
1

Methodbook: Recommending Move Method
Refactorings via Relational Topic Models
Gabriele Bavota, Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, Andrea De Lucia

Abstract—During software maintenance and evolution the internal structure of the software system undergoes continuous
changes. These modifications drift the source code away from its original design, thus deteriorating its quality, including cohesion
and coupling of classes. Several refactoring methods have been proposed to overcome this problem. In this paper we propose
a novel technique to identify Move Method refactoring opportunities and remove the Feature Envy bad smell from source code.
Our approach, coined as Methodbook, is based on Relational Topic Models (RTM), a probabilistic technique for representing and
modeling topics, documents (in our case methods) and known relationships among these. Methodbook uses RTM to analyze both
structural and textual information gleaned from software to better support move method refactoring. We evaluated Methodbook
in two case studies. The first study has been executed on six software systems to analyze if the move method operations
suggested by Methodbook help to improve the design quality of the systems as captured by quality metrics. The second study
has been conducted with eighty developers that evaluated the refactoring recommendations produced by Methodbook. The
achieved results indicate that Methodbook provides accurate and meaningful recommendations for move method refactoring
operations.

Index Terms—Refactoring; Relational Topic Models; Empirical Studies.

F

1 INTRODUCTION

One of the main goals of software development is to
tackle the complexity of software. In Object-Oriented
(OO) software, classes are the primary decomposition
mechanism, which group together data and opera-
tions to reduce complexity. Researchers defined cou-
pling and cohesion as properties of software modules,
like class and packages. In particular, coupling has
been defined as the degree to which each module relies on
each one of the other modules while cohesion is the degree
to which the elements of a module belong together [1].
Generally, accepted rules state that modules should
have high cohesion and low coupling [1], [2], [3]. In
fact, several empirical studies provided evidence that
high levels of coupling and/or lack of cohesion are
generally associated with lower productivity, greater
rework, and more significant design efforts by de-
velopers (e.g., [4], [5]). In addition, classes with low
cohesion and/or high coupling have been shown to

This paper is an extension of “Identifying Method Friendships to Remove
the Feature Envy Bad Smell” that appeared in the Proceedings of
the 33rd International Conference on Software Engineering (NIER
Track), Waikiki, Honolulu, Hawaii, pages 820-823, 2011.

• G. Bavota, University of Sannio, Benevento, Italy.
E-mail: gbavota@unisannio.it.

• R. Oliveto, University of Molise, Pesche (IS), Italy.
E-mail: rocco.oliveto@unimol.it.

• M. Gethers, University of Maryland, Baltimore County, Baltimore,
MD 21250, USA.
E-mail: mgethers@umbc.edu.

• D. Poshyvanyk, The College of William and Mary, Williamsburg, VA
23185, USA.
E-mail: denys@cs.wm.edu.

• A. De Lucia, University of Salerno, Fisciano (SA), Italy.
E-mail: adelucia@unisa.it

correlate with high defect rates [6].
Software systems inevitably evolve during their

life-cycle to meet ever-changing users’ needs and
adapt to changes in their environment. During evo-
lution, the structural design of the software system
changes and the changing forces mostly results in
a deterioration of the software structure which also
exhibits worse values of cohesion and coupling. In-
deed, software evolution is often an unstructured
process during which the developers’ needs to reduce
time to market may lead to design erosion and the
introduction of poor design solutions, usually referred
to as code bad smells [7], [8].

A classic bad small is the Feature Envy, arising
when a method seems to be more interested in a
class other than the one it is implemented in [8].
For example, instances of this smell are present when
a method invokes many times methods of another
class (i.e., the envied class) or, more in general, when
the responsibilities it implements are more similar to
those grouped in the envied class than to those of the
class it is implemented in. This clearly results in re-
duced class cohesion and increased coupling between
classes. Thus, it is important to identify and remove
the Feature Envy bad smell whenever instances are
found in a software system. In order to remove such
a bad smell, a Move Method refactoring operation is
required, i.e., the method is moved to the envied
class. Unfortunately, not all the cases are cut-and-
dried. Often a method uses features of several classes,
thus the identification of the envied class (as well as
the method to be moved) is not always trivial [9].

These considerations highlight the need for auto-

2

mated support to assist developers in making ade-
quate decisions while analyzing constantly changing
structural and textual information in evolving soft-
ware. In this paper, we present an approach to identify
Move Method refactoring opportunities aimed at solv-
ing Feature Envy bad smell. The proposed approach,
named Methodbook, follows the Facebook1 metaphor.
Facebook is a well-known social networking portal,
where users can add people as friends, send messages,
and update personal profiles to notify friends about
their status. The personal profile plays a crucial role
there. In particular, Facebook analyzes users’ profiles
and suggests new friends or groups of people sharing
similar interests.

In our implementation of Methodbook, methods
and classes play the same role as people and groups
of people, respectively, in Facebook; methods’ im-
plementations, that is profiles, contain information
about structural (e.g., method calls) and conceptual
(i.e., textual) relationships (e.g., similar identifiers and
comments) with other methods in the same class and
in the other classes. Then, Methodbook uses Rela-
tional Topic Model (RTM) [10] to identify “friends”
of a method in order to suggest move method refac-
toring opportunities in software. In particular, given
a method, we exploit RTM to suggest as a target class
the one containing the highest number of “friends”
of the method under analysis. Note that, differently
from the approaches existing in the literature [9], [11],
[12], Methodbook also exploits textual information
present in the source code to capture relationships
between methods. This results in the the possibility
for Methodbook to identify Feature Envy instances
that are ignored by the approaches that exist in the
literature (e.g., a method having the same amount of
structural dependencies with methods in its class and
with methods in the envied class, but a much higher
textual similarity with methods in the envied class).

In this paper we evaluate the usefulness of Method-
book in two case studies. In the first study we eval-
uated Methodbook on six software systems through
well-established metrics that capture the quality im-
provement achieved while applying the proposed
refactoring operations. In the second study, we eval-
uated Methodbook’s refactoring recommendations
with developers’ opinions in two case studies, one
conducted with ten original developers of two soft-
ware systems and one with seventy academic and
industrial software developers on two open source
software systems.

The rest of the paper is organized as follows. Section
II discusses the related work, while Methodbook is
overviewed in Section III. Section IV reports the first
case study where Methodbook has been evaluated via
quality metrics, while Section V reports the results of
the study with users. Section VI discusses the threats

1. http://www.facebook.com/

that could affect the validity of our findings while
concluding remarks are given in Section VII.

2 RELATED WORK

Refactoring has been faced in literature from different
perspectives. Some authors have shed light on how
developers perform refactoring [13], [14], [15] while
others have proposed techniques and tools to better
integrate refactoring in the software lifecycle [16], [17].
However, most of the work in the field is related to
techniques dealing with (semi-) automatic improve-
ment of the design of a software system. In particular,
authors have focused their attention on the identifica-
tion of design problems that may represent refactoring
opportunities [18], [19], [20], [21], re-modularization
techniques [22], [23], [24], [25], [26], and refactoring
approaches [9], [11], [27], [12], [28], [29], [30], [31],
[32], [33], [34], [35]. Our approach is mostly related to
the latter ones. We briefly discuss approaches in the
literature supporting refactoring operations different
than move method and then focus the attention on
the move method refactoring techniques.

Approaches recommending extract class refactoring
solutions have been presented in the literature [28],
[29], [30], [35]. Fokaefs et al. [28] use a clustering
algorithm to perform extract class refactoring. Their
approach analyzes structural dependencies among the
entities of a class to be refactored, i.e., attributes and
methods. Using this information, they compute the
entity set for each attribute, i.e., the set of methods
using it, and for each method, i.e., all the methods
that are invoked by a method and all the attributes
that are accessed by it. Thus, the Jaccard distance
between all the couples of entity sets of the class is
computed in order to cluster together cohesive groups
of entities that can be extracted as separate classes. A
hierarchical clustering algorithm is used to that aim.
Note that Methodbook aims at supporting a different
refactoring operation than the approach by Fokaefs et
al. [28] and exploits textual information extracted from
source code, in addition to structural information.

Bavota et al. [29], [35] proposed two approaches that
support extract class refactoring based on graph the-
ory. Both approaches represent a class to be refactored
as a weighted graph in which each node represents
a method of the class and the weight of an edge
that connects two nodes (methods) represents the
structural and semantic similarity of the two methods.
In both the approaches, the similarity matrix repre-
senting the graph is first filtered to remove spuri-
ous relations between methods. A MaxFlow-MinCut
algorithm is used to split the graph in two sub-
graphs to obtain two sets of methods that should be
placed in the same class [29]. This approach always
splits the class to be refactored in two classes. The
approach has been extended aiming at splitting a
class in more classes [35]: the transitive closure of

3

the incident matrix is computed to identify sets of
methods representing the new classes to be extracted.
Extract class refactoring operations have been also
identified by using game theory [30]. In particular,
the extract class refactoring process is modeled as
a non-cooperative game between two players, each
one in charge to build a new class starting from the
methods of the class to be refactored. The results of a
preliminary evaluation show that game theory might
be a good way to support refactoring operations.
The approaches described above are the closest to
Methodbook with respect to the exploited information
extracted from source code (i.e., both structural and
textual information). However, all these approaches
[29], [35], [30] aim at solving a different problem
(i.e., the decomposition of large classes) than the one
tackled by Methodbook.

O’Keeffe et al. [32] formulate the refactoring task as
a search problem in the space of alternative designs.
The alternative designs are generated by applying a
set of refactoring operations, e.g., push up field, pull
down method, collapse hierarchy while the search
from the optimal design is guided by a quality evalu-
ation function based on eleven object-oriented design
metrics, i.e., the Chidamber and Kemerer (CK) metrics
[36] that reflect refactoring goals. Note that move
method refactoring is not supported by this approach.
Moreover, in the approach by O’Keeffe et al. [32] only
structural metrics are used while Methodbook also
exploits textual information embedded in the code.

Abadi et al. [33] propose the use of fine slicing
to support the Extract Method refactoring. The fine
slicing is used to extract executable program slices
from their surrounding code and encapsulate them
in different methods. This refactoring has also been
the object of the work by Murphy-Hill and Black
[34], that describe a set of characteristics desirable
in refactoring tools supporting extract method refac-
toring. Maruyama et al. [27] present a mechanism to
improve the reusability of frameworks. In particu-
lar, their approach automatically refactors methods
in Object-Oriented frameworks by using weighted
dependence graphs, whose edges are weighted based
on the modification histories of the methods. The
assumption is that programmers will reuse and mod-
ify code of their frameworks in the future in the
same way that they often did in the past. Note that
while both the approach by Abadi et al. [33] and by
Maruyama et al. [27] support refactoring at method
level (as Methodbook), they (i) do not exploit textual
information extracted from source code and (ii) are
not aimed at removing Feature Envy bad smells.

To the best of our knowledge, only three approaches
exist in literature to automate move method refactor-
ing [9], [11], [12]. Simon et al. [11] provide a metric-
based visualization tool useful to identify, among
others, Move Method refactoring opportunities. In
particular, each method is analyzed to verify which

are its structural relationships (i.e., method calls and
attribute accesses) with the classes of the system. If
there is a class having more dependencies with the
method as compared to the class the method belongs
to, a possible Feature Envy bad smell is identified.
Examples of application of the proposed tool showed
its potential usefulness in integrated development en-
vironments. However, an evaluation of the approach
on real software systems has not been performed.
Unlike Methodbook, the approach by Simon et al. just
exploits structural information.

Seng et al. [12] use a genetic algorithm to suggest
move method refactoring operations. The fitness func-
tion used to guide the identification of the refactoring
opportunities is defined as a combination of structural
metrics able to capture the quality of the system
classes. The evaluation performed on an open source
software system showed that their approach is able to
improve the value of some quality metrics measuring
class cohesion and coupling. Moreover, the authors
manually inspected the proposed move method refac-
toring operations finding all of them justifiable.

Note that Methodbook, as compared to the ap-
proach presented by Seng et al. [12], also takes into
account textual information embedded in the source
code, such as terms present in the comments and
identifiers of source code classes. This information
can be exploited to measure the lexical similarity
between a method and the classes of the system. The
conjecture is that the higher the overlap of terms
between comments and identifiers of a method mi

and a class Cj , the higher the likelihood that they
implement similar responsibilities (and thus the class
Cj might be a good candidate as an envied class for
the method mi).

Another approach to automate move method refac-
toring has been proposed by Tsantalis and Chatzi-
georgiou [9]. In particular, for each method of the
system, their approach forms a set of candidate target
classes where a method should be moved to. This set
is obtained by examining the entities (i.e., attributes
and methods) that a method accesses from the other
classes. It is worth noting that unlike Methodbook, the
approach by Tsantalis and Chatzigeorgiou [9] only ex-
ploits structural information extracted from the source
code to identify the envied class for a method under
analysis. The approach presented by Tsantalis and
Chatzigeorgiou [9] has been evaluated (i) analyzing
its capability to suggest move method refactoring
operations that improve design quality (in terms of
class cohesion and coupling) of two open source
software system, (ii) asking an independent designer
to analyze and comment the refactorings proposed for
a small application (34 classes) she developed, and (iii)
evaluating the efficiency of the proposed algorithm in
terms of running time. The achieved results showed
that while applying the proposed refactorings (i) it is
possible to achieve a decrease of the average class cou-

4

method_1
...
method_n

Class

Software System

RTM

RTM similarity
matrix

Move Method
Recommender

term-by-document
matrix

Identifying Method Friendships

method_1
...
method_n

Class

method_1
...
method_n

Class

Semantic information
extraction

Structural information
extraction

original design
matrix

calls-interaction
matrix

Move Method M1
from C1 to C2

Suggested Refactorings

Identifying the Envied Class

shared-data
matrix

Refactoring
preconditions

surety

Preconditions
not satisfied

Preconditions
satisfied

Fig. 1: The process used by Methodbook to identify move method refactoring operations

pling of the systems of about -1.25% and an increase of
the average class cohesion of about +3.0%, (ii) the 80%
(8 out of 10) of the refactoring operations proposed by
the approach made sense from the point of view of
the designer involved in the experimentation, and (iii)
the time needed by the approach to find refactoring
operations went from 7 to 137 seconds, depending on
the system’s size and on the number of operations
identified. The approach has also been implemented
as an Eclipse plug-in, coined as JDeodorant2.

