JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

On the Effectiveness of LLM-as-a-judge
for Code Generation and Summarization

Giuseppe Crupi, Rosalia Tufano, Alejandro Velasco,
Antonio Mastropaolo, Denys Poshyvanyk, and Gabriele Bavota

Abstract—Large Language Models (LLMs) have been recently exploited as judges for complex natural language processing tasks,
such as Q&A (Question & Answer). The basic idea is to delegate to an LLM the assessment of the “quality” of the output provided by
an automated technique (often another LLM) for tasks for which: (i) quantitative metrics would only tell part of the story, and; (ii) a
large-scale human-based evaluation would be too expensive. LLMs-as-a-judge, if proven effective for a specific task, can also unlock
new possibilities for automation, with several LLMs proposing a solution for a given instance of the task (e.g., an answer to a question)
and others judging and deciding what is the best output to show the user. We study the effectiveness of LLMs-as-a-judge for two
code-related tasks, namely code generation and code summarization. The rationale for choosing these tasks is two-fold. First,
quantitative metrics are usually not enough for the assessment of code summarizers/generators. For example, it is well documented
that metrics such as BLEU are quite weak proxies for the quality of the generated summaries. Second, even state-of-the-art techniques
still struggle with handling complex instances of these tasks (e.g., summarizing a quite long / complex function), making them good
candidates for benefiting from more advanced solutions envisioning collaboration among LLMs. For code generation, we check
whether eight LLMs are able to judge the correctness of 1,405 Java methods and 1,281 Python functions generated by the same LLMs
or implemented by humans. For code summarization, we compare the judgment of five LLMs to those provided by nine humans for
~1.2k summaries, related to both Java and Python functions. Our findings show that GPT-4-turbo is the best LLM in terms of judging
capabilities for both tasks, with “smaller” LLMs featuring tens of billions parameters not being able to cope with judging tasks. However,
even the best-performing LLM frequently misjudges the correctness of the code and summary quality.

Index Terms—LLM-as-a-judge, Al4SE, Empirical Study, Large Language Models for Code

1 INTRODUCTION

Large Language Models (LLMs) have been exploited in
software engineering (SE) to (partially) automate a variety
of tasks, including code generation [5], [7], clone detection
[41], code summarization [2], [27], code review [28], [36],
bug fixing [20], [38], [40] and others [37]. The wide adoption
of LLMs in SE resulted in a shift in focus from classification
(e.g., defect detection, requirements classification) to gen-
erative problems requiring the synthesis of text (e.g., code
summarization) and/or code (e.g., code generation). Gen-
erative problems, in addition to being harder to automate,
also bring with them challenges related to the evaluation
of automated solutions. For example, assessing if a natural
language text is a good summary for a given code would re-
quire developers’ judgment. Since human-based studies are
expensive and difficult to scale up, researchers frequently

o G. Crupi is with SEART @ Software Institute, Universita della Svizzera
italiana, Switzerland.
E-mail: giuseppe.crupi@usi.ch

e R. Tufano is with SEART @ Software Institute, Universita della Svizzera
italiana, Switzerland.
E-mail: rosalia.tufano@usi.ch

o A. Velasco is with W&M.
E-mail: svelascodimate@uwm.edu

e A. Mastropaolo is with W&M.
E-mail: amastropaolo@wm.edu

e D. Poshyvanyk is with W&M.
E-mail: denys@cs.wm.edu

o G. Bavota is with SEART @ Software Institute, Universita della Svizzera
italiana, Switzerland.
E-mail: gabriele.bavota@usi.ch

employ quantitative metrics such as BLEU [31], ROUGE
[29], and METEOR [4] as proxies for the “quality” of the
generated summaries. These metrics are based on the idea
that the more similar the generated summary is to a reference
summary (usually being the comment written by the devel-
opers for the code provided as input), the higher its quality.
However, recent works in the literature [15], [21], [30], [33]
showed the shortcomings of these metrics when applied to
code summarization: First, the reference summary, usually
extracted from software repositories, may be of low quality,
thus not being a good “oracle” to compare with. Second,
the generated summary may be completely different from
the reference one, while still being of high quality. In short,
the automatic assessment of code summarization techniques
and, more generally, of approaches automating software-
related generative tasks, is still an open research avenue.

A helping hand to address this challenge may come from
LLMs themselves. Indeed, Lianmin et al. [46] proposed the
idea of LLM-as-a-judge in the natural language processing
(NLP) field: The LLM is prompted with instructions asking
it to evaluate the output produced by other techniques (of-
ten other LLMs) according to specific criteria. Recent works
also pioneered the usage of LLM-as-a-judge for assessing
the correctness of an implementation given functional re-
quirements described in natural language [35], [49]. While
these works report some preliminary promising findings,
they also show that LLMs struggle when dealing with the
judgement of more complex implementations. In this paper,
we build on top of these works, experimenting with more
recent LLMs and with two code-related tasks. The first

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

is the already presented code summarization. The second is
code generation, namely the automated implementation of a
functionality starting from its natural language intent (i.e.,
textual description)!. We focus on these two tasks since
(i) they have been the subject of works proposing Al-
based techniques for their automation [37], and (ii) due
to their generative nature, they pose major challenges in
the assessment of techniques automating them. For code
summarization, we already discussed these challenges. Con-
cerning automatically generated code, researchers usually
exploit two evaluation strategies. The first relies on code
similarity metrics (e.g., CrystalBLEU [8]) indicating how
close the generated code is to a reference one. These metrics,
however, are not a good proxy for the “correctness” of
the implemented code. Indeed, as observed for summaries,
the same function may be implemented in different ways,
thus resulting in misjudging correct code being different
from the expected target. The second strategy is aimed at
exploiting benchmarks such as HumanEval [9] or CoderEval
[45], presenting code generation problems featuring (i) a
textual description of the code to implement, and (ii) a
test suite to check the correctness of the generated code.
Using these benchmarks, it is possible to compute metrics
such as pass@k, which assesses the percentage of cases in
which the LLM was able to generate a solution passing
the tests using a maximum of k attempts. For example,
pass@1=50% indicates that the LLM managed to generate
a “correct” solution (according to the tests) for 50% of the
code generation problems using only a single attempt for
each problem. While extremely valuable, these benchmarks
are usually quite limited in dimension (e.g., HumanEval
features 160 Python code generation problems), resulting in
a passQFk value which only reflects the LLM’s performance
on a small set of coding problems, which does not really
promote generalizability. Also, as we will demonstrate later,
the accompanying test suites cannot always be trusted,
even when assessing some trivial cases. For example, we
found that for 9 of the 230 CoderEval Java problems [45] a
trivial empty function (i.e., a function only having the signa-
ture) passes the associated tests, thus possibly inflating the
passQk score in an empirical evaluation. Having LLMs able
to reliably judge the correctness of automatically-generated
code would allow to substantially scale-up the evaluations
performed in code generation, even in scenarios in which tests
are not available (or not completely reliable).

For code generation, we instructed eight LLMs (ie.,
DeepSeek Coder 1.3B, 6.7B, and 33B [13], CodeLlama 7B,
13B, and 34B [10], GPT-3.5-turbo and GPT-4-turbo [3]) to
generate functions for the CoderEval benchmark [45], which
features 230 Java and 230 Python code generation problems.
Then, the LLMs judged the correctness of each other’s
solution as well as of functions written by humans, for a
total of 2,686 assessments per model. During the judge-
ment task, we only provided the LLMs with (i) the textual
description of the code to implement, and (ii) a function
to be judged, either generated by the LLM or written by
humans. We do not also provide an example of reference
(correct) implementation for the code to implement. While
this would substantially help the model in the judging task,

1. Same task investigated in [35], [49]

2

it does not represent a real usage scenario in which e.g.,
we want to use the LLM in the context of automated code
review to assess the correctness of a given implementation
(for which a reference implementation is not available).
We verified the appropriateness of LLMs’ assessment by
running the generated functions on the test suites provided
for each problem, checking if there is a relationship between
a positive correctness assessment made by the LLMs and
the test results (pass/fail).

For code summarization we compare the judgments pro-
vided by five of the eight LLMs (since three were clearly
not able to perform the task) for 1,163 summaries (~50%
related to Java ~50% to Python functions) with judgments
expressed by humans for those same summaries. Human
judgments have been performed by a total of nine hu-
mans (with code summarization background), ensuring that
each summary has been independently assessed by three
humans. In the code summarization study, the judged sum-
maries include both summaries automatically generated by
the same judged LLMs, as well as summaries written by
humans.

We show that GPT-4-turbo is the best judge for both
tasks, with smaller LLMs substantially struggling (e.g., not
being able to execute the task or presenting completely
wrong judgments). GPT-4-turbo, while the best, still fre-
quently misjudges the correctness of the code, especially
lacking in the identification of wrong implementations,
which are misjudged as correct in 50% of the cases. GPT-
4-turbo works better for assessing code summary quality,
with moderate agreement with human judgments.

2 STUuDY DESIGN

The goal of our study is to assess the effectiveness of LLMs-
as-a-judge for software-related tasks. In particular, we for-
mulate the following research question (RQ): To what extent
can LLMs act as a judge for code generation and summarization?

2.1 Context Selection: LLMs

We use eight LLMs (i.e., DeepSeek Coder 1.3B, 6.7B, and
33B [13], CodeLlama 7B, 13B, and 34B [10], GPT-3.5-turbo
and GPT-4-turbo [3]) as judges. Since the LLMs must be
able to judge generated code and code summaries, we only
use LLMs that have been trained on a corpus including
source code. Also, we consider LLMs of different sizes
(i.e, number of trainable parameters) since the larger the
language model, the higher its inference (judgment) cost.
The latter may become a factor in deciding whether to use
an LLM as a judge since the cost may be excessive to judge
e.g., millions of generated functions. In the following, we
briefly describe each family of LLMs we consider. For all
models, we consider their “instruct” variants, that is, those
also trained to understand instructions expressed in natural
language.

DeepSeek Coder [13]. DeepSeek Coder is a range of
LLMs of different sizes, all trained from scratch on a corpus
of 2 trillion tokens (87% code, 10% English and 3% Chinese
text). The instruct versions of the model have then been fine-
tuned on a dataset featuring human instructions with the
following dialogues. We use DeepSeek Coder versions that

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

have 1.3B, 6.7B, and 33B parameters. We generate judgments
by exploiting the Hugging Face inference endpoints [19].

CodeLlama [10]. CodelLlama is a family of LLMs for
code built on top of Llama2. CodeLlama has been trained
on a corpus of 500B tokens featuring 85% of code and 15%
of natural language. The models also underwent fine-tuning
of the instruction to answer questions and perform required
tasks. We adopt CodeLlama 7B, 13B, and 34B. In this case,
the Hugging Face inference endpoints [19] have been used
to generate predictions (i.e., judgments).

GPT-3.5-turbo and GPT-4-turbo [3]. Both models are
behind OpenAI ChatGPT and have been shown to be able to
handle code-related tasks [14], [26], [34]. Being the models
on top of which a chatbot has been built, both GPT variants
have been trained to follow instructions for required tasks.
While the technical details behind these models are not
publicly available, we can safely claim that (i) they are
substantially larger than the DeepSeek Coder/CodeLlama
variants previously described, with rumors placing GPT-
3.5 and GPT-4 at over 150B and 1.5T trainable parameters,
respectively; and (ii) their training set features massive
amounts of textual data, including code mined from GitHub
repositories. We exploit these models through the ChatGPT
APIs.

