V2S: A Tool for Translating Video Recordings of
Mobile App Usages into Replayable Scenarios

Madeleine Havranek®, Carlos Bernal-Cardenas*®, Nathan Cooper®,
Oscar Chaparro*, Denys Poshyvnayk*, Kevin Moran®
*College of William & Mary (Williamsburg, VA, USA), TGeorge Mason University (Fairfax, VA, USA)
mrhavranek @email.wm.edu, cebernal @cs.wm.edu, nacooper01 @email.wm.edu,
oscarch@wm.edu, denys @cs.wm.edu, kpmoran@ gmu.edu

Abstract—Screen recordings are becoming increasingly impor-
tant as rich software artifacts that inform mobile application
development processes. However, the amount of manual effort
required to extract information from these graphical artifacts
can hinder resource-constrained mobile developers. This paper
presents Video2Scenario (V2S), an automated tool that pro-
cesses video recordings of Android app usages, utilizes neural
object detection and image classification techniques to classify
the depicted user actions, and translates these actions into a
replayable scenario. We conducted a comprehensive evaluation
to demonstrate V2S’s ability to reproduce recorded scenarios
across a range of devices and a diverse set of usage cases and
applications. The results indicate that, based on its performance
with 175 videos depicting 3,534 GUI-based actions, V2S is able
to reproduce ~ 89% of sequential actions from collected videos.
Demo URL: https://tinyurl.com/v2s—demo—-video

I. INTRODUCTION

Rich software artifacts such as crash reports, bug reports,
and user reviews provide invaluable information to mobile
application developers throughout the development cycle. Re-
cently, it has become increasingly common that screenshots
and screen recordings comprise or are used among such
artifacts. These graphical artifacts are both easy to obtain and,
based on mobile app’s heavy reliance on GUI elements to
enable functionality, are often better suited to communicate the
complex concepts included in a feature request or bug report
than a textual description. Unfortunately, while the prevalence
of these visual mobile development artifacts continues to
rise, the manual effort required to glean relevant information
from them remains a challenge. This indicates the need for
automated techniques that can extract and analyze data from
screen recordings and screenshots.

In this paper, we present V2S, the first Android replay tool
that serves to automate the analysis of video-based mobile
development artifacts. V2S functions solely on videos; it
processes screen recordings of Android app usages, detects
and classifies the depicted actions using recently-developed
Deep Learning (DL) techniques, and translates these actions
into a replayable scenario for a given target device.

We comprehensively analyzed the ability of V2S to repro-
duce depicted actions and found that it was capable of cor-
rectly reproducing ~89% of the sequential events across 175
collected videos, illustrating its accuracy. We also conducted

a case study to evaluate V2S’s perceived utility in supporting
developers during mobile app development. We found that,
across the board, V2S was perceived as a useful tool for app
testing and debugging. V2S is an open-source tool that can
be found online at https://tinyurl.com/v2s—-tool.

II. V2S DESIGN

Fig. |1| provides an overview of V2S and its three phases,
each of which play a crucial role in accomplishing this
functionality. Given that V2S was designed and built with
extension in mind, each of these phases and each of the
component elements of these phases can be extended or
substituted to further the functionality of the pipeline as a
whole (e.g., users could substitute our object detection model
for a custom model). The intent of this design choice is to
allow researchers and developers to customize V2S for future
projects or development use cases.

V28 receives a user-specified configuration file as input that
includes the path to the video file to be processed, the path
to the object detection and opacity models, and information
about the target device. Using the video file’s path, V2S
enters of the pipeline, the video manipulation and
touch detection phase, where V28 first extracts each individual
video frame and then detects the location and opacity of the
touches exhibited in these frames. V2S then enters [Phase 2|
the action classification phase, where these detected touches
are classified as Tap, Long Tap, or Gesture. Finally, V2S
enters the scenario generation phase, in which a
replay script is produced and the input scenario is emulated
on the target device. V2S, in its current implementation, can
process one video at a time. Details about V2S’s algorithms
and evaluation can be found in its original research paper []1]].