Note that, in the work by Tsantalis and Chatzige-
orgiou [9] the authors thoroughly explain why their
approach should be preferred to that one proposed
by Seng et al. [12]. Among the most important weak-
nesses identified for the approach proposed by Seng
et al. [12] it is worth to recall the following:
• it uses genetic algorithms making random choices

on mutation and crossover operations. Thus, the
outcome of each execution on the same system
may differ. To overcome such an issue the authors
propose to run the algorithm several times (ten
in the example reported in the paper) and only
suggest the move method operations common to
all the performed executions. This will clearly
negatively affect the efficiency of the proposed
technique, especially on large software systems.
Moreover, the results reported in the paper are
not statistically significant due to the small num-
ber of runs.

• it requires a long calibration procedure. In particular,
a calibration run for each metric exploited in the
fitness function is necessary.

Thus, even though the approach by Seng et al. [12]

2. http://jdeodorant.com verified on 08/16/2013

might be valid from a theoretical point of view, its
practical application would be quite hard. For this
reason, in the context of our case studies we compared
Methodbook with JDeodorant (see Sections IV and
V).

3 METHODBOOK

In a nutshell, Methodbook works as depicted in Fig-
ure 1. The process used by Methodbook to identify
move method refactoring operations is composed of
two main steps: (i) identification of methods’ friend-
ships3, and (ii) identification of the envied class.

In the first step, textual and structural informa-
tion is extracted from the source code. The textual
information is represented by words in comments
and identifiers in source code and is stored in the
term-by-document matrix. This matrix is used by RTM4

to derive semantic relationships between methods
and define a probability distribution of topics (topic
distribution model) among methods. Besides textual
information, Methodbook also exploits static analysis
to derive (i) structural dependencies among methods
(i.e., method calls stored in the calls-interaction matrix
and shared instance variables stored in the shared-data
matrix) and (ii) the original design, i.e., which methods
are contained in each class of the system, stored
in the original design matrix. The structural matrices
are used to adjust the topic probability distribution
taking into account structural relationships between

3. The concept of method friendship exploited in the proposed
approach is different from the concept of friend classes/methods
in C++.

4. The implementation of RTM used in this study was developed
by Chang and Blei [10] and can be download at http://cran.r-
project.org/web/packages/lda/.

5

methods, besides textual information. In particular,
the calls-interaction matrix and the shared-data matrix
represent the two main forms of interaction among the
methods of a system, i.e., calls interaction and shared
instance variables, while the aim of the original design
matrix is to take into account the design decisions
made by the developers. Providing RTM with the
original design information enables it to suggest move
method refactoring operations only if they result in a
clear improvement of the overall design quality.

The model derived by RTM is then used to compute
“friendships” among methods based on both proba-
bilistic distributions of latent topics and underlying
structural dependencies. The friendship relationships
among all the pairs of methods of the system are
stored in the RTM similarity matrix (see Figure 1).
In the context of our approach two methods are
considered to be friends if they share responsibilities,
i.e., they operate on the same data structures or are
related to the same features or concepts in the pro-
gram. Such a definition suggests that methods that
are good friends should be in the same class, since
“a class should be a crisp abstraction, handle a few clear
responsibilities, or some similar guideline” [8].

Based on this definition, if the “best” friends of a
method m implemented in Cm are in a class Cf , then
m shares more responsibilities with the methods of
class Cf than with those in Cm. We conjecture that
such a scenario implies the presence of a Feature Envy
bad smell with the class Cf being an envied class. For
this reason, in the second step, Methodbook identifies
the envied class as the one containing the highest per-
centage of best friends of the method mi (i.e., methods
having high similarity with mi). If the envied class
coincides with the original class, Methodbook does
not suggest any refactoring operation. Otherwise,
Methodbook performs static code analysis to verify if
a set of preconditions ensuring the preservation of the
system behavior post-refactoring are satisfied for the
suggested envied class (e.g., Methodbook ensures that
the envied class does not contain a method having
the same signature as the method to be moved).
If the preconditions are satisfied, the refactoring is
suggested, otherwise the second class containing the
higher percentage of top friends for the method under
analysis becomes the new candidate envied class and
thus, is object of the preconditions verification. This
process is repeated until (i) an envied class satisfying
the refactoring preconditions is identified or (ii) the
envied class coincides with the original class (and thus
no refactoring is suggested). It is worth noting that
Methodbook is fully automated since it can analyze
all the system’s methods to identify move method
refactoring operations. Moreover, Methodbook can
also be applied only to a particular method provided
by the developer as an input (i.e., a method identified
as suffering of the Feature Envy bad smell).

In the next subsections we first provide some details

about RTM and then we provide in-depth explanation
for the two steps behind the Methodbook’s process.

3.1 Relational Topic Model
Relational Topic Model (RTM) [10] is a hierarchi-
cal probabilistic model of document attributes and
network structure (i.e., links between documents).
RTM provides a comprehensive model for analyzing
and understanding interconnected networks of doc-
uments. Other models for explaining network link
structure do exist (see related work by Chang et al.
[10]), however the main distinction between RTM
and other methods of link prediction is RTM’s ability
to consider both document context and links among
the documents. This also distinguishes RTM by other
topic modeling techniques, like Latent Dirichlet Alloca-
tion (LDA) or Latent Semantic Indexing (LSI) that only
consider textual information from the documents to
model.

There are two steps required to generate a model:
(i) model the documents in a given corpus as a
probabilistic mixture of latent topics and (ii) model
the links between document pairs as a binary vari-
able. Established as an extension of LDA, step one is
identical to the generative process proposed for LDA.
In the context of LDA, each document is represented
by a corresponding multinomial distribution over the
set of topics T and each topic is represented by a
multinomial distribution over the set of words in the
vocabulary of the corpus. LDA assumes the following
generative process for each document di in a corpus
D [37]:

1) Choose N ∼ Poisson distribution (ξ)
2) Choose θ ∼ Dirichlet distribution (α)
3) For each of the N words wn:

a) Choose a topic tn ∼ Multinomial (θ).
b) Choose a word wn from p(wn|tn, β), a

multinomial probability conditioned on
topic tn.

The second phase for the generation of the model
exploited by RTM is as follows:

For each pair of documents di, dj :
a) Draw binary link indicator

ydi,dj |ti, tj ∼ ψ (η · |ti, tj ,)
where
ti = {ti,1, ti,2, . . . , ti,n}

The link probability function ψε is defined as:

ψε(y = 1) = exp(ηT (tdi ◦ tdj) + v).

where links between documents are modeled by lo-
gistic regression. The ◦ notation corresponds to the
Hadamard product, td = 1

Nd

∑
n td,n and exp()

is an exponential mean function parameterized by
coefficients η and intercept v.

One key distinction between establishing link prob-
abilities in RTM and the canonical LDA is the under-
lying data used. Here, RTM uses topic assignments to

6

make link predictions whereas to compute document
similarities we use topic proportions for each docu-
ment. This difference is discussed in more detail in
the original work by Chang et al. [10].

Proposed applications of RTM include identifying
potential friends within a social network of users, sug-
gesting citations for a given scientific paper, locating
web pages relevant to a web page of interest, and
analyzing software artifacts to assist with software
maintenance tasks and other tasks [26], [38], [39], [40],
[41], [42].

3.1.1 RTM Configuration used in Methodbook
In Methodbook we configured the RTM parameters
as done in the work by Gethers and Poshyvanyk [38].
Our choice is due to the fact that also Gethers and
Poshyvanyk [38] have applied RTM to text extracted
from source code, and in particular to measure cou-
pling between classes. The following setting was used:
• |T | = 75. This is the number of topics that the

latent model should extract from the data.
• α = 0.1. This parameter influences the topic dis-

tributions per document.
• β = 1.0. This parameter affects the terms distri-

bution per topic.
• η = 1.0. RTM parameter used in the link proba-

bility function.
While in this paper we set all RTM parameters

based on our experience and prior work, it is also
possible to devise near optimal values of these pa-
rameters using recently proposed approaches [43].

Note that the above reported configuration has been
used in all the empirical studies that we conducted to
evaluate Methodbook, as reported in Sections IV and
V. In other words no project specific configurations
have been used.

3.2 Identifying Method Friendships

The method friendships are identified using RTM
through the analysis of structural and textual relation-
ships among methods as well as the original structure
of the classes (see Figure 1).

As the very first step, methods are analyzed to
extract words contained in comments, identifiers, and
string literals. Methodbook takes into account (i) all
types of comments (i.e., Javadoc and inline com-
ments), (ii) all types of identifiers (i.e., name of vari-
ables declared as well as used, name of parameters,
name of the method declaration as well as of the
invoked methods), and (iii) all literal strings present in
a method. In order to extract words from compound
identifiers and comments, advanced algorithms for
splitting identifiers are employed [44]. Then, a stop
word list is used to cut-off all common English words5

5. http://www.textfixer.com/resources/common-english-
words.txt

as well as the Java keywords (e.g., String, int, public).
Finally, all terms are converted to lowercase. The ex-
tracted information is stored in a m×n matrix (called
term-by-document matrix), where m is the number of
terms occurring in all the methods, and n is the
number of methods in the system (see Figure 1). A
generic entry wi,j of this matrix denotes a measure of
the weight (i.e., relevance) of the ith term in the jth

document. In order to weight the relevance of a term
in a document we employ the tf-idf weighting schema
[45]:

wi,j = tfi,j · idfi

where tfi,j and idfi are the term frequency and the in-
verse document frequency of the term i, respectively.
The term frequency is computed as:

tfi,j =
ni,j∑
k nk,j

where ni,j represents the occurrences of term i in
the document j. The inverse document frequency is
computed as:

idfi = log

(
n

doci

)
where doci is the number of documents where the
term i appears. The term-by-document matrix weighted
with the tf-idf schema represents a common model
for representing conceptual information, that has been
previously used to support different software mainte-
nance tasks (e.g., [38]).

A light-weight static analysis6 is also applied to the
software system to detect (i) structural dependencies
between methods (i.e., method calls and shared in-
stance variables) and (ii) the original system design.
The latter is a simple boolean n × n matrix (called
original design matrix), where n is the number of
methods composing the software system. A generic
entry oi,j of this matrix is equal to 1 if the method
mi and the method mj are grouped in the same class
in the original design, otherwise it is 0. Concerning
the structural dependencies among the methods of
the system, Methodbook exploits two structural mea-
sures, namely Structural Similarity between Meth-
ods (SSM) [46] and Call-based Dependence between
Methods (CDM) [29], previously used to compute
similarities between methods for identifying Extract
Class refactoring opportunities [29], [31], [35]. These
measures do not correlate and capture two orthogonal
aspects of method relationships [29].

SSM captures attribute references in methods and
it is used to build the shared-data matrix. Let Ii be the
set of instance variables referenced by method mi. The
SSM of mi and mj is calculated as the ratio between
the number of referenced instance variables shared by
methods mi and mj and the total number of instance

6. The static analysis is performed using the Eclipse AST parser.

7

variables referenced by the two methods:

SSM(mi,mj) =

{
|Ii∩Ij |
|Ii∪Ij | if |Ii ∪ Ij | 6= 0;

0 otherwise.

Thus, the higher the number of instance variables the
two methods share, the higher the similarity between
the two methods.

CDM [29] takes into account the calls performed
by the methods and it is used to build the calls-
interaction matrix. Let calls(mi,mj) be the number of
calls performed by method mi to mj and callsin(mj)
be the total number of incoming calls to mj . CDMi→j
is defined as:

CDMi→j =

{
calls(mi,mj)
callsin(mj)

if callsin(mj) 6= 0;

0 otherwise.

CDMi→j values are in [0, 1]. If CDMi→j = 1, then mj

is only called by mi. Otherwise, if CDMi→j = 0, then
mi never calls mj . To ensure that CDM represents a
commutative measure, the overall CDM of mi and
mj is:

CDM(mi,mj) = max {CDMi→j , CDMj→i}

The set of friendships derived by analyzing struc-
tural similarity between methods are supplied as
existing links to RTM. RTM models each method
represented in the term-by-document matrix as ran-
dom mixtures over latent topics, where each topic
is characterized by a probabilistic distribution over
words and is represented by a set of words mostly
relevant for explaining the topic [10]. As explained
in Section III-A, RTM is able to adjust the probability
distribution of each topic taking into account explicit
relationships between documents. In Methodbook,
explicit relationships between documents (methods)
are modeled through (i) the structural dependencies
existing among the methods, and (ii) the original
design.

The enriched topic distribution model (based on
both textual and structural information) obtained by
RTM is used to compute similarities among all the
methods of the system. Such similarities are stored in
a n × n matrix (where n is the number of methods
in the system), namely RTM similarity matrix, that
is employed to identify move method refactoring
operations (see Figure 1).

3.3 Identifying the Envied Class
Once the RTM similarity matrix has been computed,
the information stored in it is used to determine the
degree of similarity among methods in the system
and rank friendships among these methods. A cut
point is then used to identify the µ best friends of
(the methods having the highest similarity with) the
method under analysis. Once the “best” friends of
a given method are identified, Methodbook analyzes

the classes where these methods are implemented
aiming at identifying the envied class. Having this in-
formation, the first possible way to identify the envied
class is to simply find the class containing the highest
number of identified friend methods. However, in this
way the approach will not take into account the class
size. In other words, if for a method under analysis
mk, a class Ci composed of 50 methods contains 4
best friends of mk, while a class Cj composed of 4
methods contains 3 best friends of mk, the approach
will identify as envied class Ci totally ignoring the fact
that only the 8% (4/50) of the methods in this class
are friends of mk while 75% (3/4) of methods of class
Cj are friends of mk. To avoid this issue, the envied
class is identified as the one containing the highest
percentage of best friends of mk among its methods
(in the previous example, Cj with 75%). Note that
if two or more classes contain identical percentage
of friend methods, the envied class is the class that
contains the highest ranked best friend methods.

