is with SEART @ Software Institute, Università della
Svizzera italiana, Switzerland.
E-mail: antonio.mastropaolo@usi.ch

• N. Cooper is with SEMERU @ William & Mary, USA.
E-mail: nacooper01@email.wm.edu

• D. Nader Palacio is with SEMERU @ William & Mary, USA.
E-mail: danaderp@gmail.com

• S. Scalabrino is with University of Molise, Italy.
E-mail: simone.scalabrino@unimol.it

• D. Poshyvanyk is with SEMERU @ William & Mary, USA.
E-mail: denys@cs.wm.edu

• R. Oliveto is with University of Molise, Italy.
E-mail: rocco.oliveto@unimol.it

• G. Bavota is with SEART @ Software Institute, Università della Svizzera
italiana, Switzerland.
E-mail: gabriele.bavota@usi.ch

generation [54], code deobfuscation [30], [76], injection of
code mutants [73], generation of assert statements [79], clone
detection [71], [80], traceability [48] and code completion [5],
[11], [17], [17], [33], [34], [67], [81].

Recent years have seen the rise of transfer learning in the
field of natural language processing. The basic idea is to
first pre-train a model on a large and generic dataset by
using a self-supervised task, e.g., masking tokens in strings
and asking the model to guess the masked tokens. Then,
the trained model is fine-tuned on smaller and specialized
datasets, each one aimed at supporting a specific task. In
this context, Raffel et al. [59] proposed the T5 (Text-To-Text
Transfer Transformer) model, pre-trained on a large natural
language corpus and fine-tuned to achieve state-of-the-art
performance on many tasks, all characterized by text-to-text
transformations.

In our recent work [43] we empirically investigated the
potential of a T5 model when pre-trained and fine-tuned to
support four code-related tasks also characterized by text-to-
text transformations. In particular, we started by pre-training
a T5 model using a large dataset consisting of 499,618 English
sentences and 1,569,889 source code components (i.e., Java
methods). Then, we fine-tuned the model using four datasets
from previous work with the goal of supporting four code-
related tasks:

Automatic bug-fixing. We used the dataset by Tufano et al.
[72], composed of instances in which the “input string” is
represented by a buggy Java method and the “output string”
is the fixed version of the same method.

Injection of code mutants. This dataset is also by Tufano
et al. [73], and features instances in which the input-output
strings are reversed as compared to automatic bug-fixing (i.e.,
the input is a fixed method, while the output is its buggy
version). The model must learn how to inject bugs (mutants)
in code instead of fixing bugs.

Generation of assert statements in test methods. We used the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 2

dataset by Watson et al. [79], composed of instances in which
the input string is a representation of a test method without
an assert statement and a focal method it tests (i.e., the main
production method tested), while the output string encodes
an appropriate assert statement for the input test method.

Code Summarization. We used the dataset by Haque et al.
[23] where input strings are some representations of a Java
method to summarize, & an output string is a textual
summary.

We fine-tuned a single pre-trained T5 model in a multi-
task setting on all four tasks, and showed that it is able to
achieve better results as compared to the four referenced
baselines in all tasks [23], [72], [73], [79]. However, since we
only experimented with a pre-trained model fine-tuned in
a multi-task setting, questions about the actual advantage
offered by transfer learning remained unanswered. In this
paper, we extend our previous work [44] by carefully
assessing the impact of both pre-training and multi-task
fine-tuning on the T5 performance. In particular, we assess
the performance of the T5 in the following scenarios:

• No Pre-training: We do not run any pre-training step.
We directly fine-tune four different T5 models, each one
supporting one of the four tasks we experiment with.

• Pre-training single task: We first pre-train the T5 model
on the dataset presented in Table 1. Then, starting from
it, we fine-tune four models, one for each single task.

• Pre-training Multi-Task: Lastly, we fine-tune the pre-
trained model using a multi-task learning framework
in which we train a single model to support all four
code-related tasks. We experiment with two different
multi-task fine-tunings: (i) the first is the one used in our
original paper [44], in which the percentage of training
instances from each of the four tasks is proportional to
the size of their training dataset; (ii) the second in which
the percentage of training instances is the same for all
four tasks (i.e., 25% per task).

In total, this resulted in the training, hyperparameters
tuning, and testing of ten different models. On top of that,
we also perform a novel analysis of our dataset aimed at
assessing the generalizability of our models by looking at the
level of data snooping among our training and test datasets.

Our results confirm that the T5 can substantially boost
the performance on all four code-related tasks. For example,
when the T5 model is asked to generate assert statements
on raw source code, ∼70% of test instances are successfully
predicted by the model, against the 18% of the original
baseline [79]. Also, we show that the pre-training is beneficial
for all tasks, while the multi-task fine-tuning does not
consistently help in improving performance. Finally, our
datasets analysis confirm the generalizability of the tested
models.

The code and data used in this work are publicly available
in a comprehensive replication package [2].

2 BACKGROUND AND RELATED WORK

In recent years, DL techniques have been increasingly used to
support software engineering (SE). The activities commonly
supported by state-of-the-art approach include software
maintenance and software testing [83], and most of the

proposed approaches target the source code [78]. While
available approaches support a plethora of concrete SE tasks
[78], [83], in this section we focus on the ones we target in
our study: automated bug-fixing, injection of code mutants,
generation of assert statements in test methods, and code
summarization. We discuss in detail the techniques we use
as baselines for each task. A broader literature review on the
topic is available in two recent surveys by Yang et al. [83]
and Watson et al. [78].

2.1 Automatic Bug-Fixing

Many techniques have been proposed for the automatic
fixing of software bugs. Several of them [7], [13], [19], [20],
[37], [53], [57], [63], [82] rely on the redundancy assumption,
claiming that large programs contain the seeds of their own
repair. Such an assumption has been verified by at least
two independent studies [9], [42]. Automated bug-fixing
techniques based on DL can rely on different levels of code
abstraction. Word tokenization is a commonly used one, even
if higher-level abstractions (e.g., AST-based) allow to achieve
better results [50].

Mesbah et al. [47] focus on build-time compilation failures
by presenting DeepDelta, an approach using NMT to fix the
build. The input is represented by features characterizing the
compilation failure (e.g., kind of error, AST path, etc.). As
output, DeepDelta provides the AST changes needed to fix
the error. In the presented empirical evaluation, DeepDelta
correctly fixed 19,314 out of 38,788 (50%) compilation errors.

Chen et al. [15] present SequenceR, a sequence-to-
sequence approach trained on over 35k single-line bug-
fixes. SequenceR takes as input the buggy line together
with relevant code lines from the buggy class (abstract buggy
context). The output of the approach is the recommended fix
for the buggy line. The approach, tested on a set of 4,711
bugs, was able to automatically fix 950 (∼20%) of them.
Similar approaches have been proposed by Hata et al. [24]
and Tufano et al. [72]. The latter is the one we compared our
approach with and, thus, we describe it in more details.

Tufano et al. [72] investigate the performance of an NMT-
based approach in the context of automatic bug-fixing. They
train an encoder-decoder model on a set of bug-fix pairs
(BFPs), meaning pairs of strings in which the first one (input)
represents a Java method that has been subject to a bug-fixing
activity, and the second one (target) represents the same Java
method once the bug was fixed. To build this dataset, the
authors mined∼787k bug-fixing commits from GitHub, from
which they extracted ∼2.3M BFPs. After that, the code of
the BFPs is abstracted to make it more suitable for the NMT
model (i.e., to reduce the vocabulary of terms used in the
source code identifiers and literals). The abstraction process
is depicted in Fig. 1.

The top part of the figure represents the raw source code
to abstract. The authors use a Java lexer and a parser to
represent each method as a stream of tokens, in which Java
keywords and punctuation symbols are preserved and the
role of each identifier (e.g., whether it represents a variable,
method, etc.) as well as the type of a literal is discerned.

IDs are assigned to identifiers and literals by considering
their position in the method to abstract: The first variable
name found will be assigned the ID of VAR_1, likewise the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 3

raw source code

abstracted code

abstracted code with idioms

public Integer getMinElement(List myList) {
 if(myList.size() >= 0) {
 return ListManager.getFirst(myList);
 }
 return 0;
}

public TYPE_1 METHOD_1 (TYPE_2 VAR_1)
{ if (VAR_1 . METHOD_2 () >= INT_1)
{ return TYPE_3 . METHOD_3 (VAR_1) ; }
return INT_1 ; }

public TYPE_1 METHOD_1 (List VAR_1)
{ if (VAR_1 . size () >= 0)
{ return TYPE_2 . METHOD_3 (VAR_1) ; }
return 0 ; }

Fig. 1: Abstraction process [72]

second variable name will receive the ID of VAR_2. This
process continues for all identifiers as well as for the literals
(e.g., STRING_X, INT_X, FLOAT_X). The output of this stage
is the code reported in the middle of Fig. 1 (i.e., abstracted
code). Since some identifiers and literals appear very often
in the code (e.g., variables i, j, literals 0, 1, method names
such as size), those are treated as “idioms” and are not
abstracted (see bottom part of Fig. 1, idioms are in bold).
Tufano et al. consider as idioms the top 0.005% frequent
words in their dataset. During the abstraction a mapping
between the raw and the abstracted tokens is maintained,
thus allowing to reconstruct the concrete code from the
abstract code generated by the model.

The set of abstracted BFPs has been used to train and test
the approach. The authors build two different sets, namely
BFPsmall, only including methods having a maximum
length of 50 tokens (for a total of 58,350 instances), and
BFPmedium, including methods up to 100 tokens (65,455).
The model was able to correctly predict the patch for the
buggy code in 9% and 3% of cases in the BFPsmall and
BFPmedium dataset, respectively.

While other works have tackled the automatic bug-fixing
problem, the approach by Tufano et al. has been tested on
a variety of different bugs, rather than on specific types of
bugs/warnings (e.g., only single-line bugs are considered in
[15], while compilation failures are addressed in [47]).

Thus, we picked it as representative DL technique for
automatic bug-fixing and we use the two datasets by Tufano
et al. [72] to fine-tune the T5 model for the “automatic bug-
fixing” problem, comparing the achieved performance with
the one reported in the original paper.

2.2 Injection of Code Mutants
Brown et al. [12] were the first to propose a data-driven
approach for generating code mutants, leveraging bug-fixes
performed in software systems to extract syntactic-mutation
patterns from the diffs of patches. Tufano et al. [73] built
on this concept by presenting an approach using NMT to
inject mutants that mirror real bugs. The idea is to reverse
the learning process used for fixing bugs [72]: The model
is trained to transform correct methods (i.e., the method
obtained after the bug-fixing activity) into buggy methods
(before the bug-fix). Indeed, the methodology used by the
authors is the same used for the bug-fixing task (previously
described), including the abstraction process.