2.2 Context Selection: Evaluation Datasets

To assess the effectiveness of LLMs as a judge for code gen-
eration and summarization we exploit two different datasets.

2.2.1 Code generation: CoderEval [45]

Presented at ICSE’24, CoderEval is the most recent bench-
mark for code generation proposed in the literature. It fea-
tures 460 code generation problems, 230 in Java and 230 in
Python. Each problem is composed by (i) a natural language
description specifying requirements for a function to imple-
ment; (ii) a target function showcasing a possible correct
implementation; and (iii) a test suite to assess the correctness
of automatically generated solutions. As detailed in Sec-
tion 2.3, we take advantage of CoderEval to verify whether
LLMs are able to judge the correctness of a given function.
In particular, we will feed the LLM with a prompt that
includes the problem description and the expected function
signature. Then, we ask the model to judge if a candidate
implementation is correct or not. In addition, because the
test suite is available, we can check whether the candidate is
actually correct and, as a consequence, whether the LLM’s
judgment was appropriate. For example, if the LLM says
that candidate correctly implements the requirements in the
problem description, but the tests fail, we can detect a
misjudgment.

Before adopting all 460 CoderEval’s code generation
problems in our study, we performed a “quality assurance”
procedure aimed at verifying that the test results from such
a dataset were reliable. Indeed, if the test results cannot be
trusted due to a weak test suite, this would introduce a no-
table bias in our study. For example, a wrongly implemented
function passing the tests and being correctly judged by
an LLM as “wrong” would be unfairly accounted for as
an LLM’s misjudgment. For this reason, we performed the
following quality checks on the CoderEval benchmark. First,

3

we ensure that the target function associated with each code
generation problem (i.e., the function that demonstrates a
possible correct implementation) actually passes the test.
This was not the case for 20 Java and 39 Python problems
that we decided to exclude. Second, we checked whether
there were code generation problems for which an empty
implementation (i.e., a function that only has a signature
and an empty body) would pass the tests. This occurred for
another 9 Java problems raising concerns about the quality
of the accompanying test suites and, as a consequence,
resulting in their exclusion from our study. Finally, for the
remaining 201 Java problems we further inspected all those
for which the target signature had a non-void return type
and implemented for each of them a dummy function just
featuring a return statement appropriate for the expected
return type. For example, for functions expected to return
an object, the dummy function only featured in its body
a “return null;” statement, while for those returning
an int a “return 0;” was placed. We found that for an
additional 17 problems, a dummy function was sufficient to
make the test suite passes. We performed a similar check on
the remaining 191 Python problems. However, since Python
functions do not have an explicit return type, we always
included in the dummy function to test a “return None”
statement. One of these dummy functions managed to pass
the tests and has been excluded. In the end, we could rely
on 184 of the 230 Java and 190 of the 230 Python code
generation problems featured in CoderEval.

2.2.2 Code summarization

Our starting idea was to use the dataset by Roy et al. [33] for
the code summarization study: This is a large-scale dataset
featuring 6,253 code summary evaluations performed by
226 developers on 2,292 summaries (on average, 2.73 human
evaluations each). Each participant was asked to assess the
quality of Java methods” summaries in terms of conciseness,
fluency, and content adequacy, with participants giving a
score on a scale from 1 to 5 to each quality attribute
(the higher the better). Unfortunately, by inspecting the
dataset we found it to be suboptimal for our study. This
was mostly due to the fact that the agreement between
the developers who judged each summary was in general
quite low (e.g., we found a Krippendorff's o [25] of ~0.2
when looking at the judgements for content adequacy,
which highlights a weak agreement). While some level of
subjectivity in the judgements is expected, we thought that
using such a human judgement as “oracle” to assess the
LLMs judgement could be problematic. On top of this, the
dataset features automatically-generated summaries judged
by humans which were the output of quite old techniques,
with the newest published in 2020 [16]. These summaries
are not representative of what modern LLMs are able to
do (e.g., some of them even featured <UNK> tokens) and
thus do not represent an ideal target for our study, since
we want to assess whether LLMs-as-a-judge could work
for summaries automatically generated by modern LLMs.
Finally, the dataset by Roy ef al. [33] only features Java
methods’ summaries, while our aim is to perform also the
code summarization study on both Java and Python.

For these reasons, we built (and make publicly available
[1]) our own dataset that features human judgments of

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

1,163 summaries. To build the data set, we selected the
top 100 Java and the top-100 Python functions in terms of
the number of statements they feature from the CoderEval
[45] benchmark (i.e., the one used in the code generation
study). We decided to focus on the longest functions since
those are the ones for which a good summary is likely to
make a difference in terms of code comprehension, and thus
assessing the quality of summaries for these functions may
make more sense. Among these 200 functions, we found one
Java and one Python functions that were a duplicate and
were thus removed from the set. For each of the remaining
198 functions (99 per language), we have the associated
code summary written by the original developer of the
function. Furthermore, we asked five LLMs (i.e., CodeLlama
7B, 13B, and 34B [10], GPT-3.5-turbo and GPT-4-turbo [3]) to
generate a summary for each of these 198 functions. This
process should have resulted in 198 (manually written) +
198 x5 (automatically generated) = 1,188 summaries (594 per
language). However, for a few Python functions some of the
LLMs outputted an empty summary, leading to a total of 594
(Java) + 569 (Python) summaries. Note that we did not use
LLMs belonging to the DeepSeek Coder family in building
this dataset since, as explained later, we did not manage
to make them work for the code summarization judging task
and we wanted to have the same LLMs both generating
and judging summaries, to also study any form of self-bias
(e.g., the LLM judges the summary it generates better as
compared to the summaries generated by other LLMs or
written by humans). The prompt used to generate code
summaries with LLMs is documented in our replication
package [1].

Once obtained the 1,163 summaries we split them among
nine human judges, making sure that each summary was
assessed by three judges (for a total of 1,163 x 3 = 3,489
judgements). All nine judges have a Master’ degree in
Informatics or Computer Science, four of them have a Ph.D.
in Software Engineering. On average, they have 5.8 years
of experience (min = 1, max = 17) in Java programming
and 6.9 in Python programming (min = 4, max = 10).
Taking inspiration from the work of Roy et al. [33], we
asked participants to evaluate the quality of the summary in
three dimensions: content adequacy, conciseness, and fluency
& understandability. Note that compared to Roy et al., we
changed fluency into fluency & understandability since, when
looking at code summaries generated by modern LLMs (or
written by humans), it is unlikely to find nonfluent text.
Instead, it is possible that the summary, while fluent in terms
of used English, is difficult to understand, for example, for
people not having a deep domain knowledge of the code.
Each of the three “quality attributes” has been assessed on
a scale from 1 to 5 (the higher the better). We give clear
guidelines to participants on how to interpret the scores.
For example, in the case of fluency & understandability, these
were the indications provided:

5) The summary is easy to read and understand and does
not require specific domain knowledge to be under-
stood.

4) The summary is easy to read and understand, but
may require some specific domain knowledge to be
understood.

4

3) The summary is easy to read and understand for devel-
opers with experience with that system.

2) The summary is difficult to read and understand, but is
grammatically correct.

1) The summary is difficult to read and understand and is
grammatically incorrect.

Complete guidelines are publicly available [1].

After having finalized the dataset, we again inspected
the agreement among the humans judges for the three
quality aspects using the Krippendorff « [25]. The Krippen-
dorff’s o can be interpreted as follows: < 0.10 = agreement
equivalent to chance; 0.10-0.20 = weak agreement; 0.21-0.40
= fair agreement; 0.41-0.60 = moderate agreement; 0.61-0.80
= substantial agreement; 0.81-0.99 = near-perfect agreement;
and 1 = perfect agreement. For the content adequacy we
obtained a=0.81 for the Java instances and «=0.69 for the
Python instances, for conciseness a=0.58 (Java) and a=0.57
(Python), and for fluency & understandability o=0.62 (Java)
and a=0.56 (Python). Overall, the guidelines provided to
the participants resulted in quite high agreement in all three
quality attributes.

2.3 Data Collection
2.3.1

CoderEval [45] provides a set of code generation problems,
tests to assess the accuracy of candidate solutions, and a
target, exemplar, generation. The target implementations for
374 code generation problems we consider in our study (184
Java and 190 Pythjon) represent the first batch of solutions
we ask the LLMs to judge.

Experimented prompts. We experiment with four differ-
ent prompts for the code generation judging task. The first,
referred to as “zero shot”, is a prompt inspired by Weyssow
et al. [39] who defined prompts to assess the extent to
which LLMs are able to judge if an implementation satisfies
specific non-functional requirements. Note that the focus of
the authors [39] is not on evaluating the judging capabilities
of LLMs (as we do), but rather on exploiting them to check
if LLMs can address non-functional requirements (more in
Section 5). The main idea we inherit from this work is to
prompt models for the rationale behind the score:

Code Generation

You will be provided with the description (“Description”) and the
signature (“Signature”) of a {language} function to implement. You
will also see a candidate implementation (“Candidate”). Your role is
to evaluate the correctness of the Candidate, providing as output a
rating and a rationale. Rate the Candidate with either 0 to 1:

0. **Wrong Implementation**: The implementation does not cor-
rectly implement the described function.
1. **Correct Implementation™: The implementation correctly im-
plements the described function.
Description: {description}
Signature: {signature}
Candidate: {candidate}

The definition of this prompt was driven by a trial-and-
error procedure in which we tested multiple variants of
the prompt with the eight LLMs subject of our study to
ensure that the LLMs understood the task and provided
an output that would be meaningful in most cases. This
was quite challenging considering the variety of LLMs we
considered. We tested the judging capabilities of the LLMs

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

using different variations of the prompt on simple tasks,
under the assumption that if they were not working on toy
examples it would be very unlikely that they would work
in a real scenario. By toy examples, we refer to situations in
which it was evident that the candidate did not implement
the requirements in the description (e.g., the description
asked for a method to sum two numbers, but the candidate
was multiplying two numbers).

The second prompt, named “zero shot W/O rationale” is
just a simplified version of the previous prompt in which
we do not ask the LLM to also generate a rationale for the
provided score.

The third prompt, referred to as “aufomated CoT”, is
the classic “Automated Chain-of-Thought” prompting [23]
vastly used in the literature to elicit reasoning in LLMs. This
prompting strategy takes advantage of two steps. In the first,
a reasoning extraction prompt is provided, which, in our case,
is the following;:

You will be provided with the description (“Description”) and the
signature (“Signature”) of a {language} function to implement. You
will also see a candidate implementation (“Candidate”).

Description: {description}

Signature: {signature}
Candidate: {candidate}

Question: is the Candidate correct according to all the functional
requirements of the Description? Answer choices: “Yes” or “No”.
Reasoning: Let’s think step by step.

In the second step, the output of the above prompt
(i.e., <REASONING>) is used to build the answer extraction
prompt, which is basically identical to the previous one
but it includes the generated <REASONING>> (rather than
asking for it) and, after it, ends with: Therefore, the answer
(“Yes” or “No”) is:.

Finally, the fourth experimented prompt named “slow
thinking”, is a variant of the CoT prompt explicitly proposed
by Tong and Zhang [35] to assess the code correctness in
their approach named CodeJudge (built on top of GPT-3.5,
more in Section 5). We do not report the full prompt here
for the sake of brevity, but it can be found in [35] and in
our replication package [1], together with all other prompts
used in our study.