When the envied class has been identified, Method-
book verifies that a set of refactoring preconditions is
satisfied when moving the method from its original
class to the envied class. We use the same set of move
method refactoring preconditions defined by Tsantalis
and Chatzigeorgiou [9] to ensure that the program
behavior does not change after the application of
the suggested refactoring. These preconditions are
classified in three different categories [9]: (i) compiling
preconditions, e.g., the envied class does not contain
a method having the same signature as the moved
method, (ii) behavior-preservation preconditions, e.g.,
the envied class should not inherit a method having
the same signature as the moved method, and (iii)
quality preconditions, e.g., the method to be moved
should not contain assignments of a source class field.
A complete explanation of verified preconditions is
provided by Tsantalis and Chatzigeorgiou [9]. If an
identified refactoring opportunity satisfies all the pre-
conditions, the move method operation is suggested
by Methodbook. Otherwise, the second class con-
taining the highest percentage of top friends for the
method under analysis becomes the new candidate
envied class and thus is object of the precondition ver-
ification. This process is performed until (i) an envied
class satisfying the preconditions is identified or (ii)
the original class becomes a candidate envied class,
leading Methodbook to not suggest any refactoring
operation for the analyzed method.

It is worth noting how there are cases where the
identification of an envied class is trivial, i.e., there
is a class containing a sensibly higher percentage of
friend methods than the other classes. However, there
might also be cases where the envied class is difficult
to identify, i.e., there are two or more classes that
contain a comparable percentage of friend methods.
To provide further support to software engineers, the
suggestion of envied class is supplemented with a

8

method_1
method_2
method_3
method_4
method_5

C1

method_6
method_7
method_8
method_9
method_10

C2

method_11
method_12
method_13
method_14
method_15

C3

method_16
method_17
method_18
method_19

C4

p(C1) = 0.60 p(C2) = 0.40 p(C3) = 0.40 p(C4) = 0.75

l(C1) = 0.27 l(C2) = 0.19 l(C3) = 0.19 l(C4) = 0.35

C4
Envied Class

0.02
Confidence

Level

method_1
method_2
method_3
method_4
method_5

C1

method_6
method_7
method_8
method_9
method_10

C2

method_16
method_17
method_18
method_19
method_20

C3

p(C1) = 0.60 p(C2) = 0.40 p(C4) = 1.00

l(C1) = 0.30 l(C2) = 0.20 l(C4) = 0.50

C3
Envied Class

0.26
Confidence

Level

friend method no friend method

method_1; method_2
method_3; method_4
method_5; method_6
method_7; method_8
method_9; method_10

C1

p(C1) = 1.00

l(C1) = 1.00

C1
Envied Class

1.00
Confidence

Level

Fig. 2: Three examples of envied class identification
with different confidence levels.

confidence level that indicates the reliability of the
proposed refactoring. The confidence level uses the
concept of information entropy, which measures the
amount of uncertainty of a discrete random variable
[47]. In particular, we consider the suggestion of an
envied class as a random variable, where the probabil-
ity of its states is given by the distribution of the friend
methods over the system classes. We compute the
confidence level as the entropy of the suggestion of
the envied class. That is, the more scattered the friend
methods among the classes, the higher the entropy of
the suggestion of the envied class, i.e., the higher the
difficulty to identify the envied class. On the contrary,
if nearly all the friend methods are implemented in a
single class, the entropy of the suggestion is low.

The confidence level is computed as follows:

Confidence levelm = 1−
∑
c∈Cm

l(c) · log|Cm|
1

l(c)

where Cm is the set of classes containing the identified
method friends for the method to be moved m, while
l(c) represents the likelihood that the envied class is
c. For a given class ci, it is computed as:

l(ci) =
p(ci)∑
c∈Cm

p(c)

where p(c) is the percentage of methods of the class c
that are friends of m. The defined confidence level has
a value in the interval [0, 1]. The higher the value, the
higher the goodness of the provided recommendation.

Figure 2 shows three examples of identifying envied
class with different confidence levels. In these scenar-
ios the number of best friends identified is ten. In
the first case, the friend methods are scattered across

several classes. In this case the envied class is C4 with
a very low confidence level, i.e., 0.02. The situation
is different in the second example, where, even if
three classes contain best friends of the method under
analysis, the class C3 contains a higher percentage of
friend methods than the other classes. In this case the
confidence level is higher (0.26) indicating a better
recommendation reliability as compared to the prior
scenario. Finally, the last scenario is the best possible:
all the ten best friend methods are concentrated in a
single class, i.e., C1. This will result in a recommen-
dation with the maximum confidence level (1.0).

4 EVALUATION BASED ON METRICS

One widely accepted rule to increase the maintainabil-
ity of software systems is to pursue low coupling and
high cohesion [1], [2], [3], where coupling measure the
degree to which each program module relies on each
one of the other modules, while cohesion is the degree
to which the elements of a module belong together [1].

The goal of this case study is to (i) evaluate the
impact on cohesion and coupling metrics of the refac-
toring operations recommended by Methodbook and
(ii) assess the confidence level as indicator of the
quality of the recommended move method operations.
Good move method recommendations should help to
improve class cohesion while reducing coupling be-
tween classes. Also, we need to verify if high values of
the confidence level are associated with high quality
of refactoring recommendations. Thus, the following
research questions were formulated:
• RQ1: What is the impact of the Methodbook’s refac-

toring recommendations on cohesion and coupling?
• RQ2: Is the confidence level a good indicator for the

goodness of Methodbook’s recommendations?
The experimentation was carried out on two

open source software systems, namely jEdit7 and
JFreeChart8, on three industrial projects, namely Ag-
ilePlanner9, eXVantage10, and GESA11, and on a soft-
ware system, SMOS, developed by a team of Master’s
students at the University of Salerno (Italy) during
their industrial internship. jEdit is a programmer’s
text editor supporting hundreds of programming lan-
guages. JFreeChart is a chart library supporting the
creation of many kinds of charts in Java applica-
tions. AgilePlanner is an industrial tool that supports
agile teams in project planning, while eXVantage is
a product line of eXtreme Visual-Aid Novel Testing
and Generation tools which focuses on providing
code coverage information to software developers
and testers. GESA automates the most important

7. http://www.jedit.org/ verified on 08/16/2013
8. http://www.jfree.org/jfreechart/ verified on 08/16/2013
9. http://ase.cpsc.ucalgary.ca/ verified on 08/16/2013
10. http://www.avaya.com/usa/avaya-labs/ verified on

08/16/2013
11. http://www.distat.unimol.it/gesa/ verified on 08/16/2013

9

TABLE 1: Software systems used in the case study

System KLOC Classes Methods Connectivityavg C3avg MPCavg CCBCavg MTermsavg UniqueMTermsavg
AgilePlanner 2.5.0 24 299 2,731 0.195 0.220 3.460 0.070 22 5
eXVantage 2.01 36 352 2,172 0.240 0.283 2.707 0.077 21 6
GESA 2.2 46 295 1,643 0.144 0.082 10.955 0.349 66 7
jEdit 3.0 72 425 1,864 0.228 0.155 4.275 0.038 25 10
JFreeChart 0.9.6 107 436 1,847 0.143 0.185 0.836 0.077 24 6
SMOS 1.0 23 121 599 0.197 0.082 5.984 0.389 51 7
Total 308 1,938 10,856 - - - -

activities in the management of university courses,
like timetable creation and classroom allocation. It
is operational since 2007 at the University of Molise
(Italy). Finally, SMOS is a software developed for high
schools, which offers a set of features aimed at sim-
plifying the communication and interaction between
the school and the parents of the students.

Table I reports the size, in terms of KLOC, number
of classes, and number of methods, as well as the ver-
sions of the object systems. The table also reports the
average verbosity of methods for each object systems
in terms of (i) average number of terms in the meth-
ods (column MTermsavg), and (ii) average number of
unique, i.e., different, terms in the methods (column
UniqueMTermsavg). This information is important to
check the availability of the textual information ex-
ploited by Methodbook in the object systems. Note
that we excluded those terms appearing in the stop
word list (since they are ignored by our approach)
from the total count of terms.

Table I also shows the average value for four
metrics aimed at measuring class cohesion and cou-
pling at structural (i.e., Connectivity [48] and Message
Passing Coupling (MPC) [49]) and semantic12 level
(i.e., Conceptual Cohesion of Classes (C3) [6] and
Conceptual Coupling Between Classes (CCBC) [50])
computed considering all the classes of the object sys-
tems. Connectivity is a structural metric to measure
class cohesion and it is computed as the number of
method pairs in a class sharing an instance variable
or having a method call among them divided by the
total number of method pairs in the class. We did
not consider constructors and accessor methods (i.e.,
getter and setter) as methods since, as highlighted
by Briand et al. [48], they can artificially increase the
class cohesion. C3 is a conceptual cohesion metric,
complementary to structural cohesion, which exploits
LSI (Latent Semantic Indexing) [51] to compute the
overlap of textual information in a class expressed
in terms of textual similarity among methods. Higher
values of C3 indicate higher class cohesion. The MPC
is a structural coupling metric based on method-
method interaction. MPC measures the number of
method calls defined in methods of a class to meth-
ods in other classes, and, therefore, the dependency
of local methods to methods implemented by other

12. Note that “semantic metrics” usually indicate in the literature
metrics exploiting textual information from source code.

classes. Higher MPC values indicate higher coupling.
Finally, CCBC is another coupling metric based on the
textual information captured in the code by comments
and identifiers. Two classes are conceptually related
if the terms present in their comments and identifiers
are similar.

We evaluate the impact that the move method op-
erations recommended by Methodbook have on these
four quality metrics. Note that these four metrics do
not directly measure the design quality of a system.
However, they have been shown to measure desirable
quality aspects of a software system. In particular:

1) Classes with low cohesion have been shown to
correlate with high defect rates [6]. The C3 is the
only semantic cohesion metric available in liter-
ature, while we choose the Connectivity metric
on the structural side since on the contrary of
other structural cohesion metrics, e.g., Lack of
Cohesion of Methods (LCOM) [36], considers
two methods to be cohesive not only if they
share an instance variable, but also if they have
a call among them.

2) MPC has been shown to directly correlate with
maintenance effort [49]. Thus, higher MPC val-
ues (higher coupling) indicate higher effort in
maintaining a software system.

3) CCBC has been used to support change impact
analysis. In other words, two classes exhibiting
high CCBC are likely to be changed together
during a modification activity performed in a
system. Consequently, having classes with high
CCBC between them grouped together in the
same software module could reduce the effort
needed by a developer to localize the change.
This clearly results in more manageable mainte-
nance activities.

Thus, if we are able to increase the average class
cohesion and/or reduce the average class coupling of
the object systems while applying move method op-
erations suggested by Methodbook, this represents a
first indication of the goodnesses of the Methodbook’s
recommendations.

4.1 Planning

To respond to our research questions we used
Methodbook to suggest an envied class for all the
methods in the studied software systems (for a total

10

of 10,856 methods)13. The set of methods for which
Methodbook did not identify the original class as
envied class represents the move method refactoring
operations suggested by our approach. To respond to
our first research question (RQ1), we applied them
incrementally starting from those having the higher
confidence level (see Section III). After performing
each refactoring operation we measured the value for
the four quality metrics presented above, i.e., Connec-
tivity, C3, MPC, and CCBC. In this way we were able
to observe the impact of the refactoring operations
on the object systems in terms of class cohesion and
coupling. To better evaluate the goodnesses of the
refactorings suggested by Methodbook, we also exe-
cuted the approach presented by Tsantalis and Chatzi-
georgiou [9] (using the JDeodorant Eclipse plug-in)
on the same six object systems in order to obtain
the move method refactoring operations suggested
by the competitive approach. In this way, we were
able to compare the cohesion and coupling trends ob-
tained using Methodbook with those obtained using
JDeodorant [9]. Note that the two structural quality
metrics used in our evaluation (i.e., Connectivity and
MPC), and two of the adopted object systems (i.e.,
jEdit and JFreeChart) were also used in the original
JDeodorant evaluation [9].

Concerning our second research question (RQ2), the
order in which these refactoring operations are ap-
plied allows to analyze a possible correlation between
the confidence level and the goodnesses of the sug-
gested refactoring operations. If the confidence level
is a good indicator for the goodness of Methodbook’s
recommendations, we expect to observe higher in-
crease in average class cohesion and a higher decrease
in average class coupling for higher confidence levels
of a refactoring operation (and vice versa).

In the following section we report the results while
setting the number of top friends considered by
Methodbook (i.e., the µ parameter, see Section III) to
ten. Our choice is not random since we tried several
different values for this parameter (1, 3, 5, 7, and
10) and, after manually analyzing the suggestions
proposed by Methodbook14, we believe that the best
refactoring recommendations are usually obtained us-
ing µ = 10. The main advantage we observed in
setting µ = 10, was the higher reliability of the con-
fidence level as indicator of refactoring suggestions
goodness. In fact, the higher the number of “best”
friend methods evaluated, the higher the possible
values of entropy (and thus, of the confidence level)
that we can measure. While this could seem like just a
small a detail, during the assessment we found that a
high confidence level corresponds to far more reliable
refactoring recommendations when considering ten

13. We applied Methodbook in isolation on each object system.
14. The training of Methodbook has been performed on a system

not used in its empirical evaluation (i.e., Apache Xerces).