A. Input Video Specifications

Input videos can be captured on a range of devices in
one of several different ways, including using the built-
in Android screenrecord utility or any number of other
recording applications available on Google Play [2]]. To ensure
compatibility with V28§, input videos must adhere to a few
specific constraints. Firstly, the frame size of the input video
must align with one of our predefined models and equal
the screen size of the target Android device. Currently, V2S

https://tinyurl.com/v2s-demo-video
https://tinyurl.com/v2s-tool

p
@ Touch Detection

1658

Faster
R-CNN

Frames

AN
350N

Bounding
‘@ Boxes Group Consecutive *
Video and Scores Touches .
4 4 Split Groups [Low-level Actions_|

— pom——p — Z I High Op: 0.01
= Low O 99

Scenario)

Generation

High-level Actions

) @ Action N (¢
Classification

SR
Grouping Algorithm

Using Opacit

Action Translation
Gesture Detection

Filtering

¥

Automated
Execution

il

/ \

Fig. 1: V28§ Design

supports the Nexus 5 and Nexus 6P screen sizesﬂ Secondly,
V28 requires each input video to be recorded with at least 30
“frames per second” (FPS) so that fast-paced gestures (such as
flicks or rapid swipes) can be accurately detected and replayed.
Finally, because V2S aims to detect the location of a user’s
finger on the screen, input videos must be recorded with the
“Show Touches” option enabled on the device in developer
mode. This enables an opaque, circular touch indicator to
appear as the user presses and/or moves their finger on the
screen (see Fig. Qa); as the user lifts their finger to finish an
action, the opacity of the indicator decreases.

(a) Touch Indicator (b) Touch Indicator on Device

Fig. 2: Default Touch Indicator
B. Phase 1: Video Manipulation and Touch Detection

Phase 1 first preprocesses the input video and then detects
the location of individual touches throughout the video using
a Neural Object Detection framework. Phase 1 executes three
components: (i) the FrameExtractor, (ii) the TouchDetector-
FRCNN, and (iii) the OpacityDetector.

1) FrameExtractor (FE): To account for different frame
rates in input videos, V2S first manipulates each video to
adhere to a standard 30 FPS. Then, V2S extracts individual
frames from the normalized video using £fmpeg [3].

2) TouchDetectorFRCNN (TD): The TD component applies
a modified FASTER R-CNN model (trained utilizing the
Tensorflow Object Detection API [4]]) to each frame and
accurately predicts the location of the bounding box of the
touch indicators if any (see Fig. 2]b) [3].

!'Support for additional devices and operating systems can be added, given
developers have a connection to the device, the touch indicator image, and
device specifications (screen size, etc.). See |[1] for more information.

3) OpacityDetector (OD): After the touches have been
localized by the TD, the OD crops each touch around its
bounding box and then feeds these into the OPACITY CNN,
which is an extended version of the ALEXNET architecture [6]].
This architecture classifies each touch as high or low opacity.

Phase 1 then pairs the touch locations detected by the
TD with the opacity values predicted by the OD to form a
“complete” list of detected touch indicators in each video
frame. This list is written to a detection_full.json file.

C. Phase 2: Action Classification

Phase 2 groups the touches detected in Phase 1 and trans-
lates them into a set of actions. Phase 2 begins by reading each
individual detected touch from the detection_full.json file and,
as a preliminary attempt to ensure that each touch that enters
the classification process is a true positive, it removes any
taps with a confidence measure below 0.7. V2S passes these
resulting taps to the GUIActionClassifier.

1) GUlIActionClassifier (GAC): The GAC component ex-
ecutes three distinct steps to classify the depicted actions
accurately: (i) an action grouping step to organize individual
touches across consecutive frames into discrete actions, (ii) a
segmentation step to determine the start and end points of
complex actions, and (iii) an action translation step which
allows for these groupings to be associated with a specific
action type. The output of this component is a list of detected
actions that can be written to a json file.