Judging functions. On top of the target implementa-
tions, we use the same four prompts to ask the LLMs to
judge candidate implementations automatically generated
by them. The prompt used for the code generation was
composed of (i) the description of the code generation
task as provided in CoderEval, and (ii) the signature of
the target function in CoderEval. The main challenge at
this point was to automatically extract the implemented
function from the output of each LLM. Indeed, we observed
that LLMs rarely output just the required function (even
if explicitly prompted to do so), but tend to accompany
the generated method with textual explanations, alternative
implementations, etc. For this reason, we developed an im-
plementation extractor which exploits the lizard code analyzer
[43] to identify the first outputted function and consider it as
the candidate implementation generated by the LLM. This
script is publicly available [1] and, based on our manual
analysis described below, always succeeded in extracting
the candidate function, when present. There were, indeed,
some code generation tasks for which the LLMs did not

5

produce any output (documented in the results discussion
— Section 3).

We use the same prompts exploited for the judging of
the target implementations also for the 1,221 Java and 1,091
Python candidate implementations generated by the LLMs.
Note that each LLM, besides judging methods outputted by
other LLMs, also judges its own solution. This allows us to
investigate whether a bias exists when LLMs are used as a
judge for code generation.

Once all judging tasks have been run, a cleaning process
on the LLMs’ output was needed to collect their judgment.
Also in this case we observed variety in the output template
used by the LLMs, with some being more verbose than
others and providing additional unrequested information
(e.g., a summary of the judged implementation). Thus, we
extracted the judgments using a combination of parsing
scripts (for simple cases) and manual extraction. To be
confident about the extracted judgments, all of them have
been manually checked by two authors, even the automati-
cally collected ones. Also in this case, some LLMSs failed to
provide a judgment for some instances (as documented in
the results discussion).

The above-described process provided us with a list of
80,556 total judgments referring to both functions written by
humans (10,954 judgments) and automatically generated by
LLMs (69,602). We describe in Section 2.4 how we analyze
these data to answer our RQ.

2.3.2 Code summarization

Our dataset features code summaries written by humans
and generated by LLMs, which we ask LLMs to judge.

Experimented prompts. Also for code summarization we
tested four different judging prompts. The fist, named zero
shot, is shown in the following:

You will be provided with a {language} function (“Function”)
and a textual summary of it (“Comment”). The goal of the Comment
is to document the functionality implemented in the Function. Your
role is to evaluate the Comment across three criteria, providing as
output for each of them a rating (# Rating) and a rationale (#
Rationale) as described in the following.

Evaluation Criteria

* Content adequacy: the extent to which the comment summarizes
all information that can be inferred from the source code.

* Conciseness: the extent to which the comment contains unnec-
essary information.

* Fluency & Understandability: the extent to which the comment
is easy to read and understand.

For each criterion, provide a score on a scale from 1 to 5: 1 (Very
poor), 2 (Poor), 3 (Fair), 4 (Good), 5 (Very good).

Function: {function}
Comment: {comment}

The second (zero shot + instructions) is a more complex
version of the zero shot prompt in which we provided the
LLMs with the same “judging instructions” we gave to the
human judges when building our dataset (see Section 2.2.2).
This basically means that we instruct the LLM on cases in
which, for example, a 5 score for content adequacy was
appropriate. Due to its length, we point the interested reader
to our replication package for the full version of this prompt.

The third experimented prompt (automated CoT) mirrors
the one seen for code generation, with the first step featuring

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

a reasoning extraction prompt ending with “# Reasoning: Let
us think step by step.”. The output of this step is then used
in the second step (answer extraction) to produce the actual
judgement. Finally, the fourth prompt (automated CoT + in-
structions) is basically the automated CoT prompt augmented
with “judging instructions”, as explained for zero shot +
instructions.

Judging summaries. Also in this case the extraction of
the judgments required some manual effort due to models
outputting unrequested information and not adopting a
consistent output format when reporting their judgments.
We developed extraction scripts and verified each piece of
collected information manually. Cases where the script did
not report any information were also inspected manually,
to make sure no judgment was left out. We found out that
all models belonging to the DeepSeek Coder family were
not able to understand the code summarization judging task,
despite our efforts in trying to tune the prompt. Indeed, for
over half of the summaries, the DeepSeek Coder models did
not manage to output a judgment. This may be due to the
multi-level judgment we require in this case (three criteria),
which is substantially more complex than what was used for
code generation. For the other models, we discuss the failure
cases (i.e., no judgment provided) in the results section.

At the end, we obtained 22,304 total judgments referring
to 3,865 summaries written by humans and 18,439 sum-
maries automatically generated.

2.4 Data Analysis

For both tasks we start by reporting the best-performing
prompt, and we discuss in the paper only the results
achieved with that prompt, while all others are included
in our replication package [1]. It is important to give a
clear definition of what we considered to be the best-
performing prompt. Indeed, there are at least three dimen-
sions to consider. First, different prompts may result in
a different percentage of cases in which the LLMs fail to
perform the judgment. These are cases in which the output
of the LLMs, manually checked, did not feature the required
judgment. Second, once collected the valid judgements, they
may exhibit different levels of “accuracy” with different
prompts. For example, a prompt may always succeed in
outputting a judgement which, however, is always wrong
(e.g., correct functions always classified as wrong implemen-
tations), while another one may fail in a few cases but be
quite accurate for the outputted judgements. Third, different
LLMs may benefit more or less from different prompts.
Since for both tasks there was one judge LLM which was
the clear winner independently from the used prompt (i.e.,
GPT-4-turbo), we selected as best-performing prompt the
one ensuring the best performance on it (measured, as
explained later, via inter-rater agreement metrics between
the produced judgements and the oracles). Such a prompt
also ensured a very low number of invalid outputs (i.e., no
judgement) outputted by GPT-4-turbo for both tasks and
languages, not really posing a question about the selection
of the best prompt to consider.

We report the percentage of cases in which each LLM
did not manage to perform the judgment. We consider
the judgment task failed if: (i) for the code generation task,

6

the LLM did not output the required score; (ii) for the
code summarization task, the LLM did not output all three
required scores.

Code generation analyses. We report eight confusion
matrices (one per LLM) showing the percentage of (i) true
positives, i.e., the candidate passes the tests and the LLM
judges the candidate as a correct implementation of the
requirements; (ii) true negatives, i.e., the candidate fails the
tests and the LLM judges the candidate as not correct; (iii)
false negatives, i.e., the candidate passes the tests but the LLM
judges the candidate as not correct; and (iv) false positives,
ie., the candidate fails the tests but the LLM judges the
candidate as correct.

We complement the above analysis with the computa-
tion of an inter-rater agreement metric between the “oracle”
(i.e., test execution) and the LLMs’ judgements. In particular,
we report the Cohen’s Kappa [6] inter-rater agreement,
which is suitable when only two categories of classifications
are possible (in our case, the implementation is classified as
either correct or wrong by both the LLMs and the tests ex-
ecution). The interpretation is the same previously reported
for the Krippendorff’s a.

We also verify whether the LLMs tend to give better
score to code they generated as compared to code generated
by others or written by humans. We run an unpaired Mann-
Whitney test [42] comparing the scores assigned by each
LLM to its own code to three other distributions, represent-
ing (i) the code generated by the other 7 LLMs; (ii) the code
generated by the other LLMs excluding those belonging to
the same family, with DeepSeek Coder, CodeLlama, and
GPT being the three families; and (iii) the code written by
humans. We use the unpaired Mann-Whitney test in this
analysis because we are comparing distributions having a
different number of elements. Indeed, let us assume we have
100 code generation tasks for which 5 LLMs (LLM;, LLM,,
LLM3;, LLMy, LLM5) generated code. The same five LLMs
are then asked to judge the generated code. To study the
presence of self-bias, the scores assigned by LLM; to the 100
functions it generated are compared with the scores LLM;
assigned to the 400 functions generated by LLMy, LLMj,
LLM,4 and LLM5. We account for multiple tests by adjusting
the p-values using the Benjamini-Hochberg procedure [44].
We use Cliff’s d elta [11] as effect size. Cliff’s d ranges in the
interval [—1,1] and is negligible for |d| < 0.148, small for
0.148 < |d| < 0.33, medium for 0.33 < |d| < 0.474, and
large for |d| > 0.474.

Finally, we perform a manual analysis to disclose the rea-
sons for the misjudgments made by the LLMs. We randomly
selected for each LLM 15 cases of false positives and 15 cases
of false negatives. We assigned 30 of the instances to inspect
(15 false positives and 15 false negatives) to three authors, who
independently defined one or more labels summarizing the
reasons behind the LLM misjudgment. The definition of the
labels was performed by looking at: (i) the prompt provided
as input, (ii) the function to be judged, and (iii) the score
and rationale provided by the LLM. For example, based on
this information, we found that some false negatives were
due to the LLM assessing nonfunctional requirements rather
than the code correctness, e.g., giving a negative evaluation
to a correct code because it was not efficient in terms of

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

performance. After this first round, the three authors met
and consolidated the labels used, involving then a fourth
author to inspect all other remaining instances. In this step,
each instance was assigned to two evaluators, who could
reuse the already defined labels or add new ones when
needed. The conflicts were solved by two additional authors
not involved in the original labeling.

Code summarization analyses. We show three scatter-
plots for each judging LLM, one for each of the three criteria
used in the assessment of summary quality (i.e., content
adequacy, conciseness, fluency & understandability). The
scatterplots allow us to visually identify the existence of
a relationship between the quality assessments made by
humans and by each LLM.

As an agreement metric, we compute the Krippendorft’s
o [25] for each of the three assessed quality attributes. Since
we have three human judgements for each summary, we
use their median score as the “oracle” against which the
LLM judgements are compared. Given the rather substantial
agreement we observed in the human judgements, this
choice is not expected to substantially influence the achieved
results.

Also, for the code summarization judgments, we verify
whether the LLMs tend to be biased towards the summary
they generate. This is done with a statistical analysis that
mirrors that described for code generation.

Although we also considered performing the qualitative
analysis of the reasons behind the misjudgments for code
summarization (similarly to what was done for code gener-
ation), we found it difficult to run it systematically, since
we are dealing with three evaluation criteria and a 5-point
score for each criteria, thus blurring the definition of false
positives/negatives.

3 RESULTS DISCUSSION
3.1

The left part of Table 1 shows the number and percentage
of times for which using the best-performing prompt (i.e.,
automated CoT), each of the LLM-as-a-judge did not manage
to output a judgment for the code generation scenario. As
it can be seen, larger LLMs are almost always able to
understand the required task and execute it. For example,
GPT-4-turbo always outputs a valid correctness judgement
when dealing with Java functions, and it only fails for 7
Python functions. Instead, smaller LLMs with parameters
of a few billion tend to fail in ~15% of cases, with minor
differences observed between different LLMs (see Table 1).
Understanding a task to be executed does not imply
a correct execution (i.e., a meaningful judgment), and this
leads to the focus of our study. Table 2 shows the results
of Cohen’s Kappa between the judgments given by the 8
LLMs and the test results (pass/fail). In this case, we report
the data for the four experimented prompts, to (i) justify
our selection of the automated CoT prompt as the best-in-
class prompt to discuss in the paper; and (ii) showing that
our findings are not strongly impacted by the choice of the
prompt. In Table 2 the higher the agreement, the better the
judgment. Recall that anything below 0.10 indicates the lack
of agreement between the LLMs’ correctness judgements

Code Generation

7

and the test results. To save space, Table 2 uses acronyms
for LLMs (DSC = DeepSeek Coder, CL = CodeLlama).