TABLE 2: Number of move method refactorings sug-
gested by Methodbook and JDeodorant

System #Methods Methodbook JDeodorant Methodbook ∩ JDeodorant
AgilePlanner 2,731 27 69 1
eXVantage 2,172 95 80 25
GESA 1,643 30 165 0
jEdit 1,864 8 18 7
JFreeChart 1,847 10 18 5
SMOS 599 27 69 0
Total 10,856 198 419 38

friends than when considering a lower number of
friends. On the other side, a higher value for µ was
simply not practical, given that we want to consider
only the “best” (i.e., top) friends of a method under
analysis.

4.2 Analysis of the Results
Before answering our research questions, it is impor-
tant to quantitatively discuss the suggestions gen-
erated by Methodbook and JDeodorant15, in order
to verify if (i) both the approaches generate move
method suggestions on all object systems, and (ii)
what is the overlap in terms of generated suggestions
(i.e., to what extent the two techniques suggest the
same move method refactorings).

Table II reports the number of suggestions gen-
erated by Methodbook and JDeodorant on each of
the object systems. Also, column “Methodbook ∩
JDeodorant” shows the number of equal suggestions
generated by both techniques (i.e., the same method
is moved to the same envied class). Note that there
were no cases when Methodbook and JDeodorant
suggested to move the same method to two differ-
ent envied classes. The main observation from data
reported in Table II are:
• JDeodorant generally generates more suggestions than

Methodbook. This holds for all object systems but
eXVantage. This result may seem unintuitive,
given the fact that Methodbook exploits more
information than JDeodorant when generating
the refactoring suggestions (i.e., Methodbook also
exploits textual information from source code).
However, this does not ensure that it is able to
identify a higher number of recommendations.
In fact, it could happen that while analyzing a
method mi from a class Ci, by only taking into
account structural information, the majority of
“best friends” of mi are implemented in a class
Cj , while by also taking into account textual
information it turns out that the majority of “best
friends” of mi are implemented in Ci, thus lead-
ing to an empty refactoring suggestion.

• the number of methods moved by the two approaches
just represent a small percentage of the methods in the
systems. In total, Methodbook suggests to move
2% of the methods (i.e., 198 out of 10,856) and
JDeodorant 4% (i.e., 419 out of 10,856).

15. The move method recommendations are available online [52].

11

280 5 10 15 20 25

0.198

0.192

0.193

0.194

0.195

0.196

0.197

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorant

Methodbook

280 5 10 15 20 25

0.239

0.219

0.221

0.223

0.225

0.227

0.229

0.231

0.233

0.235

0.237

#Applied Refactoring Operations

C3

JDeodorant

Methodbook

280 5 10 15 20 25

0.07

0.068

0.0682

0.0684

0.0686

0.0688

0.069

0.0692

0.0694

0.0696

0.0698

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

280 5 10 15 20 25

3.68

3.28

3.32

3.36

3.4

3.44

3.48

3.52

3.56

3.6

3.64

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

Mb confidence
level > 0.8 > 0.4 > 0.2 > 0.8 > 0.4 > 0.2

Mb confidence
level > 0.8 > 0.4 > 0.2 > 0.8 > 0.4 > 0.2

Fig. 3: Evolution of the four quality metrics on AgilePlanner by applying the refactoring operations suggested
by Methodbook (16) and JDeodorant (28)

• there is generally a small overlap between the sugges-
tions generated by Methodbook and those generated
by JDeodorant. The only exceptions are eXVan-
tage, where there is an overlap of 25 sugges-
tions, jEdit, where 7 out of the 8 suggestions
generated by Methodbook are also generated by
JDeodorant, and JFreeChart, with 5 out of the 10
Methodbook’s recommendations also provided
by JDeodorant. This result highlights that while
generally identifying a lower number of sugges-
tions, Methodbook retrieves Feature Envy smells
that are ignored by JDeodorant. Since JDeodorant
only exploits structural information, those addi-
tional suggestions are likely due to the textual
information exploited by Methodbook (e.g., a
method having the same amount of structural
dependencies with methods in its class and with
methods in the envied class, but a much higher
textual similarity with methods in the envied
class).

Figures 3 and 4 show the evolution of the four em-
ployed metrics by applying the refactoring operations
suggested by Methodbook and JDeodorant on Agile-
Planner and SMOS, respectively. The graphs for the
other four systems, i.e., eXVantage, jEdit, JFreeChart,
and GESA, can be found in Appendix A. As explained
before, the suggestions by Methodbook are applied
in a decreasing order of confidence level. The dotted

lines in the graphs show different confidence level
thresholds to get an idea of which refactoring oper-
ations improve more the metrics. As an example, in
Figure 3 the first six Methodbook’s suggestions have
a confidence level higher than 0.8, the 7th and the 8th

have a confidence level lower than 0.8 and higher than
0.4, from 9th to 17th lower than 0.4 and higher than 0.2,
from 18th to 28th lower than 0.2.

The results achieved on AgilePlanner (Figure 3)
show that Methodbook is able to improve the four
cohesion and coupling metrics. In particular, the Con-
nectivity cohesion metric shows a strong increase
during the application of the first 6 suggestions by
Methodbook (i.e., those having a confidence level
higher than 0.8). Applying these 6 suggestions also re-
sults in a very high increase of the semantic cohesion
(C3 metric) together with a decrease of the structural
and semantic coupling (MPC and CCBC metric, re-
spectively). However, when applying Methodbook’s
recommendations having a confidence level lower
than 0.8 the achieved results are quite different. In
fact, there is no a clear improvement of the cohesion
and/or coupling of the system classes. On the con-
trary, more often than not, the application of these
move method operations results in deteriorating the
cohesion/coupling of the classes with respect to the
levels reached after the application of the recommen-
dations having high confidence level.

12

690 5 10 15 20 25 30 35 40 45 50 55 60 65

0.234

0.197

0.2

0.204

0.208

0.212

0.216

0.22

0.224

0.228

#Applied Refactoring Operations

Co
nn

ec
tiv

ity
JDeodorant

Methodbook

690 5 10 15 20 25 30 35 40 45 50 55 60 65

0.087

0.081

0.082

0.083

0.084

0.085

0.086

#Applied Refactoring Operations

C3

JDeodorantMethodbook

Mb confidence
level

690 5 10 15 20 25 30 35 40 45 50 55 60 65

0.398

0.379

0.382

0.384

0.386

0.388

0.39

0.392

0.394

0.396

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

690 5 10 15 20 25 30 35 40 45 50 55 60 65

6

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

> 0.6 > 0.4 > 0.2

Mb confidence
level > 0.6 > 0.4 > 0.2 > 0.6 > 0.4 > 0.2

> 0.6 > 0.4 > 0.2

Fig. 4: Evolution of the four quality metrics on SMOS by applying the refactoring operations suggested by
Methodbook (27) and JDeodorant (69).

On the same system, the application of the move
method operations suggested by JDeodorant results
in a decrease of the average structural and semantic
class cohesion together with an increase of the average
structural and semantic class coupling (see Figure
3). Note that on this system, only one of the move
method refactoring suggested by JDeodorant is also
suggested by Methodbook (see Table II).

The situation is totally different on SMOS (see
Figure 4). On this system JDeodorant is able to
achieve very good performances for the two structural
metrics, i.e., Connectivity and MPC, while on the
semantic side it is able to improve only the cohe-
sion (the semantic coupling CCBC increases). This
result is likely due to the fact that JDeodorant does
not take into account textual information during the
generation of the move method recommendations.
As for Methodbook, it suggests a lower number of
operations as compared to JDeodorant (27 vs 69) on
SMOS, none in overlap with JDeodorant. Moreover,
these suggestions have a confidence level not so high
(the highest recommendation rate is 0.771 and only
3 recommendations have a confidence level higher
than 0.6 - see Figure 4). Concerning the structural
metrics, Methodbook’s recommendations having con-

fidence level higher than 0.6 are able to improve all
the quality metrics, while, as observed on AgilePlan-
ner, low confidence level operations are not always
able to improve the quality metrics. As expected, on
the semantic side Methodbook performs better than
JDeodorant, ensuring increase of semantic cohesion
and decrease of semantic coupling.

As for the other software systems, on eXVantage
the trend is almost the same as on AgilePlanner (see
Figure 9). In fact, on this system (i) Methodbook’s
suggestions having high confidence level (i.e., higher
than 0.6) increase the structural and semantic cohesion
while decrease the structural and semantic coupling,
and (ii) JDeodorant is not able to achieve comparable
results. Concerning GESA, the results are almost in-
line with SMOS: JDeodorant is able to improve struc-
tural cohesion and coupling metrics while Method-
book is able to improve both the structural metrics
(but less than JDeodorant) as well as the semantic
ones (see Figure 8). Note that, as for SMOS, also
on GESA the suggestions by Methodbook generally
have a low confidence level. jEdit is interesting since
here seven out of the eight Methodbook’s suggestions
are also generated by JDeodorant. The only one not
captured by JDeodorant has confidence level equals 1

13

and it is the first applied in Figure 10, showing good
performances in improving all four metrics. Overall,
Methodbook is able to achieve better performances
on the semantic side (still improving the structural
metrics), while JDeodorant performs slightly better on
the structural one. Finally, on JFreeChart (see Figure
11), Methodbook performs better than JDeodorant for
all metrics but Connectivity, where still it is able
to achieve a good improvement. Also on these two
systems, Methodbook’s suggestions having a higher
confidence level generally result in stronger improve-
ments in terms of quality metrics.

Thus, while Methodbook always outperforms
JDeodorant on the semantic side (expected result), it
is interesting to note as on the structural side it is
able to performs better than JDeodorant only on three
systems, while on the remaining three JDeodorant
stands out. We inspected different system character-
istics trying to understand which were the reasons
behind these inconsistencies of performances. The
data reported in Table I provided a possible answer.
In particular, the information about the verbosity of
the methods present in the object systems showed that
the three systems on which JDeodorant outperforms
Methodbook on the structural side (i.e., GESA, SMOS,
and jEdit) are those containing the more verbose
methods. Indeed, these systems have (i) a higher aver-
age number of terms per method (column MTermsavg)
and (ii) a higher average number of unique, i.e., dif-
ferent, terms per method (column UniqueMTermsavg)
as compared to the other three systems. This result
might seem counterintuitive, since one could expect
that the more the textual information present in the
source code the better the Methodbook’s suggestions.
However, on these three systems the Methodbook’s
suggestions are still good, but more focused on im-
proving the semantic metrics rather than the struc-
tural ones (that are still improved). This is likely due
to the large quantity of textual information present
in these systems. Note that all these three systems
will be part of our studies conducted with developers
(Section V), where the quality of the Methodbook’s
suggestions (as well as of the JDeodorant ones) will
be judged from a developer’s point of view.

In summary, our results highlight the importance
of the confidence level as indicator of goodnesses of
the Methobook’s suggestions (RQ2). When the con-
fidence level is high (generally higher than 0.6) the
Methodbook’s recommendations are able to improve
the values of class cohesion and coupling (RQ1).
Moreover, on three out of six object systems (Agile-
Planner, eXVantage, and JFreeChart) Methodbook per-
forms better than JDeodorant while on the remaining
three systems (GESA, SMOS, and JEdit) Methodbook
achieves a better improvement of the metrics only on
the semantic side.

5 EVALUATION WITH DEVELOPERS

In our previous case study (Section IV) we evaluated
the Methodbook’s recommendations by measuring
the difference between pre- and post-refactoring in
terms of class cohesion and coupling. However, the
refactoring operations should not only improve the
values of some quality metrics but should also be
meaningful from a developer’s point of view. Thus,
the following research question was formulated in this
new experimentation:
• RQ3: Are the refactoring recommendations produced

by Methodbook meaningful from a developer’s point of
view? How do they compare with those generated by
JDeodorant?

In order to answer this research question, we per-
formed two studies involving software developers
in the evaluation of refactoring operations proposed
by Methodbook and JDeodorant. The first study was
conducted on jEdit and JFreeChart involving 56 and
70 developers, respectively. Since they have not par-
ticipated in the development of jEdit and JFreeChart
we refer to them as “external developers”. The second
study was conducted on GESA and SMOS with the
original developers of the systems (5 developers for
each system).

It was necessary to perform both these studies to
evaluate Methodbook from all possible perspectives.
Indeed, the study with external developers is not
enough since they do not have deep knowledge of the
design of the software system. Thus, they may be not
aware of some of the design choices that could appear
wrong, but that are the results of a conscious choice.
This is the reason why we also performed a user study
with original developers. However, this study alone
is also not enough. Even if the original developers
have deep knowledge of all the design choices that
led to the original design, they could be the “fathers”
of some bad design choices and consequently could
not recognize a good move method suggestion as
meaningful. This threat is mitigated by the study
conducted with the external developers. Thus, the
two experiments are complementary and allow us
to investigate the meaningfulness of the suggestions
performed by Methodbook and JDeodorant from dif-
ferent points of view.

5.1 Evaluation with External Developers

In this section we report the design of the study and
the results achieved in our first evaluation conducted
with external developers.

5.1.1 Planning
To recruit participants for our study we invited 105
people all around the world among students, aca-
demics, and industrial developers. We asked each
of them to complete two questionnaires aimed at

14

TABLE 3: External Developers Involved

System #Participants Bachelors Students Masters Students PhD Students Faculty Industrial Developers
jEdit 56 6 12 14 1 23
JFreeChart 70 7 18 15 1 29

evaluating all refactoring suggestions generated by
Methodbook and JDeodorant on jEdit and JFreeChart,
respectively. Of them, 56 completed the questionnaire
for both systems, while 14 only for JFreeChart. Thus,
of the 105 people invited, 56 evaluated the refactoring
suggestions on jEdit and 70 on JFreeChart.