This is, to date, the only DL-based technique for injecting
code mutants. Thus, we use the dataset exploited by Tufano
et al. [73] to fine-tune the T5 model for the problem of
“injecting code mutants”, comparing the achieved results
with the ones reported in the original paper. Specifically, we
reused their largest dataset, referred to as GMident in the
paper1, featuring 92,476 training instances, 11,560 used for
hyperparameter tuning (evaluation set), and 11,559 used for
testing. On this data, the approach by Tufano et al. was able
to correctly predict the bug to inject in 17% of cases (1,991).

2.3 Generation of Assert Statements in Test Methods
Watson et al. [79] start from the work by Shamshiri et al. [62],
who observed that tools for the automatic generation of test
cases such as Evosuite [18], Randoop [55] and Agitar [3]
exhibit insufficiencies in the automatically generated assert
statements.

Thus, they propose ATLAS, an approach for generat-
ing syntactically and semantically correct unit test assert
statements using NMT. To train ATLAS, the authors mined
2.5M test methods from GitHub with their corresponding
assert statement. For each of those test methods, they also
identified the focal method, meaning the main production
code method exercised by the test. A preprocessing of the
dataset has been performed to remove all test methods longer
than 1K tokens. Also, test methods requiring the synthesis of
one or more unknown tokens for generating the appropriate
assert statements have been removed. Indeed, if the required
tokens cannot be found in the vocabulary of the test method
they cannot be synthesized when the model attempts to
generate the prediction. Finally, all duplicates have been
removed from the dataset, leading to a final set of 158,096
Test-Assert Pairs (TAPs). Each method left in the dataset has
then been abstracted using the same approach previously
described by Tufano et al. [72]. However, in this case the
authors experiment with two datasets, one containing raw
source code and one abstracted code. ATLAS was able to
generate asserts identical to the ones written by developers in
31.42% of cases (4,968 perfectly predicted assert statements)
when only considering the top-1 prediction, and 49.69%
(7,857) when looking at the top-5 in the abstracted dataset,
while performance is lower on the raw dataset (17.66% for
top-1 and 23.33% for top-5).

We use the datasets by Watson et al. [79] to fine-tune our
T5 model for the “generation of assert statements” problem,
and compare the achieved performance with the one in
the original paper. Recently, Tufano et al. [69] proposed
an approach based on transformers to achieve a the same
goal. Their results show that such an approach achieves
better results than ATLAS [79]. We did not use the approach
proposed by Tufano et al. [69] as the main baseline because it
is very similar to the one we presented in the our conference
paper that this paper extends [44].

2.4 Code Summarization
Code summarization is one of the mainstream methods
for automatic documentation of source code. The proposed

1. A subset of this dataset named GMident−lit has also been used in
the original paper [73] to avoid including in the study bugs requiring
the generation of previously unseen literals. We decided to test the T5
model on the most complex and complete dataset.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 4

summarization techniques fall into two categories. Extractive
summarization techniques generate summaries by extracting
information from the code components being summarized
[22], [49], [61], [65]. On the other hand, abstractive sum-
marization techniques aim at including in the summaries
information not directly available in the source code [23],
[27], [31], [45], [64]. DL techniques have been used to support
for the latter.

Hu et al. [27] use a Deep Neural Network (DNN) to
automatically generate comments for a given Java method.
The authors mine ∼9k Java projects hosted on GitHub to
collect pairs of 〈method, comment〉, where “comment” is
the first sentence of the Javadoc linked to the method. These
pairs, properly processed, are used to train and test the DNN.
The authors assess the effectiveness of their technique by
using the BLEU-4 score [56], showing the superiority of their
approach with respect to the competitive technique presented
in [29].

Allamanis et al. [4] use attention mechanisms in neural
networks to suggest a descriptive method name starting from
an arbitrary snippet of code. Their approach can name a code
snippet exactly as a developer would do in ∼25% of cases.

LeClair et al. [38] present a neural model combining the
AST source code structure and words from code to generate
coherent summaries of Java methods. The approach, tested
on 2.1M methods, showed its superiority as compared to the
previous works by Hu et al. [27] and Iyer et al. [29].

The approach by Haque et al. [23] is the most recent in
the area of DL-aided source code summarization, and it is
an improvement of the work by LeClair et al. [38].

It still aims at documenting Java methods through an
encoder-decoder architecture but, in this case, three inputs
are provided to the model to generate the summary: (i) the
source code of the method, as a flattened sequence of tokens
representing the method; (ii) its AST representation; and (iii)
the “file context”, meaning the code of every other method
in the same file. The authors show that adding the contextual
information as one of the inputs substantially improves
the BLEU score obtained by deep learning techniques. The
dataset used in the evaluation is composed of 2.1M Java
methods paired with summaries. We reuse this dataset for
the fine-tuning of the T5 model for the code summarization
problem, and compare its performance to the state-of-the-art
approach proposed by Haque et al. [23].

3 TEXT-TO-TEXT-TRANSFER-TRANSFORMER

The T5 model has been introduced by Raffel et al. [59] to
support multitask learning in Natural Language Processing
(NLP). The idea is to reframe NLP tasks in a unified text-
to-text format in which the input and output are always
text strings. For example, a single model can be trained to
translate across languages and to autocomplete sentences.
This is possible since both tasks can be represented in a
text-to-text format (e.g., in the case of translation, the input
is a sentence in a given language, while the output is
the translated sentence). T5 is trained in two phases: pre-
training, which allows defining a shared knowledge-base
useful for a large class of sequence-to-sequence tasks (e.g.,
guessing masked words in English sentences to learn about
the language), and fine-tuning, which specializes the model

on a specific downstream task (e.g., learning the translation of
sentences from English to German). We briefly overview the
T5 model and explain how we pre-trained and fine-tuned it to
support the four said code-related tasks. Finally, we describe
the decoding strategy for generating the predictions.

3.1 An Overview of T5
T5 is based on the transformer model architecture that allows
handling a variable-sized input using stacks of self-attention
layers. When an input sequence is provided, it is mapped
into a sequence of embeddings passed into the encoder.
The T5, in particular, and a transformer model [77], in
general, offer two main advantages over other state-of-the-
art models: (i) it is more efficient than RNNs since it allows
to compute the output layers in parallel, and (ii) it is able to
detect hidden and long-ranged dependencies among tokens,
without assuming that nearest tokens are more related than
distant ones. This last property is particularly relevant in
code-related tasks since a variable declaration may be distant
from its usage. Five different versions of T5 have been
proposed [59]: small, base, large, 3 Billion, and 11 Billion. These
variants differ in terms of complexity, with the smaller model
(T5small) having 60M parameters against the 11B of the largest
one (T511B). As acknowledged by the authors [59], even if
the accuracy of the most complex variants is higher than
the less complex models, the training complexity increases
with the number of parameters. Considering the available
computational resources, we decided to use the simplest
T5small model.

T5small architectural details. The T5small architecture is
characterized by six blocks for encoders and decoders. The
feed-forward networks in each block consist of a dense layer
with an output dimensionality (dff) of 2,048. The key and
value matrices of all attention mechanisms have an inner
dimensionality (dkv) of 64, and all attention mechanisms
have eight heads. All the other sub-layers and embeddings
have a dimensionality (dmodel) of 512.

3.2 Pre-training of T5
In the pre-training phase we use a self-supervised task similar
to the one used by Raffel et al. [59], consisting of masking
tokens in natural language sentences and asking the model
to guess the masked tokens. However, we did not perform
the pre-training by only using natural language sentences,
since all the tasks we target involve source code. We use a
dataset composed of both (technical) natural language (i.e.,
code comments) and source code. To obtain the dataset for
the pre-training we start from the CodeSearchNet dataset
[28] which provides 6M functions from open-source code.
We only focus on the ∼1.5M methods written in Java, since
the four tasks we aim at supporting are all related to Java
code and work at method-level granularity (e.g., fixing a bug
in a method, generating the summary of a method, etc.).

Then, since for three of the four tasks we support (i.e.,
automatic bug-fixing [72], generation of assert statements [79],
and injection of code mutants [73]) the authors of the original
papers used an abstracted version of source code (see
Section 2), we used the src2abs tool by Tufano [72] to create
an abstracted version of each mined Java method. In the
abstraction process, special tokens are used to represent

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 5

identifiers and literals of the input method. For example, the
first method name found (usually the one in the method
signature) will be assigned the METHOD_1 token, likewise the
second method name (e.g., a method invocation) will be
represented by METHOD_2. This process continues for all the
method and variable names (VAR_X) as well as the literals
(STRING_X, INT_X, FLOAT_X). Basically, the abstract method
consists of language keywords (e.g., for, if), separators (e.g.,
“(”, “;”, “}”) and special tokens representing identifiers and
literals. Comments and annotations are removed during
abstraction. Note that, since the tool was run on Java methods
in isolation (i.e., without providing it the whole code of the
projects they belong to), src2abs raised a parsing error in
∼600k of the∼1.5M methods (due e.g., to missing references),
leaving us with ∼900k abstracted methods. We still consider
such a dataset as sufficient for the pre-training.

The CodeSearchNet dataset does also provide, for a
subset of the considered Java source code methods, the first
sentence in their Javadoc. We extracted such a documenta-
tion using the docstring_tokens field in CodeSearchNet,
obtaining it for 499,618 of the considered methods. We
added these sentences to the pre-training dataset. This whole
process resulted in a total of 2,984,627 pre-training instances,
including raw source code methods, abstracted methods, and
code comment sentences. In the obtained dataset there could
be duplicates between (i) different raw methods that become
equal once abstracted, and (ii) comments re-used across
different methods. Thus, we remove duplicates, obtaining
the final set of 2,672,423 instances reported in Table 1. This
is the dataset we use for pre-training the T5 model, using
the BERT-style objective function Raffel et al. used in their
experiments and consisting of randomly masking 15% of
tokens (i.e., words in comments and code tokens in the raw
and abstracted code).

TABLE 1: Datasets used for the pre-training of T5.

Data sources Instances

Source code 1,569,773
Abstracted source code 766,126
Technical natural language 336,524

Total 2,672,423

Finally, since we pre-train and fine-tune the models on
a software-specific dataset, we create a new SentencePiece
model [36] (i.e., a tokenizer for neural text processing) by
training it on the entire pre-training dataset so that the T5
model can properly handle the Java language and its abstrac-
tion. This model implements subword units (e.g., byte-pair-
encoding BPE) and unigram language model [35] to alleviate
the open vocabulary problem in neural machine translation.
The pre-training of the models has been performed for 250k
steps which, using a batch size of 128 results in ∼32M of
masked code instances processed that, given the size of the
pre-training dataset (see Table 1) correspond to ∼12 epochs.

3.3 Fine-tuning of T5

We detail the process used to fine-tune the T5 model.