The first observation that can be made is that our find-
ings do not substantially change using different prompts. In
fact, when focusing on the single LLM in isolation (columns
in Table 2), it can be seen that the variations in Kappa
scores are rather minor using different prompts. Second,
when considering the overall performance achieved in both
languages (Java in the upper part of Table 2, and Python
in the lower part), GPT-4 is the best performing LLM. Still,
Cohen’s Kappa between the judgments of GPT-4 and the
ground truth is 0.21 for Java (with 0.20 being the lower limit
at which the agreement can be considered fair) and 0.10 for
Python (i.e., the lower limit at which the agreement can be
considered weak). Smaller LLMs are simply unable to assess
code correctness. Indeed, DeepSeek Coder 1.3B and 6.7B
as well as Codellama 7B obtain very low (even negative)
agreement values in both languages (see Table 2). Larger
models (DeepSeek Coder 33B, CodelLlama 34B, and GPT-
3.5) tend to perform better, with performance closer to that
of GPT-4.

To better understand what these agreement coefficients
indicate, Fig. 1 shows the confusion matrices that depict
the boolean judgments given by the eight LLMs to the
correctness of the evaluated Java (left) and Python (right)
functions. These refer to the judgments produced with the
automated CoT prompt.

The z-axis reports the given judgment (ie., the func-
tion is a wrong or correct implementation of the textual
requirements), while the y-axis shows the results of the test
execution (i.e., pass/fail). To better understand the content
of these matrices, let us discuss the findings for DeepSeek
Coder 1.3B on the Java dataset (top-left confusion matrix).
The top left cell reports the percentage (21%) of failing
implementations (i.e., wrong implementations according to
the test execution) which are correctly judged by the LLM
as wrong (true negatives), while the top-right cell shows the
percentage (79%) of misjudgments in this category, namely
false positives, i.e., failing implementations judged as correct.
The bottom row of the matrix shows instead the LLM'’s
judgments related to passing implementations, with 18% of
them misjudged as wrong (false negatives) and 82% properly
judged as correct (true positives). The darker the background
color of a cell, the higher the percentage of judgments falling
into that category. This means that a successful judge would
have the top left and bottom right cells of its confusion
matrix substantially darker than the top right and bottom
left cells. The numbers in parentheses in addition to the
name of each model indicate the total judgments that the
LLM successfully outputted. Finally, below each model’s
name we also report the overall accuracy computed based
on the confusion matrix.

Fig. 1 shows that being the best among the experimented
models does not make GPT-4 a ready and reliable solution
for the automatic judgement of code correctness. In fact,
if we look at the confusion matrices of its judgments for
Java, we see that GPT-4 correctly classifies 72% of the
correct implementations but misjudges 50% of the wrong
ones. Basically, GPT-4 has a tendency to positively judge
implementation, missing code bugs, and / or lack of fea-
tures explicitly requested in the input requirements text. In

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

TABLE 1
Number (#) and percentage (%) of instances for which the LLMs did not manage to output a valid judgment.

Code generation Code summarization
Java Python Java Python
LM # % # % 7 % 7 %
DeepSeek Coder 1.3B 20 1.42% 73 5.70% - - - -
DeepSeek Coder 6.7B 145 10.32% 282 22.01% - - - -
DeepSeek Coder 33B 156 11.10% 198 15.46% - - -
CodeLlama 7B 91 6.48% 139 10.85% 1 017% 1 0.18%
CodeLlama 13B 184 13.10% 211 16.47% 23 3.87% 1 0.18%
CodeLlama 34B 145 10.32% 132 10.30% 2 0.34% 20 3.51%
GPT-3.5-turbo 4 028% 3 023% 0 0.00% 0 0.00%
GPT-4-turbo 0 0.00% 7 055% 0 0.00% 0 0.00%
TABLE 2

Code Generation: Kappa score between the LLMs’ judgements (correct/wrong) and the output of test execution (pass/fail). Values below 0.10
indicate the complete lack of agreement.

‘ DSC 1.3B DSC 6.7B DSC 33B CL 7B CL 13B CL 34B GPT-3.5 GPT-4
Java
zero-shot -0.15 0.00 0.14 -0.01 0.13 0.16 0.10 0.17
zero-shot W/O rationale 0.05 0.00 0.11 -0.06 0.06 0.21 0.07 0.16
automated CoT 0.03 0.03 0.15 0.04 0.05 0.10 0.16 0.21
slow-thinking 0.02 0.03 0.06 0.00 0.04 0.06 0.07 0.15
Python

zero-shot 0.02 -0.01 0.10 -0.02 -0.01 0.04 0.05 0.07
zero-shot W/O rationale 0.01 0.01 0.10 -0.04 0.02 0.03 0.03 0.05
automated CoT -0.04 0.03 0.05 0.01 0.05 0.03 0.09 0.10
slow-thinking 0.00 0.08 0.06 0.00 0.01 0.06 0.06 0.11

the Python data set, instead, GPT-4 correctly classifies 46%
of the correct implementations and misjudges 35% of the
wrong ones, showing an inverse trend compared to Java.
In general, even the best-performing model (GPT-4) often
misjudges the correctness of the code.

One may conjecture that a possible reason for the ob-
served wrong judgments could be the fact that the LLM
has a “limited view” of the coding context when judging.
Indeed, the code generation problems in CoderEval feature
both functions which are self-contained (i.e., they only have
dependencies towards the Java/Python standard library),
as well as functions which exploit e.g., utility functions from
third-party libraries. The latter represents more challenging
code generation and judging scenarios. Indeed, the LLM-as-
a-judge may, for example, complain about the usage in the
judged function of a call towards a “non-existing” (i.e., not
visible) function. To account for such a scenario, we repeated
all our analyses when considering only the 80 Java and 58
Python functions in CoderEval that do not have external
dependencies. Our findings did not change in terms of the
effectiveness of judgment and the identification of the best
judge (see the replication package [1]), dismissing the lack
of coding context as a major factor influencing the judging
abilities of LLMs.

3.1.1 Self-bias Analysis

We also analyzed whether LLMs are biased towards code
they generate, providing better judgment for it. Table 3
shows a “bias coefficient” of the LLMs-as-a-judge (rows) with
respect to the code generated by the generator LLMs or
manually written by humans (columns). We report the data

for the Java dataset, since the findings for Python (available
in [1]) are aligned. The coefficient, which ranges in [—1,1],
is the average difference between the judgments (either 0 or
1) given by the LLM-as-a-judge and the ground truth (i.e., 1
if the implementation passes the test suite and 0 otherwise).
Given an LLM-as-a-judge (LLM), and a specific set of I
implementations to judge (e.g., all methods generated by a
specific generator G), the bias coefficient (bc) is computed as

follows:
Zz‘elc Ji — Zz‘elc 0;

fe]
where J; is the judgement (0 or 1 in this scenario) given
by the judging LLM (LLM)) to the i" code implemen-
tation to judge, while O; is the oracle score for that same
code implementation (again, 0 or 1, depending on the tests
outcome). Basically, if ber s, is positive, this means that
LLMj tends to overestimate the correctness of the assessed
implementations (positive bias), while if bey, 1, is negative
it tends to have a negative bias. Note that a bcrra, = 0,
while indicating the absence of bias, does not imply the
correctness of the judgements. For example, let us assume
that LLM; has n = 10 implementations to judge, with
the first five passing the test execution and the last five
failing it. Let us also assume that LLM ; misjudges all 10
instances, reporting the first five as wrong and the last five
as correct. Both 7" | J; and }.!" ; O; will be equal 5, so
their difference will be 0, indicating the lack of bias but not
the correctness of the judgements.

We report in grey the assessments made by the LLMs
which our former analyses revealed to be completely off
in the judgments (DeepSeek Coder 1.3B, DeepSeek Coder

bCJA’G =

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

Test output

Test output

Test output

Test output

fail

pass

fail

pass

fail

pass

DeepSeek Coder 1.3B (1385)
Accuracy = 0.45

TN

4 0.21

FN

1 0.18

DeepSeek Coder 33B (1249)
Accuracy = 0.55

CodelLlama 13B (1221)
Accuracy = 0.50

B 0.38

9 0.33

GPT-3.5-turbo (1401)
Accuracy = 0.60

correct

Judged

wrong

DeepSeek Coder 6.7B (1260)
Accuracy = 0.44

™

FN

Codellama 7B (1314)
Accuracy = 0.46

TN

FN

CodelLlama 34B (1260)
Accuracy = 0.50

FN

GPT-4-turbo (1405)
Accuracy = 0.59

wrong

correct

Judged

(a) Java

1.0

0.8

0.6

0.4

0.2

0.0

10

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

fail q

Test output

pass

fail

Test output

pass |

fail

Test output

pass

fail

Test output

pass

DeepSeek Coder 1.3B (1208)

DeepSeek Coder 6.7B (999)

Accuracy = 0.36 1.0 Accuracy = 0.43
TN TN
0.8
0.18 1 0.27
0.6
FN 04 FN
0.24 1 0.23
0.2
0.0
DeepSeek Coder 33B (1083) CodeLlama 7B (1142)
Accuracy = 0.49 1.0 Accuracy = 0.38
TN TN
0.8
0.40 1 0.15
0.6
FN 04 FN
0.33 1 0.14
0.2
0.0
CodeLlama 13B (1070) CodeLlama 34B (1149)
Accuracy = 0.46 1.0 Accuracy = 0.48
TN TN
0.8
0.32 1 0.39
0.6
FN 04 FN
0.26 1 0.35
0.2
0.0
GPT-3.5-turbo (1278) GPT-4-turbo (1274)
Accuracy = 0.59 1.0 Accuracy = 0.59
ER
0.8
0.32
0.6
™ 0.4
0.41
0.2
wrong correct 0.0 wrong correct
Judged Judged
(b) Python

— I e e

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

Fig. 1. Code Generation: Confusion matrices for LLM’s judgment for Java (left) and Python (right). The z-axis reports the given judgment (i.e., the
function is a wrong or correct implementation of the textual requirements), while the y-axis shows the results of the test execution (i.e., pass/fail).
Within each matrix, true negatives are in the top-left box, true positives in the bottom-right.

TABLE 3
Code Generation (Java): Average of differences between the LLM judgments (0 or 1) and the ground truth (i.e., 1 if the method passes the test and
0 otherwise). Last three columns report adj. p-value (Mann-Whitney test, p-value adjusted using the Benjamini-Hochberg procedure) and effect
size when comparing the judgments each LLM gave to functions it generated against those it gave when judging functions (i) generated by all
other LLMs, (ii) generated by all other LLMs but those belonging to the same family, and (iii) written by humans.

DSC DSC DSC CL CL CL GPT GPT | Human Own vs Ownovs Own vs

1.3B 6.7B 33B 7B 13B 34B 3.5 4 ‘ Written LLMs LLMs\F Human
DSC 1.3B 0.58 0.57 043 0.60 043 049 0.41 0.47 -0.25 (N) (N) *+x (L)
DSC 6.7B 0.55 0.49 056 057 047 051 0.56 0.60 -0.24 (N) (N) *** (L)
DSC 33B 0.31 0.36 024 033 029 030 0.29 0.28 -0.36 (N) (N) *** (L)
CL 7B 0.54 0.55 048 059 049 049 0.42 0.48 -0.22 (N) (N) #*#* (L)
CL 13B 0.30 0.33 029 035 026 033 0.43 0.34 -0.42 (N) (N) *** (L)
CL 34B 0.53 0.47 041 048 041 037 0.46 0.42 -0.27 (N) (N) *** (L)
GPT-3.5 0.08 0.12 0.03 0.14 005 0.00 0.13 0.13 -0.72 (N) (N) *** (L)
GPT+4 0.19 0.27 024 027 030 021 0.35 0.41 -0.47 **(N) **(N) *** (L)
Average (all) 0.28 0.31 024 032 026 0.24 0.33 0.32 -0.45 - - -
Average (large) 0.39 0.41 032 042 034 034 0.38 0.39 ‘ -0.37 ‘ - - -

Adjusted p-values: * <0.05, ** <0.01, *** <0.001. Cliff delta: N=Negligible, S=Small, M=Medium, L=Large

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

6.7B, CodeLlama 7B), since any conclusion based on these
judgments would be irrelevant. The last three columns of
Table 3 show the results of the Mann-Whitney tests (adj. p-
value and effect size) in which we compare the judgments
each LLM gave to functions it generated against those it
gave when judging functions (i) generated by all other
LLMs, (ii) generated by all other LLMs but those belonging
to the same family (LLM \ F), and (iii) written by humans.