Table III reports the number of external developers
involved in our study by classifying them on the
basis of their background. The vast majority of our
participants are industrial developers (41% on both
jEdit and JFreeChart), while we just had one faculty
and few Bachelors students (almost 10% of partici-
pants for both systems). These latter, represent the
less experienced participants involved in our study.
However, they were third year Bachelors students that
in the context of the Software Engineering course had
participated in software projects, where they practiced
software development and documentation produc-
tion. While all the external developers involved in
our study had good knowledge of object oriented
design principles, they had little prior knowledge of
the object systems. However, this is wanted by design
(as explained before) as we also executed another
experiment with original developers.

Each participant received via e-mail (i) the source
code of the two object systems, and (ii) the links to
two separate questionnaires (one for jEdit and one for
JFreeChart) implemented as web-applications. Each
question was related to one of the refactoring opera-
tions generated by Methodbook/JDeodorant. For each
operation, participants had to answer to the question

Would you apply the proposed refactoring?
assigning a score on a three point Likert scale: 1 (no),
2 (maybe), and 3 (yes). Also, participants could add
an optional comment explaining the rational behind
each score. We gave participants three weeks to com-
plete both questionnaires. Note that the participants
were not aware of the experimented techniques, i.e.,
Methodbook and JDeodorant, nor of the fact that
the move method refactoring suggestions were au-
tomatically generated. The web-applications hosting
the questionnaire was also used to measure the time
spent by each participant in answering each ques-
tion. The latter information was collected to remove
participants that randomly evaluated the refactoring
operations from the analysis of the results. Our aim
was to remove all participants that answered to at
least one question in less than 10 seconds, since it is
very unlikely that in such little time a developer is
able to analyze the moved method, its original class
and the suggested envied class to make a decision on
the quality of the refactoring. Based on this criterion,

none of the participants involved in our evaluation
was removed from the analysis of the results.

The jEdit questionnaire included 19 questions and
was composed as follows:

• eleven questions were related to move method
refactorings generated only by JDeodorant. We
refer to these refactoring suggestions as the on-
lyJDeodorant group (OJ);

• seven questions were related to move method
refactorings generated by both JDeodorant and
Methodbook (i.e., both techniques suggested to
move the same method in the same envied class).
We refer to these refactoring suggestions as the
both group (B);

• one question was related to a move method
refactoring generated only by Methodbook. We
refer to these refactoring suggestions as the only-
Methodbook group (OM).

Concerning the JFreeChart questionnaire, it was
composed of 23 questions, of which 13 fell in the OJ
group, 5 in the B group, and 5 in the OM group.
Note that both questionnaires include the evaluation
of all refactoring recommendations generated by both
Methodbook and JDeodorant on the object systems
(see Table II).

We analyzed the answers provided by the par-
ticipants through descriptive statistics and statistical
tests. As for the statistical tests, for each of the three
groups of methods (i.e., OJ, B, and OM), we collected
the scores assigned by participants. Then, considering
two particular groups, e.g., OM vs. OJ, we used the
Wilcoxon test [53] to analyze the statistical significance
of scores assigned by participants to the move method
refactorigs in the two groups. However, since we per-
formed multiple tests, we adjusted our p-values using
the Holm’s correction procedure [54]. This procedure
sorts the p-values resulting from n tests in ascending
order, multiplying the smallest by n, the next by n−1,
and so on. The results were intended as statistically
significant at α = 0.05.

We also estimated the magnitude of the difference
between the scores in the different groups. We used
Cliff’s Delta (or d), a non-parametric effect size mea-
sure [55] for ordinal data. The effect size is small for
d < 0.33 (positive as well as negative values), medium
for 0.33 ≤ d < 0.474 and large for d ≥ 0.474 [55].
Note that both the Wilcoxon test and the Cliff’s Delta
are suited when working with unpaired data like the
groups of scores used in our tests, i.e., the number of
scores in each group is different due to the different
number of refactoring operations in each of them.

15

TABLE 4: Participants’ answers to the question “Would
you apply the proposed refactoring?”

Group System no maybe yes

OJ
jEdit (11 suggestions) 44% 26% 31%

JFreeChart (13 suggestions) 48% 22% 30%
Overall (24 suggestions) 46% 23% 30%

B
jEdit (7 suggestions) 30% 17% 53%

JFreeChart (5 suggestions) 33% 27% 40%
Overall (12 suggestions) 31% 22% 47%

OM
jEdit (1 suggestion) 2% 11% 87%

JFreeChart (5 suggestions) 30% 19% 51%
Overall (6 suggestions) 26% 18% 56%

5.1.2 Analysis of the Results
Table IV reports the answers provided by the partic-
ipants to the question “Would you apply the proposed
refactoring?”. The data are presented by group of
methods, i.e., OM, OJ, and B. In addition, Table V
shows the results of the Wilcoxon test and the effect
size d, while Table VI classifies the refactoring sugges-
tions in each group on the basis of the most frequent
score they received from participants. Note that, given
the three possible scores that can be assigned to a
refactoring operation (i.e., no, maybe, and yes), the
most frequent score must be chosen by at least 34% of
subjects (e.g., 33% yes, 33% no, and 34% maybe). On
JFreeChart, where each refactoring recommendation
has been evaluated by 70 subjects, the most frequent
score has been chosen, on average, by 61% of sub-
jects (median 62%), while on JEdit, where 56 sub-
jects evaluated the refactoring recommendations, the
most frequent score has been chosen, on average, by
68% of subjects (median 70%). Overall, the maximum
agreement reached by subjects is 91% achieved on
two recommendations generated on JEdit, while the
minimum is represented by 43% achieved on one
recommendation generated by JFreeChart.

Going to the results, on the jEdit system only one
suggestion fell in the OM group (i.e., only Method-
book suggests to move the method from its original
class to a new envied class). This suggestion had
confidence level of one (the maximum possible) and
has been highly appreciated by participants, with 87%
of them (49 out of 56) answering yes, 11% (6 out of 56)
maybe, and 2% (1 out of 56) no. This suggestion was
the move of the method getStyleString, shown in
Figure 5, from its class GUIUtilities to the envied
class SyntaxStyle. Among the comments left by the
participants about this move method refactoring, an
industrial developer wrote:

I would definitely move the method to the
SyntaxStyle class and rename it in toString

Indeed, the method getStyleString, as reported in
its comment (see Figure 5), is in charge of converting a
SyntaxStyle object into a String. Thus, the choice of
moving it in the envied class seems to be appropriate.

On the same system, seven suggestions were part

TABLE 5: Scores assigned by external developers:
Wilcoxon test (adjusted p-value with Holm’s correc-
tion) and Cliff’s effect size (d). The group achieving
the better scores in each comparison is highlight in
bold face.

Test jEdit
p-value d

OM vs OJ <0.0001 -0.61 (Large)
OM vs B <0.0001 -0.37 (Medium)
B vs OJ <0.0001 -0.22 (Small)

Test JFreeChart
p-value d

OM vs OJ <0.0001 -0.24 (Small)
OM vs B 0.0066 -0.10 (Small)
B vs OJ <0.0001 -0.15 (Small)

TABLE 6: Refactoring recommendations as evaluated
by the majority of participants

Group System no maybe yes

OJ
jEdit (11 suggestions) 5 2 4

JFreeChart (13 suggestions) 8 1 4
Overall (24 suggestions) 13 3 8

B
jEdit (7 suggestions) 2 0 5

JFreeChart (5 suggestions) 2 1 2
Overall (12 suggestions) 4 1 7

OM
jEdit (1 suggestion) 0 0 1

JFreeChart (5 suggestions) 1 0 4
Overall (6 suggestions) 1 0 5

of the B group (i.e., both the approaches suggest to
move a method from its original class to the same
envied class). Among these, two suggestions had the
maximum confidence level (i.e., one), three a confi-
dence level between 0.5 and 0.7, and the remaining
two a very low confidence level (i.e., 0.143 and 0.105).
Overall, the percentage of yes received by participants
for these seven recommendations is 53%, together
with a 17% of maybe, and a 30% of no. By looking
at the data in Table VI, five of the seven suggestions
belonging to the B group were mostly positively
evaluated by the participants, while two were mostly
rejected. These latter are those for which Methodbook
assigned a very low confidence level and thus, it is
somewhat an expected result.

Going to the OJ group for JEdit (i.e., only
JDeodorant suggests to move the method from its
original class to a new envied class), the eleven
suggestions falling in this group were evaluated
by participants with 31% of yes, 26% of maybe,
and 44% of no. The high percentage of no an-
swers is due to five JDeodorant suggestions gen-
erally discarded by participants, like for exam-
ple moving the method invokeDeclaredMethod
from its class BSHMethodDeclaration to the class
BSHFormalParameters, evaluated with 51 no, 4
maybe, and 1 yes. However, it is also worth noting as

16

/**
* Converts a style into it's string representation.
* @param style The style
*/

public static String getStyleString(SyntaxStyle style){
StringBuffer buf = new StringBuffer();

buf.append("color:" + getColorHexString(style.getForegroundColor()));
if(style.getBackgroundColor() != null)
{

buf.append(" bgColor:" + getColorHexString(style.getBackgroundColor()));
}
if(!style.isPlain())
{

buf.append(" style:" + (style.isItalic() ? "i" : "")
+ (style.isBold() ? "b" : ""));

}

return buf.toString();
}

Fig. 5: The method getStyleString was moved
by Methodbook from its class GUIUtilities to the
envied class SyntaxStyle

JDeodorant is able to identify four suggestions mostly
appreciated by participants that Methodbook is not
able to capture. In other words, it seems that JDeodor-
ant is less conservative than Methodbook, producing
more false positives but also good suggestions missed
by Methodbook.

As for the JFreeChart system, five suggestions were
part of the OM group. Overall they received 51%
of yes, 19% of maybe, and 30% of no. However, by
looking at the data at a finer granularity level, it
turns out how four out of these five refactorings
four mostly received yes as answer by participants,
while only one was rejected with a majority of no
answers (see Table VI). The latter is the suggestion
to move the method drawRangeMarker from its
class VerticalBarRenderer3D to the envied class
Marker, generated by Methodbook with a confidence
level of 0.567 (the lowest among the five refactorings
belonging to the OM group). Thirty out of the 70
participants answered that this refactoring should not
be performed, 23 answered maybe, and 17 yes.

Among the negative evaluations we found an inter-
esting explanation:

while this refactoring could make sense,
VerticalBarRender3D is a rendering class,

so it is supposed to draw a Marker as well as
other types of objects

All other four suggestions were generally appreciated
by the participants with a percentage of yes going
from 56% up to 65%, while the no answers were
limited between 20% and 30%. Note that all these four
refactorings had a confidence level higher than 0.85.

Five move method recommendations belonging to
the B group have been rewarded with 40% of yes,
27% of maybe, and 33% of no. Data reported in
Table VI, show that two of these five refactorings
were generally appreciated by participants, two were
generally rejected, while one has mostly collected
maybe answers. The two recommendations rejected by
developers, both suggesting to move a method from
class ContourPlot to class Marker, had the lowest
confidence levels, in one case (0.602) very close to the

threshold (0.6) identified in the metric based evalua-
tion and in the other case (0.208) much lower. On the
other side, the remaining three suggestions had a high
confidence level (1, 0.897, and 0.897, respectively).

The 13 suggestions in the OJ group received a
30% of yes, 22% of maybe, and 48% of no. Also on
this system, by looking the results in Table VI, it
seems confirmed that JDeodorant generally produces
a higher number of false positives than Methodbook,
with eight suggestions generally rejected by devel-
opers. However, as said before the less conservative
nature of JDeodorant allows to identify four “correct”
refactoring operations missed by Methodbook.

Finally, the results of the Wilcoxon test reported in
Table V show how on both systems:

1) refactorings in the OM group achieve statisti-
cally significant higher score than refactorings
in the OJ group (large effect size on jEdit and
small on JFreeChart);

2) refactorings in the OM group achieve statisti-
cally significant higher score than refactorings
in the B group (medium effect size on jEdit and
small on JFreeChart);

3) refactorings in the B group achieve statistically
significant higher score than refactorings in the
OJ group (small effect size on both systems).

Summarizing, the results of this study highlight
that:

• when Methodbook suggests a refactoring operation
with a high confidence level (higher than 0.6), devel-
opers generally appreciate the recommendation. This
result holds on both systems for refactorings
present in the OM as well as in the B group. In
fact, the only refactoring operation rejected in the
OM group had a confidence level of 0.567 and
three of the four rejected in the B group had a
very low confidence level (lower than 0.210). The
only exception is one of the rejected refactoring
recommendations in the B group that, however,
had a confidence level just slightly higher than
0.6 (i.e., 0.602).

• The suggestions in the OM group achieved statisti-
cally significant higher scores than those present in
the OJ and in the B group. The latter result could
seem surprising, since also the suggestions in
the B group are generated by Methodbook (and
confirmed by JDeodorant). However, while the
average confidence level of the refactorings in the
OM group is 0.90, this value drops down to 0.64
for refactorings in the B group, explaining the
observed difference of scores in favor of the OM
group.

• JDeodorant seems to be less conservative than Method-
book in suggesting refactoring operations. This is
demonstrated by the quite higher number of
recommendations generated on both systems
(36 against the 18 of Methodbook). This allows

17

TABLE 7: Number of refactoring operations suggested
by Methodbook and JDeodorant on the two object
systems

System JDeodorant Methodbook
GESA 2.2 165 30
SMOS 1.0 69 27
Total 234 57

JDeodorant to identify a total of 8 good sugges-
tions missed by Methodbook that, on its side, is
able to identify only 5 good suggestions missed
by JDeodorant. However, the challenge for a
refactoring recommendation system is not only
to generate good refactoring solutions, but also to
avoid surrounding them with noisy and useless
suggestions that a developer would just discard.
On this front, Methodbook performed better than
JDeodorant, with only one refactoring operation
discarded in the OM group, against the 13 in the
OJ group.