3.3.1 Fine-tuning dataset
We describe the datasets we use for fine-tuning the model
for the four targeted tasks. The datasets are summarized
in Table 2. The number of training steps performed for the
different tasks is proportional to the size of their training
dataset. Indeed, we aim at ensuring that the same number of
“epochs” is performed on each training dataset. Thus, smaller
training datasets require a lower number of steps to reach the
same number of epochs of larger datasets. In particular, we
used 1.75M fine-tuning steps for the multi-task setting ∼90
epochs) and we scaled the others proportionally to reach the
same number of epochs (e.g., XXM for the code summarization
task).

Automatic Bug Fixing (BF). We use the dataset by Tufano
et al. [72] composed by triplets BFm = 〈mb ,mf ,M〉, where
mb and mf are the abstracted version of the buggy and fixed
version of Java method, respectively, and M represents the
mapping between the abstracted tokens and the raw code
tokens (e.g., VAR_1→ webServerPort), which allows to track
back the output of the model to source code. The triplets refer
to methods with at most 100 tokens and they are split into
two sub-datasets: (i) the small version, containing methods
with up to 50 tokens, and a medium version, with methods
with at most 100 tokens. We train the model to predict the
fixed versions, mf , given the buggy versions, mb . Given
the presence of two datasets, we divide the BF task in two
sub-tasks, BF small and BFmedium , depending on the size of
the involved methods [72].

Injection of Code Mutants (MG). For the MG task we ex-
ploited one of the two datasets provided by Tufano et al. [70]:
MG ident and MG ident−lit . In both datasets each instance is
represented by a triple 〈mf ,mb ,M〉, where, similarly to the
BF datasets, mb and mf are the buggy and fixed version
of the snippet, respectively, and M represents the mapping
between the abstracted tokens and the code tokens. The
first dataset (MG ident) represents the most general (and
challenging) case, in which the mutated version, mb , can
also contain new tokens (i.e., identifiers, types, or method
names) not contained in the version provided as input (mf).
MG ident−lit , instead, only contains samples in which the
mutated version contains a subset of the tokens in the non-
mutated code. In other words, MG ident−lit represents a
simplified version of the task. For this reason, we decided
to focus on the most general scenario and we only use the
MG ident dataset.

Generation of Assertions in Test Methods (AG). For the
AG task we used the dataset provided by Watson et al. [79]
containing triplets 〈T, TMn, A〉, where T is a given test case,
TMn is the focal method tested by T , i.e., the last method
called in T before the assert [58], and A is the assertion
that must be generated (output). For such a task, we use
two versions of the dataset: AGraw , which contains the raw
source code for the input (T +TMn) and the output (A), and
AGabs , which contains the abstracted version of input and
output, i.e., src2abs(T +TMn) and src2abs(A), respectively.
These are the same datasets used in the original paper.

Code Summarization (CS). For code summarization, we
exploited the dataset provided by Haque et al. [23] containing
2,149,120 instances, in which each instance is represented by
a tuple 〈S,AS , CS , D〉, where S represents the raw source
code of the method, AS is its AST representation, CS is the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 6

TABLE 2: Task-specific datasets used for fine-tuning T5.

Task Dataset Training-set Evaluation-set Test-set

Automatic Bug-Fixing BF small [72] 46,680 5,835 5,835
BFmedium [72] 52,364 6,546 6,545

Injection of Code Mutants MGident [73] 92,476 11,560 11,559

Generation of Asserts in Test AGabs [79] 126,477 15,809 15,810
AGraw [79] 150,523 18,816 18,815

Code Summarization CS [23] 1,953,940 104,272 90,908

Total 2,422,460 162,838 149,472

code of other methods in the same file, and D is the summary
of the method, i.e., the textual description that the model
should generate [23]. For this specific task, we consider a
variation of the original dataset to make it more coherent
with the performed pre-training. In particular, since in the
pre-training we did not use any AST representation of code,
we decided to experiment with the T5 model in a more
challenging scenario in which only the raw source code to
summarize (i.e., S) is available to the model. Therefore, the
instances of our dataset are represented by tuples 〈S,D〉: We
train our model to predict D given only S.

3.3.2 Decoding Strategy
Once the models have been trained, different decoding
strategies can be used to generate the output token streams.
T5 allows to use both greedy decoding and Beam-search. When
generating an output sequence, the greedy decoding selects,
at each time step t, the symbol having the highest probability.
The main limitation of greedy decoding is that it only allows
the model to generate one possible output sequence (e.g., one
possible bug fix) for a given input (e.g., the buggy method).

Beam-search is an alternative decoding strategy previ-
ously used in many DL applications [8], [10], [21], [60]. Unlike
greedy decoding, which keeps only a single hypothesis
during decoding, beam-search of order K, with K > 1,
allows the decoder to keep K hypotheses in parallel: At
each time step t, beam-search picks the K hypotheses (i.e.,
sequences of tokens up to t) with the highest probability,
allowing the model to output K possible output sequences.

We used Beam-search to provide several output se-
quences given a single input, and report results with different
K values. It is worth noting that having a large K increases
the probability that one of the output sequences is correct,
but, on the other hand, it also increases the cost of manually
analyzing the output for a user (i.e., a developer, in our
context).

3.3.3 Data Balancing for the multi-task model
The datasets we use for fine-tuning have different sizes, with
the one for code summarization dominating the others (see
Table 2). This could result in an unbalanced effectiveness of
the model on the different tasks. In our case, the model
could become very effective in summarizing code and
less in the other three tasks. However, as pointed out by
Arivazhagan et al. [6], there is no free lunch in choosing the
balancing strategy when training a multi-task model, with
each strategy having its pros and cons (e.g., oversampling of
less represented datasets negatively impacts the performance

of the most representative task). For this reason, we decide
to experiment with both strategies. In the first strategy, we
follow the true data distribution when creating each batch.
In other words, we sample instances from the tasks in such a
way that each batch during the training has a proportional
number of samples accordingly to the size of the training
dataset. For the second strategy, we train a multi-task pre-
trained model using a balanced sampling strategy. In other
words, we feed the T5 model with batches of data having
exactly the same number of samples per task randomly
selected during the fine-tuning.

The results we obtained confirm the findings of Ari-
vazhagan et al. [6]. In particular, when using the first
training sampling strategy (i.e., proportional sampling), the
performance of the tasks having a large training dataset (i.e.,
AGabs , AGraw , CS) had a boost. In contrast, when using the
second strategy (i.e., balanced sampling), the performance
increases for those tasks whose training dataset is small with,
however, a price to pay for the other three tasks. Nonetheless,
since the observed differences in performance are not major
and each strategy has its pros and cons, we decided to discuss
in this paper the results achieved using the proportional
sampling schema, as we did in [44].

The results of the proportional sampling are available in
our replication package [2].

4 STUDY DESIGN

We aim at investigating the performance of the T5 model on
four code-related tasks: Automatic bug-fixing, Injection of code
mutants, Generation of Asserts in Tests and Code Summarization.
The focus of our evaluation is on (i) investigating the extent
to which transfer learning is beneficial when dealing with
code-related tasks, studying the impact on performance of
both pre-training and multi-task learning; and (ii) comparing
the obtained results with representative state-of-the-art tech-
niques. The context is represented by the datasets introduced
in Section 2, i.e., the ones by Tufano et al. for bug fixing [72]
and injection of mutants [73], by Watson et al. for assert
statement generation [79], and by Haque et al. for code
summarization [23]. We aim at answering the following
research questions (RQs):

• RQ1:What are the performances of the T5 model when
supporting code-related tasks? With RQ1 we aim at un-
derstanding the extent to which T5 can be used to auto-
mate code-related tasks, investigating the performance
achieved by the model on the four experimented tasks.
In the context of RQ1, we also investigate the impact of
transfer learning on performance:

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 7

TABLE 3: Baselines and evaluation metrics for the tasks.

Task Baseline Accuracy@K BLEU-n ROUGE LCS

Automatic Bug-Fixing [72] {1, 5, 10, 25, 50} - -
Injection of Code Mutants [73] {1} {A} -
Generation of Asserts in Test [79] {1, 5, 10, 25, 50} - -
Code Summarization [23] - {1, 2, 3, 4, A} {P,R, F}

– RQ1.1: What is the role of pre-training on the performances
of the T5 model for the experimented code-related tasks?
With RQ1.1 we aim at investigating the boost in
performance (if any) brought by pre-training the
models on a software-specific dataset.

– RQ1.2: What is the role of multi-task learning on the
performances of the T5 model for the experimented code-
related tasks? RQ1.2 analyzes the influence of the multi-
task learning (i.e., training a single model for all four
tasks) on the model’s performance.

• RQ2: What are the performances of T5 as compared with state-
of-the-art baselines? In RQ2 we compare the performances
achieved by the T5 model against the ones achieved by
the baseline approaches. In this regard, we run T5 on the
same test sets used in the four original papers presenting
automated solutions for the code-related tasks we target.

4.1 Data Collection and Analysis

As explained in Section 3.3, we experimented with different
variants of the T5: (i) no pre-training (i.e., four models each
fine-tuned for one of the supported tasks, without any pre-
training); (ii) pre-training single task (i.e., four models each
fine-tuned for one of the supported tasks, with pre-training);
and (iii) pre-training multi-task (i.e., one model pre-trained
and fine-tuned for all four tasks). These nine models have
all been run on the test sets made available in the works
presenting our four baselines and summarized in Table 2.
Once obtained the predictions of the T5 models on the test
sets related to the four tasks, we compute the evaluation
metrics reported in Table 3. We use different metrics for the
different tasks, depending on the metrics reported in the
papers that introduced our baselines.

Accuracy@K measures the percentage of cases (i.e., in-
stances in the test set) in which the sequence predicted by
the model equals the oracle sequence (i.e., perfect prediction).
Since we use beam-search, we report the results for different
K values (i.e., 1, 5, 10, 25, and 50), as done in [72] (BF) and
[79] (AG). Tufano et al. [70] do not report results for K > 1
for the MG task. Thus, we only compute K = 1.

BLEU score (Bilingual Evaluation Understudy) [56] mea-
sures how similar the candidate (predicted) and reference
(oracle) texts are. Given a size n, the candidate and reference
texts are broken into n-grams and the algorithm determines
how many n-grams of the candidate text appear in the
reference text. The BLEU score ranges between 0 (the
sequences are completely different) and 1 (the sequences
are identical). We use different BLEU-n scores, depending
on the ones used in the reference paper of the baseline (see
Table 3). For the CS task, we report BLEU-{1, 2, 3, 4} and
their geometric mean (i.e., BLEU-A); for the MG task we only
report BLEU-A.

ROUGE (Recall-Oriented Understudy for Gisting Eval-
uation) is a set of metrics for evaluating both automatic
summarization of texts and machine translation techniques
in general [40]. ROUGE metrics compare an automatically
generated summary or translation with a set of reference
summaries (typically, human-produced). We use the ROUGE
LCS metrics based on the Longest Common Subsequence
for the CS task [23]. Given two token sequences, X and
Y , and their respective length, m and n, it is possible to
compute three ROUGE LCS metrics: R (recall), computed
as LCS(X,Y)

m , P (precision), computed as LCS(X,Y)
n , and F

(F-measure), computed as the harmonic mean of P and R.