From Table 3 two main observations can be made. First,
with the exception of GPT-4, the LLMs are not biased
in the judgements. If we focus on the five most reliable
judges, GPT-3.5, DeepSeek Coder 33B, CodeLlama 13B, and
CodeLlama 34B do not overestimate the quality of the code
they generated more than they do with the code generated
by other LLMs. For example, GPT-3.5 adds on average
0.13 points to the code it generated, and 0.14 points to
the code generated by CodelLlama 7B. On the other hand,
GPT-4 tends to slightly overestimate its own code more as
compared to the code generated by other LLMs, revealing
some sort of self-bias. Still, the statistical test shows that
such a self-bias is minimum (i.e., significant p-value but
accompanied by a negligible effect size). The last two rows
of Table 3 show the average bias coefficient exhibited by
the LLMs-as-a-judge for each code generator, either an LLM
or a human. In grey we report the average across all eight
judging LLMs, while in black when only considering the
five that performed the best. In general, all LLMs tend to
overestimate the correctness of the code generated by all
other LLMs.

Second, it is interesting to see that LLMs have a higher
chance of overestimating the quality of the code generated
by LLMs rather than the code written by humans. Such a re-
sult can be seen from (i) the average bias coefficient achieved
by the human written code (-0.37), indicating that the cor-
rectness of the code written by humans is systematically
underestimated by LLMs, as compared to the coefficients of
the LLMs which are all positive, and (ii) the results of the
statistical tests (last column in Table 3). Indeed, all the judge
models underestimate the correctness of the human-written
code in a statistically significant manner with a large effect
size. This negative bias may be explained by the fact that
human-written code is, from the LLMs’ point-of-view, less
natural as compared to code written by themselves or by
other LLMs.

3.1.2 Analysis of False Positives and Negatives

We then looked at the reasons behind the false positive and
false negative judgments performed by the eight models as
identified in our manual analysis. We report in the replica-
tion package [1] the most frequent reasons per LLM, while
we discuss here the general trend, considering the Java and
Python instances as a single dataset. For false positives,
most of the misjudgments (37%) were due to uncaught wrong
behavior, with the LLM not catching bugs in the function
(e.g., the lack of checking for null values, explicitly asked
in a code description). The second-most frequent reason
(32%) relates to the coding context, and encompasses cases
in which the LLM misjudges the function as correct since it
is not aware of the need for using specific code elements
(e.g., objects) to successfully implement the requirements
(and pass the tests). Note that while our former analysis

10

showed that LLMs also frequently fail in correctly judging
self-contained functions, this does not exclude that in some
cases the lack of context may result in a false positive clas-
sification. These cases may be addressed with more specific
requirements text which, however, are not always available
in code generation datasets. Indeed, we found that in 27% of
cases the judgment failure can be attributed to the ambiguous
requirements text used as input for the code generation. Those
are not really failures of the judging LLMs, but are still
representative of what would happen by employing LLMs
as judges on code generation datasets.

When looking at false negatives, artificial hallucination
was the most popular reason (33%) behind the misjudg-
ments, with LLMs commenting about wrongly imple-
mented statements which do not even appear in the judged
function or commenting about non-implemented require-
ments which, instead, were implemented. The second top-
reason for false negatives was the misunderstanding of code
statements (19%), with LLMs just misunderstanding code
and, as a consequence, wrongly assessing its correctness.
Other less popular causes for false negatives included the
limited coding context (i.e., the LLM complaining about the
usage of code elements which were not visible in the code
but, e.g., part of the standard Java library), and focus on
non-functional requirements (e.g., the LLM gives a negative
judgment of the code not because of its correctness). Finally,
a few unreliable test outcomes led to false negatives, i.e., the
implementation was actually wrong (so the LLM was right),
but it was passing the CoderEval tests.

Finally, we also tried to understand to what extent the
cases in which the LLMs managed to correctly judge code
correctness were due to chance or to the actual LLMs ability
to understand the code. To do this, we collected the true
positive instances outputted by the two best-performing
LLMs, namely GPT-4 and GPT-3.5. The true positives are
correct implementations that have been correctly judged as
such by those models. To reduce the number of implemen-
tations to consider in this analysis (which, as it will be clear
later, requires substantial manual work), we only considered
correct instances properly judged by both models. This still
resulted in 236 Java and 96 Python implementations. Then,
we used the Universalmutator tool [12] to generate, for
each of the 332 implementations, a buggy version of them.
Universalmutator is a regexp-based tool for mutating code
across several languages, including Java and Python. We
randomly selected one of the generated mutants for each
of the 332 correct implementations, obtaining 332 pairs of
<correct_code, mutated_code>. Finally, we add to each of
these pairs a transformed version of correct_code, being
slightly different but semantically equivalent to it (thus,
being correct). To obtain such a semantically-equivalent
version, we applied a subset of the transformation operators
implemented by Islam Rabin and Alipour in their Pro-
gramTransformer tool [32]. ProgramTransformer is meant
to generate semantically-equivalent transformed programs,
but it does not support Python (only Java and C#). For this
reason, we selected from its transformation operators those
which can be easily applied to both Java and Python code,
and we manually created from each pair <correct_code,
mutated_code> a ftriplet <correct_code, mutated_code,
sem_eq_code>. The operators we considered are [32]:

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

1) Loop Exchange: It refactors a for loop in an equivalent
while loop or vice versa.

2) Reorder Condition: It switches the order of the t rue and
false parts of an if statement.

3) Permute Statement: It swaps two independent state-
ments, ensuring no change in the code behavior.

4) Boolean Exchange: It negates a boolean variable and
propagates the change as needed to not change the
behavior.

5) Variable Renaming: It renames a local variable as var.

6) Dead/Useless Code Insertion: It inserts an unused state-
ment or a statement which does not affect in any way
the code behavior at a random place (e.g., an unused
variable declaration).

The order in which we list the above operators reflects
the order in which we tried to apply them given an in-
stance. Indeed, some operators can only be applied if the
correct_code to transform features specific code constructs
(e.g., Loop Exchange requires the existence of a for/while
loop) and, thus, cannot always be implemented. We priori-
tized these operators, and rely on Dead/Useless Code Insertion
(which can always be implemented) as a last resort when
none of the previous operators can be applied. Table 4
shows the number and percentage of instances in which we
managed to apply each operator for both Java and Python
implementations. Worth noting is that we did not manage to
equally use all the transformation operators, since some of
them were rarely applicable on the benchmark’s functions
(e.g., the Boolean Exchange operator requires functions defin-
ing local boolean variables, which was rarely the case). Also,
there are major differences across the two languages, again
due to the types of functions present in the benchmark.

TABLE 4
Transformation operators applied to generate semantically-equivalent
implementations of the 236 Java and 96 Python correct
implementations.

Operator #Java (%) #Python (%)
Loop Exchange 59 (25%) 3 (3%)
Reorder Condition 45 (19%) 23 (24%)
Permute Statement 45 (19%) 30 (31%)
Boolean Exchange 0 (0%) 2 (2%)
Variable Renaming 42 (18%) 23 (24%)
Dead/Useless Code Insertion 45 (19%) 15 (16%)

Once obtained the triplets, for each of them we
asked GPT-4 and GPT-3.5 to judge the correctness of the
mutated_code and of the sem_eq_code. Since both LLMs
already judged correct_code as correct, assuming that their
correct assessment was due to understanding of the im-
plemented code, in an ideal scenario they should (i) spot
the bug in mutated_code, classifying it as “wrong”, and (ii)
confirm the correctness of sem_eq_code.

Fig. 2 depicts the percentage of cases in which the
two LLMs managed to (i) correctly classify sem_eq_code
as correct, thus confirming their original assessment of
correct_code (light blue bars); and (ii) correctly classify
mutated_code as wrong, thus spotting the bug we injected
in correct_code (dark blue bars). The left part of Fig. 2 shows
the results achieved in Java, while the right part refers to
Python. The results in Fig. 2 paint a mixed picture. The

11

mmm sem_eq_code as correct mmm mutated_code as wrong

100 - Java Python 97%

88% 90% =
6

80 -

60 -

Accuracy (%)

20 +

GPT-3.5

GPT-4

GPT-3.5

GPT-4

Fig. 2. Code generation: Results of the mutants injection and
semantically-equivalent code transformations applied on true positives.

models struggle to confirm their positive assessment of the
correctness of sem_eq_code: GPT-3.5 reports only 54% (Java)
and 46% (Python) of sem_eq_code instances as correct. The
situation is better for GPT-4, which reports 79% (Java) and
64% (Python) of sem_eq_code as correct. Still, even the best-
performing LLM changes its opinion about code correctness
in 21% (Java) and 36% (Python) of cases, despite being
presented with a semantically equivalent code.

On the positive side, the LLMs seem to be able to
recognize buggy patterns related to the mutants we injected.
In fact, both LLMs classified most of the mutated_code
instances (>88%) as wrong, with GPT-4 even achieving a
97% in Python.

In summary, at least for GPT-4 the achieved findings
allow to claim some code understanding capabilities of
the LLMSs. Still, this analysis also showed limitations that
partially explain the mostly negative results we got when
applying LLM-as a judge for code generation.

3.2 Code Summarization

We remind readers of the exclusion of the DeepSeek Coder
family from the code summarization study, as we did not
manage to define a prompt to guide these LLMs towards an
effective task resolution in most cases. We also point back
to Table 1 which shows that the five LLMs considered in
the code summarization study rarely fail to produce a valid
judgement (either correct or incorrect). As discussed later,
the best prompt for this task was simple zero shot. Thus,
the data in Table 1 and the discussion of the results for
code summarization refer to this prompt (additional results
available in [1]).

Table 5 reports the Krippendorff’s o agreement score
between the LLMs and human judgment for each quality
criterion (i.e., content adequacy, conciseness, and fluency & un-
derstandability) and when considering the four experimented
prompts (i.e., zero shot, zero shot + instructions, automated CoT,
automated CoT + instructions).