The performed analysis allow us to positively an-
swer to our research question (RQ3): Methobook is
indeed able to identify meaningful refactoring opera-
tions from a functional point of view. However, this
is true under a precise condition: the confidence level
must be high.

5.2 Evaluation with Original Developers
In this section we report the design and the results
achieved in the evaluation conducted with original
developers.

5.2.1 Planning
In this study we executed both Methodbook and
JDeodorant on the two object systems, i.e., GESA and
SMOS. Then, in order to answer our research question
(RQ3), we asked the original developers of these
two systems to evaluate all the refactoring operations
suggested by the two techniques. Note that for GESA
we were able to involve the entire team (composed
of five people) that developed the system while for
SMOS we involved five out of the seven developers.
All five members of the SMOS project and three of
the five members of the GESA project taking part
to this experimentation work in industry, while the
remaining two members of the GESA project are a
Ph.D. student and a Masters’ student.

The participants evaluated all the refactoring oper-
ations suggested by the two approaches16 through a
questionnaire where, for each operation, they had to
answer to the question

Would you apply the proposed refactoring?
assigning a score on a five point Likert scale: 1 (defi-
nitely not), 2 (no), 3 (maybe), 4 (yes), and 5 (absolutely

16. The recommendations generated by both the approaches are
available online [52].

yes). Note that the chosen Likert scale is different
from the experiment with the external developers
by choice. In fact, for external developers without
appropriate system domain knowledge, the difference
between a definitely not and a no or between a yes
and an absolutely yes would have been too difficult
to define. Thus, we preferred a simpler three points
Likert scale. In this study with original developers,
their experience on the two systems should allow a
finer evaluation of which refactoring suggestions are
valuable to apply in the systems.

The number of refactoring operations suggested
by the two approaches (and thus, evaluated by the
participants) is reported in Table VII. As we can
see the number is rather high for both the systems,
and thus we gave ten days to the participants to
evaluate all the refactoring operations. Note that on
both systems there was no overlap between Method-
book’s and JDeodorant’s recommendations. Each par-
ticipant filled-in two questionnaires, i.e., one with
Methodbook’s suggestions and one with JDeodorant’s
suggestions, independently. After that, all the partic-
ipants involved in the development of each system
performed a review meeting to discuss their scores
and reach a consensus. More specifically, in the meet-
ing of the SMOS team there was full agreement by
developers on the score to assign for 59 out of the
69 JDeodorant’s suggestions (86%) and on 24 out of
the 27 Methodbook’s suggestions (89%). While in the
GESA meeting participants fully agreed for 161 out
of the 169 JDeodorant’s suggestions (95%) and for 28
out of the 30 Methodbook’s suggestions (93%). In the
few remaining cases the score to assign was decided
by the majority of developers in each system. At the
end of the meeting the participants provided only one
filled-in questionnaire reporting their comprehensive
evaluation.

The goal of the process described above was to
maximize the benefits derived by involving the orig-
inal developers in the evaluation of the refactoring
suggestions. In fact, each of the involved participants
just developed a specific portion of the system and
thus her/his experience was particularly suited to
evaluate refactoring suggestions on that specific part
of the system. By performing a review meeting, the
participants having better knowledge of particular
code components (e.g., classes) could explain the rea-
sons why a refactoring operation was meaningful or
not to the other participants. Thus, since our goal in
this study was to gather as much qualitative feedback
as possible, we preferred to have less data (i.e., aggre-
gated scores instead of individual scores) but derived
by a full knowledge of the system. Also, we asked the
developers to comment on some particular cases.

5.2.2 Analysis of the Results
Table VIII summarizes the answers of the participants
to the question “Would you apply the proposed refac-

18

TABLE 8: Participants’ answers to the question “Would you apply the proposed refactoring?”

definitely not no maybe yes absolutely yes

JDeodorant
GESA (165 suggestions) 24% 7% 57% 11% 1%
SMOS (69 suggestions) 6% 12% 59% 22% 1%

Overall (234 suggestions) 19% 8% 58% 14% 1%

Methodbook
GESA (30 suggestions) 12% 30% 14% 37% 7%
SMOS (27 suggestions) 11% 15% 37% 30% 7%

Overall (57 suggestions) 11% 22% 26% 34% 7%

toring?”. Concerning the GESA software system the
developers gave a positive answers to 12% of the
operations suggested by JDeodorant (11% yes + 1%
absolutely yes) against a 44% achieved by Methodbook
(37% yes + 7% absolutely yes).

On the “negative answers side” 31% of JDeodor-
ant’s suggestions (24% definitely not + 7% no) were dis-
carded by participants against 42% of Methodbook’s
suggestions (12% definitely not + 30% no). Finally, there
is a huge percentage (57%) of JDeodorant’s refactor-
ings marked with maybe by the developers against a
14% achieved by Methodbook.

Thus, despite the average low confidence level of
Methodbook’s suggestions on GESA (0.31 with only
one suggestion having confidence level higher than
0.6), the original developers accepted (through a yes
or a absolutely yes answer) a much higher percentage
of Methodbook’s suggestions than of JDeodorant’s
ones. On the other side, Methodbook also received
a higher percentage of “rejected operations” that,
however, had a very low confidence level (0.14 on
average) as compared to the “accepted operations”
(0.53 on average). This confirms the goodnesses of
the confidence level as indicator of the quality of the
Methodbook’s recommendations.

In order to get a deeper view of the achieved
results we asked GESA developers to comment
on some of their decisions. One of the refac-
toring operations suggested by Methodbook that
the developers would absolutely apply is mov-
ing the method executeOperation(Connection
pConnect, String pSql) from its class Utility
to the envied class ControlConnection. Thus, we
asked them to comment on the rationale behind these
refactoring operations. The developers explained that
the method executeOperation is in charge to ex-
ecute a given query (the parameter pSql) in the
database by using an existing connection to it (the pa-
rameter pConnect). The class containing this method,
i.e., Utility, groups together miscellaneous services
that (i) can be useful for different classes in the system,
e.g., convert a date in SQL format, and (ii) have
not a clear collocation in other classes of the system.
However, GESA also contains a class implementing
all the operations needed to exchange data with
the database, that is the class ControlConnection.
Thus, the developers felt that the envied class identi-
fied by Methodbook was a better place to implement

the method executeOperation.
An example of Methodbook’s suggestion that

the participants would not apply is the move
of the method daysBetween(Date pDate1,
Date pDate2) from the class Utility to the
class ServletExportTimetableStampToPdf.
In fact, daysBetween represents a clear example
of the kind of methods that should be placed
in the Utility class (it computes the number
of days between two given dates and such
method could be used in the future by other
classes). The wrong suggestion of Methodbook
was the result of the high number of calls that
the ServletExportTimetableStampToPdf class
performs to this method. This is a clear example of
move method refactoring that improve the software
system from the point of view of metrics, but that is
not meaningful from the point of view of developers.

Concerning the SMOS software system, the devel-
opers accepted 23% of the operations suggested by
JDeodorant (22% yes + 1% absolutely yes) against 37%
achieved by Methodbook (30% yes + 7% absolutely yes).
As for the “rejected” refactoring operations, 18% of
the JDeodorant’s suggestions (6% definetly not + 12%
no) and 26% of the Methodbook’s suggestions (11%
definetly not + 15% no) were classified as bad. Finally,
also in this case a high percentage of JDeodorant’s
suggestions were classified with maybe (59%) against
37% of Methodbook. Note that also on this system the
average confidence level of the SMOS suggestions is
quite low (0.42) with only 3 move method operations
recommended with a confidence level higher than 0.6.
However, also on SMOS the confidence level provides
a good indication of the Methodbook’s suggestion
quality. In fact, the “rejected suggestions” provided
by Methodbook have an average confidence level of
0.18, against 0.60 of the “accepted suggestions”.

Like for the study with GESA developers, we
asked SMOS developers to comment on some
of their decisions. Figure 6 shows the method
classroomOnDeleteCascade moved by Method-
book from the class ManagerClassroom to the class
ManagerRegister. All SMOS developers agreed
that this refactoring should be absolutely applied. In-
deed, this method is invoked when a classroom from
the system is deleted in order to remove all the related
information from the database. As we can see, the
information related to a classroom are mostly con-

19

public void classroomOnDeleteCascade(Classroom pClassroom) throws [...] {

 [..gets the connection, checks pClassroom mandatory fields, and gets an
 instance of ManagerRegister: managerRegister..]

 managerRegister.removeRegister(pClassroom.getIdClassroom());

 try {
sql = "DELETE FROM " + ManagerRegister.TABLE_ABSENCE

+ " WHERE id_classroom= " + Utility.isNull(pClassroom.getIdClassroom());

Utility.executeOperation(connect, sql);

sql = "DELETE FROM " + ManagerRegister.TABLE_DELAY
+ " WHERE id_classroom= " + Utility.isNull(pClassroom.getIdClassroom());

Utility.executeOperation(connect, sql);

sql = "DELETE FROM " + ManagerRegister.TABLE_JUSTIFY
 + " WHERE id_classroom= " + Utility.isNull(pClassroom.getIdClassroom());

Utility.executeOperation(connect, sql);

sql = "DELETE FROM " + ManagerRegister.TABLE_NOTE
 + " WHERE id_classroom= " + Utility.isNull(pClassroom.getIdClassroom());

Utility.executeOperation(connect, sql);
} finally {
DBConnection.releaseConnection(connect);

}
}

Fig. 6: The method classroomOnDeleteCascade
was moved by Methodbook from its class
ManagerClassroom to the envied class
ManagerRegister

cerned with the class register, e.g., students’ absences.
Thus, the method classroomOnDeleteCascade in-
vokes several times the class ManagerRegister
that, for this reason, is identified by Methodbook
as envied class. Note that, besides several queries
executed on the database to delete the class reg-
ister’s information, classroomOnDeleteCascade
also invokes the method removeRegister of the
class ManagerRegister (first instruction in Figure
6). The latter updates a Vector of Integer stored in
ManagerRegister and aimed at keeping track of
all the classes for which a register exists. This is an
optimization done to avoid querying the database
each time the list of registers must be shown to the
SMOS’s users. In particular, the removeRegister
method removes the id of the deleted classroom from
that vector.

There are also three move method refactoring op-
erations suggested by Methodbook with a confidence
level lower than 0.2 that were rejected by the develop-
ers. For these operations, the developers did not find
any explanation, confirming that when the confidence
level is too low, the Methodbook’s suggestions are
generally not recommended to be applied.

Finally, we also asked both GESA and SMOS devel-
opers to comment on the high number of JDeodorant
move method suggestions answered with a maybe (135
out of 234). The explanation was quite simple. In both
GESA and SMOS there is a clear separation between
the entity objects of the systems (e.g., user, class-
room), that are implemented through specific java
bean classes (e.g., User, Classroom), and the control
classes managing that objects (e.g., ManagerUser,
ManagerClassroom). JDeodorant suggests to move
several of the methods present in each control class

/**
* Insert a new disciplinary note in the database.
* @param pNote The disciplinary note to insert
*/

public void insertNote(Note pNote) throws [...]{

Connection connect= null;
try{

 int maxId = Utility.getMaxValue("id_note",ManagerRegister.TABLE_NOTE);

[..check pNote's mandatory fields..]

connect = DBConnection.getConnection();
if (connect==null) throw new ConnectionException();

String sql =
"INSERT INTO "
+ ManagerRegister.TABLE_NOTE
+ " (id_user, date_note, description, teacher, academic_year) "
+ "VALUES ("
+ Utility.isNull(pNote.getIdUser()) + ","
+ Utility.isNull(pNote.getDateNote()) + ","
+ Utility.isNull(pNote.getDescription()) + ","
+ Utility.isNull(pNote.getTeacher()) + ","
+ Utility.isNull(pNote.getAcademicYear())+ ")";

Utility.executeOperation(connect,sql);

pNote.setIdNote((Utility.getMaxValue("id_note",ManagerRegister.TABLE_NOTE)));
 if (pNote.getIdNote() <= maxId) throw new DBException();

}finally {
 DBConnection.releaseConnection(connect);

}
}

Fig. 7: The method insertNote was moved by
JDeodorant from its class ManagerRegister to the
envied class Note

to the corresponding entity object. While these move
methods will result in improving quality metrics, they
are only considered as an alternative to the original
design by the developers that generally prefer their
choice of separating entity and control objects in the
systems. This set of move method operations sug-
gested by JDeodorant also explains (i) the very high
number of suggestions on these two systems and (ii)
the very good performances achieved by it on GESA
and SMOS in the software metrics evaluation reported
in Section IV. For example, one of the JDeodorant’s
suggestions falling in these cases is the move of the
method insertNote of the SMOS system, reported
in Figure 7, from its class ManagerRegister to
the Note entity object. This method is in charge of
storing—into the database—a new disciplinary note
embedded in the Note object. JDeodorant identifies
this method as a Feature Envy bad smell mainly
for the fact that insertNote updates the state of
the object Note when invoking its setter method
setIdNote (see bottom part of Figure 7). However,
this is just done to check if the performed operation
(i.e., the insertion of the disciplinary note) was suc-
cessfully executed. In fact, in the last if statement,
it is checked if the id of the new note stored in the
database (the auto increment field id_note of table
ManagerRegister.TABLE_NOTE) is higher than the
maximum id present in the table before the addition of
the new note (stored in the variable maxId in the first
instruction of the try block). This example reflects
exactly what a bad smell is about: it is a symptom
in the code that may (or may not) indicate a design
problem. In this case, from the original developers’
point of view, it does not indicate a design problem
and thus, even recognizing as reasonable the JDeodor-
ant’s suggestion (maybe score), they prefer to keep the

20

current methods’ organization.
In conclusion, Methodbook’s suggestions were gen-

erally preferred to those by JDeodorant (41% of ac-
cepted suggestions for Methodbook, 15% for JDeodor-
ant) on both systems. In particular, participants gen-
erally appreciated Methodbook’s suggestions hav-
ing a confidence level higher than 0.5. Despite this,
also in this study JDeodorant was able to identify
a high number of appreciated refactoring sugges-
tions ignored by Methodbook (overall 35). This re-
sult confirms that JDeodorant is less conservative
than Methodbook, finding several good suggestions
surrounded, however, by more noisy suggestions as
compared to Methodbook. Finally, it is worth noting
that all the suggestions (by both Methodbook and
JDeodorant) evaluated with yes and absolutely yes by
developers have been applied on GESA and are part
of its new release in operation at the University of
Molise. On SMOS this was not done since it is not in
operation.