The computed metrics are used to select what the best
training strategy for the T5 is (i.e., no pre-training, pre-training
single task, or pre-training multi-task). We also statistically
compare the performance of these three strategies for each
task using the McNemar’s test [46], which is a proportion
test suitable to pairwise compare dichotomous results of
two different treatments. We statistically compare each pair
of training strategy in our study (i.e., no pre-training vs pre-
training single task, no pre-training vs pre-training multi-task,
pre-training single task vs pre-training multi-task) in terms of
their Accuracy@1 (i.e., perfect predictions) for each of the
four experimented tasks. To compute the test results for two
training strategies T1 and T2, we create a confusion matrix
counting the number of cases in which (i) both T1 and T2

provide a correct prediction, (ii) only T1 provides a correct
prediction, (iii) only T2 provides a correct prediction, and (iv)
neither T1 nor T2 provide a correct prediction. We comple-
ment the McNemar’s test with the Odds Ratio (OR) effect
size. Also, since we performed multiple comparisons, we
adjusted the obtained p-values using the Holm’s correction
[25].

The best model output of this analysis has then been used
to compare the best T5 model with the four baselines by using
the performance metrics reported in Table 3. Moreover, we
also statistically compare the Accuracy@1 of the T5 and of the
baselines using the same procedure previously described (i.e.,
McNemar’s test with the OR effect size). We also perform
a complementarity analysis: We define the sets of perfect
predictions generated by the T5 (PPT5d

) and by the baseline
(PPBLd

) with a beam size K = 1. Then, for each task and
dataset we compute three metrics:

Sharedd =
|PPT5d

∩ PPBLd
|

|PPT5d
∪ PPBLd

|

OnlyT5d =
|PPT5d

\ PPBLd
|

|PPT5d
∪ PPBLd

|
OnlyBLd =

|PPBLd
\ PPT5d

|
|PPT5d

∪ PPBLd
|

Sharedd measures the percentage of perfect predictions
shared between the two compared approaches on the dataset
d, while OnlyT5 d and OnlyBLd measure the percentage of

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 8

cases in which the perfect prediction is only generated by T5
or the baseline, respectively, on the dataset d.

We also present an “inference time” analysis: we compute
the time needed to run T5 on a given input. We run such
an experiment on a laptop equipped with a 2.3GHz 8-core
9th-generation Intel Core i9 and 16 GB of RAM. We do this
for different beam search sizes, with K ∈ {1, 5, 10, 25, 50}.
For each K , we report the average inference time (in seconds)
on all the instances of each task.

Finally, we discuss qualitative examples of predictions
generated by T5 and by the baselines to give a better idea
to the reader about the capabilities of these models in
supporting the four code-related tasks.

4.2 Hyperparameter Tuning

Before running the T5 models on the test sets, we performed
a hyperparameter tuning on the evaluation sets from Table 2,
to decide the best configuration to run. This was done for
all nine models we built (e.g., with/without pre-training,
with/without multi-task learning).

For the pre-training phase, we use the default parameters
defined for the T5 model [59]. Such a phase, indeed, is task-
agnostic, and hyperparameter tuning would provide limited
benefits. Instead, we tried different learning rate strategies
for the fine-tuning phase. Especially, we tested four different
learning rates: (i) Constant Learning Rate (C-LR): the learning
rate is fixed during the whole training; (ii) Inverse Square
Root Learning Rate (ISR-LR): the learning rate decays as the
inverse square root of the training step; (iii) Slanted Triangular
Learning Rate [26] (ST-LR): the learning rate first linearly
increases and then linearly decays to the starting learning
rate; (iv) Polynomial Decay Learning Rate (PD-LR): the learning
rate decays polynomially from an initial value to an ending
value in the given decay steps. Table 4 reports the specific
parameters we use for each scheduling strategy.

TABLE 4: Learning-rates tested for hyperparameter tuning.

Learning Rate Type Parameters

Constant LR = 0.001

Inverse Square Root LRstarting = 0.01
Warmup = 10, 000

Slanted Triangular LRstarting = 0.001
LRmax = 0.01
Ratio = 32
Cut = 0.1

Polynomial Decay LRstarting = 0.01
LRend = 0.001
Power = 0.5

In total, we fine-tuned 36 models (i.e., nine models with
four different schedulers) for 100k steps each. To select the
best configuration for each training strategy, we compute
the following metrics: for BF and AG, we compute the
percentage of perfect predictions achieved on the evaluation
set with the greedy decoding strategy (Accuracy@1); for
MG, we compute the BLEU score [56]; for CS, we compute
BLEU-A, the geometric average of the BLEU-{1,2,3,4} scores
[56]. Basically, for each task we adopt one of the evaluation

metrics used in the original paper. The complete results of the
hyperparameters tuning phase are reported in our replication
package [2].

5 RESULTS DISCUSSION

We discuss our results accordingly to the formulated RQs.

5.1 Performance of T5 (RQ1) and impact of transfer
learning on performance (RQ1.1-RQ1.2)

Table 5 reports the performance achieved by the different
variants of the T5 model we experimented with. For each
task (e.g., Automatic Bug-Fixing) and for each dataset (e.g.,
BF small), performance metrics are reported for the three
adopted training strategies (i.e., no pre-training, pre-training
single task, and pre-training multi-task). Note that we only
report the BLEU-A for readability reasons, but the results
of the other BLEU scores (e.g., BLEU-4) are available in
our online appendix [2]. Table 6 reports the results of the
statistical analysis we performed using the McNemar’s test
[46] to identify (if any) statistical differences in terms of
Accuracy@1 when using different training strategies.

Focusing on the Accuracy@1, it is evident that there is
no training strategy being the best one across all tasks and
datasets. In particular: no pre-training works better on the
BF small dataset for automatic bug-fixing; pre-training single
task works better on the BFmedium dataset for automatic bug-
fixing, on both datasets related to the generation fo assert
statements, and for the code summarization task; finally,
pre-training multi-task works better for the injection of code
mutants. Overall, the pre-training single task strategy seems
to be the best performing strategy. Indeed, even when it is
not the first choice for a given task/dataset, it is the second
best-performing training strategy. Also, by looking at Table 6
we can observe that:

1) When pre-training single task is the best strategy, its
performance in terms of Accuracy@1 are significantly
better (p-value < 0.001) than the second best-performing
strategy, with ORs going from 1.13 (for CS) to 3.39
(AGraw). This means that chances of getting a perfect
predictions using this strategy are 13% to 339% higher
when using this strategy as compared to the second
choice.

2) When pre-training single task is not the best strategy, but
the second choice, the difference in Accuracy@1 is not
significant when compared to pre-training multi-task for
MG ident . The only significant difference is the one in
favor of no pre-training on BF small , with an OR of 0.77.

For these reasons, in our RQ2 we will compare the T5
using the pre-training single task strategy against the baselines.

A few observations can be made based on the findings
in Table 5. First, the additional pre-training is, as expected,
beneficial. Indeed, on five out of the six datasets the T5
performs better with pre-training. Second, the multi-task
setting did not help in most of cases. Indeed, with the
exception of MG ident in which the performance of pre-
training single task and pre-training multi-task are basically
the same, the single task setting performs always better. Such
a result, while surprising at a first sight, can be explained by
diverse types of input/output handled by the models across

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 9

TABLE 5: Overall results achieved by the T5 model for each tasks. The best configuration is highlighted in bold

Task Dataset Model Configuration Accuracy@1 Accuracy@5 Accuracy@10 Accuracy@25 Accuracy@50 BLEU-A

Automatic Bug-Fixing

BF small

no pre-training 16.70% 29.88% 34.37% 39.57% 42.86% -
pre-training single task 15.08% 32.08% 37.01% 42.51% 45.94% -
pre-training multi-task 11.61% 35.64% 43.87% 52.88% 57.70% -

BFmedium

no pre-training 10.50% 17.60% 20.53% 24.38% 27.62% -
pre-training single task 11.85% 19.41% 23.28% 28.60% 32.43% -
pre-training multi-task 3.65% 19.17% 24.66% 30.52% 35.56% -

Injection of Code Mutants MGident

no pre-training 25.78% - - - - 78.26%
pre-training single task 28.72% - - - - 78.69%
pre-training multi-task 28.92% - - - - 78.29%

Generation of Asserts in Test

AGraw

no pre-training 60.95% 59.14% 62.41% 69.05% 71.97% -
pre-training single task 68.93% 75.95% 77.70% 79.24% 80.22% -
pre-training multi-task 58.60% 66.90% 70.31% 73.19% 74.58% -

AGabs

no pre-training 47.81% 49.60% 55.04% 64.28% 68.57% -
pre-training single task 56.11% 71.26% 74.32% 76.67% 78.02% -
pre-training multi-task 44.90% 63.40% 68.23% 73.04% 73.12% -

Code Summarization CS
no pre-training 11.80% - - - - 24.67%
pre-training single task 12.02% - - - - 25.21%
pre-training multi-task 11.45% - - - - 24.90%

TABLE 6: McNemar’s test (adj. p-value and OR) considering only accuracy@1 matches as correct predictions

Task Dataset Model Configuration p-value OR

Automatic Bug-Fixing

BF small

no pre-training vs pre-training single task < 0.001 0.77
no pre-training vs pre-training multi-task < 0.001 0.46
pre-training multi-task vs pre-training single task < 0.001 1.67

BFmedium

no pre-training vs pre-training single task < 0.001 1.56
no pre-training vs pre-training multi-task < 0.001 0.12
pre-training multi-task vs pre-training single task < 0.001 8.56

Injection of Code Mutants MGident

no pre-training vs pre-training single task < 0.001 1.51
no pre-training vs pre-training multi-task < 0.001 1.38
pre-training multi-task vs pre-training single task 0.75 0.99

Generation of Asserts in Test

AGraw

no pre-training vs pre-training single task < 0.001 3.39
no pre-training vs pre-training multi-task < 0.001 0.71
pre-training multi-task vs pre-training single task < 0.001 4.95

AGabs

no pre-training vs pre-training single task < 0.001 2.55
no pre-training vs pre-training multi-task < 0.001 0.74
pre-training multi-task vs pre-training single task < 0.001 2.93

Code Summarization CS
no pre-training vs pre-training single task < 0.001 1.13
no pre-training vs pre-training multi-task < 0.001 0.83
pre-training multi-task vs pre-training single task < 0.001 1.40

the four tasks. Indeed, (i) the datasets related to automatic
bug-fixing and AGabs include abstracted code instances as
input/output; (ii) the dataset used for code mutants and
AGraw feature raw code instances as input/output; and (iii)
the one for code summarization has raw source code as
input and natural language text as output. Basically, given
the different formats, the transfer learning across different
tasks is likely to hinder the model rather than helping it.

Differently, the pre-training dataset features all three
input/output representations and, thus, provides the model
with a basic knowledge about all of them that, as a result,
boosts performance.