Grouping Consecutive Touches — As complete actions may
occur across consecutive frames, the GAC begins by detecting
consecutive frames and grouping the detected taps in them
into distinct groups based on the timing of the video frames.
Discrete Action Segmentation — For some fast-paced actions,
there may not be separating frames to delineate distinct actions
executed by the user. This behavior may be seen when a
user is typing on the keyboard or swiping quickly through
an article. In these cases, multiple touches will appear in
the same frame, and a technique to separate these touches
into distinct actions is necessary. The GAC component tackles
this using a heuristic-based approach, modeling each group of
consecutive frames and its associated touches as a connected
components graph problem. Each touch within the frame group
is considered a node. Nodes are connected if they occur across
consecutive frames and are clustered according to pixel-based

distance. This means that touches that share similar spatial
characteristics across frames are treated as continuous actions.
Action Translation — Actions are translated into one of three
predetermined options based on their average location and
duration. Taps remain in the same relative on-screen location
and persist for <20 frames. Long Taps have similar location
requirements but last for >=20 frames. Any actions that do
not fit into these two categories become Gestures.

Phase 2 outputs a detected_actions.json file containing the
list of detected actions with their touches from Phase 1.

D. Phase 3: Scenario Generation

Phase 3 of V2S harnesses the actions classified in Phase 2
and translates them into a script in the sendevent format
available in Android’s Linux kernel [7]. V2S then utilizes
a modified version of the RERAN [§|] binary to replay the
predicted scenario on the target device. Phase 3 reads in the ac-
tions specified in the detected_actions.json file output by Phase
2 and begins the execution of the Action2EventConverter.

1) Action2EventConverter (A2EC): The A2EC converts the
high-level actions produced by Phase 3 into low-level com-
mands in the sendevent format. This component utilizes the
start_event and end_event commands, and the x and y
coordinates of the various actions to generate the replay script
and control the Ul behavior on the target device.

Each action begins with the start_event command to
indicate the start of an event. For the Tap action, the A2EC
component calculates the centroid or average location. For the
Long Tap action, the A2EC component utilizes this same
centroid point but sustains this command for a specified
duration of time, depending on the number of frames for which
the action persists. Finally, for Gesture actions, the A2EC
component iterates over and appends each (z,y) coordinate
pair of the action to the script. For each of these actions,
the A2EC terminates the action by appending the end_event
command to the script.

The A2EC allots a duration of 33 milliseconds per frame
and calculates an appropriate timestamp for each command
appended to the script. As 33 milliseconds is the delay between
frames for a video at 30 FPS, this ensures proper timing of
actions to be executed in the generated script.

2) Scenario Replay: The script generated by the A2EC is
written to a send_events.log file. This log file is then converted
by the Translator component into a format that is executable
on the target device. Once this translation has occurred, V2S
pushes the executable file and a modified version of the RERAN
binary to the device, starts a screen recording of the generated
scenario, and executes the V2S script.

III. V2S EVALUATION

In order to evaluate the capabilities of V2S as a whole,
we asked five different research questions and conducted
associated studies. We measured: (i) the accuracy of the touch
detection FASTER R-CNN model; (ii) the accuracy of the
opacity detection ALEXNET model; (iii) the accuracy of V2S
on different usage scenarios; (iv) the runtime performance of

V2S; and (v) the practical utility of V28S. The results here are
summarized from the original V2S paper [1]].

A. Accuracy of FASTER R-CNN

1) Design: In order to evaluate the FASTER R-CNN
model’s ability to correctly identify the location of a touch
indicator within an image, we generated a dataset of 15,000
images containing touch indicators and split this data 70%-
30% into training and testing sets, respectively. For this
preliminary study, we trained two different models for two
different screen sizes (the Nexus 5 and the Nexus 6P) using
the Tensorflow Object Detection API [4]. More information
about this training process can be found in the V2S paper [[1]].

For this study, we considered the model’s Mean Average
Precision (mAP), which is a commonly-used metric to de-
termine accuracy for object detection tasks [[1]. This metric
is calculated as mAP = TP/(TP + FP), where a TP is
a region correctly identified as a touch indicator and an F'P
is a region that is incorrectly marked as containing a touch
indicator. We also considered the recall metric of this model
to determine the frequency with which our model misses a
touch indicator when one is present.

2) Results: All of the models achieved ~ 97% mAP in
predicting the location of the touch indicator. The model was
also able to achieve ~ 99% recall, meaning that the model
rarely missed the detection of the touch indicator.