6 THREATS TO VALIDITY

This section describes some threats that could affect
the validity of the results achieved in our studies [56].

6.1 Evaluation based on Metrics

A first possible threat affecting the validity of the
results is related to the choice of the employed quality
metrics. We evaluated the goodness of the Method-
book’s suggestions from a quality metrics point of
view through two cohesion (i.e., Connectivity and C3)
and two coupling (i.e., MPC and CCBC) metrics. Since
the choice of the metrics could strongly influence the
results, we carefully selected them. Firstly, for both
cohesion and coupling we employed one structural
and one semantic metric in order to have a complete
picture of the changes obtained in the system quality
by applying the suggested move method operations.
Among the structural metrics, Connectivity and MPC
were preferred for several reasons: (i) unlike other
structural cohesion metrics, e.g., Lack of Cohesion
of Methods (LCOM) [36], Connectivity considers two
methods to be cohesive not only if they share an
instance variable, but also if they have a call among
them, (ii) MPC is able to capture coupling at a
finer granularity level (i.e., method-calls interaction)
compared to other coupling metrics, e.g., Coupling
Between Object classes (CBO) [36], and (iii) the same
structural metrics were also used in the evaluation
of JDeodorant [9]. To the best of our knowledge, on
the semantic side the C3 metric is the only semantic
cohesion metric available in the literature while the
CCBC was preferred to the semantic coupling metric
presented by Gethers and Poshyvanyk [38], since the
latter is based on RTM, which represents the founda-
tion of Methodbook.

A second threat for this evaluation is due to the
tool used to measure the quality metrics. The values
of all used measurements are computed by the tool
we developed. We observed as the MPC and Connec-
tivity values measured by our tool are different from
those reported by Tsantalis and Chatzigeorgiou [9] for
jEdit and JFreeChart during the JDeodorant evalua-
tion. However, the improvement trend achieved by
JDeodorant in our experimentation and in the original
evaluation is exactly the same for both metrics and on
both systems (compare our graphs with Figures 9 and
10 in the paper by Tsantalis and Chatzigeorgiou [9]).
Thus, we are confident that the findings of our study
are correct.

In our study we observed changes in cohesion and
coupling obtained by applying the refactoring sug-
gestions generated by Methodbook and JDeodorant.
When considering the improvements of cohesion and
coupling in terms of percentage, they are limited to
few points. For example, on the jEdit system (see
Figure 10) Methodbook is able to improve the Connec-
tivity, MPC, and CCBC metrics of about 2%, and the
C3 metric of about 1%. These results might seem very
marginal. However, it is worth noting that, as shown
in Table II, the number of methods moved by both
Methodbook and JDeodorant just represent a very
small percentage of the system’s methods (i.e., around
2% for Methodbook and 4% for JDeodorant). For
example, on jEdit Methodbook just suggests to move
8 out of the 1,864 existing methods, i.e., 0.05%. Thus,
it is important to put the observed improvements in
the context of move method refactoring approaches,
where it is very unlikely to obtain strong changes in
cohesion and coupling.

It is also important to acknowledge the limita-
tions of an evaluation based on quality metrics. The
achieved results indicate that Methodbook is able to
improve the quality of the object systems in terms of
class cohesion and coupling. Moreover, on three out of
the six employed systems it is able to perform better
than the state-of-the-art tool JDedorant [9]. While this
result can be encouraging it is not enough to state
superiority of the move method operations suggested
by Methodbook. In fact, the refactoring operations
suggested by a tool should not only improve the
value of some quality metrics but, more importantly,
be meaningful from the point of view of developers.
For this reason, we not only based our evaluation on
metrics measurement, but also performed two user
studies reported in Section V.

Finally, while we analyzed the benefits of apply-
ing the refactoring recommendations generated by
Methodbook and JDeodorant (i.e., improvements in
quality metrics), we did not assess the cost of applying
them (i.e., what is the impact on the system source
code). Generally, the application of a refactoring mov-
ing a method mi from its class Cj to the envied class
Ck is limited to the update of the calls performed by

21

other methods to mi, that is not placed in Cj anymore,
but in Ck. This can be easily automated by using,
for example, the Eclipse AST (as currently done in
JDeodorant). Also, since Methodbook and JDeodor-
ant verify the same behavior-preserving preconditions
before recommending a move method refactoring,
we expect the cost of applying their suggestions to
be roughly the same. To verify this and to have an
indication of the effort needed to apply the gener-
ated recommendations, we compute the number of
method calls that should be updated in consequence
of all refactoring operations suggested by Method-
book and JDeodorant on JFreeChart. On average, the
18 JDeodorant’s recommendations require to fix 1.5
method calls (min=1, max=3), while the 10 Method-
book’s recommendations require to fix 1.4 method
calls (min=1, max=2). Thus, as expected, applying
the refactoring recommendations by Methodbook and
JDeodorant generally require a similar (low) effort.

6.2 Evaluation with External Developers
As for the generalization of the results achieved in
our experiment conducted with external developers,
the population of the participants represents the main
threat. As previously explained, the less experienced
participants involved in our study were third year
Bachelors students that in the context of the Soft-
ware Engineering course had participated in software
projects, where they practiced software development
and documentation production. As a check, we sta-
tistically compared the scores assigned by Bachelors
students with those assigned by the other kinds of
participants to verify if less experienced participants
were less/more prone to accept/reject the evaluated
refactoring suggestions (both the Methodbook and
the JDeodorant ones). We used the Wilcoxon test [53]
by adjusting the obtained p-values using the Holm’s
correction procedure [54]. The results showed no
statistically significant difference between the ratings
assigned by Bachelors students and those assigned by
the other kinds of participants on both systems (p-
value always higher than 0.05). This result somehow
confirms what has been highlighted by Arisholm
and Sjoberg [57]: the difference between students and
professionals is not always easy to identify.

Another threat is represented by the lack of system
domain knowledge by the participants. However, we
also executed the experiment with original developers
where this threat is not present.

6.3 Evaluation with Original Developers
In our second user study we were able to involve the
original developers of two systems, i.e., GESA and
SMOS, in the evaluation of the refactoring operations
suggested by Methodbook and JDeodorant. Thus, the
type of participants involved in our two user studies
is quite different, allowing a good generalization of

the achieved results. On the other side, it is worth
noting that both GESA and SMOS are Java EE web
applications, thus our findings might be in part due
to the specific nature of these systems. However, the
systems used in the evaluation with external devel-
opers (i.e., jEdit and JFreeChart) are standard Java
applications, thus mitigating this threat.

The system domain knowledge could also represent
a threat in this experiment but in a different way.
In fact, as explained before, some of the participants
could be the “fathers” of some bad design choices
and consequently not recognize a good move method
refactoring as meaningful. However, the results ob-
tained and the deep discussion with them about some
of the good suggestions provided by the two ap-
proaches demonstrate that the participants provided
an objective evaluation of the analyzed move method
operations.

Finally, the suggestions generated by Methodbook
and JDedodorant were verbatim copied in the ques-
tionnaire to exclude biases derived by the participants
ability with the tools interfaces. Participants used their
preferred IDE to analyze the source code of the object
systems.

7 CONCLUSION

This paper proposed and evaluated Methodbook,
an approach to automate Move Method refactoring.
Methodbook uses RTM to analyze both structural and
textual information gleaned from software to suggest
move method refactoring operations.

We evaluated Methodbook in two case studies com-
paring its performance with the state-of-the-art tool
JDeodorant. In the first case study we analyzed if
move method suggestions produced by Methodbook
are able to improve the design of five software sys-
tems from a metrics point of view. The results indicate
that Methodbook’s suggestions having high confi-
dence level (generally higher than 0.60) are able to
improve cohesion and coupling of the object systems,
while suggestions having low confidence level do not
show a very stable trend. Moreover, on three out of
five experimented systems Methodbook outperforms
JDeodorant. In the second case study we evaluated
the refactoring recommendations by Methodbook in
two user studies, one conducted with ten original
developers of two software systems and one with
seventy academic and industrial software developers
on two open source software systems.

The results indicate that Methodbook’s refactoring
recommendations having high confidence level are
meaningful from a developer’s point of view, sup-
porting the potential usefulness of Methodbook in
integrated development environments.

The extensive evaluation conducted for Method-
book provided us with a number of lessons learned.
First, we noticed that the confidence level seems to

22

be crucial for the suggested refactoring operations. In
fact, the confidence level turned out to be a very good
indicator of the goodness of the suggested refactoring
operations in all the performed evaluations. We now
know that developers can mostly ignore the Method-
book’s suggestions having a low confidence level (i.e.,
< 0.5), since the likelihood of having a meaningful
suggestion with such a confidence level is quite low.

The comparison performed with JDeodorant high-
lighted that Methodbook is generally more precise
than JDeodorant, providing less suggestions to the
developers of an average higher quality. However, the
results also clearly highlighted as JDeodorant is able
to identify good refactoring operations that are missed
by Methodbook. This means that there is still room for
improvement and that maybe some aspects of the two
tools could be combined together in a new approach
trying to exploit the strengths of both tools. This is
part of our future agenda.

The evaluation conducted with the original devel-
opers highlighted how some refactoring operations,
even if reasonable, do not justify the need to change
the original design from the developer’s point of
view. In total, 136 JDeodorant’s suggestions and 15
Methodbook’s suggestions evaluated with a maybe
by participants fall among these. From the study
based on quality metrics we know that these oper-
ations were able to improve cohesion and coupling
of the object systems, as it is particularly evident
by the excellent performances reached by JDeodorant
on GESA (see Figure 8) and SMOS (see Figure 4).
These cases highlight the fact that an evaluation of a
refactoring technique based only on software quality
metrics is not sufficient and it should always be com-
plemented with experiments performed with software
developers in order to get real insights about the
actual value of the technique. These observations also
pinpoint that, even if better refactoring tools might
be developed in the future, the final word about any
refactoring operation should be left up to developers,
discouraging the implementation of fully automated
refactoring tools.

APPENDIX

Figures 8, 9, 10, and 11 report the quality metrics
trends for GESA, eXVantage, jEdit, and JFreeChart
respectively.

ACKNOWLEDGMENTS

We would like to thank all the students and profes-
sional software developers who participated in the
Methodbook’s evaluation. We are also very grateful
to Nikolaos Tsantalis for the support provided us
in the computation of the JDeodorant’s suggestions.
Finally, we would also like to thank anonymous TSE
reviewers for their careful reading of our manuscript
and high-quality feedback.

REFERENCES

[1] W. Stevens, G. Myers, and L. Constantine, “Structured de-
sign,” IBM Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.

[2] R. Pressman, Software Engineering: A Practitioner’s Approach. 3rd
Edition. McGraw-Hill, 1992.

[3] I. Sommerville, Software Engineering. 6th Edition. Addison-
Wesley, 2001.

[4] V. R. Basili, L. Briand, and W. L. Melo, “A validation of
object-oriented design metrics as quality indicators,” IEEE
Transactions on Software Engineering, vol. 22, no. 10, pp. 751–
761, 1995.

[5] A. B. Binkley and S. R. Schach, “Validation of the coupling
dependency metric as a predictor of run-time failures and
maintenance measures,” in Proceedings of the 20th International
Conference on Software Engineering, Kyoto, Japan, 1998, pp. 452–
455.

[6] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the concep-
tual cohesion of classes for fault prediction in object-oriented
systems,” IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 287–300, 2008.

[7] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick
III, and T. J. Mowbray, Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis, 1st ed. John Wiley and
Sons, 1998.

[8] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[9] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” IEEE Transactions on Soft-
ware Engineering, pp. 347–367, RapidPost.

[10] J. Chang and D. M. Blei, “Hierarchical relational models for
document networks,” Annals of Applied Statistics, 2010.

[11] F. Simon, F. Steinbr, and C. Lewerentz, “Metrics based refac-
toring,” in Proceedings of the 5th European Conference on Software
Maintenance and Reengineering. Lisbon, Portugal: IEEE CS
Press, 2001, pp. 30–38.

[12] O. Seng, J. Stammel, and D. Burkhart, “Search-based deter-
mination of refactorings for improving the class structure
of object-oriented systems,” in Proceedings of the Genetic and
Evolutionary Computation Conference, Seattle, Washington, USA,
2006, pp. 1909–1916.

[13] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor,
and how we know it,” in Proceedings of the 31st International
Conference on Software Engineering, ser. ICSE ’09, 2009, pp. 287–
297.

[14] Y. Wang, “What motivate software engineers to refactor source
code? evidences from professional developers,” in Software
Maintenance, 2009. ICSM 2009. IEEE International Conference on,
2009, pp. 413 –416.

[15] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of
refactoring challenges and benefits,” in Proceedings of the 20th
International Symposium on Foundations of Software Engineering,
November 2012.

[16] K. Taneja, D. Dig, and T. Xie, “Automated detection of api
refactorings in libraries,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engi-
neering, ser. ASE ’07, 2007, pp. 377–380.

[17] D. Dig, K. Manzoor, R. Johnson, and T. Nguyen, “Effective
software merging in the presence of object-oriented refactor-
ings,” Software Engineering, IEEE Transactions on, vol. 34, no. 3,
pp. 321 –335, may-june 2008.