While we will discuss more in depth the performance of
the T5 model when comparing it to the considered baselines
(Section 5.2), it is also worth commenting on the ability of
the T5 to generate correct predictions, namely outputs that
are identical to the reference ones (e.g., a method summary
equal to the one manually written by developers). Quite
impressive are the performances achieved on the generation
of assert statements, especially on the dataset dealing with
raw source code, in which the T5 correctly predicts 68.93%
of assert statements with a single guess (75.95% when using
five guesses). The Accuracy@1 is instead much lower for
the other tasks, ranging between 11.85% (fixing bugs in the
most challenging BFmedium dataset) up to 28.72% when

injecting mutants. Also worth noticing is the 12.02% of code
summaries generated by the T5 that are identical to the
manually written ones. In the next subsection, together with
a comparison of our model with the baselines, we present
qualitative examples of predictions generated by the T5.

5.2 Competitiveness of the T5 model compared to the
baselines (RQ2)

We compare the results achieved by the T5 model when
using the pre-training single task strategy with the baseline we
consider for each task (Table 3). The comparison is depicted
in Fig. 2, while Table 7 shows the results of the statistical
tests, and Table 8 shows the overlap metrics described in
Section 4.1.

5.2.1 Automatic Bug Fixing (BF)

When using T5 for automatically fixing bugs, the accuracy
achieved using a greedy decoding strategy (K = 1) differs
according to the dataset we consider. For example, the T5
model achieves 15% of perfect predictions on the BF small

dataset against 9% achieved by the baseline, giving a ∼9.54%
improvement, while in the most challenging scenario, (i.e.,
BFmedium) our model obtains a ∼3.24% improvement over
the baseline (11% vs 3%). Such improvements are statistically

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 10

Fig. 2: Performance of the T5 model against the experimented baselines.

Automatic Bug Fixing (BF)

Generation of Asserts in Tests (AG) Code Summarization (CS)

Injection of Code Mutants (MG)

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5 10 15 20 25 30 35 40 50
beam width

451

AGabs
(Abstracted code)

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5 10 15 20 25 30 35 40 50
beam width

451

AGraw
(Raw code)

ac
cu

ra
cy

ac
cu

ra
cy

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

9%

5 10 15 20 25 30 35 40 50
beam width

451

BFsmall
(Methods up to 50 tokens)

10%
20%
30%
40%
50%
60%
70%
80%
90%

5 10 15 20 25 30 35 40 50
beam width

451

27%

36%

45%
50%

13%
18%

24%
29%

BFmedium
(Methods up to 100 tokens)

ac
cu

ra
cy

ac
cu

ra
cy

Baseline [1] T5 [25]

23%

27%
31%

50%

65%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BLEU-2
BLEU Variants

BLEU-1

BL
EU

 s
co

re

Baseline [11] T5 [25]

BLEU-3 BLEU-4 BLEU-A

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
ROUGE LCS

P

RO
UG

E
sc

or
e

F

Baseline [15] T5 [25]

Baseline [1]: 17% (1,991)

T5 [25]: 29% (3,327)

Accuracy@1

15%

32%
37% 42% 45%

19%
23%

28%
32%

55% 62%56%

71%
76%74%

78%

69%

76% 77% 79% 80%

BLEU-A

Baseline [1]: 0.77

T5 [25]: 0.79

3%

18%

26%

Baseline [16] T5 [25]

11%

25%

100%

TABLE 7: McNemer’s test considering the correct predictions
achieved by the T5 model and the baselines when both
techniques generate only one prediction (i.e., accuracy@1)

Task Dataset (d) p-value OR

Automatic Bug-Fixing BF small < 0.001 2.39
BFmedium < 0.001 6.88

Injection of Code Mutants MGident < 0.001 2.95

Generation of Asserts in Test AGabs < 0.001 6.19
AGraw < 0.001 43.12

Code Summarization CS < 0.001 35.56

significant (Table 7) with ORs of 2.39 (BF small) and 6.88
(BFmedium), indicating higher chance of observing a perfect
prediction when using the T5 as compared to the baseline.
Worth noticing is that as the beam width increases, the
performance of the T5 and of the baseline gets closer, with
the baseline performing better for K = 25 and K = 50 on
BF small .

Looking at the overlap metrics (Table 8), 25.90% of perfect
predictions on BF small and 28.78% on BFmedium are shared
by the two techniques. The remaining are perfect predictions
only with T5 (53.20% on BF small and 36% on BFmedium)
or only with the baseline (20.90% on BF small and 35.16%
on BFmedium). This indicates that the two approaches are
complementary for the bug fixing task suggesting that further
improvements could be possible by exploiting customized
ML-based bug-fixing techniques.

5.2.2 Injection of Code Mutants (MG)
Looking at Fig. 2 we can observe that using T5 to generate
mutants allows to obtain more accurate results than the base-
line, with the Accuracy@1 improving by ∼19%, with 1,336
additional perfect predictions. The average BLEU score also
improves by ∼0.02 on top of the very good results already
obtained by the baseline (i.e., 0.77). Minor improvements in
BLEU score can still indicate major advances in the quality
of the generated solutions [14]. Also in this case differences
in terms of Accuracy@1 are statistically significant, with the
T5 model being more likely to generate correct solutions
(OR = 2.95) as compared to the baseline approach [73]
(Table 7).

Differently from the bug-fixing task, for the injection of
code mutants the percentage of shared perfect predictions
(Table 8) is slightly higher (33%) with, however, T5 being the
only one generating 50.52% of perfect predictions as com-
pared to the 16.48% generated exclusively by the baseline.

5.2.3 Generation of Assertions in Test Methods (AG)
T5 achieves much better performance in this task as com-
pared to the baseline. The gap is substantial both with
(AGabs) and without (AGraw) code abstraction (Fig. 2).
With abstraction the T5 achieves a 56% accuracy at K = 1
against the 31% achieved by ATLAS [79]. When both ap-
proaches are asked to generate multiple assert statements (i.e.,
K = 5, 10, 25, 50) the gap in performance ranges between
38-73%. When using the more challenging non-abstracted
dataset AGraw , T5 achieves even better results, with a ∼27%
higher accuracy at K = 1, while for larger K values the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 11

TABLE 8: Overlap metrics for correct predictions generated
by the T5 model and the baselines.

Task Dataset (d) Sharedd OnlyT5d OnlyBLd

Automatic Bug-Fixing BF small 25.90% 53.20% 20.90%
BFmedium 28.78% 36.06% 35.16%

Injection of Code Mutants MGident 33.00% 50.52% 16.48%

Generation of Asserts in Test AGabs 34.92% 58.87% 6.21%
AGraw 9.56% 89.65% 0.79%

Code Summarization CS 4.79% 93.79% 1.42%

gap in performance ranges between 35-41%. The McNemar’s
test confirms the huge gap in performance between the two
techniques, with ORs ranging between 6.19 (AGabs) and
43.12 (AGraw).

In terms of overlap, we found a trend similar to the
previously discussed task (mutants injection): On AGabs we
have 34.92% of perfect predictions shared between the two
approaches, while the remaining instances are distributed
between the ones only predicted by T5 (58.87%) and the
ones only predicted by the baseline (6.21%). The overlap is
much smaller on the AGraw dataset, with only 9.56% of the
instances correctly predicted by both the approaches, 89.65%
of them correctly predicted only by T5, and 0.79% only by
the baseline.

5.2.4 Code Summarization (CS)
On this task, T5 achieves a substantial increase in BLEU score
as compared to the baseline. When considering the average
BLEU (BLEU-A), the improvement is of ∼20%. On the other
hand, it can be noticed that the ROUGE-LCS scores achieved
when using T5 are lower than the ones achieved by the
baseline (∼47% lower on the F-measure score). Thus, looking
at these metrics, there is no clear winner, but T5 seems to
be at least comparable to the baseline. To have something
easier to interpret, we compared the two approaches in terms
of the number of perfect predictions they generate, despite
the fact that such a metric was not used in the original
paper [23]. This means counting the comments generated
by a technique that are exactly equal to the ones manually
written by humans. T5 managed to generate 12.02% of perfect
predictions (10,929 instances) against the 3.4% (3,048) of
the baseline technique (over 3 × better). As expected from
previous results, the majority of the perfect predictions for
this task can be done only using T5 (93.79%). A limited
percentage of perfect predictions is shared (4.79%), and a
minority of instances can be only predicted through the
baseline (1.42%). The McNemar’s test highlights a statistical
significance in terms of Accuracy@1, with an OR of 35.56.

5.2.5 Qualitative Analysis
To give a better idea to the reader about the capabilities
of the T5 model in supporting the four code-related tasks,
Fig. 3 shows two examples of perfect predictions made by T5
for each task. Each example is bordered with a dashed line
and shows (i) the input provided by the model, and (ii) the
generated output. In particular, in the case of the bug-fixing,
mutants injection, and code summarization tasks, the first
line shows the input and the second the output. Concerning
the generation of assert statements, the first two lines (i.e.,
those marked with “//Test method” and “//Focal method”)

represent the input, while the third line shows the generated
assert statement. We highlighted in bold the most relevant
parts of the output generated by the model. The bottom
part of Fig. 3 also shows some “wrong” predictions (i.e., the
output of the model is different from the expected target) for
the code summarization task, that we will discuss later on.

Concerning the bug-fixing task, in the first example the
model adds the break statement to each case of the switch
block, thus allowing the program to break out of the switch
block after one case block is executed. In the second example,
instead, it changes the execution order of a statement as done
by developers to fix the bug.

As per the mutants injection, the first example represents
an arithmetic operator deletion, while the second is a non void
method call mutation [1]. While these transformations might
look trivial, it is worth remembering that they are considered
as correct since they reproduce real bugs that used to affect
these methods. Thus, the model is basically choosing where
to mutate and what to mutate in such a way to simulate
real bugs (accomplishing one of the main goals of mutation
testing).

Both examples of correct prediction we report involve the
generation of an assert statement including an invocation
to the focal method (i.e., the main method tested by the test
method). While the first is a rather “simple” assertFalse
statement, the second required the guessing of the expected
value (i.e., assertEquals).

Finally, for the code summarization, the two reported
examples showcase the ability of T5 to generate meaningful
summaries equivalent to the ones manually written by
developers. For this task, we also reported in the bottom part
of the figure some wrong but still meaningful predictions.
In this case, the grey text represent the original summary
written by developers, while the bold one has been generated
by T5. In both cases, the generated summary is semantically
equivalent and even more detailed that the manually written
one.

These two examples help in discussing an important
limitation of our analysis: While we assume the correct
predictions to be the only valuable outputs of T5 and of the ex-
perimented baselines, they actually represent a lower-bound
for their performance. Indeed, there are other predictions
that, even if wrong, could still be valuable for developers,
such as the two shown for the code summarization task.