B. Accuracy of OPACITY CNN

1) Design: We evaluated the OPACITY CNN model’s ac-
curacy in correctly classifying whether a touch indicator has a
high or low opacity. We generated a dataset of 10,000 images
containing equal numbers of high-opacity and low-opacity
touch indicators and then split these images 70%-30% into
training and testing datasets, respectively. We used TensorFlow
and Keras to create and train a modified OPACITY CNN.

For this study, we considered the Mean Average Precision
(mAP) of this model, where a TP is an indicator that was
identified as having the correct opacity, and an F'P is an
indicator that was predicted to have the incorrect opacity value.

2) Results: We found that the precision of this model was
~ 98-99% mAP. This indicates that the opacity model is very
accurate in its ability to correctly distinguish between high and
low-opacity touch indicators.

C. Accuracy on Usage Scenarios

1) Design: We designed two studies to test V2S’s ability
to replicate an original usage scenario depicted in a video
recording. The Controlled Study (CS) was meant to ensure
the depth of V2S’s abilities in reproducing a variety of bug
crashes, synthetically-injected and real application failures,
and normal usage scenarios. Then, in the Popular Applications
Study (PAS), we assessed the breadth of V28§ in its ability to
accurately reproduce a variety of usage scenarios depicted in
a diverse set of applications from the Google Play store.

In the CS, eight participants were recruited from William &
Mary to record eight different scenarios each. These scenarios

came from two of the following four categories: (i) normal
usage cases, (ii) bugs in open source apps, (iii) real crashes,
and (iv) synthetically-injected crashes in open source apps.
Four participants recorded on the Nexus 5 and four recorded
on the Nexus 6P. The participants familiarized themselves with
the scenario before recording. Each of the buggy scenarios was
extracted from previous studies of a similar nature [9]-[11]].

For the PAS, we downloaded the top-two rated applications
from 32 categories in the Google Play store. Two of the
authors then recorded two scenarios per application, with each
scenario differently exhibiting one of the major features of the
application. To ensure that V2S could reproduce videos on
different devices, one author recorded their scenarios on the
Nexus 5 and the other on the Nexus 6P.

To verify V2§’ accuracy, we manually determined the
ground truth action sequences and used this to compute
four different metrics: (i) Levenshtein distance, (ii) Longest
Common Subsequence (LCS), (iii) precision and recall, and
(iv) manual video comparison. Levenshtein distance is a metric
that depicts the number of alterations necessary to transform
one sequence into another. The LCS metric represents the
longest sequence of continuous matching actions produced
by V2S when compared to the ground truth sequence. To
compute the precision and recall, we created an unordered
“action pool” for each scenario in our studies and for each
predicted action type. Comparing this predicted ‘“action pool”
to the ground truth “action pool” allowed us to calculate these
metrics overall and per individual action type. Finally, each
scenario was manually reviewed and marked as successful as
long as the reproduced behavior exercised the same overall
functionality as the original.

2) Results: We briefly summarize the results.

a) Levenshtein Distance: For the CS and PAS, the avg.
distance value was 0.85 and 1.17 changes, respectively.

b) LCS: In the CS, V2S was able to match 95.1% of the
sequential actions, and for the PAS, V2S was able to correctly
emulate 90.2% of these consecutive events.

¢) Precision and Recall: Overall, V2S had very high
precision and recall values for all event types: for the CS,
V2S achieved 95.3% precision and 99.3% recall, and for the
PAS, V2S achieved 95% precision and 97.8% recall.

d) Manual Video Comparison: V2S accurately repli-
cated 93.75% of the 64 scenarios in the CS and 94.48% of
sequential actions. For the PAS, of the 111 videos fed into
V28, the tool accurately replayed 81.98% of scenarios and
89% of sequential actions.

D. V2S Runtime Performance

1) Design: To assess the execution performance of V28,
we calculated the average runtime of the pipeline per video.