[18] A. Trifu and R. Marinescu, “Diagnosing design problems in
object oriented systems,” in Proceedings of the 12th Working
Conference on Reverse Engineering. Pittsburgh, PA, USA: IEEE
Press, 2005, pp. 155–164.

[19] P. Joshi and R. K. Joshi, “Concept analysis for class cohesion,”
in Proceedings of the 13th European Conference on Software Main-
tenance and Reengineering, Kaiserslautern, Germany, 2009, pp.
237–240.

[20] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“A bayesian approach for the detection of code and design
smells,” in Proceedings of the 2009 Ninth International Conference
on Quality Software. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 305–314.

[21] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur,
“Decor: A method for the specification and detection of code

23

1650 15 30 45 60 75 90 105 120 135 150

0.176

0.14

0.144

0.148

0.152

0.156

0.16

0.164

0.168

0.172

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorant

Methodbook

1650 15 30 45 60 75 90 105 120 135 150

0.086

0.08

0.081

0.082

0.083

0.084

0.085

#Applied Refactoring Operations

C3

JDeodorant

Methodbook

1650 15 30 45 60 75 90 105 120 135 150

0.36

0.31

0.32

0.33

0.34

0.35

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

1650 15 30 45 60 75 90 105 120 135 150

11

8

8,5

9

9,5

10

10,5

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

Mb confidence
level > 0.6

> 0.4
> 0.2

Mb confidence
level > 0.6

> 0.4
> 0.2

> 0.6
> 0.4

> 0.2

> 0.6
> 0.4

> 0.2

Fig. 8: Evolution of the four quality metrics on GESA by applying the refactoring operations suggested by
Methodbook (30) and JDeodorant (165)

and design smells,” IEEE Transactions on Software Engineering,
vol. 36, no. 1, pp. 20–36, Jan. 2010.

[22] B. S. Mitchell and S. Mancoridis, “On the automatic modu-
larization of software systems using the bunch tool,” IEEE
Transactions on Software Engineering, vol. 32, no. 3, pp. 193–208,
2006.

[23] O. Maqbool and H. A. Babri, “Hierarchical clustering for
software architecture recovery,” IEEE Transactions on Software
Engineering, vol. 33, no. 11, pp. 759–780, 2007.

[24] K. Praditwong, M. Harman, and X. Yao, “Software module
clustering as a multi-objective search problem,” IEEE Transac-
tions on Software Engineering, vol. 37, no. 2, pp. 264–282, 2011.

[25] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Using
structural and semantic measures to improve software mod-
ularization,” Empirical Software Engineering, vol. 18, no. 5, pp.
901–932, 2013.

[26] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D.
Lucia, “Improving software modularization via automated
analysis of latent topics and dependencies,” Transactions on
Software Engineering and Methodologies, Accepted on Jan 2013.

[27] K. Maruyama and K. Shima, “Automatic method refactoring
using weighted dependence graphs,” in Proceedings of 21st
International Conference on Software Engineering. Los Alamitos,
California, USA: ACM Press, 1999, pp. 236–245.

[28] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,
“Decomposing object-oriented class modules using an ag-
glomerative clustering technique,” in Proceedings of the 25th
International Conference on Software Maintenance, Edmonton,
Canada, 2009, pp. 93–101.

[29] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying extract
class refactoring opportunities using structural and semantic
cohesion measures,” Journal of Systems and Software, vol. 84,
pp. 397–414, 2011.

[30] G. Bavota, R. Oliveto, A. D. Lucia, G. Antoniol, and Y.-G.
Guéhéneuc, “Playing with refactoring: Identifying extract class

opportunities through game theory,” in Proceedings of the 26th
IEEE International Conference on Software Maintenance, 2010.

[31] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “A two-step
technique for extract class refactoring,” in Proceedings of 25th
IEEE International Conference on Automated Software Engineering,
2010, pp. 151–154.

[32] M. O’Keeffe and M. O’Cinneide, “Search-based software main-
tenance,” in Proceedings of 10th European Conference on Software
Maintenance and Reengineering. Bari, Italy: IEEE CS Press, 2006,
pp. 249–260.

[33] A. Abadi, R. Ettinger, and Y. A. Feldman, “Fine slicing for
advanced method extraction,” in 3rd Workshop on Refactoring
Tools, 2009.

[34] E. Murphy-Hill and A. P. Black, “Breaking the barriers to suc-
cessful refactoring: observations and tools for extract method,”
in Proceedings of the 30th international conference on Software
engineering, ser. ICSE ’08. ACM, 2008, pp. 421–430.

[35] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Au-
tomating extract class refactoring: an improved method and its
evaluation,” Empirical Software Engineering, Accepted on Apr
2013.

[36] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, June 1994.

[37] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” The Journal of Machine Learning Research, vol. 3, pp.
993–1022, 2003.

[38] M. Gethers and D. Poshyvanyk, “Using relational topic models
to capture coupling among classes in object-oriented software
systems,” in ICSM, 2010, pp. 1–10.

[39] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia,
“On integrating orthogonal information retrieval methods to
improve traceability recovery,” in In Proceedings of 27th IEEE
International Conference on Software Maintenance, 2011, pp. 133–
142.

[40] S. Bajracharya and C. Lopes, “Mining search topics from

24

970 10 20 30 40 50 60 70 80 90

0.241

0.234

0.235

0.236

0.237

0.238

0.239

0.24

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorant

Methodbook

970 10 20 30 40 50 60 70 80 90

0.287

0.282

0.283

0.284

0.285

0.286

#Applied Refactoring Operations

C3

JDeodorant

Methodbook

Mb confidence
level

970 10 20 30 40 50 60 70 80 90

0.077

0.0745

0.075

0.0755

0.076

0.0765

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

970 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

2.81

2.67

2.72

2.76

2.8

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

> 0.6 > 0.4 > 0.2

Mb confidence
level > 0.6 > 0.4 > 0.2 > 0.6 > 0.4 > 0.2

> 0.6 > 0.4 > 0.2

Fig. 9: Evolution of the four quality metrics on eXVantage by applying the refactoring operations suggested
by Methodbook (95) and JDeodorant (80)

a code search engine usage log,” in Proceedings of the 2009
6th IEEE International Working Conference on Mining Software
Repositories, ser. MSR ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 111–120. [Online]. Available:
http://dx.doi.org/10.1109/MSR.2009.5069489

[41] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and N. Chriso-
choides, “Modeling class cohesion as mixtures of latent top-
ics,” in Proceedings of 25th IEEE International Conference on
Software Maintenance. Edmonton, Canada: IEEE CS Press,
2009, pp. 233–242.

[42] M. Gethers, T. Savage, M. Di Penta, R. Oliveto, D. Poshyvanyk,
and A. De Lucia, “Codetopics: Which topic am i coding now?”
in Proceedings of 33rd IEEE/ACM International Conference on
Software Engineering. Honolulu, Hawaii, USA: ACM Press,
2011.

[43] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk,
and A. De Lucia, “How to effectively use topic models for
software engineering tasks? an approach based on genetic
algorithms,” in Proceedings of the 35th IEEE/ACM International
Conference on Software Engineering, ser. ICSE’13. IEEE Com-
puter Society, 2013, pp. 522–531.

[44] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can
better identifier splitting techniques help feature location?”
in Proceedings of 19th IEEE International Conference on Program
Comprehension. Kingston, Canada: IEEE CS Press, 2011.

[45] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Re-
trieval. Addison-Wesley, 1999.

[46] G. Gui and P. D. Scott, “Coupling and cohesion measures
for evaluation of component reusability,” in Proceedings of
the 5th International Workshop on Mining Software Repositories.
Shanghai, China: ACM Press, 2006, pp. 18–21.

[47] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Wiley-Interscience, 1991.

[48] L. C. Briand, J. W. Daly, and J. Wüst, “A unified framework for
cohesion measurement in object-orientedsystems,” Empirical
Software Engineering., vol. 3, pp. 65–117, July 1998.

[49] Maintenance metrics for the object oriented paradigm, 1993.

[50] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Us-
ing information retrieval based coupling measures for impact
analysis,” Empirical Software Engineering, vol. 14, no. 1, pp. 5–
32, 2009.

[51] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal
of the American Society for Information Science, vol. 41, no. 6, pp.
391–407, 1990.

[52] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and
A. D. Lucia, “Methodbook: Recommending move method
refactorings via relational topic models,” University of Sannio,
http://www.dmi.unisa.it/people/bavota/www/reports/me-
thodbook/, Tech. Rep., 2013.

[53] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Wiley,
1998.

[54] S. Holm, “A simple sequentially rejective Bonferroni test pro-
cedure,” Scandinavian Journal on Statistics, vol. 6, pp. 65–70,
1979.

[55] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad
practical approach, 2nd ed. Lawrence Earlbaum Associates,
2005.

[56] R. K. Yin, Case Study Research: Design and Methods, 3rd ed.
SAGE Publications, 2003.

[57] E. Arisholm and D. Sjoberg, “Evaluating the effect of a dele-
gated versus centralized control style on the maintainability
of object-oriented software,” IEEE Transactions on Software
Engineering, vol. 30, no. 8, pp. 521–534, 2004.

25

180 5 10 15

0.232

0.227

0.228

0.229

0.23

0.231

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorantMethodbook

180 5 10 15

0.157

0.153

0.154

0.155

0.156

#Applied Refactoring Operations

C3

JDeodorant

Methodbook

Mb confidence
level

180 5 10 15

0.039

0.037

0.0372

0.0374

0.0376

0.0378

0.038

0.0382

0.0384

0.0386

0.0388

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

180 5 10 15

4.28

4.15

4.2

4.25

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

> 0.8 > 0.6 > 0.4

Mb confidence
level

> 0.8 > 0.6 > 0.4

> 0.8 > 0.6 > 0.4> 0.8 > 0.6 > 0.4

Fig. 10: Evolution of the four quality metrics on jEdit by applying the refactoring operations suggested by
Methodbook (8) and JDeodorant (18)

Gabriele Bavota is a research fellow at
the Department of Engineering of the Uni-
versity of Sannio (Italy). He received the
Ph.D. in Computer Science from the Uni-
versity of Salerno (Italy) in 2013. His re-
search interests include refactoring and re-
modularization, software maintenance and
evolution, and empirical software engineer-
ing. He serves and has served on the or-
ganizing and program committees of inter-
national conferences in the field of software

engineering. He is member of IEEE.

Rocco Oliveto is Assistant Professor in the
Department of Bioscience and Territory at
University of Molise (Italy). He is the Director
of the Laboratory of Computer Science and
Scientific Computation of the University of
Molise. He received the PhD in Computer
Science from University of Salerno (Italy) in
2008. His research interests include trace-
ability management, information retrieval,
software maintenance and evolution, search-
based software engineering, and empirical

software engineering. He serves and has served as organizing and
program committee member of international conferences in the field
of software engineering. He is a member of IEEE Computer Society,
ACM, and IEEE-CS Awards and Recognition Committee.

Malcom Gethers is an Assistant Professor
in the Department of Information Systems at
the University of Maryland, Baltimore County
(UMBC). Malcom obtained his Ph.D. in Com-
puter Science from the College of William
and Mary in 2012 where he was a member
of the SEMERU research group. He was ad-
vised by Dr. Denys Poshyvanyk. Malcom ob-
tained his B.S. from High Point University and
his M.S. from the University of North Carolina
at Greensboro. His research interests include

software engineering, software maintenance and evolution, mining of
software repositories, feature location, software measurement, and
traceability link recovery and management. He is a member of the
IEEE and ACM.

Denys Poshyvanyk is an Assistant Profes-
sor at The College of William and Mary in
Virginia. He received his Ph.D. degree in
Computer Science from Wayne State Univer-
sity in 2008. He also obtained his M.S. and
M.A. degrees in Computer Science from the
National University of Kyiv-Mohyla Academy,
Ukraine and Wayne State University in 2003
and 2006, respectively. His research inter-
ests are in software engineering, software
maintenance and evolution, program com-

prehension, reverse engineering, software repository mining, source
code analysis and metrics. He is a member of the IEEE and ACM.

26

180 5 10 15

0.149

0.143

0.144

0.145

0.146

0.147

0.148

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorant

Methodbook

180 5 10 15

0.187

0.184

0.185

0.186

#Applied Refactoring Operations

C3

JDeodorant

Methodbook

Mb confidence
level

120 5 10

0.077

0.076

0.0761

0.0762

0.0763

0.0764

0.0765

0.0766

0.0767

0.0768

0.0769

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

180 5 10 15

0.84

0.83

0.831

0.832

0.833

0.834

0.835

0.836

0.837

0.838

0.839

#Applied Refactoring Operations

M
PC JDeodorant

Methodbook

> 0.8
> 0.6

Mb confidence
level

> 0.8
> 0.6

> 0.8
> 0.6

> 0.8
> 0.6

Fig. 11: Evolution of the four quality metrics on JFreeChart by applying the refactoring operations suggested
by Methodbook (10) and JDeodorant (18)

Andrea De Lucia is a full professor of soft-
ware engineering at the Department of Man-
agement & Information Technology of the
University of Salerno, Italy, head of the Soft-
ware Engineering Lab, and Director of the In-
ternational Summer School on Software En-
gineering. He received his PhD in Electronic
Engineering and Computer Science from the
University of Naples ”Federico II”, Italy, in
1996. His research interests include software
maintenance and testing, reverse engineer-

ing and reengineering, empirical software engineering, sarch-based
software engineering, collaborative development, workflow and doc-
ument management, and e-learning. He has published more than
200 papers on these topics in international journals, books, and
conference proceedings and has edited books and jornal special
issues. He also serves on the editorial boards of international jour-
nals and on the organizing and program committees of international
conferences. Prof. De Lucia is a senior member of the IEEE and
the IEEE Computer Society and was also at-large member of the
executive committee of the IEEE Technical Council on Software
Engineering (TCSE).