5.3 Training and Inference Time

In this section we present the results of the inference time
analysis (i.e., the time needed to run the model on a given
input and obtain the prediction). Such analysis allows to
understand the extent to which such a model can be used in
practice. Table 11 reports the inference time in seconds for
different K values (e.g., with K = 10 the reported time is the
one required by the model to generate 10 possible solutions).

Concerning the bug-fixing task, the time needed to
generate a fix depends on the dataset, since the complexity of
the instances they feature is different. In the BF small dataset,
the average inference time ranges between 0.72s (K = 1)
and 5.99s (K = 50), while it is larger on the BFmedium

dataset (1.86s for K = 1 and 20.90s for K = 50). For the
injection of code mutants, we observed results comparable

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 12

TABLE 9: Top-20 AST operations needed to fix bugs in our dataset (see “Oracle” column) and their presence in correct
predictions generated by T5 and the baseline

Delete

BF small BFmedium

Oracle Baseline [72] T5 Oracle Baseline [72] T5
Delete TypeAccess at Invocation 2,016 402 450 1,926 125 250
Delete Invocation at Block 1,444 294 326 1,315 159 240
Delete TypeAccess at ThisAccess 821 92 134 598 32 81
Delete VariableRead at Invocation 818 51 106 1,106 61 126
Delete FieldRead at BinaryOperator 479 92 100 651 66 116

Insert

BF small BFmedium

Oracle Baseline [72] T5 Oracle Baseline [72] T5
Insert Block at If 486 3 28 828 3 48
Insert Literal at BinaryOperator 468 5 27 736 0 37
Insert If at Block 406 2 22 659 0 33
Insert BinaryOperator at If 380 3 23 634 0 36
Insert VariableRead at Invocation 328 10 33 675 0 38

Move

BF small BFmedium

Oracle Baseline [72] T5 Oracle Baseline [72] T5
Move Invocation from Block to Invocation 633 17 61 1,005 4 86
Move VariableRead from Invocation to VariableRead 158 7 11 281 2 19
Move Assignment from Block to Assignment 120 0 13 209 1 19
Move Invocation from BinaryOperator to Invocation 95 7 11 183 1 14
Move BinaryOperator from BinaryOperator to BinaryOperator 68 0 2 174 0 9

Update

BF small BFmedium

Oracle Baseline [72] T5 Oracle Baseline [72] T5
Update Wra at Method 280 15 37 191 1 22
Update TypeAccess at Invocation 201 17 41 404 18 115
Update Invocation at Block 115 0 8 153 2 21
Update VariableRead at Invocation 101 1 12 226 0 19
Update BinaryOperator at If 56 3 8 148 1 12

TABLE 10: Top-20 AST operations needed to inject mutants in our dataset (see “Oracle” column) and their presence in
correct predictions generated by T5 and the baseline

Delete

MGident

Oracle Baseline [73] T5
Delete TypeAccess at Invocation 387 1 30
Delete Return at Block 327 20 64
Delete FieldRead at BinaryOperator 283 0 7
Delete FieldRead at Invocation 242 0 19
Delete Invocation at Block 236 0 15

Insert

MGident

Oracle Baseline [73] T5
Insert TypeAccess at Invocation 6,230 1,125 1,744
Insert Invocation at Block 3,979 860 1,183
Insert TypeAccess at ThisAccess 2,219 479 722
Insert VariableRead at Invocation 2,061 245 466
Insert Block at If 1,795 485 671

Move

MGident

Oracle Baseline [73] T5
Move Invocation from Block to Invocation 1,154 225 356
Move Invocation from Return to Invocation 283 55 105
Move Return from Block to Return 224 58 100
Move Assignment from Block to Assignment 190 26 56
Move Invocation from Invocation to Invocation 129 1 27

Update

MGident

Oracle Baseline [73] T5
Update TypeAccess at Invocation 923 67 220
Update FieldRead at BinaryOperator 408 14 63
Update Wra at Method 264 1 31
Update TypeAccess at ThisAccess 228 10 73
Update TypeReference at Method 208 0 25

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 13

Fig. 3: Examples of perfect and alternative predictions

private void METHOD_1 (int VAR_1 , int offset) { switch (VAR_1) { case 0 : this . VAR_2 = offset ; break ; case 1 : this . VAR_3 = offset ; break ;
case INT_1 : this . VAR_4 = offset ; break ; case INT_2 : this . VAR_5 = offset ; break ; } }

Bug-fixing

Mutants generation
public int METHOD_1 (int a) { int index = VAR_1 [(a + 1)] ; return VAR_2 . METHOD_2 (index) ; }

public int METHOD_1 (int a) { int index = VAR_1 [a] ; return VAR_2 . METHOD_2 (index) ; }

public java.lang.String METHOD_1 (final java.lang.String VAR_1) { return STRING_1 . METHOD_2 (VAR_2 . METHOD_3 () . METHOD_4 ()) ; }

public java.lang.String METHOD_1 (final java.lang.String VAR_1) { return VAR_2 . METHOD_3 () . METHOD_4 () ; }

private void METHOD_1 (int VAR_1 , int offset) { switch (VAR_1) { case 0 : this . VAR_2 = offset ; case 1 : this . VAR_3 = offset ; case INT_1 :
this . VAR_4 = offset ; case INT_2 : this . VAR_5 = offset ; } }

// Test method

// Focal method
isValidToExecute (uk . gov . gchq . gaffer . user . User) { return (isPublic) || ((null != user) && ((isAddingUser (user))
|| ((! (isAuthsNullOrEmpty ())) && (isUserHasASharedAuth (user))))) ; }

// Test method
testClone () { org . apache . flink . api . common . accumulators . DoubleMinimum min = new org . apache . flink . api . common . accumulators .
DoubleMinimum () ; double value = 3.14159265359 ; min . add (value) ; org . apache . flink . api . common . accumulators . DoubleMinimum clone =
min . clone () ; "<AssertPlaceHolder>" ; }

getLocalValue () { return null ; }
// Focal method

org . junit . Assert . assertEquals (value , clone . getLocalValue () , 0.0)

Code summarization
public void update() { check Widget () ; Utils . paintComponentImmediately (handle) ; update (false) ; }

public void setWordWrap(int row, int column, boolean wrap) { prepareCell (row , column) ; String wrapValue = wrap ? "" : "nowrap" ; DOM .
setStyleAttribute (getElement (row, column) , "whiteSpace" , wrapValue) ; }

sets whether the specified cell will allow word wrapping of its contents

public void METHOD_1 (final long [] data , boolean length) { int VAR_1 = (data . length) * (VAR_2) ; if (length) METHOD_2 (VAR_1) ; METHOD_3
(((position) + VAR_1)) ; VAR_3 . METHOD_4 (data , VAR_4 , null , ((VAR_5) + (position)) , VAR_1) ; position += VAR_1 ;
end = ((position) > (end)) ? position : end ; }

public void METHOD_1 (final long [] data , boolean length) { int VAR_1 = data . length ; if (length) METHOD_2 (VAR_1) ; VAR_1 *= VAR_2 ;
METHOD_3 (((position) + VAR_1)) ; VAR_3 . METHOD_4 (data , VAR_4 , null , ((VAR_5) + (position)) , VAR_1) ; position += VAR_1 ;
end = ((position) > (end)) ? position : end ; }

shouldNeverValidateNullUserIV () { final uk . gov . gchq . gaffer . federatedstore . FederatedAccess access = new uk . gov . gchq . gaffer .
federatedstore . FederatedAccess . Builder () . addingUserId (null) . build () ; "<AssertPlaceHolder>" ; }

Generation of assert statements

org . junit . Assert . assertFalse (access . isValidToExecute (null))

testCase getTestCase (String implementationNumber) int index = Integer . valueOf (implementationNumber) ; int value = return getTestCase (index) ;

protected void doConfigure(HierarchicalConfiguration config) throws ConfigurationException {}

forces all outstanding paint requests for the widget

return the specific test case

override to handle config

returns the test case with the given implementation number

subclasses can override this method to perform custom configuration

Wrong but meaningful predictions for the code summarization task

TABLE 11: Inference time with different beam size values.

K BF small BFmedium MGident AGabs AGraw CS

1 0.72 1.86 0.94 0.73 0.53 0.20
5 1.47 3.69 1.70 1.59 1.04 0.36
10 1.91 5.26 2.20 2.64 1.52 0.48
25 3.54 11.10 4.32 5.45 3.15 0.81
50 5.99 20.90 7.60 10.24 5.45 1.45

to those of BF small : with K = 1 the average inference time
is 0.94s, while for K = 50 it is 7.60s. The generation of assert

TABLE 12: Training time (hours) for the trained T5 models

Training Bug-fixing Mutants Generation of Code Multi-Taskgeneration assert statements summarization

no pre-training 6.26 5.85 17.51 123.55 -

pre-training 28.10 27.72 39.40 145.42 175.00

statement is very fast for low values of K (0.73s for AGabs

and 0.53s for AGraw with K = 1), while it gets slower for
higher values of K (10.24 for AGabs and 5.45 for AGraw

with K = 50). Finally, concerning the code summarization

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 14

task, T5 takes only 0.20s for K = 1 and 1.45s for K = 50 to
output code summaries for a method given as input.

Overall, considering that all the targeted tasks do not
have strong real-time constraints (e.g., a developer can wait a
few seconds for the automated fixing of a bug), the inference
times should not hinder the model applicability in practice.

6 THREATS TO VALIDITY

Construct validity. Threats to construct validity concern
the relationship between theory and observation. We used
existing datasets that are popular and used in the commu-
nity for both pre-training and fine-tuning our model with
minimal additional processing (e.g., removal of duplicates
after abstraction in the dataset used for the pre-training).
Additionally, we have released all of our code and models in
our replication study [2] for verification.

Internal validity. Threats to internal validity concern
factors, internal to our study, that could influence its results.
Many factors can influence our results, from model architec-
ture, hyperparameter choices, data processing, the data itself,
etc. For mitigating these issues, we have adopted methodolo-
gies usually employed in DL-based research. Specifically, we
performed a detailed analysis of hyperparameter choices as
discussed in Section 4.2. Concerning the pre-training phase,
we used the default T5 parameters selected in the original
paper [59] since we expect little margin of improvement
for such a task-agnostic phase. For the fine-tuning, due
to computational feasibility reasons, we did not change
the model architecture (e.g., number of layers), but we
experiment with different learning rates schedulers. We are
aware that a more extensive calibration would likely produce
better results.

Also the quality of the employed datasets can dramati-
cally impact the achieved results. This is because there may
be biases making the dataset not representative of the real
world. To assess the quality of our datasets we conducted
various analyses around sampling bias and data snooping as
recommended by Watson et al. [78].