When considering the agreement score obtained by the
best-performing LLM (i.e., GPT-4) across all three code
summary quality criteria, the zero shot prompt represents

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

12

TABLE 5
Code Summarization: Krippendorff’s o between the LLMs judgments and the median human rating. Values below 0.10 indicate the complete lack
of agreement.

| Java | Python
| CL7B CL13B CL34B GPT-3.5 GPT4 | CL7B CL13B CL34B GPT-35 GPT4
| zero shot
Content Adequacy -0.04 -0.02 -0.11 0.18 0.58 -0.26 -0.17 -0.10 0.17 0.63
Conciseness -0.64 -0.68 -0.40 -0.23 0.40 0.06 -0.23 -0.10 -0.37 0.36
Fluency & Understandability 0.04 0.16 -0.02 0.41 0.29 0.03 -0.06 0.03 0.25 0.44
| zero shot + instructions
Content Adequacy -0.11 0.05 -0.11 0.05 0.52 -0.42 -0.14 -0.19 0.07 0.55
Conciseness -0.26 -0.82 0.02 0.13 0.20 -0.04 -0.31 -0.16 0.29 0.03
Fluency & Understandability -0.05 -0.04 0.15 0.25 0.23 -0.18 0.04 0.03 0.21 0.38
| automated CoT
Content Adequacy 0.05 0.03 0.04 -0.09 0.60 -0.07 0.01 -0.02 -0.19 0.51
Conciseness -0.06 -0.42 -0.10 0.20 0.17 0.04 -0.24 0.04 0.29 0.31
Fluency & Understandability 0.08 -0.02 0.07 0.11 0.22 -0.14 0.00 -0.03 -0.07 0.37
| automated CoT + instructions
Content Adequacy -0.04 -0.02 0.07 0.08 0.58 -0.19 0.06 -0.02 0.04 0.42
Conciseness -0.06 -0.43 -0.22 0.11 0.16 -0.05 -0.32 -0.10 0.19 0.42
Fluency & Understandability 0.05 -0.08 0.07 0.05 0.41 -0.03 0.04 0.08 -0.06 0.42

the best compromise. Indeed, while not ensuring the best
judging performance for all quality criteria, it does not
exhibit strong drops for a specific criterion as it happens
with other prompts. For example, automated CoT is the best
performing in terms of content adequacy on the Java data set
(left part of Table 5), with o = 0.60 versus 0.58 of zero shot.
However, it suffers in judging conciseness (0.17 versus 0.40
of zero shot) and fluency & understandability (0.22 vs 0.29).
Similar observations can be made for the Python dataset
(right part of Table 5).

Similarly to what observed for code generation, it is fair
to claim that the choice of the prompt has some impact,
but it does not substantially changes the overall findings:
the Krippendorff’s a of the LLMs look quite stable when
changing prompt (with a few notable exceptions), and the
best-performing LLMs is usually GPT-4 (again, with a few
exceptions discussed in the following).

To better support the results discussion, Fig. 3 shows the
scatterplots depicting, for each of the three quality criteria
subject of the judgment (“columns” in Fig. 3) and for each
LLM (“rows”), (i) the median of the ratings provided by the
three human judges (z-axis), and (ii) the score assigned by
the LLM (y-axis) when using the zero shot prompt. For the
sake of brevity, we show the graph only for the Java dataset,
since the findings for Python are very similar (and available
in [1]), as can also be seen from the agreement scores in
Table 5. A blue dot placed at coordinates (z=2, y=3) in a
graph of the first column indicates a summary for which the
median human judgment for content adequacy was 2, while
the LLM score was 3. A successful judge would result in
most of the points placed on the antidiagonal of the scatter-
plot (i.e., the diagonal going from top right towards bottom
left). The size of the dots in each graph is proportional to the
number of cases that fall into the specific judging scenario.
For example, if we focus on the graph related to CodeLlalma
7B judgments for conciseness (first row, second column), the

largest dot is placed in position (=5, y=3) and features 354
cases (out of the 594 Java summaries), while the specular
scenario (z=3, y=5) only features 2 cases. To help interpret
the scatter plot, we also include the regression line between
the two variables.

Fig. 3 suggests the lack of a relationship between scores
assigned by humans and those provided by the smaller
LLMs used in our study (i.e., CodelLlama 7B, 13B, 34B).
Indeed, the regression line does not show any sort of trend
aligned with the anti-diagonal, with almost a flatten line.
The Krippendorff test (Table 5) confirms the lack of agree-
ment between the judgments provided by the models in the
CodeLlama family and those assigned by humans for all
quality criteria and for both languages. In fact, most of the
agreement scores are negative.

The situation is different when one looks at much larger
models belonging to the GPT family. When judging content
adequacy and fluency & understandability, both models show
the ability to mirror human judgment. Both GPT-3.5 and
GPT-4 achieve positive Krippendorff alphas for content ade-
quacy: GPT-3.5 gets a = 0.18 on the Java and o = 0.17 on
Python summaries; for GPT-4 these values go up to o = 0.58
(Java) and « 0.63 (Python). The level of agreement
achieved by GPT-4 is surprisingly high considering the chal-
lenges of a 5-level classification task and reveals the ability
of GPT-4 to assess the quality of the information featured
in the summary similarly to humans. GPT-4 is also the only
LLM that reaches moderate agreement with humans when
it comes to the conciseness of the code summaries (o = 0.40
for Java and o 0.36 for Python). Finally, GPT-4 also
achieves a fair (Java o = 0.29) and a moderate (Python
a = 0.44) agreement with humans when evaluating fluency
& understandability.

It is also interesting to note that the agreement between
the best performing LLM (i.e., GPT-4) and humans is the
highest for the same quality aspects for which it is also

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

Content Adequacy Conciseness Fluency & Understandability

| PE———

Codellama 7B
- N w » w

Codellama 13B
= N w » w

Codellama 34B
- N w > w

GPT-3.5
H N W s ow

T T T T T L T T T T T 1 T T T T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
median human score median human score median human score

GPT-4
- N w » w

Fig. 3. Code summarization (Java): Scatterplots relating human to LLM
judgments. The three quality criteria subject of the judgment are shown
as “columns”, while the judging LLMs are “rows”. Within each scatterplot
the median of the ratings provided by the three human judges is on the
z-axis, and the score assigned by the LLM is on the y-axis.

the highest among humans. Indeed, as explained in Sec-
tion 2.2.2, also humans had the highest agreement when
judging the content adequacy of summaries («=0.81 for Java
and a=0.69 for Python).

3.2.1 Self-bias Analysis

As in the case of code generation task, in this case we
also assess the extent to which the LLMs are biased when
judging the summaries they generate. Table 6 shows the
bias coefficient for each LLM-as-a-judge (row) with respect
to the summaries either automatically generated by the
five subject LLMs or written by humans (column). The
formula for computing the bias coefficient is the same as
defined in Section 3.1, i.e., the average of the differences
between the LLM judgement and the ground truth (e.g.,
the median of the score provided by human raters): It
represents how much, on average, a summary created by
a generator (column) is overestimated (positive values) or
underestimated (negative values) by the judge (row). Unlike
the code generation task, here the scores are between 1 and 5
for each of the three quality attributes (i.e., content adequacy,
conciseness, and fluency & understandability). In each row, we
highlight in dark gray the strongest positive bias exhibited
by the judging LLM and in light gray the strongest negative
bias. For each quality attribute, we also report the average
median score given by humans to the summaries generated

13

by each LLM or written by humans (see the first row in
each of the three subtables in Table 6). Finally, as already
done for the code generation study, the last three columns
of Table 6 report the results of the statistical tests that
compare the judgements each LLM gave to the summary
it generates versus those (i) generated by other LLMs (i.e.,
Own vs LLMs), (ii) generated by LLMs of a different family
(i.e., Own vs LLMs \ F) and (iii) written by humans. Data
in Table 6 refer to the Java data set and, again, to the zero
shot prompting. Those related to Python and other prompts
lead to the same conclusions and are thus included in our
replication package [1].

To better understand the content of the three subtables in
Table 6, let us focus on content adequacy (the top part of Ta-
ble 6). From its first row (median human judgement), we can
see that the participants evaluated the summaries generated
by GPT-4 as the best overall in terms of information they
feature (content adequacy), with an average median score
of 4.68. For comparison, human-written summaries were
evaluated with an average median score of 2.97, which is
considered worse than most LLM-generated ones. Although
this is not the focus of our work (since it is not related to
the capabilities of LLM as a judge), it is an interesting side
finding that deserves further investigation (i.e., Did LLM
become better than humans at documenting code?).

Moving to the bias coefficients, let us take the example of
CodeLlalma 7B as a judge, which exhibits a bias coefficient
of 1.14, which means that on average it overestimates the
content adequacy of the summaries it generates by 1.14 points
over the median human judgement. This is the strongest
positive bias it has (dark gray), while its strongest negative
bias is towards summaries generated by GPT-4 (light gray).

To simplify the discussion of the possible bias exhibited
by LLM judges, Table 7 reports the classification of sum-
mary creators according to what concerns content adequacy
according to humans (first column) and each LLM judge
(second to sixth columns). Similar tables are available in our
replication package for the other two quality attributes [1]
and for Python.

Looking at Table 6 for what concerns content adequacy,
it may seem that all models are positively biased toward
Codellama 7B. However, the only two models exhibiting
a statistically significant bias towards such a model are
CodeLlama 7B itself and its 13B version. Also, looking at
Fig. 3 and Table 7, it can be seen that these two models
mostly act as “constant” classifiers when assessing content
adequacy, giving a score of 4 for almost every input. This
results in a strong positive bias towards what are consid-
ered the worst summaries according to humans (i.e., those
generated by CodeLlama 7B). However, given the “constant
behavior” of these models, we do not claim any sort of self-
bias, but rather their (already discussed) lack of ability to act
as judges for the quality of code summary.

Models from the GPT family tend to overestimate the
content adequacy of summaries, both those generated by au-
tomatic techniques and written by humans. However, their
ranking of “summaries generators” (Table 7) is quite aligned
to that of humans, with the only exception of considering
as worst the summaries written by humans rather than
those generated by CodeLlama 7B. Also, looking at these
data, it is clear that GPT-4 is a major step ahead in judging

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

14

TABLE 6
Code Summarization (Java): Average of differences between the LLM judgments and the ground truth (i.e., the median of the score given by the
three human raters). Last three columns report adj. p-value and effect size when comparing the judgments each LLM gave to summaries it
generated against those it gave when judging summaries (i) generated by all other LLMs, (ii) generated by all other LLMs but those belonging to
the same family, and (iii) written by humans.