2) Results: We measured the performance per frame (in
seconds per frame or s/f) of each major step that makes up
V2S. We determined the average runtime of (i) the frame
extraction process (0.045 s/ f); (ii) the touch detection process
(1.09 s/ f); and (iii) the opacity classification step (0.032 s/ f).
By our calculations, an average 3-minute video processed by

V2S in full would take ~ 105 minutes. This performance
could be easily enhanced by parallelizing the computation.

E. Industrial Utility

1) Design: We wanted to understand if mobile develop-
ers perceive V2S as useful. We interviewed three software
engineers to assess the potential role of V2§ in their day-
to-day operations. The first section of the interview aimed at
gaining an understanding of the developer’s backgrounds and
the tools that they use to accomplish their every-day tasks.
The second section of the interview was intended to allow
participants to assess the performance and utility of V2S. This
was accomplished by presenting them with a demonstration of
the input and replication videos and the resulting detections,
action list, and replay script that V2S produces.

2) Results: All of the participants agreed that V2S5 is highly
accurate at reproducing actions depicted in an input video.
Each of the participants also viewed V2S as a potentially
useful tool for app testing and debugging.

IV. FINAL REMARKS & FUTURE WORK

In this tool demonstration paper, we have presented V2S5,
a novel tool for translating video recordings of mobile app
usages into replayable scenarios. V2S facilitates different
testing and debugging activities by allowing for easy replay
of app usages and bugs captured via screen recordings, and
our evaluation illustrates its effectiveness across several di-
mensions. As future work, we plan to add support for multi-
fingered actions and train additional object detection models
so that V2§ can be used with a more diverse set of devices.

V. ACKNOWLEDGEMENTS.

This research was supported in part by the NSF CCF-
1955853 and CCF-1815186 grants. Any opinions, findings,
and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

REFERENCES

[1] C. Bernal-Cérdenas, N. Cooper, K. Moran, O. Chaparro, A. Marcus, and
D. Poshyvanyk, “Translating video recordings of mobile app usages into
replayable scenarios,” in ICSE’20, p. 309-321, 2020.

[2] “Google play screen recording apps https://tinyurl.com/s-recgpl,” 2019.

[3] “Ffmpeg tool https://www.ffmpeg.org/,” 2019.

[4] “Tensorflow object detection api https://tinyurl.com/tf-ojbdet,” 2019.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis & Machine Intelligence, no. 6, pp. 1137-1149, 2017.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” NeurIPS’12, pp. 1097-1105.

[7] “Getevent, https://source.android.com/devices/input/getevent/,” 2020.

[8] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing-
and touch-sensitive record and replay for android,” ICSE’13, pp. 72-81.

[9] O. Chaparro, C. Bernal-Ciardenas, J. Lu, K. Moran, A. Marus,

M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the quality of the

steps to reproduce in bug reports,” ESEC/FSE’19, pp. 86-96, 2019.

K. Moran, M. Linares-Vdsquez, C. Bernal-Cdrdenas, and D. Poshy-

vanyk, “Auto-completing bug reports for android applications,”

ESEC/FSE’15, pp. 673-686, 2015.

K. Moran, M. Linares-Véasquez, C. Bernal-Cérdenas, C. Vendome, and

D. Poshyvanyk, “Automatically discovering, reporting and reproducing

android application crashes,” ICST’16, pp. 33-44, 2016.

[10]

(11]

https://tinyurl.com/s-recgpl
https://www.ffmpeg.org/
https://tinyurl.com/tf-ojbdet
https://source.android.com/devices/input/getevent/

	Introduction
	V2S Design
	Input Video Specifications
	Phase 1: Video Manipulation and Touch Detection
	FrameExtractor (FE)
	TouchDetectorFRCNN (TD)
	OpacityDetector (OD)

	Phase 2: Action Classification
	GUIActionClassifier (GAC)

	Phase 3: Scenario Generation
	Action2EventConverter (A2EC)
	Scenario Replay

	V2S Evaluation
	Accuracy of Faster R-CNN
	Design
	Results

	Accuracy of Opacity CNN
	Design
	Results

	Accuracy on Usage Scenarios
	Design
	Results

	V2S Runtime Performance
	Design
	Results

	Industrial Utility
	Design
	Results

	Final Remarks & Future Work
	Acknowledgements.
	References