To this end, we conducted an exploratory data analysis
(EDA), which helps answering questions related to the
reliability and quality of our datasets. To accomplish this, we
performed a two-fold statistical procedure: complexity size
and token distributions. In the complexity size procedure, we
count the number of tokens per dataset and data partition.
Then, we present the relative distribution in log scale. While
in the token procedure, we concentrated on counting specific
tokens by popularity or special interest (e.g., if , assert, or
public). The purpose of the EDA is to monitor the size of
datasets and its impact in the model performance. EDA’s
results can be found in our web appendix [2].

Conclusion validity. Threats to conclusion validity con-
cern the relationship between evaluation and outcome. To
this extent, we used appropriate statistical procedures, also
adopting p-value adjustment when multiple tests were used
within the same analysis.

External validity. Threats to external validity are related
to the generalizability of our findings. Our study focused on
the T5 model on four tasks using six datasets, all of which
only involved Java code. While it is unclear how our model
would perform if trained on other programming languages,

excluding the abstraction component, the whole pipeline
is language agnostic and can be easily adapted to other
languages for evaluating this.

We also performed an analysis of our dataset aimed at
finding out the generalizability of our models. This analysis
assessed the level of data snooping among our datasets’
training and test sets and how this impacts our model’s
results. To accomplish this we calculate the overlap between
our fine-tuning datasets’ training and test sets by computing
the pairwise Levenshtein Distance [39] between the two sets.
With these distances calculated, we computed the correlation
between the distances and the performance of our model on
the different test sets.

Specifically, we selected a statistically representative
sample (confidence level = 95% and confidence interval = 5%)
of each training set and calculated the pairwise Levenshtein
Distance [39] between it and the entirety of the test set for
each fine-tuning dataset. Next, depending on the type of
performance metric (Perfect Prediction or BLEU Score), we
calculate the correlation between the minimum, median, and
maximum distances of all sampled training examples to each
test example and the performance of our model on the test set.
For the perfect prediction, we use Point Biserial Correlation
(PBC) [68] as it allows to compare binary and continuous
data. For the BLEU score, we use Pearson Correlation [68]
since both are continuous values.

TABLE 13: Correlation between training-test set similarity
and test set performance.

Dataset Min Median Max

BF small -0.15 -0.03 0.04
BFmedium -0.05 -0.03 0.01
MGident 0.21 0.03 -0.23
AGabs -0.21 -0.14 0.29
AGraw -0.21 -0.14 0.19
CS -0.38 -0.17 -0.09

Table 13 shows the correlation for each dataset. As shown,
there exists a negative correlation between the minimum and
median distances and model performance, i.e., the model
tends to perform worse as the distance between the training
and test examples increases. For the maximum distance case,
there is instead a positive correlation for perfect prediction
performance, i.e., the model tends to perform better the
further away the maximum training examples are from
the test examples. Such a result may be simply due to
specific outliers present in the test set (i.e., an instances being
very far from the ones in the training set). However, all
the correlations we observed are quite low, supporting the
generalizability of our models.

7 CONCLUSION

We presented an empirical study aimed at investigating the
usage of transfer learning for code-related tasks. In particular,
we pre-trained and fine-tuned several variants of the Text-
To-Text Transfer Transformer (T5) model with the goal of
supporting four code-related tasks, namely automatic bug-
fixing, injection of code mutants, generation of assert statements
in test methods, and code summarization. We compared the
performance achieved by the T5 against state-of-the-art

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 15

baselines that proposed DL-based solutions to these four
tasks.

The achieved results showed that: (i) the pre-training
process of the T5, as expected, boosts its performance across
all tasks; (ii) the multi-task fine-tuning (i.e., a single model
trained for different tasks) instead, does not consistently help
in improving performance, possibly due to the different
types of “data” manipulated in the four tasks (i.e., raw
code, abstracted code, natural language); (iii) in its best
configuration, the T5 performs better that the baselines across
all four tasks.

Future work will aim at further advancing performance
by employing larger versions of the T5. Also, while our
results do not support the usage of multi-task learning in
code-related tasks, we believe additional investigations are
needed on this side. For example, by only considering a set of
tasks all manipulating the same type of data (e.g., all working
on raw code), it is possible that the benefits of multi-task
learning would emerge.

ACKNOWLEDGMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 851720). W&M team has been supported in part by the
NSF CCF-1955853, CCF-1815186 and CCF-2007246 grants.
Any opinions, findings, and conclusions expressed herein
are the authors’ and do not necessarily reflect those of the
sponsors.

REFERENCES

[1] “Pit - real world mutation testing https://pitest.org.”
[2] “Replication package https://github.com/antonio-mastropaolo/

TransferLearning4Code.”
[3] “Utilizing fast testing to transform java development into an

agile, quick release, low risk process.” [Online]. Available:
http://www.agitar.com/

[4] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional
attention network for extreme summarization of source
code,” CoRR, vol. abs/1602.03001, 2016. [Online]. Available:
http://arxiv.org/abs/1602.03001

[5] U. Alon, R. Sadaka, O. Levy, and E. Yahav, “Structural language
models of code,” arXiv, pp. arXiv–1910, 2019.

[6] N. Arivazhagan, A. Bapna, O. Firat, D. Lepikhin, M. Johnson,
M. Krikun, M. X. Chen, Y. Cao, G. F. Foster, C. Cherry,
W. Macherey, Z. Chen, and Y. Wu, “Massively multilingual
neural machine translation in the wild: Findings and challenges,”
CoRR, vol. abs/1907.05019, 2019. [Online]. Available: http:
//arxiv.org/abs/1907.05019

[7] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: learning
to fix bugs automatically,” Proc. ACM Program. Lang., vol. 3, no.
OOPSLA, pp. 159:1–159:27, 2019.

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” CoRR, vol. abs/1409.0473,
2014.

[9] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The plas-
tic surgery hypothesis,” in Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2014. New York, NY, USA: ACM, 2014, pp. 306–317.

[10] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Audio
chord recognition with recurrent neural networks.” in ISMIR.
Citeseer, 2013, pp. 335–340.

[11] S. Brody, U. Alon, and E. Yahav, “Neural edit completion,” arXiv
preprint arXiv:2005.13209, 2020.

[12] D. B. Brown, M. Vaughn, B. Liblit, and T. Reps, “The care and
feeding of wild-caught mutants,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2017. New York, NY, USA: ACM, 2017, pp. 511–522. [Online].
Available: http://doi.acm.org/10.1145/3106237.3106280

[13] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezzè,
“Automatic recovery from runtime failures,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 782–791.

[14] I. Caswell and B. Liang, “Recent advances in
google translate,” https://ai.googleblog.com/2020/06/
recent-advances-in-google-translate.html, 2020.

[15] Z. Chen, S. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and
M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
2019. [Online]. Available: http://arxiv.org/abs/1901.01808

[16] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” CoRR, vol.
abs/1406.1078, 2014.

[17] M. Ciniselli, N. Cooper, L. Pascarella, A. Mastropaolo, E. Aghajani,
D. Poshyvanyk, M. Di Penta, and G. Bavota, “An empirical study
on the usage of transformer models for code completion,” IEEE
Transactions on Software Engineering, 2021.

[18] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite Genera-
tion for Object-oriented Software,” in Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ser. ESEC/FSE ’11. ACM, 2011, pp. 416–419.

[19] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE ’10. New York, NY,
USA: ACM, 2010, pp. 147–156.

[20] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each,” ser. ICSE’12.

[21] A. Graves, “Sequence transduction with recurrent neural
networks,” CoRR, vol. abs/1211.3711, 2012. [Online]. Available:
http://arxiv.org/abs/1211.3711

[22] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source
code,” in 2010 17th Working Conference on Reverse Engineering, 2010,
pp. 35–44.

[23] S. Haque, A. LeClair, L. Wu, and C. McMillan, “Improved automatic
summarization of subroutines via attention to file context,” in MSR
’20: 17th International Conference on Mining Software Repositories, 2020.
ACM, 2020, pp. 300–310.

[24] H. Hata, E. Shihab, and G. Neubig, “Learning to generate
corrective patches using neural machine translation,” CoRR, vol.
abs/1812.07170, 2018. [Online]. Available: http://arxiv.org/abs/
1812.07170

[25] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian journal of statistics, pp. 65–70, 1979.

[26] J. Howard and S. Ruder, “Universal language model fine-tuning
for text classification,” arXiv preprint arXiv:1801.06146, 2018.

[27] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment genera-
tion,” in Proceedings of the 26th Conference on Program Comprehension,
ser. ICPC ?18. Association for Computing Machinery, 2018, p.
200?210.

[28] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” arXiv preprint arXiv:1909.09436, 2019.

[29] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, Aug. 2016, pp. 2073–2083. [Online].
Available: https://www.aclweb.org/anthology/P16-1195

[30] A. Jaffe, J. Lacomis, E. J. Schwartz, C. L. Goues, and B. Vasilescu,
“Meaningful variable names for decompiled code: A machine
translation approach,” in Proceedings of the 26th Conference on
Program Comprehension, ser. ICPC ’18, 2018, pp. 20–30.

[31] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), ser. ASE’17, Oct. 2017, pp. 135–146, iSSN:.

[32] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation
models,” in Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing. Seattle, Washington, USA: Association
for Computational Linguistics, October 2013, pp. 1700–1709.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 16

[33] R. Karampatsis and C. A. Sutton, “Maybe deep neural
networks are the best choice for modeling source code,”
CoRR, vol. abs/1903.05734, 2019. [Online]. Available: http:
//arxiv.org/abs/1903.05734

[34] S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction by
feeding trees to transformers,” arXiv preprint arXiv:2003.13848, 2020.

[35] T. Kudo, “Subword regularization: Improving neural network
translation models with multiple subword candidates,” arXiv
preprint arXiv:1804.10959, 2018.

[36] T. Kudo and J. Richardson, “Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text
processing,” CoRR, vol. abs/1808.06226, 2018. [Online]. Available:
http://arxiv.org/abs/1808.06226

[37] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Trans. Software
Eng., vol. 38, no. 1, pp. 54–72, 2012.

[38] A. LeClair, S. Jiang, and C. McMillan, “A neural model for gen-
erating natural language summaries of program subroutines,” in
Proceedings of the 41st International Conference on Software Engineering,
ser. ICSE ’19, 2019, pp. 795–806.

[39] V. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707,
1966.

[40] C.-Y. Lin, “Rouge: A package for automatic evaluation of sum-
maries,” in Text summarization branches out, 2004, pp. 74–81.

[41] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: How far
are we?” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE 2018, 2018, pp. 373–384.

[42] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients
already exist? an empirical inquiry into the redundancy assump-
tions of program repair approaches,” in Companion Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
Companion 2014. New York, NY, USA: ACM, 2014, pp. 492–495.

[43] A. Mastropaolo, E. Aghajani, L. Pascarella, and G. Bavota, “An
empirical study on code comment completion,” in 2021 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2021, pp. 159–170.

[44] A. Mastropaolo, S. Scalabrino, N. Cooper, D. Nader-Palacio,
D. Poshyvanyk, R. Oliveto, and G. Bavota, “Studying the usage
of text-to-text transfer transformer to support code-related tasks,”
in 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021. IEEE, 2021, pp. 336–347.