CL7B CL13B CL34B GPT-3.5 GPT-4 | Human Written | Ownvs LLMs Ownos LLMs \ F Own vs Human
Content Adequacy
human 2.88 3.68 3.80 411 4.68 | 297 | - - -
CL 7B 1.14 0.33 0.21 -0.11 -0.68 1.03 *** (L) *** (L) (N)
CL 13B 117 0.36 0.29 -0.14 -0.64 1.01 (N) *** (M) ***(S)
CL 34B 1.65 1.04 0.71 0.81 0.32 143 (N) (N) 5 (G)
GPT-3.5 1.59 1.04 1.00 0.73 0.30 0.78 (N) ***(S) (N)
GPT-4 0.63 0.13 0.20 0.39 0.13 0.29 (N) (N) (N)
Conciseness
human 445 4.62 451 4.92 4.81 | 4.80 | - - -
CL 7B -1.15 -1.39 -1.17 =1:71 -1.67 -1.53 **(S) ***(S) **(S)
CL 13B -1.37 -1.55 -1.34 ‘177 -161 -1.74 (N) (N) *(S)
CL 34B -0.49 -0.63 -0.50 -0.91 -0.81 -0.86 **(S) **(S) (M)
GPT-3.5 -0.69 -0.56 -0.63 -0.86 -0.83 -1.10 **(S) **(S) **(S)
GPT-4 -0.08 -0.25 -0.39 0.06 -0.08 0.00 (N) (N) (N)
Fluency & Understandability

human 4.40 4.68 4.81 4.67 4.82 ‘ 3.71 ‘ - - -
CL 7B 2021 -0.51 -0.59 -0.45 047 0.52 **(S) *(N) 4 (M)
CL 13B 0.04 -0.24 -0.42 -0.05 -0.36 0.71 (N) (N) ** (L)
CL 34B 0.58 0.31 0.15 0.33 0.17 1.16 *(N) (N) *** (L)
GPT-3.5 0.41 0.18 0.10 0.31 0.18 0.56 (N) (N) ©)
GPT-4 0.46 0.16 -0.01 0.31 0.18 0.76 (N) (N) (M)

Adjusted p-values: * <0.05, ** <0.01, *** <0.001. Cliff delta: N=Negligible, S=Small, M=Medium, L=Large

TABLE 7
Content adequacy (Java): ranking of the generators of summaries according to each judge, including both humans and LLMs.
Human \ CL 7B CL 13B CL 34B GPT-3.5 GPT-4
GPT-4 (4.68) CL 7B (4.02) GPT-4 (3.95) GPT-4 (5.00) GPT-4 (4.98) GPT-4 (4.81)
GPT-35(4.11) | CL13B(4.01) human (3.92) GPT-35(4.92) GPT-3.5(4.84) GPT-3.5(4.51)
CL 34B (3.80) CL34B (4.01) CL13B(3.90) CL13B(472) CL34B(4.80) CL 34B (4.00)
CL 13B (3.68) | GPT-3.5 (4.00) CL 7B (3.86) CL7B (447) CL13B(472) CL13B(3.81)
human (2.97) GPT-4 (4.00) GPT-35(3.82) CL 34B (4.45) CL 7B (4.46) CL 7B (3.51)
CL 7B (2.88) human (3.96) CL 34B (3.75) human (4.40) human (3.75) human (3.26)

capabilities as compared to GPT-3.5: In fact, the former only
overestimates the content adequacy of CodeLlama 7B by 0.63
points, on average, while the latter by 1.59 points. GPT-4
also does not exhibit any sort of self-bias, as confirmed by
the statistical tests.

Moving to the summaries’ conciseness, most of the bias
coefficients are negative for all LLMs, indicating that they
tend to give lower scores as compared to humans. Also,
excluding the judges mostly acting as constant classifiers
(those from the CodeLlama family), again GPT-4 does not
show any form of self-bias, while GPT-3.5 has a slight nega-
tive bias towards the conciseness of summaries generated by
the GPT family. Once again, no particular self-bias can be
observed.

Finally, while all LLMs tend to overestimate fluency &
understandability summaries written by humans, for this
quality attribute, we also did not observe any form of self-
bias.

3.3 Discussion

For both subject tasks (i.e., code generation and code sum-
marization) we found that smaller LLMs (e.g., DeepSeek
Coder, CodeLlalma) struggle as judges, while the largest

model we considered (i.e., GPT-4-turbo) was the best in
class. However, there are profound differences among the
two tasks in what that means from a practical point of view.

In the context of code generation, even the best-performing
model (GPT-4) frequently misjudges the correctness of code,
also showing different trends among the two experimented
languages: When assessing Java code, GPT-4 lacked espe-
cially in the identification of wrong code implementations,
while for Python it misjudged several correct implemen-
tations as wrong. Although some misjudgments can be
addressed by providing LLMs with more detailed require-
ments about what is expected from the judged code, we
also noted that even extremely large LLMs such as GPT-4
struggle in reasoning about code correctness. This would
raise questions about the practical application of LLMs as a
judge in e.g., automated code review or bug fixing.

The situation is quite different when it comes to the code
summarization task. Here, GPT-4 showed quite high agree-
ment with human judgment of code summaries, especially
when assessing content adequacy. The higher effectiveness in
assessing the quality of natural language text (rather than
code correctness) may somehow be expected considering
the vast amount of text seen by the LLM during training.

Given the low correlation between human judgment of

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

the quality of summaries and metrics frequently used to
assess the performance of code summarization techniques
(e.g., BLEU [31], ROUGE [29], METEOR [4]) [15], [30], [33],
it seems reasonable to start considering the use of LLM as
a judge in this context. Additional studies are needed to
also investigate their complementarity with state-of-the-art
metrics.

4 THREATS TO VALIDITY

Construct validity. Using tests as a proxy for code correct-
ness is a limitation of our study. To partially mitigate this
issue, we performed preliminary checks aimed at exclud-
ing code generation problems clearly accompanied by an
inadequate test suite. For the code summarization study, we
assessed the agreement among the human judges, showing
the reliability of their judgement as an oracle.

Internal validity. As for any work relying on manual
analysis, there are possible subjectiveness issues in our
findings. To alleviate such a threat, multiple evaluators
were always involved in any manual step required in our
paper. Another threat relates to the prompts used. We ex-
perimented with four different prompts for each task, with
full results available in [1]. As discussed, while the prompts
have an impact, they do not really affect the overall findings
/ lessons learned from our study.

External validity. Although we experimented with sev-
eral (8) LLMs, the generalizability of our findings is capped
by (i) the two code-related tasks subject of the study
and (ii) the focus on the Java and Python programming
languages. Differentiated replications can help to corrobo-
rate/contradict our findings.

5 RELATED WORK

LLM-as-a-judge have become quite popular in the NLP
community for the assessment of tools automating chal-
lenging generative problems. For example, Zheng et al.
[47] studied the usage of LLMs-as-a-judge to evaluate the
capabilities of LLM-based chat assistants. The authors high-
light four key limitations: (i) positional bias (e.g., the LLM
favors solutions in the first position when assessing a pool
of different solutions); (ii) verbosity (i.e., tendency to favor
longer responses); (iii) self-enhancement bias (i.e., the LLM
favors answers generated by itself) and; (iv) limited reason-
ing ability (i.e., the LLM experiences issues when assessing
answers related to math/reasoning questions). Our study
design has been influenced by these findings. Indeed, our
decision to ask the LLMs to judge each solution in isolation
rather than in a comparative setting (e.g., providing the
LLM with n possible implementations of a given function
asking it to judge all of them in one shot) aims at avoiding
positional bias and limit verbosity bias, since the model only
sees one candidate to judge. In addition, we investigated
self-enhancement bias.

With the aim of addressing the limitations of LLM as a
judge, Huang ef al. [18] explicitly fine-tuned LLM for judg-
ing tasks, showing that while some improvements can be
observed, limitations still remain. These include loss in gen-
eralizability (i.e., the model specializes for a specific judging
task, thus being unable to perform other tasks), fairness, and

15

scalability. Investigating with DL models specifically fine-
tuned as judges for code-related tasks is part of our future
research agenda.

There are four works mostly related to our study [24],
[35], [39], [49]. Weyssow et al. [39] propose the use of LLM-
as-a-judge for evaluating a software-related task automated
by other LLMs. The judgment aimed to evaluate the LLMs
capable of implementing code by meeting specific non-
functional requirements (e.g., maximizing code readability).
Unlike our work, their focus is not on evaluating the LLMs
as a judge, but rather on exploiting them in their method-
ology. In fact, as the only data point that shows that LLMs
as judges can work in this context, the authors show that
different LLMs tend to agree on the fact that the solutions
generated by the GPT-based models are superior to others,
similar to what we observed.

Koutcheme et al. [24] evaluate the effectiveness of LLMs
in generating feedback for 57 programming assignments
at the beginner level. Two analyses are performed. The
first is a qualitative analysis in which annotators focused
on revealing the main issues experienced by the mod-
els while judging (e.g., hallucination by mentioning non-
existent bugs). The second is a quantitative one in which
other LLMs judge the feedback generated by each LLM. Un-
like Koutcheme et al., the quantitative analysis in our work
does not rely on other LLMs, but on “more reliable” oracles
such as tests (code generation) and human assessments (code
summarization). In addition, we focus on two different tasks
and substantially larger datasets.

Zhuo et al. [49] present ICE-Score, an evaluation metric
that exploits GPT-3.5-turbo as a judge for code implemen-
tations. The authors experiment with both judging code
“usefulness” and code “functional correctness”. The latter
is basically the same code generation task as considered
in our work. The authors ask ICE-Score to judge 20 im-
plemented versions generated for each of the 164 coding
problems featured in the HumanEval-X benchmark [48].
These 164 problems are available in 18 different languages,
four of which are considered by the authors (Java, C++,
Python, and JavaScript). Then, they analyze the correlation
between the ICE-Score’s judgements and the test outcome,
reporting weak to moderate correlations, depending on
the programming language and on whether the reference
solution (i.e., an example of correct implementation) was
provided or not in the prompt asking the judgement. When
not provided, the judging performance of the ICE-Score
usually drops. Unlike Zhuo et al. [49], we adopt a more
challenging benchmark (i.e., CoderEval [45]) that features
more complex coding problems compared to HumanEval-
X. Indeed, the latter only includes simple and standalone
functions (i.e., functions invoking or accessing only built-
in functions and standard libraries) which might be easier
to judge, and only represent a small percentage of the real
functions which can be found in open source projects [45].
Also, we look at aspects such as self-bias which are ignored
in [49], we experiment with more recent LLMs (GPT-4) and
with two code-related tasks (code summarization on top of
code generation).

Tong and Zhang present CodeJudge [35], another ap-
plication of GPT-3.5-as-a-judge for code correctness. The
main novelty compared to the ICE-Score is a prompt that

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

guides the LLM in performing “slow thinking” [22]. The
authors show that, thanks to such a prompt, CodeJudge
outperforms ICE-Score. For this reason, in our study we
adopt the prompt proposed in [35] showing, however, no
major improvements in the LLMs’ capabilities of assessing
the correctness of code implementations. Note that our
findings for code generation are aligned with those reported
by Tong and Zhang [35]. In fact, CodeJudge has been tested
on four different benchmarks, two of which (i.e., APPS
[17] and BigCodeBench [50]) are similar in complexity to
CoderEval. On these two (Python) benchmarks, the authors
report an overall accuracy of 57.00% (APPS) and 54.56%
(BigCodeBench), which is aligned with what we observed
on Python (56%). Unlike [35], also in this case we look at
additional aspects (such as self-bias) and an additional task
(code summarization) for which we had to manually build
evaluation benchmarks.

6 CONCLUSIONS AND FUTURE WORK

We investigated the effectiveness of LLMs-as-a-judge for
two code-related tasks, namely code generation and code
summarization. We considered LLMs having different sizes,
ranging from ~1B (DeepSeek Coder [13]) to hundreds of
billions (GPT-4-turbo [3]). The judgement tasks focused on
code correctness (i.e., is a given function correct?) and on
code summary quality. For code correctness, we used test
results to assess the correctness of the judgment, while for
summary quality we correlated the LLMs’ and humans’
judgments. Our findings show that “small” LLMs struggle
in judging tasks, with GPT-4-turbo being the model that
achieves the best results. Still, even GPT-4-turbo frequently
fails in assessing code correctness, while being a reliable
judge of code summary quality.

Our future work will focus on experimenting with
small LLMs specifically fine-tuned for code-related judg-
ment tasks and extending our study to additional code-
related tasks (e.g., bug-fixing).

ACKNOWLEDGMENTS

USI team has been supported by the Swiss National Sci-
ence Foundation (SNSF) under the project “PARSED” (grant
agreement No. 219294). W&M team has been supported in
part by the NSF CCF-2346357, CCF-2311469, CCF-2217733,
and CNS-2132281. We also acknowledge support from Cisco
Systems and Bill & Melinda Gates Foundation. Any opin-
ions, findings, and conclusions expressed herein are the
authors” and do not necessarily reflect those of the sponsors.