[45] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[46] Q. McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, no. 2,
pp. 153–157, 1947.

[47] A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian,
“Deepdelta: Learning to repair compilation errors,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019, 2019, pp. 925–936.

[48] K. Moran, D. N. Palacio, C. Bernal-Cardenas, D. McCrystal,
D. Poshyvanyk, C. Shenefiel, and J. Johnson, “Improving
the effectiveness of traceability link recovery using hierarchical
bayesian networks,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE
Computer Society, oct 2020, pp. 873–885. [Online]. Available:
https://doi.ieeecomputersociety.org/

[49] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language
summaries for java classes,” in 2013 21st International Conference on
Program Comprehension (ICPC), 2013, pp. 23–32.

[50] M. Namavar, N. Nashid, and A. Mesbah, “A controlled experiment
of different code representations for learning-based bug repair,”
arXiv preprint arXiv:2110.14081, 2021.

[51] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical statistical
machine translation for language migration,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2013, 2013, pp. 651–654.

[52] ——, “Migrating code with statistical machine translation,” in
Companion Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE Companion 2014, 2014, pp. 544–547.

[53] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and
H. Rajan, “A study of repetitiveness of code changes in software

evolution,” in Proceedings of the 28th IEEE/ACM International Confer-
ence on Automated Software Engineering, ser. ASE’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 180–190.

[54] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source
code using statistical machine translation,” in Proceedings of the
30th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’15, 2015, pp. 574–584.

[55] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random
testing for java,” in OOPSLA’07, 01 2007, pp. 815–816.

[56] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method
for automatic evaluation of machine translation,” in Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics,
ser. ACL ’02, 2002, pp. 311–318.

[57] D. Pierret and D. Poshyvanyk, “An empirical exploration of
regularities in open-source software lexicons,” in The 17th IEEE
International Conference on Program Comprehension, ICPC 2009,
Vancouver, British Columbia, Canada, May 17-19, 2009, 2009, pp. 228–
232.

[58] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
“Recovering test-to-code traceability using slicing and textual
analysis,” J. Syst. Softw., vol. 88, no. C, p. 147–168, Feb. 2014.

[59] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” 2019.

[60] V. Raychev, M. Vechev, and E. Yahav, “Code completion
with statistical language models,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14. New York, NY, USA: ACM, 2014, pp.
419–428. [Online]. Available: http://doi.acm.org/10.1145/2594291.
2594321

[61] P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting user
story information in developer-client conversations to generate
extractive summaries,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ?17, 2017, p. 49?59.

[62] S. Shamshiri, “Automated Unit Test Generation for Evolving
Software,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ser. FSE’15. Bergamo, Italy: ACM, 2015,
pp. 1038–1041.

[63] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard,
“Automatic error elimination by horizontal code transfer across
multiple applications,” SIGPLAN Not., vol. 50, no. 6, pp. 43–54, Jun.
2015.

[64] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically
detecting and describing high level actions within methods,” in
2011 33rd International Conference on Software Engineering (ICSE),
2011, pp. 101–110.

[65] ——, “Generating parameter comments and integrating with
method summaries,” in 2011 IEEE 19th International Conference
on Program Comprehension, 2011, pp. 71–80.

[66] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” CoRR, vol. abs/1409.3215, 2014.

[67] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” arXiv preprint
arXiv:2005.08025, 2020.

[68] R. F. Tate, “Correlation between a discrete and a continuous
variable. point-biserial correlation,” The Annals of mathematical
statistics, vol. 25, no. 3, pp. 603–607, 1954.

[69] M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Gener-
ating accurate assert statements for unit test cases using pretrained
transformers,” arXiv preprint arXiv:2009.05634, 2020.

[70] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshy-
vanyk, “On learning meaningful code changes via neural machine
translation,” in Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, 2019, pp. 25–36.

[71] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “Deep learning similarities from different repre-
sentations of source code,” in 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), 2018, pp. 542–553.

[72] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019.

[73] ——, “Learning how to mutate source code from bug-fixes,” in 2019
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2019, Cleveland, OH, USA, September 29 - October 4, 2019,
2019, pp. 301–312.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 17

[74] R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshyvanyk,
and G. Bavota, “Automating code review activities 2.0,” in 2022
IEEE/ACM 44th International Conference on Software Engineering
(ICSE). IEEE.

[75] R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk, and G. Bavota,
“Towards automating code review activities,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 163–174.

[76] B. Vasilescu, C. Casalnuovo, and P. Devanbu, “Recovering clear,
natural identifiers from obfuscated js names,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017, 2017, pp. 683–693.

[77] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp. 5998–
6008.

[78] C. Watson, N. Cooper, D. Palacio, K. Moran, and D. Poshyvanyk, “A
systematic literature review on the use of deep learning in software
engineering research,” ACM Transactions on Software Engineering
and Methodology.

[79] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk,

“On learning meaningful assert statements for unit test cases,”
in Proceedings of the 42nd International Conference on Software
Engineering, ICSE 2020, 2020, p. To Appear.

[80] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in 2016 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2016, pp. 87–98.

[81] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward Deep Learning Software Repositories,” in Proceedings
of the 12th IEEE Working Conference on Mining Software Repositories
(MSR’15), ser. MSR ’15. Piscataway, NJ, USA: IEEE Press, 2015,
pp. 334–345. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2820518.2820559

[82] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshy-
vanyk, “Sorting and transforming program repair ingredients via
deep learning code similarities,” in 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2019, p. to appear.

[83] Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep learning
for software engineering,” arXiv preprint arXiv:2011.14597, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 18

Antonio Mastropaolo is a Ph.D. student in the
Faculty of Informatics at the Università della
Svizzera italiana (USI), Switzerland, where he
is part of the Software Institute. He received his
MSc. in Software System Security from Università
degli studi del Molise, Italy, in July 2020. His
research interests include the study and the
application of deep-learning techniques to foster
code-related tasks. More information available at:
https://antoniomastropaolo.com.

Nathan Cooper received a B.S. degree in Soft-
ware Engineering from the University of West
Florida in 2018. He is currently a Ph.D. candidate
in Computer Science at William & Mary under
the advisement of Dr. Denys Poshyvanyk and
is a member of the Semeru Research group.
He has research interests in Software Engineer-
ing, Machine / Deep Learning applications for
Software Engineering, information retrieval, and
question & answering applications for Software
Engineering. He has published in the top peer-

reviewed Software Engineering venues ICSE and MSR. He has also
received the ACM SIGSOFT Distinguished paper award at ICSE’20.
More information is available at https://nathancooper.io/#/.

David N. Palacio is a Ph.D. Candidate in Com-
puter Science at The College of William & Mary,
where he is a member of the SEMERU Research
Group supervised by Dr. Denys Poshyvanyk.
He received his MSc. in Computer Engineering
at Universidad Nacional de Colombia (UNAL),
Colombia, 2017. His research is concentrated
on interpretable methods for deep learning code
generators, specifically, towards using causal
inference to explain deep software models. His
fields of interest lie in complexity science, neu-

roevolution, causal inference, and interpretable machine learning for the
study and automation of software engineer processes. More information
available at https://danaderp.github.io/danaderp/.

Simone Scalabrino is a Research Fellow at the
University of Molise, Italy. He has received his
MS degree from the University of Salerno, and
his PhD degree from the University of Molise,
defending a thesis on automatically assessing
and improving source code readability and under-
standability. His main research interests include
code quality, software testing, and empirical soft-
ware engineering. He has received three ACM
SIGSOFT Distinguished Paper Awards at ICPC
2016, ASE 2017, and MSR 2019. He is co-

founder and CSO of datasound, a spin-off of the University of Molise.
More information available at: https://dibt.unimol.it/sscalabrino/.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 19

Denys Poshyvanyk is a Professor of Computer
Science at William and Mary. He received the
MS and MA degrees in Computer Science from
the National University of Kyiv-Mohyla Academy,
Ukraine, and Wayne State University in 2003 and
2006, respectively. He received the PhD degree
in Computer Science from Wayne State Univer-
sity in 2008. He served as a program co-chair
for ASE’21, MobileSoft’19, ICSME’16, ICPC’13,
WCRE’12 and WCRE’11. He currently serves on
the editorial board of IEEE Transactions on Soft-

ware Engineering (TSE), ACM Transactions on Software Engineering and
Methodology (TOSEM), Empirical Software Engineering Journal (EMSE,
Springer), Journal of Software: Evolution and Process (JSEP, Wiley)
and Science of Computer Programming. His research interests include
software engineering, software maintenance and evolution, program
comprehension, reverse engineering and software repository mining.
His research papers received several Best Paper Awards at ICPC’06,
ICPC’07, ICSM’10, SCAM’10, ICSM’13, CODAPSY’19 and ACM SIG-
SOFT Distinguished Paper Awards at ASE’13, ICSE’15, ESEC/FSE’15,
ICPC’16, ASE’17, ESEC/FSE’19 and ICSE’20. He also received the
Most Influential Paper Awards at ICSME’16, ICPC’17, ICPC’20 and
ICSME’21. He is a recipient of the NSF CAREER award (2013). He
is a member of the IEEE and ACM. More information is available at:
http://www.cs.wm.edu/~denys/.

Rocco Oliveto is a Professor in the Department
of Bioscience and Territory at University of Molise
(Italy). He is the Chair of the Computer Science
program and the Director of the Laboratory of
Computer Science and Scientific Computation
of the University of Molise. He received the PhD
in Computer Science from University of Salerno
(Italy) in 2008. His research interests include
traceability management, information retrieval,
software maintenance and evolution, search-
based software engineering, and empirical soft-

ware engineering. He is author of about 150 papers appeared in
international journals, conferences and workshops. He serves and has
served as organizing and program committee member of international
conferences in the field of software engineering. He is a member of IEEE
Computer Society and ACM.

Gabriele Bavota is an associate professor at
the Faculty of Informatics of the Università della
Svizzera italiana (USI), Switzerland, where he
is part of the Software Institute and he leads
the SEART research group. He received the
PhD in Computer Science from the University
of Salerno, Italy, in 2013. His research inter-
ests include software maintenance and evolu-
tion, code quality, mining software repositories,
and empirical software engineering. On these
topics, he authored over 140 papers appeared

in international journals and conferences and has received four ACM
Sigsoft Distinguished Paper awards at the three top software engineering
conferences: ASE 2013 and 2017, ESEC-FSE 2015, and ICSE 2015. He
also received the best/distinguished paper award at SCAM 2012, ICSME
2018, MSR 2019, and ICPC 2020. He is the recipient of the 2018 ACM
Sigsoft Early Career Researcher Award for outstanding contributions in
the area of software engineering as an early career investigator and the
principal investigator of the DEVINTA ERC project. More information is
available at: https://www.inf.usi.ch/faculty/bavota/.