REFERENCES

[1] “Replication package,” https:/ /github.com/crupig/
LLMs-as-a-judge-for-SE-tse_RP, [n.d.].

[2] T. Ahmed and P. Devanbu, “Few-shot training llms for project-
specific code-summarization,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
'22,2023.

[3] O. AL “Open Al ChatGPT,” https:/ /chatgpt.com.

[4] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments,”
in Proceedings of the ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summarization.
Ann Arbor, Michigan: Association for Computational Linguistics,
Jun. 2005, pp. 65-72. [Online]. Available: https://aclanthology.
org/W05-0909

(5]

(6]
(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

16

M. Ciniselli, N. Cooper, L. Pascarella, A. Mastropaolo, E. Aghajani,
D. Poshyvanyk, M. D. Penta, and G. Bavota, “An empirical study
on the usage of transformer models for code completion,” IEEE
Trans. Software Eng., vol. 48, no. 12, pp. 48184837, 2022.

J. Cohen, “A coefficient of agreement for nominal scales,” Educ
Psychol Meas., 1960.

X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng,
C. Sha, X. Peng, and Y. Lou, “Evaluating large language models in
class-level code generation,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ser. ICSE "24, 2024.
A. Eghbali and M. Pradel, “Crystalbleu: Precisely and efficiently
measuring the similarity of code,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE 22, 2023.

C. etal, “Evaluating large language models trained on code,”
2021. [Online]. Available: https://arxiv.org/abs/2107.03374

R. etal, “Code llama: Open foundation models for code,” 2024.
[Online]. Available: https:/ /arxiv.org/abs/2308.12950

R.]J. Grissom and]J. J. Kim, Effect sizes for research: A broad practical
approach, 2nd ed. Lawrence Earlbaum Associates, 2005.

A. Groce,]. Holmes, D. Marinov, A. Shi, and L. Zhang, “An ex-
tensible, regular-expression-based tool for multi-language mutant
generation,” in Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, ser. ICSE "18, 2018, p.
25-28.

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang,
G. Chen, X. Bi, Y. Wu, Y. K. Li, FE Luo, Y. Xiong, and
W. Liang, “Deepseek-coder: When the large language model
meets programming — the rise of code intelligence,” 2024.
[Online]. Available: https:/ /arxiv.org/abs/2401.14196

Q. Guo, J. Cao, X. Xie, S. Liu, X. Li, B. Chen, and X. Peng, “Ex-
ploring the potential of chatgpt in automated code refinement: An
empirical study,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, 2024, pp. 1-13.

S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, “Semantic
similarity metrics for evaluating source code summarization,”
in Proceedings of the 30th IEEE/ACM International Conference on
Program Comprehension, ser. ICPC '22, 2022, p. 36-47.

S. Haque, A. LeClair, L. Wu, and C. McMillan, “Improved auto-
matic summarization of subroutines via attention to file context,”
2020.

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora,
E. Guo, C. Burns, S. Puranik, H. He, D. Song, and]. Steinhardt,
“Measuring coding challenge competence with apps,” NeurIPS,
2021.

H. Huang, Y. Qu, H. Zhou,]J. Liu, M. Yang, B. Xu, and T. Zhao,
“On the Limitations of Fine-tuned Judge Models for LLM
Evaluation,” Jun. 2024, arXiv:2403.02839 [cs]. [Online]. Available:
http:/ /arxiv.org/abs/2403.02839

HuggingFace, “Inference endpoints,” https://huggingface.co/
inference-endpoints/.

M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and
A. Svyatkovskiy, “Inferfix: End-to-end program repair with llms,”
in Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2023, 2023, p. 1646-1656.

X. Jin and Z. Lin, “Simllm: Calculating semantic similarity in
code summaries using a large language model-based approach,”
Proceedings of the ACM on Software Engineering, vol. 1, no. FSE, pp.
1376-1399, 2024.

D. Kahneman, Thinking, fast and slow. Farrar, Straus and Giroux,
2011.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” Advances in neural
information processing systems, vol. 35, pp. 22199-22213, 2022.

C. Koutcheme, N. Dainese, A. Hellas, S. Sarsa, J. Leinonen,
S. Ashraf, and P. Denny, “Evaluating Language Models for
Generating and Judging Programming Feedback,” Jul. 2024,
arXiv:2407.04873 [cs]. [Online]. Available: http:/ /arxiv.org/abs/
2407.04873

K. Krippendorff, “Reliability in content analysis: Some common
misconceptions and recommendations,” Human communication re-
search, vol. 30, no. 3, pp. 411-433, 2004.

T. H. M. Le, M. A. Babar, and T. H. Thai, “Software vulnerability
prediction in low-resource languages: An empirical study of code-
bert and chatgpt,” in Proceedings of the 28th International Conference

https://github.com/crupig/LLMs-as-a-judge-for-SE-tse_RP
https://github.com/crupig/LLMs-as-a-judge-for-SE-tse_RP
https://chatgpt.com
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2403.02839
https://huggingface.co/inference-endpoints/
https://huggingface.co/inference-endpoints/
http://arxiv.org/abs/2407.04873
http://arxiv.org/abs/2407.04873

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

(36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]
[44]

[45]

on Evaluation and Assessment in Software Engineering, 2024, pp. 679—
685.

A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code
summarization via a graph neural network,” in Proceedings of the
28th International Conference on Program Comprehension, ser. ICPC
'20, 2020, p. 184-195.

Z.1i, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D. Majumder,
J. Green, A. Svyatkovskiy, S. Fu, and N. Sundaresan, “Automating
code review activities by large-scale pre-training,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2022, 2022, p. 1035-1047.

C.-Y. Lin, “Rouge: A package for automatic evaluation of sum-
maries,” in Text summarization branches out, 2004, pp. 74-81.

A. Mastropaolo, M. Ciniselli, M. D. Penta, and G. Bavota,
“Evaluating code summarization techniques: A new metric and
an empirical characterization,” in Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, ICSE 2024, Lisbon,
Portugal, April 14-20, 2024. ACM, 2024, pp. 218:1-218:13. [Online].
Available: https:/ /doi.org/10.1145/3597503.3639174

K. Papineni, S. Roukos, T. Ward, and W.-]. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting of the Association for Computational Linguis-
tics, 2002, pp. 311-318.

M. R. L. Rabin and M. A. Alipour, “Programtransformer: A tool for
generating semantically equivalent transformed programs,” Softw.
Impacts, vol. 14, p. 100429, 2022.

D. Roy, S. Fakhoury, and V. Arnaoudova, “Reassessing automatic
evaluation metrics for code summarization tasks,” in 29th ACM
Joint Meeting on European Software Engineering Conference and the
ACM/SIGSOFT Symposium on the Foundations of Software Engineer-
ing, ESEC-FSE, 2021, p. 1105-1116.

H. Tian, W. Lu, T. O. Lij, X. Tang, S.-C. Cheung, J. Klein, and T. F.
Bissyandé, “Is chatgpt the ultimate programming assistant-how
far is it?” arXiv preprint arXiv:2304.11938, 2023.

W. Tong and T. Zhang, “CodeJudge: Evaluating code generation
with large language models,” in Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, Y. Al-Onaizan,
M. Bansal, and Y.-N. Chen, Eds. Association for Computational
Linguistics, Nov. 2024, pp. 20032-20051. [Online]. Available:
https:/ /aclanthology.org/2024.emnlp-main.1118/

R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshy-
vanyk, and G. Bavota, “Using pre-trained models to boost code
review automation,” in Proceedings of the 44th International Confer-
ence on Software Engineering, ser. ICSE '22, 2022, p. 2291-2302.

C. Watson, N. Cooper, D. N. Palacio, K. Moran, and D. Poshy-
vanyk, “A systematic literature review on the use of deep learn-
ing in software engineering research,” ACM Trans. Softw. Eng.
Methodol., vol. 31, no. 2, 2022.

G. Weng and A. Andrzejak, “Automatic bug fixing via deliberate
problem solving with large language models,” in 2023 IEEE 34th
International Symposium on Software Reliability Engineering Work-
shops (ISSREW), 2023, pp. 34-36.

M. Weyssow, A. Kamanda, and H. Sahraoui, “Codeultrafeedback:
An llm-as-a-judge dataset for aligning large language models to
coding preferences,” 2024.

M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshy-
vanyk, “Sorting and transforming program repair ingredients
via deep learning code similarities,” in 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 479-490.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE "16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 87-98. [Online]. Available:
https:/ /doi.org/10.1145/2970276.2970326

F. Wilcoxon, “Individual comparisons by ranking methods,” Bio-
metrics Bulletin, vol. 1, no. 6, pp. 80-83, 1945.

T. Yin, “Lizard,” https:/ / github.com/terryyin/lizard.

B. Yoav and H. Yosef, “Controlling the false discovery rate: A
practical and powerful approach to multiple testing,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 57, no. 1,
pp- 289-300, 1995.

H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma, G. Liang, Y. Li,
Q. Wang, and T. Xie, “Codereval: A benchmark of pragmatic code
generation with generative pre-trained models,” in Proceedings of

[46]

[47]

[48]

[49]

[50]

17

the 46th IEEE/ACM International Conference on Software Engineering,
2024, pp. 1-12.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang,
Z.Lin, Z. Li, D. Li, E. Xing, H. Zhang,]. E. Gonzalez, and I. Stoica,
“Judging llm-as-a-judge with mt-bench and chatbot arena,” in Ad-
vances in Neural Information Processing Systems, A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36.
Curran Associates, Inc., 2023, pp. 46 59546 623.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang,
Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang,]. E. Gonzalez, and
I. Stoica, “Judging LLM-as-a-Judge with MT-Bench and Chatbot
Arena,” Dec. 2023, arXiv:2306.05685 [cs]. [Online]. Available:
http:/ /arxiv.org/abs/2306.05685

Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, Z. Wang,
L. Shen, A. Wang, Y. Li et al., “Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x,”
arXiv preprint arXiv:2303.17568, 2023.

T. Y. Zhuo, “ICE-score: Instructing large language models to
evaluate code,” in Findings of the Association for Computational
Linguistics: EACL 2024, Y. Graham and M. Purver, Eds.
Association for Computational Linguistics, Mar. 2024, pp.
2232-2242. [Online]. Available: https://aclanthology.org/2024.
findings-eacl.148/

T. Y. Zhuo, M. C. Vu, J. Chim, H. Hu, W. Yu, R. Widyasari,
I. N. B. Yusuf, H. Zhan, J. He, 1. Paul et al., “Bigcodebench:
Benchmarking code generation with diverse function calls and
complex instructions,” arXiv preprint arXiv:2406.15877, 2024.

https://doi.org/10.1145/3597503.3639174
https://aclanthology.org/2024.emnlp-main.1118/
https://doi.org/10.1145/2970276.2970326
https://github.com/terryyin/lizard
http://arxiv.org/abs/2306.05685
https://aclanthology.org/2024.findings-eacl.148/
https://aclanthology.org/2024.findings-eacl.148/

	Introduction
	Study Design
	Context Selection: LLMs
	Context Selection: Evaluation Datasets
	Code generation: CoderEval yu2024codereval
	Code summarization

	Data Collection
	Code Generation
	Code summarization

	Data Analysis

	Results Discussion
	Code Generation
	Self-bias Analysis
	Analysis of False Positives and Negatives

	Code Summarization
	Self-bias Analysis

	Discussion

	Threats to Validity
	Related Work
	Conclusions and Future Work
	References

